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I. INTRODUCTION

The purpose of this note is to present a characterization of infinite-horizon
optimality in an aggregative stationary model. Qur characterization is in terms
of finite-horizon optimality (for every finité horizon) and a condition which
essentially says that the input level on the program must be, at all times,
below a critical stock (which is below the maximum sustainable stock).

Two aspects of this result are worth emphasizing, First, out characterization
is valid for arbitrary non-convexities in the technology set; the sufficiency part
of our result does not even depend on concavity of the utility function. Thus,
this aspect should be of particular interest when viewed in the light of
contributions to the literature on optimal intertemporal allocation under non-
convexities in production. (For this literature, see the papers by Clark 1971;
Skiba 1978; Majumdar and Mitra 1982, 1983; Majumdar and Nermuth 1982;
Dechert and Nishimura 1983; and Mitra and Ray 1984.) For a convex
technology set, and a concave utility function, finite-horizon optimality (with
positive consumption in some period) can itself be characterized in terms of the
Ramsey-Euler conditions or the so-called competitive conditions.

Second, our characterization of finite-horizon optimal programs which are
not infinite-horizon optimal is in terms of a “critical stock™ being exceeded by
the input level on the program in some period. This aspect should be viewed in
the spirit of the recent literature on intertemporal decentralization, where an
attempt has been made to replace the usual asymptotic (transversality) condition
by period-by-period verifications to signal capital overaccumulation along
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competitive programs. (For this literature, see the papers by Majumdar 1988;
Hurwicz-Majumdar 1988; Brock-Majumdar 1988; and Dasgupta and Mitra
1988.)

II. THE MODEL

We consider a stationary aggregative model with discounting, characterized
by a production functionf: R, — R, a discount factor § € (0,1), and a usility
function u : R, — R, Without loss of generality we take u(0) = 0.

On the production function, we make the assumption:

(F}y f(0) =0, fis increasing and continuous, and there is K > 0 such that
JX)>xforO0<x <K, fixy<xforx>K.

Below, we will invoke one or both of the following assumptions on the

utility function:
(U.1) uis continuous.
(U.2) wisincreasing and strictly concave.

III. FEASIBLE PROGRAMS
Programs start from an initial siock a. We will suppose that initial stocks

may be drawn from the interval A = (0,0] where ot < K.
A program (x,y,c) is feasible from (some initial stock) a > 0 if

X, < a (1)
X+ S Y fort=1 )
¥: < ﬂxt_i) fort=1 (3)

IV, OPTIMAL PROGRAMS

A feasible program (x* y*,c*) from a is optimal from a if it solves
max 25‘—1 u(cy)
=1

subject to (x,y.c} feasible from a. Under {U.1) and (F), optimal programs exist.
We will also consider the following assumption:

(P} For each a € A and each optimal program (x*,y* ¢*) from a, xf > 0 for
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Assumption {P) can be replaced by conditions on the utility and production
functions that guarantee (P). These conditions do not necessarily require
concavity of f or even u. For example, either of the following two conditions
can be shown to guarantee (P), given (F) and (U.1):

(i) Unbounded steepness of u at the origin and no unbounded steepness
anywhere else,
(ii) fis &-productive near the origin and u is concave.

V. FINITE HORIZON PROGRAMS

Let T be an integer > 1 (the horizen). Consider two stocks (a,b) = 0. The
program (x*,y*,¢*)T is T-feasible from a to b if

X, £ a,xr2b G
CXECr S W fort=1,.,T 5]
Y1 = ﬂxf—l) fort= 1’-"1T (6)

We shall also use (x,y.¢)? to denote the obvious restriction of a feasible
program (x.,y,c) from a to its first T periods. That is, (x,y,c)T will be T-
feasible from a to x7.

A T-feasible program (x*,y* c*) is T-optimal from a to b if it solves

T
max 28‘“1 u(cy)
=1

subject to (x,y,c)! T-feasible from a to b.

VI. A CRITICAL STOCK
Under (F), define £* by the condition
£* = min(s: fs)— s 2 f(x) = x for all x 2 0} )]

It is obvious that k* is well defined and that 0 < £* < K. Recalling that A =
(0,01, choose some number, C, such that

K> C > max{k*,o) 8

C can be interpreted as a critical stock in the results that follow.
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VII. RESULTS

Proposition 1

Under (F), (U.1) and (U.2): if x*.y" ") is optimal from a, then
(1.a) {x*,y*,c*)T is T-optimal from a to xy foreach T2 1, and
(1b) x; <Cforallt20.

Proof Suppose (x*,y",c*) is optimal from @. Then (1.a) follows by a
straightforward application of the Principle of Optimality.

To establish (1.b), note that by Mitra and Ray (1984, Proposition 4 1,
Lemma 5.3 and Theorem 5.1), x; converges monotonically to some x* €
[0,£%]. Using the definition of C, we are done. (Q.E.D.)

Proposition 2
Under (F), (U.1) and (P): if (X,¥ ,¢) is feasible from a, and satisfies:
2ay @y.olis T-optimal from a to Xy for each T 2 1,
(2.b) x;,Cforallt=0,
then (X,¥,¢) is optimal from a.
Proof Suppose not. Let (x*,y",¢") be an optimal program from a. (This

exists, by (F) and (U.1)).
Now, there exists 8> 0 such that

28*-1u(c H) >28’"1 w(ce)) + 6

=1

So (again using (U.1} and (F)), there exists 7" such that forall T2 T"

T

D5ty 2 5 lu(c) + 8 ©)
=1

t=1

Pick any T> > T.

By (P), xT > 0. By (F), there is § > T such that f‘s‘f)(x ) = C (where £& is
the k-fold composmon of f with itself). Now deﬁne an §- feamble program | from
a to C as follows: (X,§ c)S is described by X = x, =0, T Gt = (y, Ci)
t=1,. ,T x,--j(' T)(x T) = T+1 vy y; —f(Ig_l) t=T+1,....5; and C| =0,1
= T+1 e,

By our convention that 1(0) = 0,
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F.)

5 T
281~1u(‘&,)) =2&~1u(c}*)

=1 =1

> z}:&“lu("c",)) +8  (by©®)
F =

S
z Za‘“" u(c))+8  (pyu®=0and 2.2) (0
t=1

Now, X; 2 C 2%, . So (x,¥.¢)S is also feasible to x, . But then (10) contradicts
(2.a). (Q.E.D.)
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