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Geometry is the only science that it hath pleased God to bestow on mankind.
Thomas Hobbes

Mathematicians are like Frenchmen: whatever you say to them they translate
into their own language and forthwith it is something entirely different.

Johann Wolfgang von Goethe

8.1 Introduction

Modern science is replete with mathematics. The idea that an understanding of
mathematics is an essential prerequisite to understanding the physical world is

expressed in a famous quote from Galileo:

Philosophy is written in that great book which ever lies before our eyes — I
mean the universe — but we cannot understand it if we do not first learn the
language and grasp the symbols, in which it is written. This book is written in the
language of mathematics.... (Galilei 1623, p. 197).

And the centrality of mathematics to physics has increased immeasurably since Galileo’s
time, thanks in large part to two mathematical innovations of the 17t Century: the
invention of analytic geometry (principally due to Descartes and Fermat) and the
invention of the calculus (principally due to Newton and Leibniz).

First let's consider analytic geometry. We nowadays are used to the idea that
geometrical figures correspond to numerical functions and algebraic equations. But this
is not how geometry was done before the 17t Century. Euclid never represented
geometrical figures by numerical functions; he talked of straight lines, triangles, conic
sections, etc. without ever mentioning any corresponding numerical (coordinate)
functions characterising these shapes. It is true that prior to the 17t Century on

occasion real numbers were used in order to represent geometrical figures, but there



was no systematic use of algebraic equations to represent and solve geometrical
problems until the early 17t Century. It was Descartes and Fermat who first established
a systematic connection between geometrical objects on the one hand and functions and
algebraic equations on the other hand by putting ‘Cartesian’ coordinates on space, and
then using the numerical coordinate values of the locations occupied by the geometrical
objects to characterize their shapes. This made a vast supply of new results and
techniques available in geometry, physics and science more generally.

Now let’s turn to the calculus. We are also used to the idea that whenever one
has a quantity which varies (smoothly) in time, one can ask what its instantaneous rate
of change is at any given time. More generally when one has a quantity which varies
(smoothly) along some continuous dimension, we nowadays immediately assume the
existence of another quantity which equals the rate of change of the first quantity at any
given point along the dimension in question. However, until Galileo started to make use
of instantaneous velocities in the early 17t Century, instantaneous rates of change had
almost no use in science. Even Galileo himself had no general theory of instantaneous
velocities, had no general method for calculating instantaneous velocities given a
position development, and at times made incoherent assertions about instantaneous
velocities.! It took Newton and Leibniz to develop a general theory of instantaneous
rates of change, and to develop an algorithm for calculating their values. This theory
was the calculus. And of course most of physics, indeed much of modern science, could
not possibly have developed without the calculus.

There are two ways in which this incursion of mathematics into physics is
worrying. The first worry involves the relations that physical objects bear to
mathematical entities like numbers, functions, groups, and so forth. Much of the
vocabulary used in standard physical theories expresses such relations: for example,
‘the mass in grams of body b is real number r’; ‘the ratio between the mass of b1 and that
of b is r; ‘the strength of the gravitational potential field at point p is r; ‘the
acceleration vector of body b at time tis V. Some of these “mixed” mathematico-
physical predicates have standard definitions in terms of others; but in general, some
such predicates are left undefined. But there would be something unsatisfactory about
this, even if we were completely comfortable with the idea that entities like real
numbers are every bit as real as ordinary physical objects. We would like to think that
the physical world has a rich intrinsic structure that has nothing to do with its relations
to the mathematical realm, and that facts about this intrinsic structure explain the

holding of the mixed relations between concrete and mathematical entities. The point

1For instance, he gave a fallacious argument that it was impossible for instantaneous velocities
to be proportional to distance traversed.



of talking about real numbers and so forth is surely to be able to represent the facts
about the intrinsic structure of the concrete world in a tractable form. But physics
books say hardly anything about what the relevant intrinsic structure is, and how it
determines the mixed relations that figure in the theories. So there is a job here that
philosophers need to tackle, if they want to sustain the idea that the truth about the
physical world is determined by its intrinsic structure.

The second worry has to do with the very existence of mathematical entities—
numbers, sets of ordered pairs, Abelian groups, homological dimensions of modular
rings, and so on. These things are not part of the physical universe around us. They do
not interact with physical objects, or at least, they do not do so in anything like the way
in which physical objects interact with one another. Some, including us, consequently
cannot shake the suspicion that mathematical objects do not really exist? But if they
don’t exist, shouldn’t it be possible, at least in principle, to characterise the physical
world without talking about them at all? Here is another job for philosophers: to find
alternatives to standard ‘platonistic’ (mathematical-entity-invoking) physical theories
which can do the same empirical explanatory work without requiring any mathematical
entities to exist.

We will call the project of responding to the first worry, by showing how all the
‘mixed’ vocabulary of some platonistic physical theory can be eliminated in favour of
‘pure’ predicates all of whose arguments are concrete physical entities, the ‘easy
nominalistic project’. To the extent that we are moved by the second worry, we will
want not only to find such predicates, but to write down some simple laws stated in
terms of them which presuppose nothing about the existence of mathematical entities.
Call this the ‘hard nominalistic project’.

There is an influential line of thought (propounded by Putnam (1971) amongst
others) that has convinced many philosophers that the first worry, about the very
existence of mathematical entities, is misplaced. The idea is that just as the success of
theories which entail that there are electrons (for example) gives us good reason to
believe that electrons do in fact exist, so the success of theories which entail that there
are real numbers gives us the same kind of reason to believe that real numbers do in
fact exist.

One concern about this thought is the fact that, whereas we ended up with
electron-positing theories as a result of a rather thorough exercise in which these
theories were compared with a wide range of rivals which didn’t posit electrons, and

the latter theories were found wanting, scientists have generally invested no effort in

2 See Dorr 2007 (section 1) for some attempts to clarify the meaning of this claim.



even developing alternatives to standard theories that don’t posit the same range of
mathematical entities, let alone in comparing their merits. Instead, practicing scientists
simply take it for granted that they can to help themselves to as many mathematical
entities as they like—their attitude in this case is utterly different to their attitude
towards the positing of physical entities. Because of this, it looks rash to take the fact
that all of our currently most empirically successful theories presuppose the existence
of certain mathematical entities as a good reason to assume that there are no other,
equally successful theories that avoid such presuppositions. Since scientists don’t seem
interested, the task of looking for such theories and comparing them with the usual
ones—the hard nominalistic project—falls on philosophers.3

There are prima facie reasons to be optimistic about this undertaking. For very
often, standard mathematical physics invokes mathematical entities that have “surplus
structure” relative to the physical phenomena. For example, when we ‘put’ a coordinate
t on, say, time, we are assuming the existence of a function from a very rich structure,
namely the real line, onto a much less rich structure, namely time. The rich structure of
the real number line includes both an ‘addition structure’ and a ‘multiplication
structure’: there are facts about which real number you get when you add two real
numbers, and which real number you get when you multiply two real numbers. Time
does not have any such structure: it does not make sense to ask which location in time
you get when you ‘add’ two locations in time, or ‘multiply’ two locations in time. Or to
be more precise: we could introduce meanings for ‘add’ and ‘multiply’ on which this
would make sense; but in order to do this, we would have to make some arbitrary
choices which are not in any sense dictated by the nature of the entities we are dealing
with, namely times. (For example, assuming the falsity of the view discussed in chapter
1 according to which time lacks metric structure we could institute such meanings by
choosing one instant of time, arbitrarily, to call ‘zero’, and another to call ‘one’.) The
disparity between the two structures shows up in the fact that there are many different
coordinate functions that are equally “good”, equally well adapted to the task of
representing the kind of structure that time really does have. It is natural to suspect

that this detour through an unnecessarily rich structure can be cut out. There has to be

3 Dorr (2010) argues that the it is not so hard to find such laws, since given any platonistic
theory T, the theory that T follows from the truth about the concrete world together with
certain mathematical axioms can provide satisfactory explanations of the phenomena putatively
explained by T, without committing us to the actual existence of mathematical entities.
However, the task of evaluating such ‘parasitic’ theories raises tricky epistemological issues. In
this chapter, we will be looking for theories which avoid talking about mathematical entities
altogether, even in the scope of modal operators. If we can find them, our response to the
‘indispensability argument’ for the existence of mathematical entities will be on firmer
epistemological ground.



some way of characterising time intrinsically, other than by saying which coordinate
functions on it count as “good”; and once we have settled on a systematic way of doing
this, it seems plausible that we would then have a way to say what needs to be said
without dragging real numbers into the picture at all.

Even if the hard nominalistic project went as well as we could possibly hope—
even if we found some general algorithm for systematically turning any scientific theory
into an equally simple, empirically equivalent theory free from all presuppositions
about the existence of mathematical entities—some philosophers would remain
unmoved. There are some who think it is just obvious that mathematical entities do
exist, independent of any detailed results from empirical science. Some say: look, real
scientists seem to treat it as obvious that these things exist, since they constantly
presuppose their existence in theorising about other subject matters, and take no
interest (at least, no professional interest) in the project of coming up with theories
which do not make require such a presupposition; if this attitude is good enough for
them, it should be good enough for us. We will not try to argue anyone out of attitudes
like this. But we will just note a couple of things. First, if it turns out that the kinds of
empirical considerations that might support belief in electrons do not similarly support
the belief that there are mathematical entities, that would be an interesting
epistemological discovery even if it in fact the latter belief is well-justified for some
other reasons. Second, your understanding of platonistic physical theories will be
deeper if you understand when quantification over mathematical entities is merely
playing an expressive role that could equally well have been achieved in some other
way, and when—if ever—it is really essential. And third, even if you think it is
completely absurd to suppose that mathematical entities don’t exist, you could and
should be interested in the easy nominalistic project, of finding some pure predicates
which characterise the intrinsic structure of the physical world upon which the
relations between physical and mathematical entities supervene. And once you have
gone this far, you should care about finding physical laws that are simple when
expressed in terms of your chosen primitive predicates. Even if you don’t mind
quantifying over mathematical entities, this could turn out to be a highly non-trivial
task, and might require overcoming many of the same challenges posed by the hard
nominalistic project. For example, you will want to find simple geometric axioms which
entail that the intrinsic structure of space is such as to allow coordinates to be assigned
in a way that respects that structure.

Historically, those who have worried about the existence of numbers, sets and so
forth have often also worried about the existence of regions of space, time or spacetime.

Other chapters of this book have argued that we really do have good empirical reason to



believe in these entities. Theories that posit them are genuinely simpler, and for that
reason more credible, than theories that don’t. So in searching for ways of doing
physics without quantifying over real numbers, sets, functions, etc., we will want to pay
special attention to the work that geometric entities can do in providing substitutes for
such quantification. It is instructive in this regard to see that two of the fathers of the
mathematisation of physics, Galileo and Newton, favoured the ‘geometrisation’ of
physics, not the ‘arithmetisation’ of physics. To see that this is what Galileo thought, let
us extend that famous quote from Galileo a little beyond the place that it is usually

ended. Here is how it continues:

... This book is written in the language of mathematics, and the symbols are
triangles, circles and other geometrical figures, without whose help it is
impossible to comprehend a single word of it; without which one wanders in

vain through a dark labyrinth.

Galileo’s ‘language of mathematics’ seems to be the language of geometry, not of
arithmetic or algebra. Newton, in turn, was extremely critical of Descartes’ analytic

geometry, in which geometry and algebra are joined together:

To be sure, their [the ancients’] method is more elegant by far than the Cartesian
one. For he [Descartes] achieved the result by an algebraic calculus which, when
transposed into words would prove to be so tedious and entangled as to provoke

nausea, nor might it be understood. (Newton 1674—84, p. 317).

Henry Pemberton, who knew Newton well, had this to say:

[ have often heared him [Newton] censure the handling of geometrical subjects
by algebraic calculations...... and speak with regret of his mistake at the
beginning of his mathematical studies, in applying himself to the works of Des
Cartes and other algebraic writers before he had considered the elements of
Euclide with that attention which so excellent a writer deserves. (Pemberton
1728)

Newton eventually came to the opinion that the proper way to do calculus was as a
geometric theory, by means of his ‘synthetic method of fluxions’, and was critical of his
own earlier ‘analytic method of fluxions’ which relied on algebraic classifications of

curves and numerical power series:



Men of recent times, eager to add to the discoveries of the ancients, have united
specious arithmetic with geometry. Benefitting from that, progress has been
broad and far-reaching if your eye is on the profuseness of an output, but the
advance is less of a blessing if you look at the complexity of its conclusions. For
these computations, progressing by means of arithmetical operations alone, very
often express in an intolerably roundabout way quantities which in geometry are

designated by the drawing of a single line. (Newton 1674—84, p. 421)

Perhaps the above quotes do not quite amount to a ringing endorsement of a full-on
attempt to rid physics of all real numbers, sets, functions, groups and the like. Still, we
will take ourselves to be encouraged by Newton and Galileo, and set off on that
enterprise. We will start by summarising, and slightly amending, the one serious attack
on the hard nominalistic project that has been made up to now: Hartry Field’s
nominalisation of Newtonian gravitational physics (Field 1980). After that we will
attempt to push the project forward, by developing a way of nominalising the theory
that lies at the heart of modern calculus and modern physics, namely the theory of

differentiable manifolds.

8.2 Nominalizing Newtonian Gravitation.

Field undertakes a case study in the hard nominalistic project. He considers a certain
physical theory formulated in the standard way (that is, using lots of mathematical
entities), and shows how to write down a completely nominalistic successor for this
theory, which can do just as good a job as the original theory at explaining the
phenomena. The particular physical theory that Field chooses for this case study is a
version of Newtonian gravitation. Of course this theory doesn’t have a hope of being
true. For one thing, it says that the only form of interaction is by gravitation, and we
know perfectly well that this is not the case. So the nominalistic successor theory
doesn’t actually do a good job at explaining all that needs to be explained by a physical
theory. But the point of a case study like this is to notice general strategies which we
can put to work in finding nominalistic successors for other platonistic physical
theories. Ultimately, we would like to consider whole families of theories sharing some
general structural features. Then we could formulate general results of the form ‘so
long as the phenomena do not require us to reach for mathematical tools beyond those
invoked by theories of this class, they can be explained without invoking mathematical

entities at all’.



One salient feature of the Newtonian theory chosen by Field is its flat spacetime
setting—that of so-called Neo-Newtonian (or “Galilean”) spacetime. (See chapter 1,
section 2 for an explanation.) The basis of Field’s nominalistic physics is an axiomatic
characterisation of this Neo-Newtonian spacetime, which builds on the axiomatic
Euclidean geometry developed by Hilbert (1899) and Tarski, and the axiomatic affine
geometry developed by Tarski and Szczerba. This axiomatisation uses just three
primitive predicates, all of which take spacetime points as arguments: a two-place
Simultaneity predicate, a three-place Betweenness predicate, and a four-place ‘spatial
congruence’ predicate ‘S-Cong’. (‘S-Cong(a,b,cd)’ intuitively means that points a and b
are exactly as far apart as points ¢ and d. It is a consequence of the axioms that
whenever SCong(a,b,c,d), a and b are Simultaneous and c and d are Simultaneous: this
captures the fact that no notion of absolute rest is definable within Neo-Newtonian
spacetime.) The axioms that Field uses are essentially nothing more than a modern,
rigorous, version of the axioms that Euclid set down more than 2000 years ago. For
example, one of them is the ‘Axiom of Pasch’: if Between(x,u,z) and Between(y,v,z), then

for some a, Between(u,a,y) and Between(v,a,x). Or in words: given a triangle xyz with a

y

>

Figure 1: The Axiom of Pasch e the



lines uy and vxintersect (see Figure 1.)

These axioms do not mention real numbers, functions, sets, or anything like that. Like
Newton himself, the theory shuns Descartes and imitates Euclid. We will later on
discuss one of the axioms, a ‘richness’ axiom that is quite different in character from the
other axioms, in a little bit more detail. But for now, let us push ahead and sketch Field’s
treatment of the contents of this space-time.

The particular mathematical version of Newtonian gravity that Field takes as his
input has two parts. First, there is a theory about the relations between two spacetime
fields—the mass density field and the gravitational potential. Second, there is a theory
about the relations between the second of these fields and the spatiotemporal
trajectories of so-called ‘test particles’. Let us begin by considering just the first part. In
mathematical terms, one would think of both the mass-density field and the
gravitational potential as functions from spacetime points to real numbers. Relative to
any coordinate system, each such function will correspond to a function from
quadruples of real numbers to real numbers. The claim the theory makes about the
relation between these fields can then be expressed as a condition on the latter

functions, namely Poisson’s equation:
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Here @(x,y,71t) is the function from R* to R that represents the gravitational potential,
and p(x,y,zt) is the one that represents the mass-density field. kis a constant.

This is a good illustration of the challenges involved in both the easy and the
hard nominalistic project. To carry out the easy project, we would have to explain what
it is for a given real number to be the value of the gravitational potential or of the mass
density field at a spacetime point. Moreover, our explanation should do justice to the
fact that there is something arbitrary about the use of real numbers in this connection,
insofar as the mapping depends on an arbitrary choice of a unit for mass, and of a unit
and a zero for the gravitational potential. To carry out the hard project, we will also
have to dispense with the extensive quantification over mathematical entities required
by this formulation: as things stand, we are quantifying over functions from spacetime
points to real numbers (the coordinate functions), over functions from real numbers to
real numbers (the coordinate representatives of the fields), and over functions from
some such functions to other such functions (since differentiation is standardly

explained as “the” function of this sort satisfying certain properties).
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Field’'s approach is as follows.# To talk about the gravitational potential we will
use two predicates, GravPotBetweenness and GravPotCongruence, subject to one-
dimensional analogues of the axioms for spatial betweenness and congruence discussed
earlier. Just as the geometric axioms entail that a unique mapping from points of space
to points of R* is determined once we settle which points we want to map to <0,0,0,0>,
<1,0,0,0>, <0,1,0,0>, <0,0,1,0> and <0,0,0,1>, so the axioms for GravPotBetweenness
and GravPotCongruence will let us determine a unique mapping from points of space to
R once we decide on a pair of points which we want to map to 0 and 1 respectively. To
talk about the mass density field, we can use a single predicate MassDensitySum—
where intuitively MassDensitySum(x,y,z) means that the real number that is the value
of the mass density field at zis the sum of those that are its values at xand y—subject to
axioms which determine a unique mapping to the real numbers once we have chosen a
point (with nonzero mass density) to map to the real number 1. (We use
MassDensitySum rather MassDensityBetwenness and MassDensityCongruence because
there is an objective fact about which points have zero mass-density, whereas there is
no objective fact as to which points have zero gravitational potential, any more than
there is an objective fact about which instant of time is the ‘zero instant’. This also
explains why numerical representations of mass-density are unique up to
transformations of the form m—am, rather than of the form m—am-+b>.)

Thinking of the gravitational potential as a fundamental field on a par with mass-
density may seem surprising. Since Poisson’s equation completely determines the facts
about the gravitational potential at each time given the facts about the mass-density
field at that time, it is tempting to regard the gravitational potential as nothing more
than a device for summarising certain facts about the distribution of mass-density that
have a special relevance when we are trying to figure out how things (in Field’s theory,
“test particles”) will accelerate at a given point. Someone who was only concerned with
the easy nominalistic project could afford to go along with this attitude. But Field is
engaged in the hard project: he wants a simple nominalistic theory which can do all of
the explanatory work of the platonistic theory it replaces. Taking the gravitational
potential to be a fundamental scalar field is a crucial part of Field’s strategy for doing
this. Without it, it is completely unclear how one could express in a nominalistically
acceptable way a law determining the net force on each particle as a sum of component
forces deriving from all the rest of the mass in the universe. We think Field is thinking
in the right way here. As has been emphasised many times in this book, the right way to

form views about the fundamental structure of the world is to be guided by the idea that

4 Field isn’t quite explicit about the primitive predicates he wants to use in the case of the mass
density field; what we describe is one way of doing it.
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Figure 2: Sameness of directional derivative

How do we say that? Well, in the friendly setting of Euclidean space, a vector V at a point
p can be identified with a straight line p—p’ which runs from p to another point p’ (the
direction of the line corresponding to the direction of V, and the length of the line
corresponding to its magnitude), and a vector W at q can be identified with a straight
line g—q'. If @ were to change at a constant rate along the lines p—p’ and q—¢’, then
directional derivatives of ¢ at p in direction V and at q in direction W would be equal iff
the ratio between the difference in the value of ¢ between p’ and p and the difference in
the value of @ between q' and q were equal to the ratio between the lengths of p—p’ and
gq—q’. Of course, generically the potential does not change at a constant rate between a
point p and a point p’ which is a finite distance away. So we need to take limits as we
get closer and closer to p and g, while keeping the ratio and directions fixed. Here is

how to express the claim nearly nominalistically:

For all points w;x,y,z such that @(w)—@(x):@(¥)—@(2) > 1, there exist a point p”’

7’

Between p and p’, and a point ¢'' Between g and ¢', such that, for any point p

I

Between p and p”’ and any point ¢ Between g and ¢": if
lg=q""|:|p~P""|=lg=q|:|p~P'l, then P —9(2):p(W)—¢@(x) <
e(P"N)—e(P):e(qd")—9(q@) < e(W)—@(x):0(1)—¢(2).

rr 7
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|:Ip—p'”| is the ratio of the lengths of lines qg—q""' and p—p’"’. The idea is

that the directional derivative of ¢ at p in direction V equals the directional derivative of

Here |g—q

@ at q in direction W iff for any desired degree of accuracy one can find a point p” in

nr

direction V from p, and a point q"’ in direction W from ¢, such that for any points p’"’ and

q’" in the same directions from p, such that their distances from p and q respectively
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stand in the same ratio as V to W, the ratio of the difference between values of ¢ at p
and p’"’ and the difference between values of ¢ at q and q'" is within that degree of
accuracy of 1. The ‘degree of accuracy’ demand is imposed by saying that it has to be
smaller than @(w)—@(x):@(y)—@(2) for any such ratio that is larger than 1, and also
larger than its inverse.

