On the Nature of Policy Functions of
Dynamic Optimization Models*

TAPAN MITRA

1. INTRODUCTION

Dynamic optimization models are currently in use in a number of
different areas in economics, to address a wide variety of issues. The
relationship between the dynamic optimization model and the (optimal)
policy function associated with it is central to such applications. The
purpose of this paper is to present a selective survey of results relevant
to understanding this relationship.

As a backdrop to this survey, one should recall that two well-known
characterizations of optimality have figured prominently in the literature
on dynamic optimization. The first uses a primal approach, and charac-
terizes optimality in terms of the existence of value function satisfying the
functional equation of dynamic programming (often referred to as
Bellman’s optimality principle). The second (known as the price charac-
terization of optimality) is based on a dual approach, and is developed for
convex structures, where separation theorems for convex sets play a
crucial role. Here an optimal programme is characterized in terms of
existence of a sequence of dual variables or shadow prices, in terms of
which (generalized) profit is maximized at the programme at each date
compared to any alternative activity available at that date and, in addition,
an asymptotic transversality condition is satisfied.

These characterizations are certainly useful in some respects. How-
ever, if we are given a function, k, from the state space, X, to itself,
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and want to know whether A could be the policy function of some
: 'dynamic optimization model, we do not see how to answer this directly
with Bellman’s principle of optimality. Similarly, given an intertem-
 poral sequence (%> X1, - ...} Of the state variable (with x, in X for 1= 0),
~if we want to know whether (xo, x, . . .) is the optimal programme from
' x, generated by some dynamic optimization model, the price charac-
 terization of optimality resuit does not help us to resolve this issue.

The kinds of questions posed above arise quite naturally in the

 literature on chaotic economic dynamics, which has been developed

 primarily over the last decade. This literature has been concerned with
the issue of whether chaotic behaviour is possible in the context of

~ dynamic optimizaton models (and, if so, how “likely’ is it that it would

* occur). One could answer the possibility question in the affirmative if
one could show, for example, that the logistic map h(x) =4x(1 —x) on
X =[0, 1] is the optimal policy function of some dynamic optimization
model, since the logistic map is well-known to generate chaotic
dynamics. Similarly, one could answer the question in the affirmative
if one could show that the sequence (Xg, X1, X3, Xg, X{» Xp, - - ), With
xg, X1 and x, distinct, is the optimal programme from x,, generated by
some dynamic optimization model, since this establishes the existence
of a period-three cycle, and the Li—Yorke theorem tells us that the
model must generate optimal programmes (from other initial states)
which exhibit (topological) chaos.

At the same time, it is worth emphasizing that while the question
under discussion arose specifically in the context of studying chaotic
economic dynamics, it is clearly of broader interest. It is useful,
therefore, to pose the more general problem at this point. It is known
that, given a standard dynamic optimization model, the policy function,
h (from the state space X to itself) is continuous on X (and satisfies
(0) = 0, if one assumes, as we do, that the dynamic optimization model
allows inaction and postulates impossibility of free production). We can
now ask whether there are any additional restrictions that the exercise
of dynamic optimization imposes on the policy function, or equivalent-
ly, whether any continuous function is rationalizable as a policy
function of some dynamic optimization model. The problem is, of
course, similar in spirit to the issue resolved in the Sonnenschein-Man-
tel-Debreu result in general equilibrium theory, where it has been
shown that, given any continuous function, f, satisfying homogeneity
of degree zero and Walras Law (and a compact subset, A, of the set of
positive price vectors), one can construct an exchange economy $0 that
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the market excess-demand of this economy coincides with f (on the set
A of positive price vectors).

Boldrin and Montrucchio (1986) took a significant step in addressing
the problem posed above when they showed that any mwice continuously
differentiable function can be obtained as a policy function of an
appropriate dynamic optimization model. Their demonstration raises
two issues which we will discuss in this paper.

First, since policy functions are known to be continuous, the question
arises whether their result can be extended to the class of all continuoys
functions. Neumann ez al. (1988) showed that any continuously differenti.
able function, whose derivative satisfies a Lipschitz condition, can be
rationalized as a policy function of a dynamic optimization model, thereby
obtaining a slight weakening of the C? restriction used by Boldrin and
Montrucchio. However, such a result clearly falls short of the mark since
there are robust examples of dynamic optimization models which generate
policy functions with a kink in the interior of the state space (similar to fenz
map). Specifically, Nishimura and Yano (1994) have shown that if the
(reduced-form) utility function, u, is twice continuously differentiable in
the interior of the transition possibility set, &, and the cross partial (u;,) of
the utility function is negative throughout, then policy functions will have -
a shape similar to a tent-map. Further, a standard two-sector model of
optimal growth, with Cobb-Douglas production functions (and fully
depreciating capital), such that the consumption-goods sector is always
more capital intensive than the investment-goods sector, will give rise to
such a reduced-form utility function [see Benhabib and Nishimura
(1985)]. Thus, differentiability (and so, continuous differentiability and
Lipschitz continuity of the derivative) is not a general property of the
policy function. [The contributions of Araujo (1991) and Santos (1991),
which demonstrate differentiability of the policy function, but only under
additional restrictive assumptions on the dynamic optimization model,
complement this observation.] Thus, if one is interested in a complete
characterization, the extension of the Boldrin-Montrucchio result must be
addressed for a broader class of functions, which are continuous, but not
necessarily differentiable.

