Seminar on Context-Sensitivity

Week Nine

1 The Liar: basics

- Q Q is not true.
- (1) Q = Q is not true'
- (2) Q is true $\leftrightarrow Q$ is not true' is true
- (3) $[Q \text{ is true } \land `Q \text{ is not true' is true}] \lor [Q \text{ is not true } \land `Q \text{ is not true' is not true}]$

2 Options for the theorist

- (i) Accept that *Q* is not true (\approx "classical gap theory")
- (ii) Accept that Q is true (\approx "classical glut theory")
- (iii) Accept that Q is either true or not true, but refuse to believe that it is true and refuse to believe that it isn't true (\approx "weakly classical theory")
- (iv) Refuse to accept that *Q* is either true or not true (paracomplete theory)
- (v) Accept both that Q is true and that it isn't (dialethism)

3 Warnings

4 Context-sensitivity: the indexical model

- Q^* Q^* is not true in any context.
- Q_c Q_c is not true in my present context.

5 Context-sensitivity: expressing multiple propositions

- (T) The proposition that ϕ is true iff ϕ .
- (E) ' ϕ ' expresses the proposition that ϕ .
- Q_{\forall} Q_{\forall} expresses no true proposition.
- Q_{\exists} Q_{\exists} expresses some proposition that isn't true.

Argument that Q_{\exists} expresses more than one proposition:

- (1) Q_{\exists} expresses the proposition that Q_{\exists} expresses some proposition that isn't true. ((E))
- (2) Suppose Q_{\exists} expressed only true propositions.
- (3) Then the proposition that Q_{\exists} expresses some proposition that isn't true would be true. ((1), (2))
- (4) Then Q_\exists would express some proposition that isn't true. ((3), (T))
- (5) So Q_{\exists} expresses some proposition that isn't true. ((4))
- (6) So the proposition that Q_{\exists} expresses some proposition that isn't true is true. ((5), (T))
- (7) So Q_{\exists} expresses at least one true proposition. ((1),(6))
- (8) So Q_{\exists} expresses at least two propositions. ((4), (7))

6 Asserting multiple propositions

- Q_{\forall}^* I am now asserting nothing true.
- Q_{\exists}^* I am now asserting at least one untruth.

7 Analogy: clubs

- (1*) Michael is the secretary of a club whose members are exactly those who are secretary to some club of which they are not a member.
- (2*) Suppose Michael were a member of every club of which he is a secretary.
- (3*) Then Michael would be a member of a club whose members are exactly those who are secretary to some club of which they are not a member ((1*), (2*))
- (4*) Then Michael would be secretary to some club of which he was not a member. ((3*), (T))
- (5*) So Michael is secretary to some club of which he is not a member. $((4^*))$
- (6*) So Michael is a member of every club whose members are exactly those who are secretary to some club of which they are not a member. ((5*))
- (7*) So Michael is secretary to a club of which he is a member. $((1^*), (6^*))$
- (8*) So Michael is secretary to at least two clubs. $((4^*), (7^*))$

8 Montague's theorem

Factivity $T(\phi') \rightarrow \phi$

Closure $(T(\phi_1) \land \ldots \land T(\phi_n)) \to T(\psi)$ whenever ψ follows from $\phi_1 \ldots \phi_n$ in predicate logic Second-level factivity $T(T(\phi) \to \phi)$

- $\lambda \quad \neg T(\lambda)$
- (1) $T(\lambda = \neg T(\lambda))$ (premise)
- (2) $T(T(\lambda') \to T(\neg T(\lambda')))$ ((1), Closure)
- (3) $T(T(\neg T(\lambda'))) \rightarrow \neg T(\lambda'))$ (Second-level factivity)
- (4) $T(T(\lambda') \rightarrow \neg T(\lambda'))$ ((2), (3), Closure)
- (5) $T('\neg T('\lambda')')$ ((4), Closure)
- (6) $\neg T(\lambda')$ ((5), Factivity)
- (7) $\lambda = (\neg T(\lambda'))'$ ((1), Factivity)
- (8) $\neg T('\neg T('\lambda')')$ ((6), (7))

Upshot: (E) has instances that don't express only truths.

9 "Strengthened" Liars

Natural thought: say that a sentence ϕ *standardly* expresses a proposition *p* iff ϕ expresses *p*, and there is no instance ψ of (E) and false proposition *q* such that $\lceil \phi \land \psi \rceil$ expresses the conjunction of *p* and *q*.

 $Q_{\exists}+Q_{\exists}+$ standardly expresses at least one untruth.

- Q_{\forall} + Q_{\forall} + standardly expresses nothing true.
- (E)+ ϕ standardly expresses the proposition that ϕ

Further upshot: (E)+ has instances that don't standardly express only truths....