The above is not yet expressed in terms of the primitive congruence and
betweenness predicates: we have not said how to express claims about the inequality
and equality of ratios of lengths of lines and of gravitational potential differences. But it
is not surprising that this can in fact be done, given the central role such claims play in
Euclid’s geometry. (For the details of this, and about how to use these tools to express
the more complicated claim about differentiation required to nominalise Poisson’s
equation, see Field 1980, chapter 8.) Thus in this case at least, the grounds for optimism
we mentioned in section 8.1 are vindicated. The aspects of calculus that are needed to
state the physical theory can be developed using just the geometric structure expressed
by the relevant betweenness and congruence predicates, without appeal to the richer
structure characteristic of the real number line. The claim quoted above may look
dauntingly complex, but in fact the result of unpacking the standard definitions of
differentiation in terms of limit, and of limit claims in terms of quantification over
epsilons and deltas, results in something formally isomorphic.>

So far this is far from being anything like a fully worked out Newtonian
gravitational theory. Poisson’s equation determines the gravitational potential given
the mass density field, but it does nothing at all to constrain the mass-density field. The
second part of Field’s theory, which concerns particles, gives us something a bit more
like what we would have expected, since it tells us how “test particles” move in
response to the gravitational potential. The claim is aversion of Newton’s second law:
the acceleration of each particle p is proportional to the gradient of the gravitational
potential at the place where it is, divided by the particle’s mass. However, the total
package is still manifestly unsatisfactory, in that it says nothing about the relation
between the mass-density function and the point particles, and indeed still leaves the
former entirely unconstrained. There are various ways in which this particular defect
could be remedied. For example, we could replace point-particles with little spheres of
constant mass-density, which respond to the gravitational potential as if their masses

were concentrated at their centres. Or we could try to get rid of point particles in favour

5 Moreover, since the nominalistic theory lets us avoid all the complexity attendant on the usual
constructions of real numbers (e.g. as Dedekind cuts of rationals, themselves construed as sets
of ordered pairs of natural numbers...), it seems to us that even setting questions of ontological
economy to one side, the nominalistic theory has a substantial advantage in terms of simplicity
(when formulated in terms of fundamental predicates).
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of a fully fledged continuous fluid dynamics. Each of these routes raises some tricky
issues. For example, with spherical particles, we would need to specify what happens
when there is a collision. (The easiest approach is to allow them to pass through each
other; but then we will need to take all the particles that may occupy a given point into
account when figuring its mass density.) Meanwhile, known theories of continuum
dynamics involve lots of unrealistic singularities and discontinuities. However, none of
these problems is particularly germane to the nominalistic project.

If we stipulated that all the test particles are equally massive, nominalising the
second part of the theory wouldn’t raise any new technical difficulties. We could just
add one new primitive predicate Occupies, relating the particles to the spacetime points
in their trajectories. The resources required to express the differential equation
governing Occupation are similar to the ones required for stating Poisson’s equation.
However, allowing the particles to differ in mass brings in a few more complications,

which we will discuss in the next section.

8.3 Richness and the existence of property spaces.

Now let us return to the richness axiom that we briefly mentioned in the discussion of
geometry above. For the sake of simplicity, let’s see how this would work if we were
only concerned with a one-dimensional space like time, instead of four-dimensional
Neo-Newtonian spacetime. We want to say something about the TimeBetweenness and
TimeCongruence facts which entails, modulo standard mathematics, that any two
functions from instants of time to real numbers which ‘respect’ the TimeBetweenness
and TimeCongruence facts in certain specified ways are related by a linear
transformation. In order to achieve this, our axioms will have to entail that there are
lots of instants of time. For instance, if (bizarrely) there were only three instants of time
a, b and ¢, then there would only be one TimeBetweenness fact, and, generically, no
TimeCongruence facts other than trivial ones such as TimeCongruent(a,b,a,b).
Requiring a mapping from the three instants of time to real numbers to respect these
facts does very little to constrain it, and certainly does not pin it down up to a linear
transformation. And all of this holds, mutatis mutandis, for spacetime, mass, mass
density and the gravitational potential.

So, in each case, Field assumes a richness axiom. Here is the basic idea of the

richness axiom in the case of time:

Between any two distinct instants lies another distinct instant, and for any

instant there are two distinct instants that it lies between
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There are two worries about this axiom as stated. The first is that it is not strong
enough to force a representation by the real numbers (as opposed to, say, the rational
numbers). The second is that in some cases—for example, those of mass and mass
density—the axiom is too strong, since there might not be that many distinct masses or
mass densities in the world. Field discusses the first worry at length, but largely ignores
the second. Let us discuss each in turn.

The above axiom is consistent with a set of temporal congruence and
betweenness facts which is representable by the rational numbers. After all, for each
pair of rational numbers there is one that lies between them, and each rational number
lies between two rationals. But the temporal coordinates that are used in physics are
real numbers, not rational numbers. Moreover, ever since Pythagoras it has been known
that the ratio between the diagonal of a square and its side is irrational. So it looks like
we will need the reals rather than the rationals in order to characterize spatial
distances.

Field’s response to this worry involves an important new element, namely
quantification over arbitrary regions of spacetime as well as points. Given an ontology
of regions, and a primitive predicate ‘Part’ that expresses their structure, one can
supplement the above “density” axiom with something like the following axiom of

“Dedekind completeness”:

For all temporal regions R1 and Ry, if no instantaneous Part of R; is Between two
instantaneous Parts of Ry, and no instantaneous Part of R; is Between two
instantaneous Parts of Ri, there is an instant a such that whenever b is an
instantaneous Part of R; and c is an instantaneous Part of R, and a#b and a#c,

then a is Between b and c.

Here is why, intuitively speaking, this forces one to have the real numbers as
coordinates. Suppose one had the rationals as coordinates. Now consider the following

regions:

R1: all the instants the square of whose coordinate is smaller than 2

Rz: all the instants the square of whose coordinate is greater than 2

Since no instant of either of these regions is between two instants of the other, our
axiom of Dedekind completeness entails that there is an instant between R; and Rz. But
such an instant cannot consistently be assigned any rational-numbered coordinate.

Every rational number is either smaller than V. 2, in which case there other rational
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numbers are bigger than it and yet still smaller than V2, or larger than V2, in which case
other rational numbers are smaller than it and yet larger than V2. So we need the reals.
This response works only to the extent that our theory entails that there are
regions like R1 and Rz. So our theory will need to include some axioms about Parthood
which provide for the necessary plenitude of regions. The canonical way of doing this is

to adopt “classical mereology”, which can be axiomatised as follows:

M1 (‘Reflexivity’): everything is Part of itself

M2 (‘Transitivity’): if xis Part of yand yis Part of z xis Part of z

M3 (‘Antisymmetry’): if xis Part of yand yis Part of x, x=y

M4 (‘Weak Supplementation’): If x is Part of y, then either x=y or y has a Part
that has no Part in common with x.

M5 (‘Universal Composition’): For any condition ¢: if something is ¢, then there
is a “fusion of the @s”—something which has every ¢ as a Part, and each of
whose Parts shares a Part with some ¢

M6 (‘Atomicity’): everything has a Part with no Parts other than itself

However, even then there is a problem, associated with the talk of ‘conditions’ in
M5. The problem is a somewhat technical problem in logic. Since this problem is pretty
much orthogonal to the main problem that we are interested in this chapter, namely the
problem of doing calculus, and differential geometry in particular, in a nominalistic way,
we will be brief, referring you for further details to Cohen 1983, Field 1985b, and
Burgess and Rosen 1997.

One way to interpret claims like M5 is to take them as expressed in something
like second order logic. Or if one wants to use English, one can use plural quantification:
‘For any things whatsoever, there is something that has each of them as a Part, and each
of whose Parts shares a Part with one of them’. Another approach to axioms like M5
construes them as first-order schemas. On this approach, M5 is shorthand for the
infinite collection of axioms we get by substituting particular expressions for ‘@’. The
question which of these approaches is preferable involves deep issues in the
foundations of logic which we cannot adjudicate here. But both approaches require one
to be careful about the sense in which one might regard the total package of
nominalistic theory as “equivalent” to the platonistic theory upon which it was based.

It would be convenient if we could claim that the platonistic theory is
nominalistically conservative with respect to the nominalistic one, in the sense that
every consequence of the platonistic theory in which all quantifiers are restricted to

spacetime regions is already a consequence of the nominalistic theory. This would give
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us a nice, simple story about why it is acceptable to use the platonistic theory when
making calculations. It would be sufficient for this to be the case if we could prove, from
the mathematical axioms, a representation theorem to the effect that every model of the
nominalistic axioms can be extended to a model of the platonistic theory (with
betweenness and congruence defined in the usual ways). However, if we go for the first
order construal of the nominalistic theory, this just isn’t true. Anyone who has
internalised the lessons of Godel’s theorems will readily understand why. Just by being
so very strong, the platonistic theory (which, let’s suppose, includes something like
first-order Zermelo-Frankel set theory) can prove sentences which express the
consistency of the nominalistic theory, whereas by Godel’s second incompleteness
theorem, these sentences cannot be proved in the nominalistic theory itself. (Such
‘consistency’ sentences can be expressed perfectly well in geometric terms—for
example we can construe ‘proofs’ as certain intricately-shaped spacetime regions.)

So, the (first order) platonistic theory entails nominalistically-statable sentences
which are not consequences of the (first order) nominalistic theory. And indeed some
of these consequences are extremely plausible, such as the claim that there are no
pieces of paper upon which are ink marks that constitute a proof of a contradiction from
the axioms of the nominalistic theory. But so what? The claim we wanted to make on
behalf of the nominalistic theory was not that it systematises absolutely everything that
it is plausible for us to accept on the subject matter of spacetime and its contents.
Rather, the claim was just to the effect that the nominalistic theory does as good a job as
the platonistic theory at explaining the experimental data that matter for physics; the
point of making this claim was to undercut a certain style of argument for the existence
of mathematical entities, to the effect that only by positing them can we adequately
explain those data. There are many claims about the physical world that are quite
plausible for reasons that have nothing to do with experiments. Someone might argue
that we should believe in the existence of an enormous hierarchy of sets on the grounds
that this satisfyingly explains these kinds of truths. This strikes us as an odd sort of
reason for believing in mathematical entities. In any case, it is very different in
character from the one which the nominalisation project is designed to undercut.

If we accept the second-order or plural version of the nominalistic theory, and
think that we understand a notion of “semantic consequence” that floats free from
derivability in any formal system, then we are free to accept the claim of nominalistic
conservativeness, understood as the claim that every semantic consequence of the
platonistic theory with appropriately restricted quantifiers is a semantic consequence
of the nominalistic theory. On this approach, the platonistic theory really can be

thought of as nothing more than a useful computational device for systematising the
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semantic consequences of the nominalistic theory—not all of them, but a larger subset
than can be derived by applying any ordinary second-order proof theory directly to the
nominalistic axioms. The question whether this notion of semantic consequence can be
understood without commitment to mathematical entities raises deep foundational
questions which we will not attempt to engage with here.

An aspect of a second order nominalistic theory that we find more worrying is
the following. Once one has a second order theory of regions, one can state claims in
one’s language which in effect mean the same thing as claims such as the continuum
hypothesis (i.e. the hypothesis that there is no cardinality in between that of the
integers and that of the real numbers). Claims like this are puzzling, in part because it is
hard to see how one could get evidence for or against their truth. Many have thought it
an attractive feature of nominalism that it lets us avoid positing unknowable facts of the
matter about questions such as this. But this alleged advantage is not one that can be
retained if we embrace a second-order theory. (One response to the worry holds that
although second order language is intelligible, it is vague enough that claims such as the
continuum hypothesis do not get a determinate truth value. But if one takes this view, it
is not clear that one can legitimately claim the advantages of simplicity for a theory
expressed in such vague terms.)

We will not take a stand about which of the two approaches is the better. None of
the problems strike us as devastating. And even if one did think they were devastating,
there would still be many reasons to be interested in the details of the nominalisation
project, insofar as it is illuminating to understand when talk about mathematical
entities is merely giving us a way of saying something we could equally well have
expressed “intrinsically”, and when it is really essential to the claim being made.

So let’s set this first worry aside and turn to the second worry, to the effect that
that even the “density” axiom might be too strong to be plausibly true of the physical
world. Let’s consider the case of mass qua property of point-particles. Suppose, e.g. that
there are only finitely many point particles in the world, or at any rate only finitely
many equivalence classes under the ‘same mass’ relation. Then richness axioms about
mass will plainly be false. Indeed, unless the facts about mass are especially well-
behaved, there will not be anywhere near enough MassSum facts to fix numerical mass
values that are unique up to scale transformations. (Note that if the particles are
spatially extended and arbitrarily divisible, then there is no such problem: assuming
that the mass of a particle is continuously distributed over its parts, any extended
particle will then have a continuum of parts with a continuum of distinct mass
properties, which will suffice to determine mass values that are unique up to scale

transformations.) The same problem may arise if we take mass density as a



18

fundamental quantity. Certainly the laws we have stated do not rule out the hypothesis
that the mass-density field is discontinuous, in such a way that the world can be divided
into finitely many regions each of which is of uniform mass density. And it is not
completely physically unrealistic to imagine that the world works like that, at least with
respect to some fundamental quantities.

What should we do, if we want our strategy for nominalisation not to break
down in such cases? One attitude would be to say: so what?—if that is so, then
numerical attributions of mass are in fact much more conventional than we took them
to be. This, however, seems to us to be the wrong attitude. After all, we can get good
evidence that mass values are not conventional (other than up to re-scalings), for we
can empirically confirm that the amount of acceleration that a particle undergoes, when
it is subject to a non-gravitational force, is proportional to its mass. That is to say, we
can read mass values, up to a re-scaling factor, off from the accelerations that objects
undergo when subject to certain forces. (Of course this requires certain assumptions
about the magnitudes of forces in certain circumstances, but we can have well-
confirmed simple laws regarding this.)

Now, the fact that we can read mass values off accelerations also suggests a
remedy to our problem. For one might suggest that mass is not a fundamental quantity,
but rather implictly defined by Newton’s second law: the mass of particle p at t equals
the ratio of the gradient of the potential at the point occupied by p at t to the
acceleration of p at t. If the only mass-facts we were concerned with were facts about
the mass of Fieldian ‘test particles’, this would be fine. We could state the laws
governing such particles’ trajectories as follows: (i) For any particle and any time, the
particle’s acceleration vector points in the same direction as the gradient of the
gravitational potential; (ii) For any particle and any two times t; and t; at which its
acceleration vector and the gradient of the potential are not both zero, the ratio of the
magnitudes of these two vectors at t; is the same at their ratio at t,. We know how to
say this sort of thing nominalistically. If we wanted to allow the particles to serve as
sources of gravity, by generating curvature in the gravitational potential, we can adapt a
similar idea: we would then need a law to the effect that for any two particles p and g,
the ratio between the ‘inertial mass ratio’ of p and that of g equals the ratio between the
curvature of the gravitational potential around p to that around gq.°

However, this programme crucially depends on the fact that the quantity we are

interested in (mass) is intimately associated, given the laws, with another quantity

6 Ernst Mach (1893) famously argued that mass is implicitly defined by means of its role in the
laws. However, since Mach was equally eager to eliminate the gravitational potential in this
way, his project leads to difficulties similar to those we discuss in the next paragraph.
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(gravitational potential) which, being continuous, is well-behaved from the point of
richness axioms. In other theoretical settings, no such fall-back quantities are available.
For instance, we could consider a theory of extended particles of varying mass, which
move inertially except for elastic collisions. If we didn’t want to take any facts about the
masses of the particles as fundamental, it is very hard to see how we could define them
in terms of the other fundamental facts, namely the facts about the shapes of the
particles’ trajectories. Well: what we can do is to say that the “mass function” is the
unique function from particles to numbers such that product of it with velocity
(“momentum”) and the product of it with velocity squared (“kinetic energy”) are both
conserved. If collisions are common enough, this may pin down a unique function (up
to a linear scaling). But this definition is not at all helpful to us if we are looking for laws
that are simple when stated in terms of the fundamental predicates. For it is totally
unclear what we could say about the particles that would entail that there is any
function that plays the “mass” role just described. And it seems obviously
unsatisfactory merely to stipulate that there is such a function, not on nominalistic
grounds—probably we could code up such function talk somehow as talk about
spacetime regions—but because, as has already been remarked on several occasions in
this book, this sort of brute existential quantification is not the sort of thing that could
be regarded as an explanatorily satisfactory or plausible fundamental theory.”

There is another strategy for dealing with this problem, which is less dependent
on the details of the physical theory in question. One can assume the existence of a
‘mass space’, whose structure is given by MassSum relations, subject to the usual
axioms, holding between points in mass space. Each particle is then assumed to ‘Occupy’
a single point in mass space. Note that there can be many points in mass space which
are not occupied by anything. One can therefore safely assume that a richness axiom is
satisfied, since all that this means is that mass space has points—whether occupied or
unoccupied—corresponding to a continuum of distinct mass values. And then it will
follow that the mass values of all particles (and all their parts) are determined up to re-
scalings, no matter how many or how few points in mass space

are occupied by particles.8

7See Dorr 2010 for some tentative attempts to say something general about this kind of
explanatory badness.

8 The worry about richness can be dealt with in another way, by using the richness of physical
space as a surrogate for the richness of the space of possible masses. One could have a primitive
predicate such as this: ‘the ratio between the mass of particle x and particle y equals the ratio
between the distance between points a and b and the distance between points c and d’. See
Burgess and Rosen 1997 (section I1.A.3.c) for more discussion of this kind of approach, which
can arise as part of a systematic recipe for nominalising a theory by replacing each variable
ranging over real numbers with a quartet of variables ranging over points.
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Instead of calling the points of mass space ‘points of mass space’ and saying that
particles ‘occupy’ them, one could call them ‘mass properties’ and say that particles
‘have’ them. We take it that nothing substantive turns on this choice of terminology.
Calling them ‘properties’ might seem to make the positing of them less controversial.
There are some views in metaphysics according to which we are obliged to posit a
realm of properties as part of our fundamental ontology in any case, no matter how
physics turns out. If one subscribed to such a view, one might see a big difference
between thinking of some entities as points in an unfamiliar new kind of ‘space’, on the
one hand, and thinking of them as belonging to the familiar category of properties, on
the other hand. But this is not our attitude. As we have tried to make clear by talking
(most of the time) about ‘predicates’ rather than ‘properties’, we think it is an open
question, to be settled on physical grounds, whether we should posit any entities that
could by any stretch of the imagination deserve the label ‘properties’. And as we will
see, it is quite helpful to think of entities like the ones we are currently contemplating as
points in spaces with the same kind of geometrical structure as more familiar spaces.

In fact, the positing of ordinary space or space-time is essentially the same sort of
move as the positing of mass space: the structure of position properties of particles is
(arguably, as we have seen in chapter 5) best given by assuming the existence of a
structured space-time, and then assuming that each particle occupies a particular region
in this structured space-time. So why not similarly assume the existence of mass space,
when its structure can so simply and nicely explain the usefulness, and the scale
arbitrariness, of the canonical numerical representation of the mass properties of
objects, and can do so however few distinct mass properties are had by all existing
objects? It seems to us that such a posit might not be so hard to justify on the grounds

of the theoretical simplicity it yields.

8.4 Differentiable manifolds

Field's case study is a success so far as it goes. But we would like to be able to
nominalise more recent physics. In particular, we would like to be able to have a
nominalistic way of stating differential equations governing fields and particles in
curved space-times and vector bundles, since that is how much of modern physics is
done. Key to this is the notion of a differentiable manifold. When one does general
relativity, one starts with a differentiable manifold. One can then endow it with metric
and affine structure, by means of a metric tensor field (and a compatible connection and
volume form); and one can endow it with other kinds of physical properties, in the form
of scalar, vector, and tensor fields. When one develops gauge theories, one starts with

two differentiable manifolds, namely the space-time manifold and the fibre manifold
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(which are connected via a projection map), and one posits physically interesting
structure in the form of sections of the fibre bundle, a connection on the fibre bundle,
etc. Moreover, differentiable manifolds are the minimal structure that one needs in
order to do calculus. That is to say, given just a differentiable manifold (without a
metric), there are facts as to which curves in the manifold are differentiable, which are
n-times differentiable, which are smooth; there are facts as to which scalar functions on
the manifold are differentiable, n-times differentiable, smooth; one can define vectors
and vector fields; one can define directional derivatives of scalar functions; one can
define differential forms; and so on. With anything less than a differentiable manifold
one could not do any of this, one would just have a space with a topology, which, from
the point of view of calculus, is useless.

How is a differentiable manifold normally defined? Well, one starts with a
topological space M, the ‘manifold’. One then divides M up into overlapping open
patches (regions) P, and provides each patch P with n coordinate functions, i.e. for each
patch P one provides a continuous, one-to-one map from P to a patch of R” (the space of
n-tuples of real numbers, with its standard topology). Using these coordinates, various
calculus-related notions that can be defined on R~ get carried back to M. For this
procedure to make sense, we need to guarantee that the notions in question behave in a
consistent way when the patches overlap. This is achieved by requiring that when
patches P; and P> overlap, then on the overlap, each of the coordinates provided for P1
must be a €~ function of the coordinates provided for P»: that is, for any finite integer m,
the coordinates provided for P1 must be m times differentiable with respect to the
coordinates provided for P.

Given this condition, we can consistently make definitions such as the following.
A function f from the M to R is smooth iff for each coordinate patch, the induced
function from R” to R is smooth(C*®). Likewise, a parameterised curve in M—a function
from R to M—is smooth iff for any coordinate patch, each of the real number
coordinates of the curve is a C* function from R to R.

A vector vy at a point peEM is a map from smooth functions on M to real numbers,
such that

@ vp(f+g)=vp(h + vp(8),
() vp(ah)=avp(h
©  v(g)=fp)vp(8) + vr(HE(P)-

(See section 2.5 above for why such a map, intuitively speaking, corresponds to a vector

at a point.) A covector at a point p is a linear map from vectors at p to real numbers.
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And a tensor of rank j, k at p is a map that takes j covectors at p and k vectors at p to a
real number, and is linear in each of its arguments.

We can define a smooth vector field as a function v that maps each point p to a
vector at p, in such a way that whenever fis a smooth function, the function whose value
at each point p is v(p)(f) is itself smooth. Alternatively, we can simply identify smooth
vector fields with the functions from smooth functions to smooth functions which they
induce in this way. On this approach, we define a smooth vector field as a function v
from smooth functions to smooth functions such that

(@  vf+g=v() + (g
()  v(ah=av(f)
(©  vfg=g + v(Hg

Similarly, a smooth covector field can be defined as a ‘C*-linear map’ from smooth

vector fields to smooth functions, that is, a function w such that

(a) w(i+) = w(v)+w()
b) ()= fw()°

And a smooth tensor field of rank j, k can be defined as a function that takes j smooth
covector fields and k smooth vector fields to a smooth function, and is C*®-linear in each
of its argument. (Alternatively, as with smooth vector fields, we could treat smooth
covector and tensor fields “pointwise”, as functions assigning points to covectors or
tensors at those points.)

Note that by this definition covector fields are just tensor fields of rank 0,1. Also,
there is a natural correspondence between vector fields and tensor fields of rank 1,0,
given in one direction by t,(w) = w(v), and in the other by v{f)=t(df), where dfis the
covector field defined by df{v)=v(f). So vector fields too can be regarded as a special
case of tensor fields.

In the above we used a single specific set of coordinates for certain specific
patches P. Of course this seems unnecessarily specific, since any set of patches together
with coordinate systems which are everywhere smooth with respect to the specific set
in question would have resulted in the same characterisation of differentiability and
smoothness, the same vector fields, etc. Therefore often textbooks characterize a

differentiable manifold not by a unique coordinate system for a unique set of patches,

9 Here vi+ vz is the vector field defined by (vi+v2) (f) = vi(H)+v2(f), and fvis defined by (fv)(g) =
fv(g).
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but by a maximal equivalence class of coordinate systems and patches which all result
in the same characterisation of differentiability etc.

These ways of defining differentiable manifolds are not merely awash in real
numbers, functions, sets, sets of sets, etc.; they is also spectacularly unsatisfying from a
foundational point of view. The fact that a given function from a region of physical
spacetime to R” is admissible as a coordinate system surely must have some
explanation in terms of the region’s intrinsic structure; but the standard approach gives
us no clue about what the relevant intrinsic structure might be like. And surely that
intrinsic structure is something that could be described independently of any division of
the manifold into patches.

There is another way of defining differentiable manifolds that is a bit less
hamfisted. While it too is replete with mathematical objects, it is more suggestive of
directions for the nominalistic project. In this alternative approach, a differentiable
manifold is defined as a set of points M together with a distinguished set of functions
from those points to the real numbers, which we call the “smooth” functions. These
functions are required to obey certain characteristic axioms. Here is one version of the
axioms (for an n-dimensional manifold), from Penrose and Rindler 1984, section 4.1;

similar axiomatisations appear in Chevalley 1946, Nomizu 1956 and Sikorski 1972:

F1 If fi, ..., fm are smooth functions on M, and h is any C* function from R” to R,
then the function from M to R whose value for any point p is h(fi(p), ..., fu(p))
is smooth.

F2 If gis a function from M to R, such that for each peM there is an open set O
containing p, and a smooth function f which agrees with g in O, then g is
smooth.

F3 For every peM, there is an open set O containing p, and n smooth functions
X1, ..., Xn, such that (i) given any two points in O, at least one of the functions
has a different value at the two points, and (ii) for each smooth function £
there is a C* function h from R” to R, such that f{p) = h(x1(p), ..., xa(p)) for all
pin 0.

Here there is no need to take the notion of an “open set” in M as a further primitive: we
can define S to be ‘open’ iff for some smooth h, S = {x: h(x)#0}.10

10 Given the standard topological definition of a ‘continuous’ function as one such that the
inverse image of any open set is itself open, it follows from this that all smooth functions are
continuous. For any open OCR, we can find a C* function hp:R—R that is nonzero at all and
only the points in O. If a region RCM is the inverse image of O under a smooth function £ then
provided O does not contain zero, the function hoof, which is smooth by F1, is nonzero at all and
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These axioms are equivalent to the standard characterization in terms of
coordinate patches. It is easy to verify that when we define smooth functions in terms
of coordinates, F1-F3 hold; conversely, for any model of F1-F3, the functions xi, ..., x»
whose existence is required by F3 will play the role of coordinates for patches. So the
other notions mentioned above can all be defined in terms of ‘smooth function’. And in
many cases—for example, the definitions of smooth vector, covector and tensor fields
given above—there is no need to mention coordinates at all in the definitions.

This is far from being a nominalistically acceptable account of differential
geometry: an essential role is played not only by real numbers, but by sequences of real
numbers; functions whose values are real numbers; functions whose values are such
functions; and so on quite far up into the set-theoretic hierarchy. There is an attitude
towards all this which sees the triumph of calculus as a way of doing physics, as
developed by Descartes, Fermat, Newton and Leibniz, as equally a triumph for the
ontology of mathematical entities. But if were not persuaded by this attitude when we
were considering only Newtonian space, we should remain suspicious in the current,
more general setting. Perhaps we can find a way to see the invocation of mathematical

ontology in the theory as nothing more than a representational convenience.

8.5 Nominalising differential geometry

One way for nominalists to approach physical theories stated in the vocabulary of
differential geometry involves completely giving up on the idea that the metric is “just
another physical tensor field”. On this approach, one would (staying close to the
approach that worked for Field in flat spacetime) characterise the geometric structure
of spacetime using predicates that in the mathematical setting would be defined in
terms of the metric (e.g. sameness of length). Differential structure would simply be a
consequence of this richer metric structure. For several reasons, we are unsatisfied
with this kind of approach.

First, what if the physical theory we are trying to nominalise speaks of a space
with a differential structure but no metric—a fibre bundle space, for example? Given
the wide range of uses which physics has found for the concepts of differential
geometry, we risk losing a lot of important generality if we only know how to
nominalise theories about spaces with metrics.

Second, we don’t know how to state simple axioms on predicates like ‘geodesic

line segment’ and ‘same length’ which entail that space can be endowed with a

only the points in R, and so R is open. If O contains zero but not the whole of R, we can instead
consider hoo(f4+a), where a is not in O: by F1, fAa is smooth if fis. If O is R, its inverse image is
just M, which is open because constant functions are smooth, again by F1.
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differential structure and a metric in such a way that the primitive facts about geodesics
and sameness of length behave as if they were defined in terms of that mathematical
structure. (Of course, this won’t matter to those who only care about what we have
been calling the ‘easy’ nominalistic project, of finding some predicates of concrete
physical objects which pin down the mathematical structure we are interested in.11)

Third, a special-purpose reconstruction of metric facts does not suggest any
general method of nominalising arbitrary physical tensor fields. Field (1980) uses
quantification over pairs of points as a surrogate for quantification over vectors—
essentially, vectors at p are represented as straight line segments starting at p, the
length of the line segment being proportional to the magnitude of the vector. But this
representation breaks down in general curved spaces. On a sphere, if you head out in a
straight line from any point you eventually get back to where you started. So there are
not enough geodesic line segments emanating from a point to represent all the vectors
there. There may be other, more complicated, “codings” which avoid this difficulty. But
the more complex the coding, the less simple the laws will look when the fundamental
predicates are taken to apply to the objects which serve as surrogates for vectors under
the coding.

Fourth, simplicity matters. The formalism of differential geometry allows for very
simple and elegant ways of stating physical theories. Nominalistic theories which treat
differential structure merely as an ancillary to metric structure risk sacrificing these
virtues.

Our aim in the rest of this chapter will be to investigate the prospects for a
nominalistic treatment of differential geometry, and of physical theories stated in
differential-geometric terms, that stays closer to the mathematics, in treating
differential structure as something independent of metric structure. In the next section
we will consider whether this can be done while staying within the usual nominalistic
ontology of spacetime points and regions. After that, we will turn to approaches which

in one way or another go beyond this ontology.

11 Mundy (1992) shows that the structure of a manifold carrying a metric (of any signature) can
be determined by means of a three place ‘Betweenness’ predicate and a four-place ‘Congruence’
predicate. (Figuring out what to mean by ‘between’ in a curved spacetime is non-
straightforward.) In his 1992 he seems to be concerned only with the “easy” nominalistic
project. In Mundy 1994 (pp. 92—3), he writes ‘I also have some explicit axiom systems using
these two primitives, but they are too complex to state here’—this is the sort of thing required
by the “hard” nominalistic project, although the remark about complexity suggests that Mundy’s
way of doing things will not look attractive by our standards.
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8.6 Can we make do with points and regions?

This section will consider whether we can find what we need for nominalisation of
differential geometry within the usual nominalistic ontology of spacetime points and
regions. We will start with the ‘easy’ nominalistic project: as we will see, even this turns
out to be rather tricky. While it is possible to pin down the differential structure of
spacetime, and physical tensor fields, using predicates of spacetime points and regions,
the only ways we have found of doing this are quite ungainly. This ungainliness might
well motivate even philosophers who have no scruples about mathematical entities to
posit concrete objects other than spacetime points and regions. And things look even
worse from the point of view of those who, like us, care about the hard nominalistic
project. We have found no way to state simple axioms using predicates only of
spacetime points and regions which capture the differential structure of spacetime, let
alone some fully worked out physical theory about physical tensor fields on spacetime.
And given the awkwardly artificial-looking character of the predicates we would have to
work with, we are not optimistic that this can be done.

We can first note that there can be no hope of pinning down the differential
structure of spacetime using only predicates of spacetime points. In a differentiable
manifold with no additional structure, not only are any two points indistinguishable;
any n-tuple of points all of which are distinct is indistinguishable from any other such n-
tuple (i.e. there is a diffeomorphism which maps each element of one n-tuple onto the
corresponding element of the other n-tuple). So no nontrivial relations among points
are determined by the geometric structure. By contrast, once we allow our primitive
predicates to apply to regions, there are plenty of reasonable-looking candidates. For
one thing, differentiable manifolds have topological structure, so it would be natural to
begin with a predicate expressing topological openness (or some other topological
concept interdefinable with openness).l? And the differential structure of the space
determines many other distinctive properties of regions. For example, there is the
notion of a smooth line, or more generally, of a smoothly embedded m-dimensional
subregion of an n-dimensional differentiable manifold. Mathematically, a smooth line is
a one-dimensional region such that for each of its points, we can find a coordinate patch
in which the region in question is one of the coordinate axes. Similarly, a smoothly

embedded m-dimensional region is one each of whose points has a coordinate

12 Taking ‘Open’ as primitive does not, however, look very appealing from the point of view of
the hard nominalistic project: we don’t know of any simple ‘intrinsic’ axioms which can express
that a topological space is “homeomorphic to R#”, or which express that a space can be divided
into patches each of which is homeomorphic to Rz (as must be the case in an n-dimensional
manifold).



27

neighbourhood within which the region in question contains all and only those points
whose last n—m coordinates are zero. These look like appealing candidates to be the
primitive predicates in a nominalistic treatment of differential geometry.

Unfortunately, the facts about which regions of a manifold are smoothly
embedded are not sufficient to determine its differential structure. This is obvious for a
one-dimensional manifold: in that case, the smoothly embedded 0-dimensional
manifolds are just nowhere-dense collections of points, and the smoothly embedded 1-
dimensional manifolds are just the open regions, so the facts about embedded regions
give us nothing beyond the topological structure. One might reasonably hope that
things would work out better in higher-dimensional manifolds. After all, in a two-
dimensional manifold, the facts about which lines count as smoothly embedded contain
an enormous amount of information about the differential structure of the manifold,
going far beyond its topological structure. But it turns out that this hope is misplaced:
the facts about which regions in a manifold are smoothly embedded are never enough
to pin down its differential structure. This can be seen most easily by thinking about
differential structures which fail to be equivalent only at a single point. We can
construct an example using the function ® from R? to R? where ®(<xy>) =
<x(x*+y?),y(x*+y?)>. (P is just a natural generalisation to R? of the function x—x3 on
the x axis: it moves points outside the unit circle further out, and points inside the unit
circle further in, while leaving (0,0) and points on the unit circle alone.) We can use ®
to put a nonstandard differential structure D’ on R2: D’ counts a function fas smooth iff
fod is smooth according to D, where D is the standard differential structure on R2. Since
® is itself C*, every function that is smooth according to D is also smooth according to
D’. But because the inverse of ® (given by ®-1(<xy>)=<x/(x2+y?)1/3,y/(x2+y2)1/3>
when <x,y>#<0,0>, and ®-1(<0,0>)=<0,0>) fails to be C* at <0,0>, some functions
that are smooth according to D’ are not smooth according to D.13 D and D’ differ only at
<0,0>, in the sense that any coordinates for a patch that doesn’t include <0,0> are
admissible according to D iff they are admissible according to D’. This means that if any
line were smooth according to the one structure but not the other, the lack of
smoothness would have to occur at <0,0>. Butin fact, D and D’ agree about which lines
are smooth at <0,0>. While the ®-induced ‘blowing up” of the neighbourhood of <0,0>
makes a difference as regards what counts as a smoothly paramaterised curve through

<0,0>, it does not affect the smoothness of lines, since each curve that is smooth

13Thus for example the function f(<xy>) = x/(x?+y?)1/3, f{(<0,0>)=0 is not smooth according
to D but is smooth according to D, since fo®(<xy>) = x(x2+y?) /(x2(x2+y?)2+y2(x2+y?)2)1/3 =
XCx+y?) (YD = x)
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according to one differential structure can be reparameterised so as to make it smooth
according to the other. (See Appendix A for details).14

So, it looks like we are going to have to be more creative in our efforts to fully
characterise the differential structure of spacetime using some predicates applying to
spacetime regions. If predicates of “nice” regions such as embedded submanifolds
aren’t giving us what we need, we had better start thinking about predicates of “nasty”
regions. For example, we might think of having a primitive predicate ‘Rational’, which
applies to a region R iff there is some smooth function f that takes rational-number
values at all and only the points in R. This gives us a finer-grained grip on the structure
of the space than we get just by being told which n—1-dimensional surfaces are
smoothly embedded: the facts about Rationality also tell us what counts as a smooth
way of “stacking up” smoothly embedded surfaces. Are the facts about Rationality
enough by themselves to determine the differential structure of the manifold? The
answer is no for a one-dimensional manifold.’> We are not sure of the answer in the
case of a manifold of more than one dimension. However, we do have something that
we know works in manifolds of more than one dimension. Consider a three-place

predicate Diag(R1,R2,R3), given by the following mathematical condition:

For some smooth functions x and y and open region O such that x and y are two
of the coordinates of an admissible coordinate system which maps O onto a
convex open subset of R™ R; comprises exactly the points in O where x is
rational, and R; comprises exactly the points in O where y is rational, and Rz

comprises exactly the points in O where x=y.

We can show (see Appendix B) that in a manifold of dimension at least two, the facts
about Diag determine the differential structure.

This is good news for those who only care about the easy nominalistic project,
and are not too fussy about having artificial-looking primitives. But it is of no obvious
use for the hard nominalistic project: we have no idea how to write down some simple
axioms involving ‘Diag’ which guarantee that the Diag facts behave in such a way as to
be generated by some differential structure. Well, of course we could just have an
axiom that says “there is a differential structure on the set of spacetime points such that

Diag(R1,Rz,R3) holds exactly when the above condition obtains according to that

14 Special thanks to Sam Lisi for giving us this counterexample, and to Teru Thomas for helping
us to understand why it is in fact a counterexample.

15 For example, the Rationality facts in the standard differential structure on R will be the same
as in a nonstandard structure according to which fis smooth iff the function gis smooth in the
standard sense, where g(x)=f(x) when x<0 and g(x)=f2x) when x>0.
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differential structure”. But first, this involves quantification over mathematical entities,
which we are trying to avoid. And second, even if one didn’t mind this, the existentially
quantified form of this axiom is something we have learned to be suspicious of. Saying
that there is a differential structure from which the Diag relation can be generated is
like saying that there is an assignment of masses and charges to particles that fits with
the pattern of their accelerations, or like saying that there is a way of assigning a
velocity field to the points within some homogeneous sphere in such a way that such-
and-such laws are obeyed. As we keep on saying, this isn’t the sort of thing we are
looking for when we look for simple laws.

Still, maybe we are just being dim—maybe there is some lovely set of primitives
and axioms that we haven’t thought of, that has exactly the desired effect of capturing
the differential structure of spacetime without recourse to any unorthodox ontological
posits. So let’s continue our investigation of the easy nominalistic project, and see what
further predicates of spacetime points and regions we might need to introduce in order
to characterise the physical fields that make the world an interesting place rather than a
mere void. We already have encountered the tools we need for a nominalistic treatment
of physical scalar fields—these can be characterised using appropriate FieldSum, or
FieldBetweenness and FieldCongruence, predicates. But physical theories also talk
about other kinds of tensor fields; how are we to capture these? As we have seen, the
standard mathematical treatment of these entities places them quite high up in the set-
theoretic hierarchy. If we want even to be able to talk about these fields
nominalistically, we will need to find some nominalistic surrogates for vectors and
covectors at points. Given such surrogates, we could hope to capture, say, a physical
covector field Q using a 3-place predicate ‘(v1)=Q(v2)+Q(v3)’, where vy, vz and v3 are
(surrogates for) vectors at points, not necessarily the same point. Similarly, a physical
tensor field T of rank 1,1 would be captured by an 6-place predicate
‘T(vy,w1)=T(v2,w2)+T(v3,w3)’, which holds only when vi is a vector(-surrogate) at a
certain point, w1 is a covector(-surrogate) at that point, etc.16

As we saw, Field uses straight line-segments emanating from a point as his
surrogates for vectors at that point. But in the present context, this option is not
available to us, since we do not have notions of straightness or length to work with—we

are hoping to treat the metric as just another tensor field, rather than crafting some

16For a physical vector field V, we might think of simply using a one-place predicate which
applies to a vector-(surrogate) at p iff it is the value of V at p. But this would give us no way of
accomodating the idea that there is an arbitrariness involved in the choice of units for a vector
field, which is physically plausible in many cases. One easy way to represent a physical vector
field while allowing for such arbitrariness is to use a 3-place predicate “w1(V) = w2(V)+w3(V)”
taking covector(-surrogates) as arguments.
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Figure 3: sequence o is a surrogate for a vector at p

special-purpose accounts of metric notions like straightness and length. Fortunately,
classical mereology is strong enough to provide us with other entities which can more
directly and naturally play the role of vectors and covectors at points.

Before we see how this can be done, let us first see how we could proceed if we
were allowed to help ourselves not only to regions, but to countably infinite ordered
sequences of points. In that case, we could take the infinite sequences of points
converging to p as our surrogates for the vectors at p. (See Figure 3).

This works because intuitively, vectors are things with “directions” and “rates”.
We can make sense of the question whether two sequences of points approach p from
the same direction, and when they do approach from the same direction, we can make
sense of the question how much faster one approaches than the other. To be more
precise, recall that the essential job description of a vector at pis to be something which,
given a smooth function fas input, returns a real number, “the directional derivative of f
with respect to that vector”. When o is a sequence of points <o(1), o(2), ..>
converging to p, define the directional derivative of fwith respect to o, wich we will call
ol[f], as limn-wn(flo(n))—f(p)). (Essentially, what we are doing here is treating the nth
point of ¢ as if it were the point y(1/n) on a curve y such that y(0)=p, and taking the
directional derivative of falong y.) Itis straightforward to show that when o[f] and o[g]

are both defined, the defining rules of a directional derivative at p are satisfied:

(@  olftg]=o[f]+olg]
(b)  olaf]=ao[f
()  olfg]=Rp)olgl+s(p)olf]

Of course, many different sequences of points will serve as surrogates for the same
vector at p, in the sense that they yield exactly the same directional derivative for each
smooth function. Intuitively, two sequences correspond to the same vector when they
approach p at the same rate and from the same direction. This will happen whenever
two sequences share a terminal segment; it can also happen even if the sequences have
no points in common. This multiplicity in the representation of vectors is not a worry

insofar as we are only looking for some entities which can serve as arguments for some
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primitive predicate representing a physical covector field, or tensor field of rank 0, k:
we can simply claim that whenever two sequences are equivalent in this way, they are
intersubstitutable with respect to the relevant predicates. Similarly, there are ill-
behaved sequences which converge to a point but don’t correspond to any vector at that
point, because they approach the point too densely or too irregularly for the directional
derivative of each smooth function to be defined. But we could simply claim that the
relevant physical predicates do not apply to these ill-behaved sequences.

Among the well-behaved sequences of points converging to p, the differential
structure of the space will let us introduce relations corresponding to the structure of a
vector space. We can say that o1 “represents the sum of o2 and 63" iff for any smooth
function £ o1[f] = o2[f]+0o3[f]. Similarly, for any real number «, o1 “represents the result
of multiplying o2 by ” iff for any smooth function £, 01[f] = ao2[f]. Of course, since the
relation between well-behaved sequences and vectors is many-one, there are many
different sequences that represent the sum of two given sequences, or that represent
the result of multiplying a given sequence by a real number. Since we are currently only
dealing with the easy nominalistic project, there is no need to take these relations as
primitive. The facts about which functions are smooth are determined by the facts
about the Diag relation, and the facts about which sequences are well-behaved, and
which represent sums and multiples of which, are determined by the facts about which
functions are smooth.

So in an ontology enriched with the capacity to build infinite sequences, finding
surrogates for vectors would be easy. And it turns out that sequences are unnecessary:
their work can be done equally well by certain regions. Let a ‘half-line-sieve’ HLS with
‘home point’ p be a topological line which has countably many point-sized holes, such
that the holes converge to p from one side only. (See Figure 4.) More precisely, a region

HLS is a half-line-sieve with home point p iff

P HLS[2] HLS[1]

Figure 4: a half-line sieve HLS with home point p
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(@)  CI(HLS) (the topological closure of HLS) is a non-self-intersecting topological
line (i.e. a connected region such that there are at most two points the deletion
of which fails to yield a disconnected region).

(b)  The holes of HLS—that is, the points that are not part of HLS but are part of
CI(HLS)—are infinite in number.

(¢c) InCI(HLS), pis not between any two of the holes of HLS. That is, for any two of
the holes of HLS, there is a connected part of CI(HLS) that includes them but
does not include p.

(d) Any open region containing p includes all but finitely many of the holes of
HLS.17

See figure 2 for a picture of a half-line sieve. (Note the we have drawn HLS as a straight
line (with holes), since that is easiest to draw, but no significance is attached to this.
Being a half-line-sieve with home point p is a purely topological relation between
regions and points.)

Clause (iv) ensures (given a reasonably well-behaved topology, to wit, a
Hausdorff space) that each half-line sieve has a unique home point. Moreover, there is a
natural ordering on the holes of any half-line sieve HLS. g comes before r in this
ordering iff every continuous path within CI(HLS) from g to the home point of HLS
passes through r. Since by (iv) each half-line-sieve HLS at p has only finitely many holes
outside any open region that includes p, each hole can have only finitely many
predecessors in this ordering. Thus HLS must have an outermost hole—one such that in
CI(HLS), all the other holes of HLS are between it and the home point of HLS. Call this

17 Note that the above definition requires us to have a predicate which means that a region
contains at most finitely many points. Intuitively speaking such a predicate seems
nominalistically acceptable: to say that there are finitely many points in a region need not
commit us to the existence of numbers, or any other mathematical entities. We could add
‘contains finitely many points’ to our list of primitive predicates. Or to be more flexible, we
could have ‘contains at least as many points as’ as primitive, and define ‘R contains finitely many
points’ as ‘no proper part of R contains at least as many points as R’. If we want to write down
axioms which ensure that these new primitive predicates behave in the way we want, we will be
confronted with puzzles similar to those discussed in section 8.3 with respect to first- and
second-order formulations of richness axioms. But these puzzles are going to arise in any case
for the hard nominalistic project.

Another possible route is to define such cardinality predicates in topological terms. In a
well-behaved manifold of dimension at least two, when R and S are disjoint regions each of
whose points has an open neighbourhood that contains none of their other points, R contains at
least as many points as S iff there is a region that contains both R and S, every maximal
connected part of which contains exactly one point of R and at most one point of S. And we can
extend this to non-disjoint regions by taking disjoint regions as intermediaries.
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hole ‘HLS[1]’. Similarly, HLS[2] is the second-to-last hole of HLS; HLS[3] is the third-to-
last hole, and so on. Thus each half-line-sieve with home point p encodes an infinite
sequence of points converging on p. When HLS encodes a sequence of points o, we let
the directional derivative of fwith respect to HLS, HLS[{], be the same as o[{] as defined
above.

Mereology and topology also provide entities suited to serve as surrogates for
covectors at points. Again, we will first show how to proceed in an ontology enriched
with infinite sequences, and then show how to encode the relevant sequences as single
regions. Our approach will codify a common heuristic thought according to which
covectors at a point are like collections of n—1-dimensional surfaces near that point.
(See Figure 5.)

Our initial surrogate for a covector at p will be an infinite sequence p = <p, O, P,
P;, ...>, where O is a simply connected, regular open region containing p, and the P; are

pairwise disjoint, connected regions each of which contains just enough points to split O

P,

Figure 5: <p, O, P4, P2, P3..> codes a covector at p
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in two. That is, O\P; (the fusion of parts of O that don’t overlap P;) is disconnected,
while for every point q in P;, O\ (Pi\q) is connected. (In an n-dimensional manifold, this
ensures that the P; are n—1-dimensional.) We also require that the P; get closer and
closer to p from one side. That s, (i) whenever j>i, getting from P; to p while staying on
a connected path within O requires passing through Pj, and (ii) every open region
containing p should intersect all but finitely many of the P;s.

The essential job of a covector at p is to yield a real number when given a vector
at p as input. So what we need to do with our sequences p is to say what it is for a real
number to be the result of applying p to o, when o is a well-behaved infinite sequence of
points converging to p, i.e. a surrogate for a vector at p. We will start by using
p=<p, O, Py, P2, ...>, to define a function which maps each point g in O to a natural
number, which we will write as p[g]. When every continuous path from g to p passes
through one of the P;, p[g] is the number of surfaces P; in p that lie “outside” g—i.e. for
which there is a path from p to q in O that does not pass through Pi. Otherwise, p[g]=0.
We will use this to define p[o], where o is one of the well-behaved sequences that serve
as surrogates for vectors at points. Let “c-” name any well-behaved sequence that
“represents the result of multiplying 6 by —1”—as we saw above, for each well-behaved
o this operation is well-defined (though not unique). Then we let p[c] name whichever

of the following quantities is nonzero:

p*[o] = limn-wn/(p[o[n]])
p~[o] = —limn-en/(p[o-[n]])

(We define p[o] to be zero if both p*[c] and p~[o] are zero; we let it go undefined if both
of them are undefined, or both of them are nonzero, or if p~[o] takes different values
depending on which well-behaved sequence we choose to play the role of “—o”.

The idea is that a sequence p serves a surrogate for a covector w, at p iff
whenever o is a surrogate for vy, p[o] = wp(vp). We can show that for each covector wp,
there is at least one (in fact, infinitely many) sequences p which can serve as surrogates
for wp. For given any covector wp, we can find a convex coordinate system x, y... on an
open neighbourhood O of p such that w, is dpx—that is, for any vector v; at p, vp(x) =
wp(vp)—and such that x(p)=0 and x(g)=1 for some g in 0. Given such a system of
coordinates, we can take the sequence px corresponding to wp to be {p, O, x=1, x=1/2,
x=1/3, x=1/4, ...}. The requirement that the coordinates map O to a convex set in R”
means that each of the regions x=1/n is just big enough to split O in two, as the
definition of a covector-surrogate requires. Note that when x(q) is positive, px[q] is

approximately equal to 1/x(q)—to be precise, px[g] is the greatest whole number less
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than or equal to 1/x(q). px[q] is zero when x(q) is zero or negative. Because of this, it
follows from the definitions of px[c] and o[x] that these quantities are equal.!®

We can call p “well-behaved” if p[o] is defined for every well-behaved o. (Of
course not every p meeting the given topological conditions is well-behaved: the
surfaces may crowd in on p too densely or too irregularly.) When p1, pz and p3 are well-
behaved sequences of surfaces, we can say that “p; represents the sum of pz and p3” iff
pi[o] = pz[o]+p3[o] for every well-behaved o, and we can say that “p1 represents the
result of multiplying p2 by a” iff p1[o] = ap2z[o] for every well-behaved o.

So, given the ability to form sequences, there is no trouble cooking up entities
which can play the role of covectors at points. And it turns out that with a bit of
trickery, we can find single regions which can serve as codes for the relevant sequences
of surfaces. The idea is simple: we will code <p, O, Py, P, P3,...> as the result of
mereologically subtracting p and all the P;s from O. Call the result of doing this O—: a
region with one point-sized hole and infinitely many n—1-dimensional “cracks”. We can
recover O from O- as the interior of its closure (recall that O was required to be a
regular open region). We can recover p itself as the only disconnected point in 0\O—.
(This will work provided our manifold is at least 2-dimensional, so that the P; are not
points.) The P; are just the remaining maximal connected parts of O\O—. Finally, we
need to recover the numerical indices on the Pi: this can be done because of the
requirement that the relation ‘every path from P; to p in O must pass through Pj’ holds
exactly when i<j. Let us call the kind of region that can be derived in this way from an
appropriate <p, O, Py, P2, P3,...> a “surface sieve”. (See figure 6 for a picture.) Surface
sieves, then, can serve as surrogates for covectors at points within an ontology of
spacetime regions. Any physical tensor field can thus be taken as determined by some

appropriately polyadic predicate applying to half-line sieves and surface sieves.

18Let 0 and o- be some well-behaved sequences of points converging to p such that o[x] and
o_[x] are well-defined and o_[x] = —o[x]. It is easy to see that if o[x] = limu-e. nx(o[n]) is
positive, it must be equal to px*[o] = limn-wn/p[o[n]]. For if the former limit is positive, then
the points of 0 must eventually settle into the region of O where x is positive; but within that
region, x(o[n]) and 1/p[o[n]] are approximately equal. For the same reason, if px*[o] is positive,
it must be equal to o[x]. Similarly, if o[x] is negative, it must be equal px—[o] = limn-n/p[o-[n]],
and if the latter quantity is negative, it must be equal to —o_[x]=0c[x]. Finally, if o[x] and o_[x]
are zero, both lim,..n/p[o[n]] and lim,-~n/p[c-[n]] must be well-defined and equal to zero.
For if it is true that for every positive € we can find an n such that —e<x(o[m])<e for all m>n, it
must also be true that for every positive € we can find an n such that —e<1/p[o[m]])<e for all
m>n.
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If you only care only about the easy nominalistic project of finding pure relations
among concrete objects in terms of which the mixed predicates that appear in
platonistic physical theories can be defined, then you may feel satisfied at this point.
However, we have found no way to carry out the hard nominalistic project (of stating
simple nominalistically acceptable laws) within the confines of an ontology of spacetime
points and regions. When we attempt to describe the distinctive behaviour of our Diag
relation, to characterise the “well-behaved” half-line sieves and surface-sieves, or to say
what it is for two half-line sieves to “correspond to the same vector” or for two surface
sieves to “correspond to the same covector”, we constantly run up against the need to
quantify over functions on the manifold, entities for which we have no nominalistic
surrogates. It looks like the hard project can only be carried out if we somehow enrich
the ontology. In the next section, we will consider one especially simple way to do this.

Note that even if you don’t agree with us about the importance of the hard
nominalistic project, you might find this investigation interesting. For as you have
probably noticed, the ways we have found of recovering the vocabulary of a platonistic
physical theory from primitive predicates applying to points and regions seem a bit
cheesy and artificial. Even if you don’t care about nominalism, you may find it
unsatisfying to have to accept such predicates as primitive. If so, it will be worth seeing

whether an enriched ontology can provide a more elegant way of doing things.

8.7 Differentiable structure via scalar value space

Since our expressive difficulties involved the need to quantify over functions from
spacetime points to real numbers, the obvious strategy to consider is to enrich the
ontology in such a way as to provide nominalistic surrogates for such functions. In this
section, we will do this by positing, for each spacetime point, a miniature one-
dimensional space—a “scalar value line”—endowed with a rich structure making it in
effect a copy of the real line. We will call the collection of all the points on all these
scalar value lines “scalar value space”. One option would be to regard points in scalar
value space as further entities disjoint from spacetime points, with a primitive relation
determining a mapping from the former to the latter. Alternatively, we could simply
identify the spacetime points with the scalar value lines themselves. For we are still
going to be helping ourselves to classical mereology—so as well as all the points of
scalar value space, our ontology will contain arbitrary regions of scalar value space,
including the scalar value lines themselves. We will choose the latter approach, on the
grounds of parsimony.

To work out this approach rigorously, we will need to say what the structure is

which determines a natural equivalence relation of “belonging to the same scalar value
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line”, and makes each of these lines “work like a copy of the real numbers”. We can
borrow here from any of the many known axiomatisations of the theory of real
numbers. Since we have mereology, we have regions within each scalar value line,
which will work like sets of real numbers; so we will want to look at second-order
axiomatisations of the real numbers. The axiomatisation we will choose owes much to
one developed by Tarski(1936), although we will not avail ourselves of all of Tarski’s
ingenious simplifications. Besides the primitive predicate ‘Part’ from mereology, it has
one three-place primitive predicate Sum, and two one-place primitive predicates
Positive and Unit. The Sum relation holds only within each scalar value line: in fact, we
will officially define a scalar value line as a maximal region such that whenever x and y
are atomic parts of it, there is a z which is an atomic part of it such that Sum(x,y,z). The
axioms we need are as follows.

First, we have some axioms for ‘Sum’, according to which it gives each scalar value

line the structure of an Abelian group.

Al If Sum(x,y,z), then x, yand zlack proper parts (are scalar value points)

A2 If Sum(x,y,z1) and Sum(x,y,z2) then zi=z> (Functionality)

A3 If Sum(x,x2,51) and Sum(xz,x3,52) then for some y3, Sum(xy,xs3,y3) (scalar
value lines do not overlap)

A4 If Sum(x,y,z) then Sum(y,x,z) (Commutativity)

A5 If Sum(a,b,c), Sum(c,d,e) and Sum(b,d,f), then Sum(a,f,e) (Associativity)

A6 If a is atomic, then there is a b (“minus a”) such that whenever Sum(a,b,z) and
a and c belong to the same scalar value line, Sum(c,zc). (Existence of additive

inverses)

We will henceforth allow ourselves to use standard arithmetical notation to talk about
scalar addition, writing ‘a+b=c’ instead of Sum(a,b,c), and so on. ‘z is a zero’ will
abbreviate ‘z lacks proper parts and whenever Sum(zx,y), x=y. Of course we have
many zeroes, one in each scalar value line.

Second, we have axioms for ‘Positive’. To state these axioms it will help to have
some definitions: ‘x<y’ abbreviates ‘there is a Positive z such that Sum(xzy))’; ‘x<y
means ‘x=y or x<y’; for regions X and Y, ‘X<Y’ means that for any atomic parts x and y
of X and Y respectively, x<y; and similarly for ‘’X<Y’. In these terms, the axioms say that

< is a Dedekind-complete, dense, total order on each scalar value line.

P1 Everything Positive lacks proper parts

P2 If xand yare Positive, x+yis Positive (‘< is transitive’)
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P3 Whenever xis Positive, —xis not Positive. (‘< is antisymmetric’)

P4 Whenever xis atomic and not zero, either x or —xis Positive (‘<is total’)

P5 If xis Positive, there exist Positive yand z such that Sum(y,zx) (‘<is dense”’)
P6 If X<Y, then there is a zsuch that X<zand z<Y (‘<is Dedekind complete”)

Finally we have two axioms about Units:

U1 Every scalar value line contains exactly one Unit

U2 Every Unit is Positive

Note that we need not take multiplication as primitive: using quantification over
regions, it can be defined in terms of Sum, Positive and Unit.1° Also, note that in this
theory it makes perfectly good sense to ask whether two points in different scalar value
lines are “equal in value” (correspond to the same real number). For we can think of all
the zeroes as equal in value and all the Units as equal in value; and this extends to other
points in a uniquely natural way.? Appendix C shows that, assuming standard
mathematics, the above axioms determine a unique one-to-one mapping m; from the real
numbers to points in each scalar value line ] with the properties that
T(o+B)=m(c) +1/(B), () is Positive iff >0, and m,(a) is a Unit iff a=1.

A scalar field will be a special kind of region in scalar value space—one which
overlaps each scalar value line at exactly one point. Given the structure of the scalar

lines, there is a natural correspondence between scalar fields so defined and functions

19 The definition uses Eudoxus’s method of ratios. First we define what it is for a region R of a
scalar line to be ‘x-spaced’, when x is Positive: R is x-spaced iff x is part of R, and every atomic
part of R is Positive, and whenever y and z are parts of R such that y<z, y+xis a part of R and
y+x<z. Next we define “a:b < c:d” in the case where a and b are both Positive and on the same
scalar value line, and c and d are both Positive and on the same scalar value line: this means that
whenever we have regions A, B, C and D which are respectively a-spaced, b-spaced, c-spaced
and d-spaced, and A and C contain equally many points, and B and D contain equally many
points, and no point in B is greater than every point in A, then no point in D is greater than every
point in C. “a:b = c:d” means “a:b < c:d and c:d < a:b”. This lets us define multiplication of
Positive scalar value points: “axb = ¢” means that a:u = c:b, where u is the Unit in the same
scalar value line as a. Finally we extend this definition in the obvious way to the case where a, b
and c are not all Positive: “ab = ¢” means “either aXxb = c or —aX—b = c or —aXb = —c or aX—b
= —cor c and at least one of a and b are zero”. (We have helped ourselves here to the notion of
two regions containing equally many points. See note 17 above for further discussion.)

20 We can define “equal in value” using the Eudoxan definition of “a:b = c:d” from note 19: a and
b are equal in value iff either a and b are both zeroes, or a and b are both Positive and a:u; = b:u,
(where u; is the Unit in a’s scalar value line and u; is the Unit in b’s scalar value line), or aand b
are both negative and —a:u = —b:u.
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from the manifold to the real numbers. But our “scalar fields” are regions in a concrete
space, not mathematical constructs.

This fundamental ontology doesn’t merely contain many collections of entities
isomorphic to the real numbers: it also contains some entities we might think of as
uniquely natural candidates to be the real numbers, namely the constant scalar fields:
those scalar fields any two points of which are equal in value. The notions of addition
and multiplication of scalar value points can be extended to constant scalar fields in an
obvious way. Because of this, one might doubt whether this fundamental ontology
properly deserves to be thought of as ‘nominalistic’. But let us not get hung up on the
label. The project is to look for an ontologically parsimonious, simple theory of the
world; we should not be ashamed to take inspiration from mathematics in working out
such a theory. We have entities that behave just like the real numbers; indeed, we also
have entities—namely, the fusions of constant scalar fields—that behave like sets of real
numbers. But we still are far from having to accept the full set-theoretic hierarchy. This
seems to us like a genuine theoretical gain.

Since we now have scalar fields in the ontology, there is a very obvious strategy
for charaterising the differential structure of the space: we will simply introduce a new,
one-place primitive predicate ‘Smooth’, taking scalar fields as arguments. For as we saw
in section 8.4, there is a natural mathematical characterisation of a differentiable
manifold as a set together with a distinguished class of “smooth” functions from that set
to the real numbers; our nominalistic theory of Smooth scalar fields can be developed in
analogy to this characterisation. What we need to do now is show how to state some
axioms that guarantee that ‘Smooth’ behaves as it should, i.e. that the facts about which
scalar fields are Smooth uniquely determine a differentiable structure in the
mathematical sense (assuming standard mathematical axioms).?! Basically, we are just
going to adapt axioms F1-F3 from section 8.4, replacing talk of functions with talk of
scalar fields. The technical challenges we face in doing this are first, reconstructing
quantification over finite sequences of functions/scalar fields; and second, saying
nominalistically that one scalar field “can be represented as a C* function of” a given
sequence of scalar fields. The trick we use to respond to both challenges involves using

mereological fusions of scalar fields as proxies for certain sets of scalar fields—namely,

21 The precise status of this representation theorem will depend on the logical issues discussed
in section 8.3 above. If we use second order logic to formulate the mereological axiom of
universal composition, then it will be true that the conjunction of the nominalistic axioms and
(second order versions of) the set-theoretic axioms has as a semantic consequence that there is
a unique differentiable structure that fits in the natural way with the Smoothness facts. In a
first-order setting, the truth in the vicinity will be a bit more complex, but the dialectical
situation will in any case be the same as was discussed in section 8.3 vis-a-vis Field’s theory.
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those sets where all the scalar fields involved are continuous, and no two of them
overlap. (In that case, the members of the relevant set can be recovered as the parts of
the fusion that are continuous scalar fields.)

To state the axioms we will need some more defined predicates, as follows:

* ‘Risaspacetime region’: every scalar value line that overlaps R is part of R

e ‘cisthevalue of fat p’ (‘fip] = ¢): cis a constant scalar field, fis a scalar field, pis
a scalar value line (i.e. a spacetime point—remember that we are identifying
them with scalar value lines), and ¢, fand p have a part in common

* ‘Ris abasic open spacetime region’: for some Smooth scalar field h, R contains all
and only those scalar value lines at which the value of h is nonzero

e ‘Ris an open spacetime region’: R is composed of basic open spacetime regions
(every part of R shares a part with some basic open region that is part of R)?2

* ‘fis a continuous scalar field’: fis a scalar field, and for any constant scalar fields
a and b, the fusion of spacetime points p such that a[p]<f[p]<b[p] is an open
spacetime region.

* ‘Fis amultifield: F is a fusion of non-overlapping, continuous scalar fields. (That
is: every part of F overlaps some continuous scalar field that is part of F, and no
two continuous scalar fields that are part of F overlap).

* ‘fisa component of F’: fis a continuous scalar field that is part of F

* ‘fis fixed by F in O’: fis a scalar field, and F is a multifield, and whenever two
spacetime points p and g in O are such that every component of F takes the same
value at p and g, ftakes the same value at pand q.

e ‘gis the partial derivative of fin coordinate h of F in O’: fand g are scalar fields,
and F is a multifield, and O is an open spacetime region, and h is a component of
F, and fand g are both fixed by F in O, and for each point p in O, and each
constant scalar field ¢, there is a nonzero constant scalar field 6 such that: for any
g in O, if every component of F other than h takes the same value at p and g, and
h[p]—-6<h[q]<h[p]+6, then g[p]—e<(fiq]l—fip])/d<glp]+e. (This looks
daunting, but it is really just a transcription of the usual definition of a partial
derivative.)

* ‘fis C* relative to F in O’: fis a continuous scalar field, and fis a component of
some multifield G such that whenever g is a component of G and h is a

component of F, there exist g, «, 8 such that: a and 8 are constant scalar fields,

22 [t turns out that given the axioms all open regions are basic open regions (see Penrose and
Rindler 1984).
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and a is nonzero, and g is continuous, and g is the first derivative of g with

respect to coordinate h of F in O, and ag'+ is part of G.

What is going on this last definition is this. If we had arbitrary sets of scalar fields to
work with, we could define ‘fis C* relative to set S in O’ as ‘there is a countable set H of
continuous scalar fields which contains £ and is closed under the operation of taking
partial derivatives in O with respect to members of S’ The fact we are appealing to is
that when O is bounded, the existence of such a set H is equivalent to the existence of a
countable set of continuous scalar fields G no two of which overlap (and which is thus
representable by a multifield), such that whenever a scalar field gis in G, and g’ is the
partial derivative of g with respect to some member of S in O, then some function of the
form ag’ + B (where a is nonzero) is in G. For on a bounded O, all the members of H will
be bounded, so we can choose the as and s in such a way as to make sure they don’t
overlap.

With these definitions in place, we can state our nominalistic versions of F1-F3:

FN1 IfFis a multifield with finitely many components each of which is Smooth, and
fis C* relative to F in every open region O, then fis Smooth.

FN2 If fis a scalar field and if for each spacetime point p there is an open region O
containing p, and a Smooth scalar field g which coincides with fin O, then fis
Smooth.

FN3 For each spacetime point p there exists an open region O containing p, and a
multifield X composed of n Smooth scalar fields, such that (i) X does not take
the same values at any two points of O, and (ii) every Smooth scalar field is C*
relative to X in O.

If we were being really careful we would at this point prove a representation theorem
showing that any model of FN1-FN3 corresponds to a differentiable manifold in the
sense of F1-F3. But since the axioms are so close, this is routine and we will not try
your patience with more details.

OK, that is it, we have shown how to say that the world has the structure of an n-
dimensional differentiable manifold, without making use of sets, sets of sets etc. All we
have done is posit a scalar value space whose structure is given by a few simple axioms,

stated using just five primitive predicates: Part, Sum, Positive, Unit and Smooth.
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8.8 Physical fields in scalar value space

However, this is not the end of the matter. We want to be able to describe not just a
featureless void but an interesting manifold with physical fields (and perhaps particles
too, but that is not difficult). Let’s start with the simplest physical fields, namely scalar
fields. If we were dealing with a physical scalar field that had a “preferred” unit value,
this would just be a matter of introducing a corresponding primitive one-place
predicate that picks out exactly one of the scalar fields as “physically distinguished” or
“occupied”. But more commonly, talk of physical scalar fields turns out to involve some
arbitrary choices. It is a matter of convention when to say that the field ‘has value 1’ at a
point of spacetime; in some cases, it may also a matter of convention when to say that
the field ‘has value 0’ at a point of spacetime. If so, we will want our primitive predicate
to give us a way of describing the physical field without making these conventional
choices. The easiest way to achieve this is to keep a one-place primitive predicate
“Occupied” of scalar fields, now governed by a law according to which whenever s; is a
nonzero constant multiple of s; (or if the field lacks a nonarbitrary zero point, whenever
sz is the sum of a nonzero constant multiple of s; and a constant), then s is Occupied iff
s1 is. Another, less stipulative way to avoid arbitrary choices of units is one we have
encountered before, namely to employ primitive “FieldAddition” (or “FieldBetween”
and “FieldCongruence”) relations whose relata are spacetime points. Given laws
guaranteeing the relevant richness assumption (e.g. guaranteeing that the field varies
continuously), this would let us define what it is for a scalar field to be ‘occupied’, and it
would be a theorem rather than an axiom that scalar fields that differ only by a constant
multiple (or by a constant multiple and the addition of a constant) are alike as regards
occupation.

Note that we do not need to assume a separate ontology of “field value points”
corresponding to each physical scalar field. No matter how many physical scalar fields
there are, we can characterise their behaviour using predicates of regions in our single
scalar value space.

Now let us turn to physical vector fields. There are at least three ways in which
one could incorporate a physical vector field into the current approach.

In the first place one could be old-fashioned, and think of a vector field V in terms
of its coordinate representations relative to local coordinate systems. For instance, in a
4-dimensional space-time manifold, a vector field V in a region R can be represented by
a quadruple of four components vi, vz, v3, v4 relative to coordinate system xi, x2, X3, Xa
for R. These components are different relative to different coordinate systems: relative

to coordinates y1, y2, ¥3, ya, the components of V are:
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Vi=vi(0y1/0x1)+ v2(0y1/0x2)+ v3(0y1/0x3)+ va(0y1/0xa)
V2=v1(0y2/0x1)+ v2(0y2/0x2)+ v3(0y2/0x3)+ va(0y2/0xa)
V3=v1(0y3/0x1)+ v2(0y3/0x2)+ v3(0y3/0x3)+ va(0y3/0xa)
Va=vi(0ys/0x1)+ v2(0ya/0x2)+ v3(0ya/0x3)+ va(0ya/0xa)

In the current approach this conception can be used in the following way. Our physical
vector field V is characterised by a (2N+1)-place relation V(vy, ..., v, X1, ..., Xn, R) such
that if xi, ..., Xa are Smooth scalar functions which coordinatise R, then there are unique
smooth scalar functions vy, ..., vy such that V(v, ..., vy, X1, ..., Xn, R). Moreover, the above
rule of transformation applies: if V(v4,..., Vi, X1,..., Xn, R), then V(V/4,..., V', y1,..., ¥, R) iff
Vo=(0y0/0x0) .3

The disadvantage of this approach is that it takes as a mere law something that
cries out for further explanation. Why should there be primitive relations V that take
that number of arguments, and why should the first block of n arguments transform as
they do relative to the second block of narguments?

The second approach is the obvious one. As we saw in section 8.4,
mathematically a smooth vector field can be characterised as a map v from smooth

functions to smooth functions which satisfies the following three rules:

(@ v(f+g =v(H+v(g),
(b)  v(af) = av(f) (for any real number o)

(© vy = f(g)+gv(D.

This suggests that the primitive predicate we use to characterise a particular physical
vector field should be a two-place relation V(r, s) between scalar fields, subject to the

following laws:

V1 If V(r, s) and V(r, t) then s=t

V2 For every Smooth rthere exists a Smooth s such that V(r, s)
V3 IfV(r, s) and V(t, u) then V(r+¢, s+u)

V4 If V(r, s) and a is a constant scalar field, then V(ar, as)

V5 IfV(r, s) and V(t, u), then V(rt, ru+st)

23 Differential geometry aficionados: we are ignoring the usual top and bottom indexing
convention.
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This approach is much simpler than the previous approach. One can use it to explain
what the components of a vector field relative to a set of coordinates are, and why they
transform as they do: see chapter 2, or any textbook on differential geometry, for such
an explanation.

The first and second approaches both pick out a particular vector field as
physically special, without any need for an arbitrary choice of unit. There are ways one
could avoid this unwanted specificity. For example, one could modify the second
approach by replacing its two-place predicate V(r, s) with a four-place predicate
V*(r, 51, 2, 52), with the intuitive meaning ‘for some choice of units, the physical vector
field maps r1 to si, and in those units it maps rz to s;". However, these modifications
seem a bit artificial. It would be nicer if the multiplicity of mathematical
representations of the physical vector field arose naturally, as it does in the case of
scalar fields represented by betweenness and congruence relations.

The third approach to characterising a physical vector field is to use a primitive
predicate whose arguments are nominalistic surrogates for vectors and/or covectors at
points. In section 8.6 we saw that some such surrogates—namely half-line sieves and
surface sieves—can be found in any ontology that includes arbitrary fusions of
spacetime points. Unsurprisingly, the rich ontology of scalar value space gives us many
new options for constructing such surrogates—for example, we could represent a
vector at a spacetime point p as a line in scalar value space corresponding to a function
from real numbers to spacetime points, which maps zero to p. (As with half-line sieves,
many such lines will represent the same vector at p.) The approach to representing a
physical vector field (without a natural unit) developed in section 8.6 was to use a
three-place predicate V(w1, w2, ®3) whose arguments are surface sieves (or some other
surrogates for covectors at points), with the intuitive meaning that
w1(V)=w2(V)+w3(V). The challenge was to express the laws governing this predicate
in a nominalistically acceptable way. Given the ontology of scalar value space, this
challenge can be met. We can say what it is for a given constant scalar field to be the
directional derivative of a scalar field according to a half-line sieve; thus we can say

{

what it is for a half-line sieve to be “well-behaved” (it must assign a directional
derivative to every Smooth scalar field) and for two half-line sieves to “correspond to
the same vector” (they assign the same directional derivative to every Smooth scalar
field). Given this, we can say what it is for a surface sieve to be “well-behaved” (it
assigns a value to every well-behaved half-line sieve), and what it is for two surface
sieves to “correspond to the same covector” (they assign the same value to any two half-

line sieves that correspond to the same vector). So we can state laws such as this:
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whenever surface sieves xi, X2, and x3 correspond to the same covectors as surface
sieves w1, wz, and w3, and V(X1, X2, x3), then V(w1, w2, w3).

The first and third of these approaches generalise straightforwardly to physical
covector fields and physical tensor fields of arbitrary rank. In the first approach these
will be represented using primitive predicates taking large numbers of arguments
(nitk+n+1 arguments for a tensor field of rank j, k in an n-dimensional manifold),
subject to stipulative transformation laws. In the third approach, these will be
represented by predicates taking half-line sieves and surface sieves, or some other
surrogates, as arguments (3j+3k arguments for a tensor field of rank j k without
natural unit). The second approach, by contrast, has no natural analogue for covector
fields or general tensor fields. For while the ontology of scalar value space gives us
nominalistic surrogates for scalar functions, it doesn’t contain any natural nominalistic
surrogates for vector and covector fields. Half-line sieves and surface sieves are
surrogates for vectors and covectors at points, not vector and covector fields. So it gives
us no way to base a nominalistic account of a physical covector or tensor field on the
standard mathematical construction of such entities as functions taking vector and
covector fields as arguments.

As it happens, this is no problem as regards tensor fields of rank j, 0. For while
we defined these officially as functions taking j smooth covector fields as arguments,
they can just as well be treated analogously to vector fields, i.e. as functions taking j

smooth functions as arguments, which behave like vector fields in each argument:

@ TG.Hg.)=T(C.,5.)+T(. 8 ...)
(b) T(..,af..)=aT(.. £ ..) (for any real number «)

© T(ufg.)=1T( g . .)+gT( £ ..).

(Essentially, we are using the smooth functions £, .., f; as surrogates for the
corresponding covector fields dfy, ..., df. It is easy to show that the action of the tensor
field on an arbitrary sequence of covector fields is determined by its action on these
special covector fields.) So we can represent any physical tensor field of rank j, 0 as an
Jj+1-ary relation among scalar fields.

What about a physical tensor field of rank j, k where k>0? Without vector fields
in the ontology, there is no general way to treat these as relations among scalar fields,
short of the first, brute-force approach using coordinate representations. However, the
physical theories we are interested in generally feature a metric, which is a physical
tensor field g of rank 0, 2 with the special property of being nondegenerate. Any tensor

field T of rank 0, 2 determines a linear mapping ®r from vector fields to covector fields,
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via the equivalence ®t(v1)(vz) = T(vy,v2): to say that g is nondegenerate is to say that
the mapping ®; is a bijection. Given this mapping, any tensor field T of rank j, k can be
represented as a tensor field T# of rank j+k 0. To apply T# to a sequence of j+k
covector fields, we turn the last k of them into vector fields using @1, and then apply T.
(This is the operation generally known as “index raising”.) So if we are dealing with the
usual form of physical theory involving a metric, the method of representing physical
tensor fields of rank j, 0 discussed in the previous paragraph gives us everything we
need to represent any physical tensor field. (This includes the metric itself, which we
can represent using a three-place predicate G(fi, £, 3) of Smooth scalar fields, with the
mathematical meaning that g#(df;, df;)=f3, or equivalently g(®;~1(df1),P;~1(d£))=5.)
So, we have seen several reasonable strategies for supplementing the basic
theory of scalar value space with primitive predicates corresponding to physical tensor
fields. Now we should say something about how we can express in a nominalistically
acceptable way the tensor equations which play the role of dynamical laws in physical
theories expressed in the language of differential geometry. These equations are
identities between tensor fields; but the tensor fields being identified are generally
defined in terms of other, more basic physical tensor fields. These definitions can be
formalised using the following four operations, which build new tensor fields out of old

ones:

(@)  Permutation. We can permute the arguments of one tensor field to get
another. For example, if we have a 0, 2 tensor field Tap, we can apply
permutation to get a new 0, 2 tensor field Tya defined by Tpa(v1,v2)=Tab(v2,v1).

(b)  Addition. Given tensor fields T and T’ both of rank j, k, T+T' is a tensor field
defined by (T+T’) ((1)1,...,(1)j,V1,...,Vk)=T((1)1,...,(1)j,V1,...,Vk)+T’((1)1,...,(1)j,V1,...,Vk).

(c)  Tensor product. Given tensor fields T and T’ of ranks j, k and j', k' respectively,

we can form a new tensor field TQT’ of rank j+j’, k+k’, defined by

TQT' (W10, V1, ey Vit k) =T (@100, 05,V 1,00, VIO T (@541, 00 01,V 1, o0 Vi)

Y and T2 and TQT

. . . aq..
(In abstract index notation, we write Tand T as T ! ,
by..by by..bys

. a..aj,,C1..Cj

ST, b, T dy.dp)" .
(d)  Contraction. Given a tensor field T:Tbll_'.'_'b:: of rank j+1, k+1, we can form a
new tensor field €T of rank j, k by “contracting the last upper argument of T
with its last lower argument”. In abstract index notation, @T can be written

a;..ajc .
asT. '/ . Ina system of local coordinates xj, ..., X,
bl...bkc
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%T((xn,...,(D/,V1,...,Vk)=Z1gjgnT((x)1, ...,(1)j,dX1,V1, ...,Vk,a/an)

(We could also allow ourselves a more general contraction operation which
can target arguments other than the last one of each sort. But this gives us
nothing essentially new, since we can always use Permutation to move the

arguments we want to contract into the last place.)

In our nominalistic treatment, these operations for building new tensor fields out of
basic ones will correspond to logical operations which build new logically complex
predicates—or what comes to the same thing in conventional logical notation, namely,
logically complex open sentences—starting with the primitive predicates representing
basic tensor fields. Suppose we follow the second strategy discussed above, in which
physical tensor fields of rank j, 0 are represented using j+1-ary predicates of scalar
fields, using the metric to avoid ever having to talk about tensor fields of rank j, k with
k>0. If tensor fields T and T’ of rank j, 0 are represented nominalistically by open
sentences ® (£, ..., £, f+1) and W(4, ..., £ f+1), a physical law given mathematically in the
form “T=T" corresponds to the nominalistic statement VA,...f+1(®(f, ..., f+1) iff
Y(4, .., fi+1)). So all that remains is to find operations on open sentences corresponding
to the four tensor-building operations given above. This is completely straightforward
for permutation, addition and tensor product. For example, if we have an open sentence
@ (£, b, B) representing a tensor field of rank 2, 0, the permutated tensor field will be
represented by the open sentence ® (£, fi, ). If we have open sentences ®(f;, ..., f;, f+1)
and W(£, .., f;, fr+1) representing tensor fields of rank j,0, their sum (in case j=j') is
represented by the open sentence ‘Agah(® (4, ..., f, AV (L, ..., §, H)Afiri=g+h)’, while
their tensor product is represented by the open sentence
Fg3h(P(f, ..., §;, YAY(Li+1, ..., firy, W)Afiyjr1=gh)" (where multiplication of scalar fields
is defined as in note 19).

Finally, we need to represent contraction—or rather, the combined operation of
“lowering an index using the metric and then contracting” (or equivalently, “contracting
the last two indices with the metric”), which stands in for it in the current system where
we only have predicates corresponding to tensors of rank j,0. This is a bit more
complicated.

First, let D«(O, xi, ..., Xn, h, j) stand for the claim that xj,...,.x, coordinatise the open
region O, and throughout O, j=8/6xkx(h): we have already seen how to express this

nominalistically. Then the open sentence Ox(O, xi, ..., Xn, 81, ..., 2n) defined as follows:

VAYj(Di(O, X1, ... Xo, B, J) ©3 i fa(G(x1, B, E)A.AG (X0, B, E)N=g1 i+ ...+ gnf)
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means that ‘in O, d/9xx(h)=X;gig"(dx; dh)’, or equivalently, ‘0/0xx(h)=g"(X;gdx; dh)'—
or in other words, Z;gidx; is what we get when we use the metric to “lower” the vector
field d/0xx into a covector field. So, finally, if we have a predicate ®(f,...f+3)
representing a tensor field T of rank j+2,0, the following complex
predicate @®(fi,...,fi+1) represents the result of contracting the last two arguments of T

with the metric:

YO,p,X1, 0, X0, 811, 0811y -0 801 -8, 011,y - 010y -+, A1, - Onn (X1...XnCOOTdinatise O A
@1(O,X1,...,Xn,g11,...,gln)/\.../\@n(O,X1,...,Xn,gn1,...,gnn) JAN
(D(f1,...,fj,X1,g11X1,(X11) FAVRWAN CD(fl,...,fj,Xl,ngn,O(m)/\.../\.../\

D (fy,....f, x0,8n1x1,001) A...A D(f1,..., 5, X0,80nXn,nn) A p a point of O =

(fi+1[p] = awr[p]+-..+cmn[p])

In a similar way, we can define a complex predicate G®(f,...,fi+1) which represents
the result of contracting the ath and th arguments of T with the metric.2*

This gives us a mechanical way of expressing any tensor equation as a quantified
claim using our primitive predicates. For an example, take Einstein’s equation for

vacuum general relativity,

Racbc:_gabgd‘eRdcec

where R is the Riemann tensor, with rank 3,1. We first rewrite this so that all indices
except for those on the metric are upper indices: Racbdg.q=—gabRedefgsco... When @ is
our five-place predicate representing Ra2bcd and G is our primitive predicate

representing g2b, we can rewrite this as

Vi, f3(B13P) (fr.f2,f3) = (—1QX G G12 G13P) (f1,f2,f3).

Turning this abbreviation into a sentence expressed using primitive vocabulary is then
just a matter of repeatedly applying the above definitions of contraction and tensor

product.25

24 [t is easier to define contraction if we adopt the third approach, representing tensor fields as
predicates of half-line sieves and surface sieves. Given that we can say that a half-line sieve at a
point equals d/dx; and that a surface sieve at a point equals dx; we can just mimic the
mathematical definition of contraction given above, without having to drag in the metric.

25 The Riemann tensor is not itself primitive. It is commonly defined in terms of the spacetime
connection: but the task of representing the connection using a nominalistically acceptable
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The laws we get by applying this algorithm are somewhat more complicated
than we need to be. As we have set things up, every application of the contraction
operation will introduce a fresh battery of quantifiers over coordinate systems xj,...,.Xs
and the components gi1, ..., gun Of the metric relative to these coordinate systems. This
can be avoided by having just one such battery of quantifiers at the beginning, and
recycling the same variables every time we need to do a contraction. This does
something to mitigate the feelings of artificiality that may be prompted by laws
generated in accordance with the above algorithm.

In some ways of developing the mathematics, the contraction operation is
defined without mentioning coordinate systems at all. Most commonly, the contraction
operation € is said to be the unique linear function from tensors of rank j+1, k+1 to
tensors of rank j, k with the property that for any vector field v and covector field w,
B(TRvRw)=w(v)T: one can show that there is exactly one such function. This gives a
way of glossing on the content of tensor equations in which no mention ever needs to be
made of coordinate systems. But this involves a kind of quantification—over functions
from tensor fields to tensor fields—that is simply not available in a nominalistic
framework. Within that framework, there seems to be no way to avoid bringing
coordinate systems in at some point. Some philosophers of physics, who have been
schooled to think that it is of paramount importance to avoid ever having to talk about
coordinates, will think that this is a problem. But we think that the measure of
complexity introduced by the quantifiers we use in characterising contraction is a small
price to pay for the advantage of not having to posit tensor fields, and functions among
tensor fields, as entities in the fundamental ontology.

There is one way for coordinate systems to show up in putatively fundamental
laws that we agree is very problematic: namely, when a law takes the form of an
existential quantification over coordinate systems—for example, if one characterised
the facts about spatial betweenness and congruence by saying that there is a system of
coordinates in which these relations take such-and-such form. But this especially
problematic character is not due to the fact that the laws in question mention
coordinate systems: other kinds of existentially quantified laws (e.g. ‘there is an
assignment of masses such that Newton’s laws hold") are bad in the same way. Since

our laws involve only universal quantification over coordinate systems, at least when

predicate raises new difficulties which we want to postpone for now. However, there is also a
way of defining the Riemann tensor directly from the metric. This definition uses differentiation
relative to coordinates; given that our formulation of the laws already involves a universal
quantification ‘for all O, and for all scalar fields x;...x, which coordinatise O...", nominalising this
definition raises no new problems, although the length of the definition would make writing it
out nominalistically a laborious exercise.
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simplified in the manner suggested above, we don’t see any special reason to think ill of
them.26 Of course it would be nicer not to have quite so many universal quantifiers out
in front, but in the present ontology we see no way of avoiding this.

The conclusion of this section is that by positing the rich structure of scalar value
space, nominalists can give a workable account of the differential-geometric structure of
spacetime, within which it looks to be a fairly trivial task to formulate nominalistically

acceptable versions of physical theories written in the language of differential geometry.

8.9 Differential structure via vector bundles

Positing scalar value space makes it easy to nominalise differential geometry and
physical theories based in it. But it is worth seeing whether we can get by without
positing a space with such a rich structure for which we have no motivation
independent of the nominalistic project. As we saw in chapter 6, gauge field theories
play an important role in modern physics, and the success of such theories provides
motivation for “fibre bundle substantivalism”. Scalar value space is in fact a special case
of a fibre bundle over spacetime, insofar as it contains a miniature space (a fibre)
corresponding to each point of spacetime. In fact it is a vector bundle, since the points
of each fibre carry a natural vector space structure (that of the real number line). But
scalar value space has several special features that vector bundles need not have. First,
the fibres of a vector bundle need not be one-dimensional. Second, there is generally no
distinguished “unit” in a fibre. And third, there is in general no non-arbitrary way to
make sense of the question whether points in different fibres are “equal in value”. But
as we will see in this section, the relatively impoverished structure of a vector bundle is
still enough to characterise differential structure, both of the underlying manifold and of
the vector bundle itself. The rich, real-number-like structure of scalar value space turns
out to be superfluous.

The first task in giving a nominalistic account of a vector bundle is to
characterise the vector space structure on each fibre without helping ourselves to real
numbers. This can be done in various ways. One easy way has just the two primitive
relations “Sum” and “SameDirection”, where SameDirection(vi, v2) has the intuitive
meaning that for some a>0, vi = av2.) The axioms for Sum are just the Abelian group
axioms A1-A6 from section 8.7. For SameDirection, what we basically want to do is to
adapt axioms P1-P6 by replacing the one-place primitive predicate ‘Positive(x)’ with

the two-place primitive predicate ‘SameDirection(v, x)’, while restricting the quantifiers

26 Section 6 of Dorr 2010 makes much of this contrast between existential and universal
quantification.
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to multiples of a given nonzero v. Here we define a ‘multiple’ of v as anything of the
form b—c¢ where SameDirection(v, b)) and SameDirection(v, ¢). = Making these
transformations to P1-P6 (with some small adjustments to allow zero vectors to bear

the SameDirection relation to themselves) gives us SD1-SD6:

SD1 If SameDirection(v, x), then vand xlack proper parts

SD2  If SameDirection(v, x) and SameDirection(v, y), SameDirection(v, x+y)

SD3 If vis nonzero and SameDirection(v, x), then not SameDirection(v, —x)

SD4 Whenever x is a nonzero multiple of v, either SameDirection(v, x) or
SameDirection(v, —x)

SD5 For any v, there exist x and y such that x+y=v and SameDirection(v, x) and
SameDirection(v, y)

SD6 IfXandY are fusions of multiples of vand X<,Y, then there is a multiple z of v
such that X<,z and z<,Y.

The predicates ‘<, and ‘<, in SD6 are defined just like ‘<’ and ‘<’ were, substituting
‘SameDirection(v, x)’ for ‘Positive(x)’.
To capture the claim that the fibres are vector spaces, we will need three more

axioms:

SD7 SameDirection is an equivalence relation
SD8 SameDirection(—vi, —v2) whenever SameDirection(vi,v2)
SD9 If SameDirection(v+w, x), then for some y and z such that y+z=x,

SameDirection(v, ) and SameDirection(w, z).

The key to seeing that these axioms pin down the structure of a vector space is noticing
that if we choose any nonzero v, interpret ‘Positive(x)’ as ‘SameDirection(v, x)’ and
‘Unit(x)’ as ‘x=V/, and restrict all quantifiers to multiples of v, we get back axioms P1-P6
and U1-U2, which as we have already seen, suffice to characterise the structure of the
real numbers. So in each model of A1-A6 and SD1-SD9, each nonzero v generates a
particular isomorphism my between the real numbers and the multiples of v, such that
v(v)=1, my(x)+mv(y)=mv(x+y), and mv(x)>0 iff SameDirection(v, x). When my(a) = x
(where « is a real number) or xand v are both zero, we can write ‘x = av’. And we can
show (see Appendix D for the proof) that scalar multiplication, so defined, satisfies the

defining properties of scalar multiplication in a vector space, namely

(@ 1v=v
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(b)) (a+B)v=av+pv

© aBv)=(ap)v
(d a(vtw)=av+aw

Of course there is no uniquely natural way to define multiplication of vectors in a
vector space. However, we can still make sense, in the same way as before (see note
19), of the claim that a:b=c:d (whenever ais a multiple of b and cis a multiple of d, not
necessarily in the same fibre as a and b). We can think of this as a relativised notion of
multiplication, writing ‘aX,b=c to mean ‘either a:v=c:b or b and c are both zero’. In
general, every relation that we could define among points in a scalar value line can be
carried over to the points in a fibre in a general vector bundle by giving it an extra
parameter, to be filled by a nonzero vector v, serving as an arbitrarily chosen unit.

A section of the vector bundle will be the counterpart of a scalar field in scalar
value space: a region that overlaps each fibre at exactly one point. When s is a section
and p is a fibre (i.e. a spacetime point), s[p] will denote the intersection of sand p. The
Sum and SameDirection relations, and other relations defined in terms of them, can be
generalised to sections: Sum(sy, sz, s3) iff Sum(si[p], s2[p], s3[p]) for each p, and
SameDirection(sy,sz) iff SameDirection(s1[p],sz[p]) for each p. Again, while there is no
uniquely natural way to define multiplication of sections, we can make sense of
multiplication when relativised to a nowhere-zero section so which serves as an
arbitrary unit: s1Xsos2 = s3 iff for each p, either s1[p]:so[p]=s3[p]:sz[p] or sz[p] and s3[p]
are both zero. Similarly, while we cannot make natural sense of the notion of a
“constant” section, we can say that s is a ‘constant multiple’ of s, or ‘constant relative to
the choice of so as unit’: this is true when for any p and q, si[p]:so[p]=s1[q]:so[q]. (If
spacetime has an interesting shape there may be no nowhere-zero Smooth sections; but
this is not a problem, since our “unit” section sp does not have to be Smooth.)

As in the case of scalar value space, the other primitive we will use capturing
differential structure is a one-place predicate Smooth, applying now to sections. Our
aim is to write down some axioms for Smoothness from which it follows that the space
can indeed be given the mathematical structure of a vector bundle. The key insight we
will rely on in order to do this is the fact that pairs of sections s, so such that sp is
nowhere zero and s is a multiple of so can be used as surrogates for scalar fields. We say
that s1 is a smooth multiple of so iff for every spacetime point p, there exists an open
spacetime region O containing p, and Smooth sections sz and s3 such that
s1(q):so(q)=s3(q):s2(q) for each q in O. ‘Open spacetime region’ is defined essentially as
before: a ‘basic open region’ is one that contains all and only the points where some

Smooth section is nonzero, and an open region is one composed of basic open regions.
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Given this, all of the definitions in the bulleted list in section 8.7 can be carried over to
the context of a vector bundle by introducing an extra argument place, to be filled by a
nowhere-zero section so serving as an arbitrary unit, replacing ‘is a scalar field’ with ‘is a
multiple of so’, and replacing ‘is Smooth’ with ‘is a smooth multiple of s¢’. So, for
example, we can define what it is for s; to be continuous taking so as unit; what it is for R
to be a multifield taking so as unit; what it is for si to be the partial derivative of sz in
coordinate s3 of R in O taking so as unit; etc. Given these definitions, it is a

straightforward matter to adapt axioms FN1-FN3 into the present setting, as follows:

SN1 For any nowhere-zero sy, if S is a multifield relative to so with finitely many
components each of which is a smooth multiple of so, and s1 is C* relative to S
and so in every open region O, then s1 is a smooth multiple of so.

SN2 If s is a section, and for each spacetime point p, there is an open region O
containing p, and a Smooth section t that coincides with s on O, then s is
Smooth.

SN3 For each nowhere-zero so, and each spacetime point p, there is an open set O
containing p, and a region S that is a smooth multifieldrelative to so composed
of n smooth multiples of so, such that (i) relative to so, S does not take the
same values at any two points in O, and (ii) every smooth multiple s1 of so

coincides in O with some section that is C*® relative to S and sp in O.

These axioms are not yet enough to say all we want to say about the Smooth sections.
For example, they are consistent with the claim that some fibres contain points that are

not part of any Smooth section. But we can finish the job by adding three more axioms:

SN4 Ifs1is Smooth and sz is Smooth, then s1+s2 is Smooth.

SN5 Ifs1 is a smooth multiple of sz, and sz is Smooth, then s1 is Smooth.

SN6 For every point p in M, there exists an open region O containing M, and m
Smooth sections sy, ..., Sm, such that (i) every Smooth section coincides on O
with some sum of smooth multiples of sy, ..., sm, and (ii) at every spacetime

point q in O, s1[q], ... and sm[q] form a basis at q.

(Here m is the dimensionality of the fibres. vi ... vip “form a basis” for a fibre iff every
point in the fibre is a sum of a multiple of v1 .... and a multiple of vy, and none of the v is
a sum of multiples of the others.) SN6 tells us that we are dealing with a locally trivial,
m-dimensional vector bundle. For the m-tuples of Smooth sections which exist

according to SN6 do the work of a local trivialisation on O (see section 6.3), in that they
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determine a unique, linear mapping between the points of any fibre within O and the
points of any other fibre within 0. We define this mapping by expressing a point v in
fibre p as a sum of multiples of s1[p],... and sm[p], and letting the image of vin fibre q be
the sum of the corresponding multiples of si[q],... and sm[q]. This means we can treat
any of the fibres within O as a “standard fibre”.

Provided that the dimension m of the fibres is greater than 0 (so that there exist
nowhere-zero sections—not necessarily Smooth ones, of course), SN1-SN3 work just as
FN1-FN3 did to fix a differential structure on spacetime. Once we have introduced the
operation of scalar multiplication, we can define a function f from points of spacetime
real numbers to be “smooth” iff for some sections s1, so such that s; is a smooth multiple
of so, s1[p] = f(p)so[p] for each spacetime point p. And the smooth functions so defined
will satisfy axioms F1—F3, so we know that they uniquely determine a differential
structure on spacetime. This isn’t all we want: a vector bundle is itself a certain kind of
differentiable manifold, so if we want the right to call the structure we have just been
talking about a “vector bundle”, we need to make sure that our primitive relations
suffice to determine a unique differential structure on the set of all points in all fibres as

well as on the set of all points of spacetime. But this is straightforward to show.?”

27By SN6, every spacetime point has a spacetime neighbourhood O within which we can find a
basis of Smooth sections s ... sm. Since we have a differential structure on spacetime, any such
O has a subset O- still containing p, such that there is a sequence of scalar functions xi... x, which
form an admissible coordinate system on O-. Having chosen xi... x, and si ... sm, we use them to
define a coordinate system on the vectors in fibres in O-. Each point v in the fibre over a
spacetime point q in O- has a unique expression of the form aisi[q] + ... + amsSm[q], SO we let the
coordinates of vbe x:(q), ... ,xa(q), a1, ...,am. Now we just need to check that any two coordinate
systems defined in this way are smoothly related in their region of overlap. That is, if we choose
a different coordinate system y;, ..., y» and basis of smooth sections t; ... tm on an open region 0*
overlapping O- to define coordinates yi, ....ys, B1, --.Bm on the fibres of O* then each of the
coordinate functions yi, ...,Va, B1, ..., Pm can be expressed as a smooth function of xj, ..., xn, a1,
wy Om.  For yi, .. ,yn this is straightforward: we already have a differential structure on
spacetime, and we know that xi... x, and y;, ...,y are both admissible coordinate systems on O-
NO*, so each y; must be expressible as fi(xi, ... ,xs), where f; is C*. For By, ...,fm, we use clause (i)
of SN6. Since each s; is Smooth and {t;} is a basis of Smooth sections on 0-N0O* each s; can be
represented in O-NO* as yiity + ... + Yintm, Wwhere yi; ... yin are smooth functions. So if a point vin
the fibre over q can be expanded in the s;[q] basis as a;s1[q] + ... + amSm[q], it can be expanded
in the ti(q) basis as

(a1yly + azy?i... + amym)ti[q] + ... + (1YIm + A2Y2m... + AmY™m)tm[q]

But since the yi; are smooth, each of them can be expressed as gii(x1, ..., Xn), where gj; is C®. So fi
can be expressed as a smooth function of xj, ... X, a1, ...,0m as follows:

Bi = augli(x1, ..., Xn) + 0282%i(X1, ..., Xn) ... + AmgMi(X1, ..., Xn)

Thus each of the Biis a C* function of xy, ..., Xs, a4, ...,0m, as required.
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Given this, we have all the structure definitive of a vector bundle: a base manifold
(spacetime), a fibre bundle manifold, a projection map m from points of the latter to
points of the former (namely, the function that maps each v to its fibre); and a vector
space structure on each set of points which have the same image under m.28

For applications in physics, we would normally want a vector bundle whose
fibres have a structure richer than that of a mere vector space. For example, the main
example of chapter 6 dealt with bundles whose fibres have further structure (“angle-
and-length structure”) in addition to vector space structure, in virtue of which the group
of permutations which preserve all of the structure of the bundle (the gauge group) is a
subgroup of the group of all permutations which preserve its vector-space structure.
Adding this to the current nominalistic picture would be a straightforward matter of
picking some appropriate new primitive predicate applying to points in fibres. (For
angle-and-length structure, we could have a four place primitive predicate ‘the inner
product of v and v; is the same as the inner product of v3 and v4").2°

So far, so good. Now, what about adding some physical fields to this setting? The
most obvious kind of physical field we can add is a physically distinguished section of
the vector bundle. We can do this with a one-place primitive predicate picking out the
‘Occupied’ section. By contrast to the analogous strategy for incorporating a physical
scalar field in the setting of scalar value space, this does not in any sense build in a
“preferred unit” for the field in question. The arbitrariness of units is fully captured by
the fact that there is no privileged system of coordinates on the fibres, and thus no
privileged way to represent our physically distinguished section as an n-tuple of real-
number valued functions on spacetime.

As regards spacetime tensor fields, we essentially have the same options that
were discussed in section 8.8 in the context of scalar value space, since pairs of sections
one of which is a multiple of the other can do all the work of a scalar field. Each of these
options can be generalised in an obvious way to account for the kinds of hybrid tensor
fields that occur in gauge field theory, such as section-valued and endomorphism-

valued covector fields. For example, we might represent a section-valued covector field

28 Moreover, T is obviously a smooth map (as required by the definition of a fibre bundle), since
each our admissible coordinate systems for the fibre bundle include admissible coordinate
systems on spacetime points.

290ne might also consider positing some other fibre bundles in addition to the vector bundle
that is used in characterising the differential structure of spacetime. These additional fibre
bundles might have quite different kinds of structure in place of vector space structure: for
example, they could be “principal” bundles which carry a group structure rather than a vector
space structure. However we will not investigate this further, since we see no straightforward
physical motivation for a substantivalist attitude towards such bundles.
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by means of a relation mapping half-line sieves to points in the fibre over their home
point.30

As was discussed in chapter 6, there is one other kind of physical field that plays
a very important role in physical theories which use fibre bundles, namely a connection.
Mathematically, a connection on a vector bundle can be defined as a function D that
takes a smooth spacetime vector field vand a section s and yields another section Dy(s),

in such a way that

(@) Dv(s1+s2) = Dy(s1)+Dv(s2)
(b)  Du(fs) = v(H)s+{Dv(s)

(¢)  Dv+w(s) = Dv(s)+Dw(s)
(d)  Dw(s) =1Dv(s)

(for any smooth sections s, s1 and sz, smooth function f and smooth vector fields v and
w). Since our current nominalistic ontology doesn’t contain any single entities
corresponding to vector fields, it is not so clear how to endow it with a connection.
There are various options we could explore, including the following.

(i) As we noted in section 8.7, a smooth vector field in an n-dimensional
spacetime manifold can be represented by a 2n+1-ary relation whose arguments are an
open region and 2n Smooth scalar fields, the latter n of which coordinatise the given
region. In a vector bundle, we can achieve the same effect with a 2n+2-ary relation
whose arguments are an open region, a section so that is nowhere zero within that
region, and 2n smooth multiples of so. This gives us a “brute force” way to nominalise a
connection using a 2n+4-ary predicate whose first 2n+2 arguments represent the
vector field vand whose last two arguments stand respectively for s and Dy(s).

(ii) While we don’t have entities corresponding to vector fields, we have plenty
of good nominalistic surrogates for vectors at points, for example the half-line sieves of
section 8.6. A connection in the sense defined above determines a mapping dvp from
vectors at a spacetime point p and smooth sections to points in the fibre over p.
Conditions (c) and (d) entail that whenever smooth vector fields vand w coincide at p,
Dv(s) and Dw(s) must also coincide at p; so we can without ambiguity define dvp (s)=
Dv(s)(p) where v is any smooth vector field whose value at p is v. Moreover, two
distinct connections D and D’ will always determine distinct such functions d and d’. So

we could talk about a connection nominalistically using a three-place predicate whose

30 Similarly, an endomorphism-valued covector field, such as the electromagnetic field, can be
represented as a three-place relation that takes a half-line sieve and a point in its home fibre,
and yields another such point.
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arguments are first, some nominalistic surrogate for a vector at a spacetime point (e.g. a
half-line sieve); second, a smooth section; and third, a point in the fibre at the given
spacetime point.

But how are we to write down laws using such a predicate which guarantee that
it does indeed behave in the right way to generate a connection? We want to say,
essentially, that when we smoothly vary v, (either holding p fixed or allowing it to
vary), d,,p (s) will also vary smoothly. And how do we say that? We could fall back here
on the trick from the first approach, of representing vector fields by their coordinate
representations. We can say something like this: for every open region O, nowhere-zero
section so, smooth multiples xi, ..., xn of so which encode a coordinate system on O,
smooth multiples vj, ..., va of So, Smooth section s, and section s’, if for every point p in O,
when v, is the vector(-surrogate) at p whose coordinate representation relative to
X1, .., Xo 1 V1(p)0/0x1 +...+ va(p)0/0xn, s'[p]=d,,, (s), then s" is Smooth. This is not the
world’s most elegant law, but at least on this strategy the primitive predicate itself does
not need a large number of argument places.

(iii) The mathematical representation of a connection as a function from vector
fields and sections to sections is at some remove from the intuition people (such as the
author of chapter 6) appeal to in introducing the concept of a connection. According to
this intuition, the essential job of a connection is to give us a notion of what it is to
“parallel transport” a point in the fibre over p along a smooth path from p to q, yielding
a point in the fibre over q. We could take this intuitive explanation as the basis for our
nominalistic treatment. Specifically, we could represent a connection using a single,
one-place predicate ‘Parallel’ applying to certain regions in the fibre bundle, subject to

at least the following axioms:

PT1 If Parallel(R), then R is a smooth path (embedded one-dimensional
submanifold) in the fibre bundle, which intersects each fibre at most once.3!

PT2 For each smooth path A in spacetime, and each point in each fibre over A, there
is a Parallel path through that point whose projection into spacetime is A.

PT3 Two distinct Parallel paths R and S which have the same projection into
spacetime cannot share any points.

PT4 IfR, S and T are Parallel and have the same projection into spacetime, then for

any spacetime points p and q that they intersect, R[p]+S[p]=T[p] iff
R[q]+S[q]=TI[q].

31 Alternatively, we could allow Parallel paths to loop back on themselves. But this would make
other claims, such as PT4, more awkward to state.
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PT5 If R and S are Parallel and have the same projection into spacetime, then for
any spacetime points p and q that they intersect, SameDirection(R[p],S[p]) iff
SameDirection(R[q],S[q])-

These axioms aren’t yet enough to determine that we are dealing with a bona fide
notion of parallel transport corresponding to a connection. What remains to be said is
something to the effect that as we smoothly vary the spacetime path, we will smoothly
vary the result of parallel transporting a given point in a fibre along that path. How
could we say something like that? One strategy is to fall back on quantification over
coordinate systems again, defining the 2n+4-ary predicate that was taken as primitive
in the first approach in terms of ‘Parallel’, and then saying in these terms that operating
with the connection on a smooth vector field and a smooth section yields a smooth
section. This is feasible, since we have nominalistic surrogates for curves in the sense of
functions from real numbers to spacetime points, and we can say that such a curve is an
‘integral curve’ of a given vector field expressed in coordinate terms. So we can define
‘Dy(s)=t’ as ‘for any integral curve A of v, t[A(0)] = limnh-o (S[A(0)]—the result of parallel
transporting s[A(h)] back along A to A(0))/h’. But probably this is unnecessarily
indirect: there may be some more straightforward way to express the smoothness
constraint on Parallel paths. For instance, while we do not have nominalistic surrogates
for all smoothly parameterised families of smooth paths in spacetime, we do have
nominalistic surrogates for some such families, namely those in which the paths are the
intersections of the level sets of n-1 smooth functions, restricted to some open
spacetime region. So we can express something like this: if F is such a family, and ] is a
smooth path through the fibre bundle whose projection into spacetime intersects each
member of F at most once, and K is a path through the fibre bundle whose projection
into spacetime is smooth, and for each point of K, there is a Parallel path which contains
some point of | and whose projection into spacetime is a member of F, then K itself is

smooth. (See Figure 7.)
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Figure 7: a candidate smoothness axiom for parallel transport
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We conjecture that this should be enough to capture the smoothness requirement on
parallel transport, but we are not sure how to show this.

Once we have settled on an approach to representing a connection, it should be a
fairly straightforward exercise to write down nominalistic versions of the equations
which characterise gauge field theories, such as the Yang-Mills equation. At the very
least, we know we can do everything in terms of components, with an initial universal
quantification over coordinate systems (both in spacetime and in the fibre bundle).
Once we have a way of defining the polyadic predicate which expresses the connection
in coordinate terms, we can use it to define other predicates, e.g. one corresponding to
the curvature of the connection (an endomorphism-valued two form, F); we can then
perform various tensorial operations involving these predicates using the techniques
sketched in section 8.8 above. Another option is to exploit the metric to turn all the
relevant tensors into ones of rank j, 0, which can be represented in a coordinate
independent way using predicates of smooth scalar fields (or smooth multiples of a
given nowhere-zero section).

So to conclude this section: the independently-motivated ontology of fibre
bundle substantivalism provides not only the resources for a nominalistic account of
differential structure, but also provides a range of plausible strategies for nominalising

interesting physical theories, including gauge field theories.

8.10 Tangent bundle substantivalism

Since gauge field theories are the state of the art in classical physics, we could stop here:
the task of coming up with nominalistic versions of other kinds of classical theories is to
some extent of merely antiquarian interest. However, insofar as we are not dealing with
the question how to nominalise quantum theories, the same could be said of this whole
chapter; as discussed in the Introduction to this book, it is in the nature of the
philosophy of physics to consider conceptual problems raised by outdated physical
theories in the hope that we will thereby learn something that continues to be of use in
the light of new discoveries. It is a safer bet that future developments in physics will
preserve a role for differential geometry of some sort than that they will preserve a role
for fibre bundles. Thus it may be an interesting intellectual exercise to think about how
we might best approach the task of nominalising a theory like vacuum general relativity,
in which the notion of a fibre bundle has no obvious application.

Of course, there is a sense in which any physical theory that uses the basic
apparatus of differential geometry is a fibre bundle theory. For these theories will talk
about vector fields, covector fields, and other kinds of tensor fields. And each of these

entities has a mathematical representation as a section of a fibre bundle. For example, a
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vector field on a n-dimensional manifold M can be identified with a section of the
tangent bundle TM, a 2n-dimensional manifold each of whose points can be identified
with a tangent vector at some point of M. Similarly, a covector field can be identified
with a section of the cotangent bundle T*M, and a tensor field of rank j, k can be
identified with a section of the tensor product bundle TMIQT*Mk. However, it is
unlikely that it would occur to anyone who wasn’t concerned with the question of
nominalism to adopt a substantivalist attitude towards any of these bundles. Rather,
they would typically be thought of as mere mathematical constructs, rather than as
collections of fundamental concrete entities like spacetime points. While chapter 6 of
this book argued that such an attitude is extremely problematic in the case of the
bundles that feature in gauge field theory, those arguments do not carry over to spaces
like the tangent bundle. But now that we are concerned with nominalism, we might
think of revising this attitude. As we have seen, we can characterise the differential
structure of spacetime nominalistically provided that we take a substantivalist attitude
towards some richer space, certain regions of which can serve as surrogates for
functions from spacetime points to real numbers. So one avenue worth exploring is that
of adopting the substantivalist attitude towards one or more of the bundles mentioned
above.

Suppose we choose the tangent bundle. What would be involved in developing a
nominalistic tangent bundle substantivalism? We already know how to describe a
vector bundle, so our task is to identify some additional structure which can explain
why it should be natural to identify the points in a vector bundle with tangent vectors at
points in spacetime. There are several workable ways to do this.

(i) The mathematical job of a vector at a point is to assign a number (a
directional derivative) to each smooth scalar function. We could capture this idea in the
present framework using a primitive four-place predicate Derivative(x, s, s1, S2), where
x is a point in the fibre bundle, so is a nowhere-zero section, s; is a smooth multiple of so
and s; is a constant multiple of so, with the intuitive meaning “x(s1:s0) = s2:50". We
would need axioms on this relation guaranteeing, for example, that if Derivative(x, s-
0, S1, S2) and Derivative(y;, so, s1, s3), then Derivative(x+y, so, 1, S2+53).

(ii) As we have seen, there are plenty of composite entities that can serve as
representatives of vectors at points—half-line sieves, for example. One could express
the distinctive “vector” nature of the points in the tangent bundle by means of a
primitive binary relation of “correspondence” between points in the tangent bundle and
half-line sieves. This would be a one-many relation, with a basic axiom guaranteeing
that when half-line sieves Hi and H: are “equivalent”, v corresponds to Hp iff v

corresponds to Hz. (Half-line sieves are equivalent iff they assign the same directional
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derivative to each smooth function: we can express this nominalistically using our usual
device of replacing quantification over smooth functions with quantification over
smooth multiples of a nowhere-zero section so.)

This approach might seem oddly indirect. If we already have entities in the
ontology to play the role of vectors at points, what do we gain by adding new entities
(points in the tangent bundle) that play the same role? The answer is that we now have
entities that play the role of vector fields (sections of the tangent bundle). Since half-
line sieves are themselves spread out in spacetime, mereological sums of them are not
going to work as surrogates for vector fields. (In a one-dimensional space it is obvious
that if we have some half-line sieves such that every point in the space is the home point
of one of them, their fusion will be the whole space; and thinking about this makes it
clear that the problem is not going to go away in higher-dimensional spaces.)

(iii) We could also capture the distinctive character of the tangent bundle using
primitive predicates applying to sections rather than points. Mathematically, the job of
a smooth vector field is to yield a smooth scalar function as output when given one as
input: we could capture this using a four-place relation D(s,s0,51,52) holding between a
Smooth section s, a nowhere-zero section sp, and smooth multiples s1 and sz of s, with
the intuitive meaning that s(s1:so)=sz2:50. Slightly more elegantly, we could have a
primitive predicate LieBracket(si,s2,53). In the usual construction of vector fields as
functions from smooth scalar functions to smooth scalar functions, the Lie bracket
[vi,v2] of vector fields vi and vz is the vector field defined by [vivz](f) =
vi(v2(f))—vz(vi(f)). Although the functions vi(vz(f)) and vz(vi(f)) are not vector fields
(since they do not generally satisfy the Leibniz product rule:
vi(vz(fg))#vi(vz(f))g+fvi(va(g))), it is straightforward to show that their difference is a
vector field.3? So the Lie bracket defines a distinctive structure on the sections of the
tangent bundle. In fact, the Lie bracket relation fully pins down the correspondence
between sections of the tangent bundle and vector fields in the standard sense. We use
the fact that [v, fv] = v(f)v.33 If we are given f in the form of a ratio of two vector fields
v1:vo, we can thus specify v(f) as the ratio of [v,fv] to v (where fv is the vector field such
that fv:v = vi:vo). By plugging this definition of v(f) back into the definition of [v1,v2] as

vi(v2(f))—vz(vi(f)), we can formulate an axiom involving the primitive LieBracket

32Proof: [v1,v2](fg) = vi(va(fg)) —va(vi(fg)) = vi(fva(g) +gva(f)) —va(tvi(g) +gvi(h)

= fvi(va(8)) +v2(g)vi(D) + gvi(va(D) +va(Dvi(g) — fva(vi(g)) —vi(g)va(f) — gva(vi(D)—vi(F)va(g)
= fvi(va(g)) + gvi(va(f)) — fva(vi(g)) — gva(vi(D)) = f[vi,va](g) + g[v1,v2] (D).

33 [viv](g)=v((fv) (8))— (V) (W(g))=v(f-v(g)) —f v(v(g)) = V(D) v(g) +f v(v(g)) —f v(v(g)) = () v(g)
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predicate that captures everything that makes the tangent bundle distinctive among
vector bundles.3*

Tangent bundle substantivalism makes the task of nominalising physical theories
more straightforward in certain respects. First, it gives us a new option for
representing physical tensor fields of rank j k with kx>0. As we saw in section 8.8,
tensor fields of rank j, 0 can be represented using relations among scalar fields, and we
can formulate physical theories in such a way that we only ever need to talk about
tensor fields of this sort, by appealing to the correspondence between covector fields
and vector fields generated by the metric. If we have vector fields in the ontology, there
is no need to rely on this trick: instead, we can represent a physical covector field in the
obvious way, as a relation that maps each smooth vector field to a “smooth function”
(i.e. a pair of vector fields, one of which is a smooth multiple of the other). In general, a
tensor field of rank j, k will take j “smooth functions” and k smooth vector fields and
yield a “smooth function”—or to be exact, given an arbitrary nowhere-zero vector field
so, it will take j smooth multiples of so and k smooth vector fields that need not be
multiples of so, and deliver another smooth multiple of so.

Given the ability to represent tensor fields of all ranks, we can simplify section
8.7’s algorithm for turning tensor equations into nominalistic laws. The predicate that
represents the contraction of a tensor field will no longer need to involve quantification
over scalar fields gug representing the components of the metric in a given coordinate
system: instead, we can simply take over the standard mathematical definition of
contraction. We will still need quantification over coordinate systems to state this,
however. If one were absolutely determined to avoid mentioning coordinates at all in
the treatment of contraction, we see no alternative but to take a substantivalist attitude
not just to the tangent bundle, but to the tensor bundles of rank j, k for all jand k, or at
least as many of these bundles as are used in the physical theory we are trying to
nominalise. In that case, one could have a primitive ‘Contraction’ predicate that relates
each point in the tensor bundle of rank j+1, k+1 to a point in the tensor bundle of rank
J, k, subject to certain axioms. But it strikes us as wrongheaded to engage in so much
ontological inflation just for the sake of avoiding ever having to quantify over
coordinates, especially since such quantification seems in any case to be inescapable in
the axioms which characterise differentiable manifolds (e.g. in axiom F3, or its

nominalistic version).

34Here is what the axiom in question looks like in non-primitive notation: If vs:[vy,v2] = vaivy =
va:voand vevi = [va,v4]:va and vzive = [vy,vs]ivy, then [[vy,v2],vs]:[vi,vz] = [V, Ve]:vi- [V2,v7]:ve.
This can certainly be simplified quite a lot, but we will not go into the details.
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One other nice thing about tangent bundle substantivalism is that it gives us
several natural ways of introducing a primitive predicate representing a connection on
the tangent bundle—all the strategies for representing connections on general vector
bundles considered in section 8.8 work just as well when the vector bundle is the
tangent bundle. Since the spacetime connection is fully determined by the metric, it is
not indispensable to have a primitive predicate which represents it. However, having
such a predicate will probably allow for simpler formulations of the laws, and will
certainly allow our nominalistic versions of the laws to follow their platonistic
counterparts more closely.35

If we are not dealing with a gauge field theory, so that we don’t have any
independent motivation for substantivalism about some other vector bundle, the special
properties of the tangent bundle make it an especially attractive candidate to provide
the vector bundle structure we need for capturing the differential structure of
spacetime. Even if we are trying to nominalise a gauge field theory, so that we have an
independent reason to be substantivalists about some other vector bundle, it might be
worth taking a substantivalist view of the tangent bundle in addition, in view of the
simplifications in the statements of physical laws which this would allow. The relative
merits here depend on delicate issues about the tradeoff between simplicity in the
statement of laws and ontological economy, concerning which we have no firm general

views.

8.11 Further possible simplifications

As we have developed the ontology of fibre bundle substantivalism, sections are
mereological fusions: the atoms of the mereology are points in fibre bundles. This is not
the most ontologically economical way of proceeding. We can make the ontology
smaller by throwing away the points, and instead taking the sections as the atoms of the
mereology.3¢ The work previously done by spacetime points considered as certain
fusions of fibre-points could be taken over by certain special sections, or fusions of

sections. For example, we might identify a spacetime point with the fusion of all

35 See note 25. Even without the ontology of tangent bundle substantivalism, we might consider
representing a connection using a polyadic primitive predicate of scalar fields—something like
“the covariant derivative with respect to the gradient of fy of the g; grad fi+...+gsgrad f4s = hy
grad fi+...+h; grad fy” (where grad f is ®4-1(df)). Or our primitive predicate could express a
function from a quadruple of scalar fields (representing a coordinate system) to the
components of the connection with respect to those coordinates (the Christoffel symbols).
However, tangent bundle substantivalism makes it possible to use primitive predicates that are
less artificial-looking, and have fewer argument places.

36 Dorr (2011) considers this approach in a bit more detail.
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sections that are zero at that point. Two sections s1 and sz “have the same value” at a
spacetime point iff s;—sz is part of that spacetime point.3’” Since we have not just
Smooth sections to play with, but also highly un-Smooth sections (e.g. sections that are
zero everywhere except for one spacetime point, which can do almost all the work
previously done by the points of fibre bundles), it would not be a technically difficult
matter to rewrite the axioms in such a way as to work in this alternative ontological
scheme.

On this approach, the primitive predicates can all be taken to be predicates of
mereological atoms. Because of this, a further simplification becomes available, in
which we get rid of the mereological element of the theory altogether and have nothing
but sections in the fundamental ontology. For this to work, we will need to be tolerant
of something like plural or second order quantification: this will be needed in order to
take over the crucial work that quantification over “multifields” played in the statement
of axioms SN1 and SN3 (in particular, in defining what it is for one section to be a “C®
relative to” certain other sections). If such quantification is legitimate, then
quantification over mereological fusions of sections is redundant from the point of view
of the project of nominalising physics. (Some think that mereological fusions “come for
free”, so that there is nothing to be gained by abandoning them. We disagree.)38

Having eliminated everything except for sections (and perhaps fusions of
sections) from the ontology, it is tempting to venture even further, by eliminating all the
non-smooth sections in addition. For the special case of smooth sections in scalar value
space, this kind of ontology has been considered under the name ‘Einstein Algebras’ by
Robert Geroch (1972) and under the name ‘Leibniz Algebras’ by John Earman (1989,
sect. 9.9). However, the challenges facing such an approach are daunting. If we cannot
quantify over all sections, how can we nominalistically express the content of axiom F1,
i.e. that ‘C* functions of smooth sections are smooth’? If we had access to all the

resources of set theory, we could reconstruct such quantification using quantification

37 We can pick out the fusions that are spacetime points in this schema as the “maximal
ideals”—fusions with the property that (i) whenever two sections are part of them, their sum is
part of them, and (ii) whenever s; and s; are part of them, any other sections s3 and s4 such that
S1:52=53:S4 are also part of them, and (iii) which are not parts of any other fusions satisfying (i)
and (ii), except for the fusion of all sections.

38 By contrast, in order to replace quantification over mereological fusions of fibre-points with
plural or second-order quantification, one would need to allow for primitive predicates (such as
‘Smooth”) to take plural or second-order arguments: we would speak of some points as
“collectively” Smooth in a way that doesn’t require there to be such a thing as the “collection” of
those points. The question whether primitive predicates of this sort are even intelligible raises
deep foundational issues. Even if one regarded them as intelligible, one might still think that
they introduced a kind of complexity which we would be better off avoiding by introducing
something like mereology.
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over ordered pairs of spacetime points and sections, where points are in turn
constructed as sets of sections. And if we were completely blasé about using higher-
order logic, we could do something similar within that framework, which might
arguably be counted as nominalistic. But this would take us quite far from the kind of

nominalisation project in which we have been engaged in this chapter.

8.12 Conclusions

The strategies we have presented allow for the nominalisation of a wide range of
modern theories in fundamental physics. There is still work to be done, since we
haven’t said anything in this chapter about the nominalisation of quantum theories.
However, it seems to us that the main problem here is simply the one that was
discussed in Chapter 3 of this book: that of finding a satisfactory account of what
quantum theories are telling us about the fundamental structure of the world. We want
to be able to understand these theories not just as pragmatic devices for predicting the
outcomes of experiments, but as accounts of what there is, fundamentally speaking, and
of the pattern of fundamental properties and relations. Once one has given a clear and
satisfactory account of the fundamental structure of the world according to quantum
theory, we foresee no distinctively new obstacles to the project of nominalising such an
account. For example, one view takes the wavefunction over configuration space as a
straightforward representation of the fundamental structure of the world. On this view,
the fundamental ontology includes entities standing in some geometric relations that
make it natural to think of them as “points of configuration space”, and standing in some
other relations that pick out a function from them to the complex numbers as “the
wavefunction” (or to be more precise, that pick out a certain small equivalence class of

functions from them to the complex numbers as “legitimate choices of wavefunction”).

The techniques required for nominalising classical field theories should extend quite
easily to theories of this sort. Other accounts of the fundamental ontology of quantum
theories will involve a similarly “substantivalist” attitude towards other high-
dimensional spaces: the Hilbert space, the space of operators, or some interesting
subspaces of the space of operators such as the space of field-configuration operators.
Again, with such a richly structured domain of concrete entities to work with,
nominalisation seems unlikely to be very difficult. The dialectical situation seems quite
similar to the case of classical gauge field theories: the richly structured ontology of
concrete objects which makes nominalisation feasible can be motivated quite
independently of any commitment to nominalism, simply by the demand for a

satisfactory account of the concrete facts upon which the phenomena supervene.
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One might think that, e.g., a Hilbert space is a paradigm mathematical object, so
that no theory positing such a thing could count as genuinely “nominalistic”. But as we
have already said, we don’t want to quibble about the label. We are simply interested in
the question which entities exist, and how they are structured. We take it that our best
theories of the phenomena are our best guide to answering this question, and that a
parsimonious, simple theory is more likely to be true than a complex, rich theory. Since
the mathematical realm, as conceived by those who believe in it, contains instantiations
of more or less every possible structure, any answer we might come up with will have
the feature that according to it, the structure of the concrete world is isomorphic to that
of some (putative) mathematical entity.

It may strike some readers that the theories we have been developing are much
more complex than familiar platonistic ones, so that even by our own standards, we
should be willing, for the sake of having simple laws, to embrace the mathematical
ontology those theories require. We disagree: much of the complexity of platonistic
theories is hidden behind a hierarchy of definitions, which practitioners rarely have any
need to consult.

But even if it is true that there are some additions to the ontology we have been
advocating that can be justified by gains in simplicity, we think it is a mistake to think of
mathematical ontology as an all-or-nothing deal. Otherwise we might as well have
thrown in the towel at the point when Sumerians first discovered how to use abacuses
to keep track of the size of their herds! Mathematics is a stupendously useful tool. It
describes and systematises a vast array of possible structures, any one of which we
might find ourselves having reason to ascribe to part of the real world. We should feel
free to avail ourselves of these options, without fearing that once we start doing so, we
will somehow end up having to believe that every one of those structures is instantiated

somewhere in reality.
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APPENDICES

Appendix A: Different differential structures that generate the same
embedded subregions

Let D be the standard differential structure on R2. Let D’ be the non-standard structure
such that a function f is smooth according to D' iff fod is smooth according to D. We will
show that for any set S, S is the image of a smooth embedding of a one-dimensional
manifold into D iff S is the image of a smooth embedding of a one-dimensional manifold
into D’. Since D and D’ disagree only at <0,0>, it suffices to consider curves vy:
(-1,1)»R? with y(0)=<0,0> and y'(0) nonzero (as required for y to be an
embedding).3°

Lemma I: A curve y (function from Rto R?) is smooth according to D' iff ®-1oy is smooth
according to D.

Proof: A curve is smooth iff its composition with any smooth function is smooth. But if f
is smooth according to D', it is of the form ged-1 with g smooth according to D. So vy is
smooth according to D’ iff fod~toy is smooth according to D for every smooth f. This
entails that ®-1oy is smooth (taking f to be the identity function), and since composition

of smooth functions preserves smoothness, it is also entailed by ®~1oy being smooth.
Corollary: If y is smooth according to D’, it is smooth according to D.

Lemma 2: Suppose y(t) is a function from [—1,1] to R? such that y(0)=<0,0> and y'(0)
is nonzero. Then if y is smooth according to D, y(t3) is smooth according to D'
Proof: We will show that ®-1(y(t3)) is smooth according to D; this is sufficient for y(t3)
to be smooth according to D' by Lemma 1.

Let y(t) = <f(t),g(t)>. Since y'(0) is nonzero, we know that either f'(0) or g'(0)

is nonzero; without loss of generality, let us suppose f'(0) is nonzero. Then when t+0,

OA((E%) = <f(t%)/((F())*+(g () A3, g(t) /(%)) +(g (%)) /3>

Define f*(t)=f(t3)/t3 when t#0, f*(0) = 6f (0); g*(t)=g(t3)/t3 when t+0, g*(0)=6g'(0).
Then when t+0,

O(f(1)) = <t (O /(D) +(g* (D)D), tg* (1) /(F(D)*+(g* (1)) /3>

39 This proof is essentially due to Teru Thomas.
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To show that this is smooth at 0, it is sufficient—since the product of two smooth
functions is smooth, and the quotient of two smooth functions is smooth wherever the
denominator is nonzero, and any power of a smooth function is smooth wherever that
function is nonzero—to show that f* and g* are smooth at 0, and that f* is nonzero at 0
(since in that case (f*(t))? must be positive at 0, and hence so must (f*(t))2+(g*(t))?)
and ((f*()*+(g* (D)) 3).

To show that f* and g* are smooth at 0, we use the fact—which can be verified by
manipulating the epsilon-delta definition of differentiation—that if the first two
derivatives of a smooth function h(t) vanish at 0, then the function j defined by
j(©=h(t)/t3, j(0)=h'(0) is also smooth at 0. The first two derivatives of f(t3) and g(t3)

do vanish at 0, since

d/dt £(t3)[o = 3F ()2 |o =0
d2/de2 £(t3)[o = 9f" () t4+6f (t3)t]o = 0

and similarly for g. And the third derivative of f(t3) and g(t3) are respectively equal to
6f'(0) and 6g'(0), since

d3/dt3 £(t3)[o = 27" (13)t6+36f (3)t3+ 18" (13)t+6f (t3) |0 = 6£(0)

and similarly for g. This tells us that f* and g* are smooth at 0; also, since f'(0)+#0, we

have that f*(0) is nonzero, as required.

Corollary: for any set S, if according to D, S is the image of a function y:[—1,1]->R? with
v(0)=<0,0> and y'(0) nonzero, then this is also the case according to D', and

conversely.

Appendix B: ‘Diag’ determines differential structure

In this appendix we will show that if we have differential structures D and D’ on a
topological manifold of dimension at least two, and they agree on the extension of the

predicate Diag(R1,R2,R3) defined as follows:

For some smooth functions xand y and open region O such that xand y form part

of an admissible coordinate system mapping O onto a convex open subset of R™
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R1 comprises exactly the points where x is rational, and Rz comprises exactly the

points where yis rational, and R3 comprises exactly the points where x=y.
then D=D".

Lemma 3: If fand g are continuous functions on an open region O, and for every x, the
subregions f=x and g=x of O are connected, and the points in O where the value of fis
rational are exactly those where the value of g is rational, then there is a continuous
function h: R—R such that f=h(g).

Proof. Suppose we had two points a and b in O such that g(a)=g(b) but f(a)#f(b). Let r
be a rational number between f(a) and f(b). Since fis continuous, every path from ato b
must pass through a point where f=r. Since the region where g=g(a) is connected, no
path from ato b has to pass through a point where the value of gis anything other than
g(a). But gis rational whenever f=r. So g(a) must be rational. So f(a) and f(b) must be
rational. But then there is some irrational number x between f{a) and f(b). Since fis
continuous, every path from a to b has to pass through a point where f=x. But gis
irrational whenever f=x. So every path from ato b has to pass through a point where g
is irrational. This cannot be the case, since g(a)=g(b) is rational the set of points where

g=g(a) is connected.

Lemma 4: Suppose D is a differentiable structure, and x and y form part of a convex
coordinate system on an open region O that is admissible according to D. Let R;
comprise the points where x is rational and Ry, the points where y is rational. Then for
any region Rz, Diag(Ri,Rz,R3) iff for some diffeomorphism f on the real line, R3
comprises the points where y=fx).
Proof. Left-to-right: if Diag(R1,Rz2,R3), there is a D-admissible convex coordinate system
X,y such that ¥’ is rational exactly in Ry, ¥/ is rational exactly in Ry, and x¥'=y’ exactly in
R3. Since x and X both form parts of convex coordinate systems on O, both are
continuous, and their level sets within O must all be connected. So by Lemma 3,
x" must equal g(x) for some g: R—>R. Similarly, y’ must equal h(y) for some h: R—>R.
Since x” and y’ are part of an admissible coordinate system, g and h must be
diffeomorphisms. Since Rz comprises the points where y'=x, it comprises the points
where y=h"1(g(x)); so h-log is a diffeomorphism fas required.

Right-to-left: suppose fis a diffeomorphism on the real line, and Rz comprises the
points where y=f(x). If x and y form part of a convex coordinate system on O that is
admissible according to D, so do x¥=f(x) and y. (Applying f to one coordinate while
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leaving the others alone maps convex regions to convex regions.) Since Rz comprises

the points where x'=y, Diag(R1,R2,R3).

Theorem: Suppose we have two differentiable structures D and D’, an open region O,
and two functions X, ¥ which according to D' are part of a coordinate system mapping
O onto an convex open subset R” Let R1 be the region where ¥ is rational and Rz the
region where y/ is rational. Choose some diffeomorphism d from the range of x' to the
range of y/, and let Rq comprise the points in O where y’=d(x’). Then by Lemma 4,
Diag(R1,Rz,R4). So there are continuous functions x, y that are part of a convex
coordinate system on O that is admissible according to D, such that x is rational exactly
in Ry, y is rational exactly in Ry, and x=y exactly in Rq. Since x and X’ are both parts of
convex coordinate systems, the regions of the form x=r and x=r, for rational numbers
r, are exactly the maximal connected subregions of Ri. So by Lemma 3, there must be
some continuous function g on the real numbers, such that X' (p)=g(x(p)). By the same
reasoning, there must be a continuous function h such that y'(p)=h(y(p)). Note that
since Rq comprises the points where x=y, i.e. where x'=g(h'()’)), and Diag(R1,Rz,Rq),
the right-to-left direction of Lemma 4 tells us that the function goh-1, which gives us Rq
as a function in the y/,x’ coordinates, is a diffeomorphism.

Now, let fbe any diffeomorphism from the real line to itself. Let Rrbe the set of
points where y=f{x). By the left-to-right direction of Lemma 2, Diag(R1,R2,Rs). But Rsis
also the set of points where y' = h(f{g1(x"))). So by the right-to-left direction of Lemma
2, this function hofog-1, which gives us Rr as a function in the ¥, y coordinates, must be a
diffeomorphism. Since we have already established that goh-! is a diffeomorphism, and
the composition of two diffeomorphisms is itself a diffeomorphism, it follows that
goh~lohofog-l = gofog-1 is a diffeomorphism.

Since fwas arbitrary, we have established that the function g which gives us x’ as
a function of x has the following interesting property: whenever f is a diffeomorphism,
gofog-lis. We can establish the converse using exactly similar reasoning, but now going
in the opposite direction (from the primed to the unprimed coordinate functions). So

we are now in a position to apply the following result, due to Floris Takens (1979):

Let ®: M;—>M: be a bijection between two smooth n-manifolds such that A:
M;-M; is a diffeomorphism iff ®-loAo®d is a diffeomorphism. Then & is a

diffeomorphism.

Take M1=M;=R and ®=g71, it follows from this that g is a diffeomorphism. Analogous

reasoning shows that h (which gives y/ as a function of y) is a diffeomorphism.
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So we have established that the coordinates x’, y, which are admissible according to
differential structure D’, are also admissible according to differential structure D. This
means that in general, any convex coordinatisation of an open neighbourhood that is
admissible according to D’ is admissible according to D. And the reverse is true too (by
isomorphic reasoning). But if so, D and D’ must be the same differential structure: for if
any coordinate system were admissible according to one but not the other, some of its
restrictions to convex regions of R” would have to be admissible according to the one
but no the other, admissibility being a local matter. So from the assumption that D and
D’ agree about the extension of Diag, we have deduced that they are the same

differential structure.40

Appendix C: Adequacy of our axioms for scalar value lines

In this appendix we will sketchily prove the following representation theorem: in any
model of M1—-M5 (second-order classical mereology+atomicity), A1—A6 (‘addition is
an abelian group on each scalar value line’) and P1—P6 (repeated below), and every
scalar value line /in that model, there is a unique function m; from the real numbers to
points in u’s scalar value line such that m;,(a+f)=m,(c)+m/(), () is Positive iff a>0,

and /() is a Unit iff a=1. And this m;is one-to-one.

P1 Everything Positive lacks proper parts

p2 If xand y are Positive, x+y is Positive (i.e. ‘< is transitive’, where ‘x<y’ means
‘x—y is Positive’.)

P3 Whenever xis Positive, —xis not Positive. (‘< is antisymmetric’)

P4 Whenever xis atomic and not zero, either x or —xis Positive. (‘< is total’)

P5 If xis Positive, there exist Positive yand z such that Sum(y,zx). (‘< is dense’)

P6 If X<Y, then there is a z such that X<z and z<Y. (‘< is Dedekind complete’:
X<Y means ‘whenever x is an atomic part of X and y is an atomic part of Y,
x<y’.)

We will need a lemma:
Lemma 5: For every x, there is exactly one y such that y+...+y [m terms]=x.

Proof. Let S be the fusion of points s such that s+...+s<x, and B the fusion of b such that
b+..+b>x. S<B, since if x>y, x+..._+x>y+...+y by P2. So by P6 there is a z such that

40 Thanks to Andrew Stacey for pointing us to the Takens result and explaining its relevance to
our question.
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S<z and z<B. Now, suppose that z+...+z>y. Then by P5, there is a w such that
0<w<z+...+z—y. By repeated applications of P5, w=wi+...+wn for some Positive
Wi1,..,.Wm. Let wi; be the smallest of wi,..,wm; then wi+..+wi<w. So
(z+..+z)—(Wi+...4+wi)=>(z+...+z)—w>y. Hence z-w; belongs to B, contradicting our
assumption. The possibility that z+...+z<y can be ruled out by similar reasoning,
leaving z+...+z=y the only possibility by P4. Could there be some other z’ such that
7'+..+z'=y? No: if z+..+z=2"+...4+7/, then (z—2z")+...4(z—2') is zero, which by P2 could

not happen if z—z' or z'—z were Positive.

We are now in a position to prove our representation theorem.

(i) Existence. We start by defining minductively for integers, by requiring that
m/(1) be the wunique Unit of [ and that m(n+m)=m(n)+mn(m) and
) (n—m)=m,(n)—m,(m). When a is a rational number of the form n/m (where m is
positive), we let /(a) be the point z such that z+...+z [m terms]=m,(n), which exists by
Lemma 5. This extension of m will obviously still respect the addition facts. Finally,
when a is irrational, we let m;(a) be the point z such that X<z and z<Y, where X is the
fusion of points m,(n/m) where n/m< «, and Y is the fusion of points m,(n/m) where
n/m>a. By P6, there is such a z. Showing thaton this definition m;(o) +1/()=m:(a+[3)
comes down to showing that whenever x<y, x<m,(n/m)<y for some n and m. For this,
we use P6 to show that every Positive z is greater than some point of the form m;(1/m),
and then argue inductively that if so, some point of the form m,(n/m) must occur
between any two points whose difference is at least z.

(ii) Uniqueness. Suppose m; and p; both meet the specified conditions. By
induction, mt;(n)=pi(n) for each integer n. If a is a rational number n/m (m positive), we
have that m(a)+...+m(a) [m terms]=m/n)=pi(n)=pia)+...+pi(a); but if m(a)<pia),
p2 tells us that () +...+m(e) <pia)+...+pia) and hence
() +...+m(a) #pi(a)+...+pi(a) (by P3). And since m;and p;both respect the ordering
facts, they must also agree on the points they assign to irrational numbers, again using
the fact that any two points are separated by some point of the form m;(n/ m).

(iii) One-to-oneness: First, since m,(a)+m/()=m/a+p), T(0)+m,(0)=m/0), so
1(0) is zero. We first show that m,(a) is not zero for any other a. First, m(a)+m/(—a) is
zero for every a, so m,(—a)=—m/a), so it suffices to show that m;(a) is not zero for any
Positive a. Suppose otherwise. Then for some m, ma=>1; so, arguing inductively, and
appealing to the fact that m, respects ordering facts, /(o) +...+m/(a) [m terms]|>m;(1).
But m,(1) is the Unit of / which is Positive by U2; so by P2 m,(a)+...+m/(a) is Positive.
This cannot happen if m/(a) is zero, by P3.
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Suppose then that m(a) = /(). Then m/(a)—m/(p) is zero, so T (a)+Ti(—p) is
zero, so m/(a—f) is zero, so a— is zero by the result we just proved. So a=f, proving

that m;is one-to-one.

Appendix D: Nominalistic treatment of vector spaces

In this appendix we prove a representation theorem: in any model of axioms M1—M5
(classical mereology), A1—A6 (‘addition is an abelian group on each fibre’) and
SD1-SD9 (given in section 8.9, and repeated here for convenience), there is a unique
way of assigning each fibre the structure of a vector space over the real numbers, in

such a way that SameDirection(x,y) iff x=ay for some positive real number o.

SD1 If SameDirection(v, x), then vand xlack proper parts

SD2  If SameDirection(v, x) and SameDirection(v, y), SameDirection(v, x+y)

SD3  If vis nonzero and SameDirection(v, x), then not SameDirection(v, —x)

SD4 Whenever x is a nonzero multiple of v, either SameDirection(v, x) or
SameDirection(v, —x)

SD5 For any v, there exist x and y such that x+y=v and SameDirection(v, x) and
SameDirection(v, y)

SD6 IfXandY are fusions of multiples of vand X<,Y, then there is a multiple z of v
such that X<,z and z<,Y.

SD7 SameDirection is symmetric, transitive, and reflexive on nonzero vectors

SD8 SameDirection(—vi, —v2) whenever SameDirection(v1,vz)

SD9 If SameDirection(v+w,x), then for some y and 2z such that y+z=x,

SameDirection(v,y) and SameDirection(w, z).

Here ‘x is a multiple of ¥ means ‘for some zi and z SameDirection(y,z1) and

SameDirection(y,z2) and x=z1+2,".

Lemma 6: x+...+x= y+...+yonly whenx=y.

Proof. Suppose x+...+x = y+...+y. If xis zero, then x+...+x = y+...+yis zero. But then
y must be zero, since otherwise we would have SameDirection(y,y) by SD7, and hence
SameDirection(y,y+...+y) by SD2, and hence SameDirection(y+...+y,y) by SD7, and
SameDirection(y+...+y,y+...+y) by SD2 again, contradicting SD3. Similarly, if y is zero,
x must be. So we can assume that neither x nor yis zero. Then SameDirection(x,x) and
SameDirection(y,y) by SD7. So by SD2, SameDirection(xx+..+x) and
SameDirection(y,y+...+y). So by transitivity (SD7), SameDirection(x,y). Then since

x—y is a multiple of x, SD4 tells us that either SameDirection(xx—y) or
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SameDirection(x,y—x) or x=y. But if SameDirection(x,x—y), SD2 implies that
SameDirection (x,(x+..+x)—(y+..+y)); which is ruled out by SD3, since
(x+...+x)—(y+...+y) is zero. The possibility that SameDirection(x,y—x) is ruled out in

the same way, leaving x=y as the only remaining possibility.

Lemma 7: xis a multiple of y iff either SameDirection(y,x), or SameDirection(y,—x), or x
is zero.

Proof. Left to right: immediate from SD4. For the right to left direction, there are three
cases to consider: (i) If SameDirection(y,x), then SameDirection(y,x+x) by SD2, so xis a
multiple of y since x=(x+x)—x (i) If SameDirection(y,—x), then
SameDirection(y,—x+—x) by SD2, so xis a multiple of y since x=x—(—x+—x). (iii) if xis

zero, then xis a multiple of y since x=y—y and SameDirection(y,y) by SD7.

Lemma 8: ‘is a multiple of is an equivalence relation on nonzero points.

Proof. Reflexivity: Since SameDirection(x,x), x is a multiple of x by Lemma 7.
Symmetry: If x and y are nonzero and x is a multiple of y, then by Lemma 7 either
SameDirection(y,x) or SameDirection(y,—x). In the first case, SameDirection(x,y) by
SD7, so yis a multiple of xby Lemma 7. In the latter case, SameDirection(—x,y) by SD7
and SameDirection(x,—y) by SD8, so y is a multiple of x by Lemma 7. Transitivity:
suppose y is a multiple of x and z is a multiple of y, and all are nonzero. By Lemma 7,
either SameDirection(y,z) or SameDirection(y,—z), and either SameDirection(x,y) or
SameDirection(x,—y). If SameDirection(x,y), then by SD7 either SameDirection(x,z) or
SameDirection(x,—z), so z is a multiple of x. If SameDirection(x,—y), then by SD8
SameDirection(—x,y), so by SD7 either SameDirection(—x,z) or SameDirection(—x,—z),
so by SD8 either SameDirection(x,—z) or SameDirection(x,z), so by Lemma 7, z is a

multiple of x.

Lemma 9: If w is not a multiple of v, x; and x; are multiples of v, y1 and y» are multiples

of w, and x1+y1 = x2+J7, then x1=x; and y1=yx.

Proof. If x1+y1 = x2+y2, then x1—x2 = y»—y1. If x1—x2 is zero, then x1=x2 and y1=y2 and
we are done. So suppose x1—Xxz = }2—J1 is nonzero. x1—Xx is a multiple of vsince x; and
X2 are; y2—y1 is a multiple of w since y1 and y» are. Since ‘multiple’ is transitive on
nonzero vectors by Lemma 8, it follows that v is a multiple of w contradicting our

assumption.
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Theorem: In any model of the axioms, whenever vis nonzero, there is a unique function
Ty from real numbers to vectors with the properties that (a) m/(1)=v, (b)
Tv(a+p)=mv(a)+mv(B), and (c) SameDirection(v,my(a)) iff a>0. And this function is
one-to-one.

Proof. From the theorem of Appendix C, noting that P1—P6 and U1—-U2 are true when
we restrict all quantifiers to multiples of v, interpret ‘Positive(x)’ as

‘SameDirection(v,x)’ and ‘Unit(x)’ as ‘x=v'.

Theorem: The operation ‘x = av’ defined by ‘eithervis nonzero andmny(a) = x, or vis zero

and x=V satisfies the axioms for scalar multiplication in a vector space, i.e.:

() lv=v
(i) (a+B)v=av+pv
(i) a(Bv) = (ap)v

(iv) a(vtw) =av+aw

Proof. (i) and (ii) are immediate from the properties (a) and (b) of my. For (iii), there

are four cases to consider.

Case 1: vis zero; then both sides are zero.

Case 2: vis nonzero and 3=0. Then v=(1+4f)v=v+fv, so Bv is zero, so a(Bv) is zero.
And (af)v = 0v = (1—1)v=v—y, which is also zero.

Case 3: vis nonzero and $>0. Then SameDirection(v,v) by (c). By SD7, for any x,
SameDirection(v,x) iff SameDirection(v,x). So 0<my(x) iff 0<mpy(x). And
more generally, my(x)<my(y) iff mgy(x)<mgv(y). Also, by Lemma 8, the
multiples of vare exactly the multiples of fv. We know that gy is the one and
only additive function from the multiples of Bv to the reals such that n(fv)=1
and mpv(x)<mgy(y) whenever x<gyy. But we have just seen that the function
f(x):= my(x)/P has exactly these properties. So in general, mgv(x) = Tv(x)/P.
In other words, x=a(fv) iff x= (aff) v

Case 4: visnonzero and 3<0. Then SameDirection(v,—pv). By SD7 and SD8, for any x,
SameDirection(v,x) iff SameDirection(fv,—x). So 0<my(x) iff 0<mgy(—x)
which is true iff mgy(x)<0. More generally, mv(x)<my(y) iff Tpv(y)<mpv(x).
Also, by Lemma 8, the multiples of vare exactly the multiples of Bv. Thus as in
Case 3, the function f(x):=mv(x)/B has exactly the properties that we know are

unique to Tgy.
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For (iv), we have to go through seven cases.

Case 1:
Case 2:

Case 3:

Case 4:

Case 5:

Case 6:

Case 7:

vis zero. Then a(v+w) = aw = v+aw = av+aw.

vis nonzero and w is a multiple of v. Then for some 3, w=Bv. So v+w = v+fv
= (1+PB)v (by (i) and (ii)); and thus a(v+w) = a((1+B)v) = (a+ap)v (by
(iii)) = av+(apB) v (by (ii)) = av+a(Bv) (by (iii)) = av+aw.

v is nonzero, w is not a multiple of v, and a is a positive integer. Then we can
use (ii) to argue that a(v+w) = (v+w) + ... + (v+w) = (v+..+v)+(W+...+w)
= av+oaw.

vis nonzero, w is not a multiple of vand a is a negative integer. Then a(v+w)
= —a(—v—w) (by (ii) and (iii)) = —a(—v) —a(—w) (by Case 3) = av+aw (by
(ii) and (iii)).

vis nonzero, w is not a multiple of v, and a = 3/y, where [ is a nonzero integer
and y is a positive integer. Then a(v+w)+..+a(v+w) [y terms]|=
B(v+w)=Bv+pw (by Cases 3 and
4)=(av+..+av)+(aw+...+aw)=(av+aw)+...+(av+aw). But by Lemma 6,
this can only happen if a(v+w) = av+aw.

v is nonzero, w is not a multiple of v, and a is positive and irrational. By SD9
(this is our first appeal to SD9!), there are § and y such that a(v+w) = Bv+yw,
and this 8 and y are unique by Lemma 9. Suppose § is some positive rational
number less than a. Then SameDirection(a(v+w),(a—6)(v+w)), and hence
SameDirection(v+w,(a—6)(v+w)). By (ii), (a—06)(v+w) = a(v+w)—=56(v+w)
= Bv+yw—06v—6w (using Case 5) = (B—8)v+(y—8)w. So we have
SameDirection(v+w,(3—96) v+(y—06)w). But by SD9, (f—8) v+(y—8)w must in
that case be the sum of a positive multiple of v and a positive multiple of w.
And by Lemma 9 again, (—8)vand (y—&)w are the only multiples of vand w
which sum to (B—6)v+(y—6)w. So —6 and y—96 are both positive: so 6<f3
and 8<y. By parallel reasoning, whenever § is a rational number greater than
a, 6> and 6>y. It follows that a=B=y, and so a(v+w)=av+aw.

v is nonzero, w is not a multiple of v, and a is negative and irrational. Then
a(v+tw) = —(—a)(v+w)=—((—a) v+(—a)w) (by Case 6) = —(—(av)+—(aw))

= aV+Qaw.
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