We provide two results in this context that show that the required
extension is not to be had free of charge. First, we establish a result on
the behaviour of the optimal policy function at a boundary fixed point,
from which it follows that the class of continuous functions is given by,

h(x) = ux*(1 = x% forxin [0, 1] 1



Nature of Policy Functions of Dynamic Optimization Models | 209

(where the class is parametrized by u and o, with 0 <o <1, and
0 <p <4) is not rationalizable. Since differentiability of & fails here,
precisely at the boundary, one may be tempted to conclude that the
obstacle one encounters here is a boundary problem, reminiscent of a
similar difficulty in the'Sennenschein-Mantel-Debreu result in general
equilibrium theory. However, we establish another result on the be-
- haviour of the optimal policy function at an interior fixed point, which
- compels us to be more cautious, From this second result, it follows that
. the continuous, increasing, function, given by,

h(x)=1+x- DY forxin[0,2] (2)

- is not rationalizable. This example shows that the obstacle with the

~ extension is not a boundary problem. It also shows that the problem is
not intrinsically related to chaotic functions, since an increasing, con-
tinuous function can only display simple dynamics.The two tesults
convincingly demonstrate that dynamic optimization places non-trivial
restrictions on the nature of policy functions, besides continuity.

A similarity between the two examples mentioned above is that these
continuous functions are infinitely steep at a fixed point. It might,
therefore, be conjectured that the ‘correct’ extension of the Boldrin—
Montrucchio result should be to the class of Lipschitz-continuous
functions. While we leave this as an open question, we note that even
the simple one-sector model of capital accumulation (¢ la Cass-Koop-
mans) can generate robust examples, in which the policy function is
infinitely steep at a fixed point and is, therefore, not Lipschitz con-
tinuous.

The second issue stemming from the Boldrin—-Montrucchio result is
concerned with the restriction on the magnitude of the discount factor
at which a given C? function is rationalized. This turns out to be
particularly important in rationalizing chaotic functions, the context in
which these problems arose in the first place.

Clearly, the Boldrin—Montrucchio result can be applied to rationalize
the quadratic family of functions, given by,

h(x)=ux(l —x) forxin([0, 1] (3)

where the family is parametrized by p, with 0 <p <4. But, it turned
out that the dynamic optimization model (€, u, 8) constructed by them,
to yield the logistic map [given by (3) when p=4] as its policy
function, had a very low discount factor (about 0.01). This raised the
question of whether chaotic optimal policy functions can be ruled out
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when more ‘reasonable’ discount factors prevailed, or whether this
feature of the dynamic optimization model was simply a shortcoming
of the particular method used in its construction.

It is now known that these discount factors restrictions observed in
the Boldrin=Montrucchio construction are, in fact, inescapable ip
rationalizing chaotic functions. The logistic map, for instance, cannot
be rationalized at any discount factor exceeding (.25, and the tent-map,
given by,

i for0<x<0.5
h(x)“{z—zyc for05<x<1 @

cannot be rationalized for any discount factor exceeding 0.5. Both of
these observations can be obtained quite simply from the two results
mentioned above, as we show in this paper.

More generally, following the contributions of Sorger (1992a, 1992b,
1994), it has been demonstrated by Mitra (1996) and Nishimura and
Yano (1996) that if a continuous function exhibits Li~Yorke chaos
(equivalently a period-three cycle), then it can be rationalized only if
the associated discount factor satisfies,

8 <[(\N5 - D2)? (5)

Furthermore, if the discount factor satisfies the restriction in (5), then
one can construct a transition possibility set, Q, and a reduced-form
utility function, u, such that the dynamic optimization model (€, u,9)
exhibits Li—Yorke chaos.

It is worth making a remark about our approach to the class of
problems discussed above. We indicated that two distinct charac-
terizations (a ‘primal” and a ‘dual’) have figured prominently in the
literature on dynamic optimization models. Weitzman (1973) combined
the two approaches to show the existence of shadow prices associated
with an optimal programme, such that (generalized) profit was maxi-
mized at each date at the optimal program, a transversality condition
was satisfied, and in addition, these shadow prices also supported the
value function at each date. The results established in this paper follow
quite simply from an application of his characterization of optimality.
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2. PRELIMINARIES

2.1 DYNAMICAL SYSTEMS

Let I be an interval in R, the set of reals. Let f: I — I be a continuous
map of the interval I}:i"n_tvg itself. The pair (I, f) is called a dyramical
system; I is called the state space and f the law of motion of the
dynamical system.

We write f°(x) =x and for any integer n > 1, £'(x) =fIf" " '®)]. I
x € I, the sequence T(x) = {f"(x)}y is called the trajectory from (the
initial condition) x. The orbit from x is the set y(x) = {y : y =f"(x) for
some n = 0}

Avpoint x€ [is a fixed point of fif f(x) =x. A point x € [ is called
a periodic point of fif there is k> 1 such that f*(x) = x. The smallest
such k is called the period of x. [In particular, if x € 7 is a fixed point
of f, it is periodic with period 1.] If x € [ is a periodic point with period
k, we also say that the orbit of x {(or trajectory from x) is periodic with
period k.

The following fundamental result on the existence of pertodic orbits
is due to Sarkovskii (1964).
PrOPOSITION 1 (Sarkovskii): Let the positive integers be totally ordered in the
following way:
3<5<T7<9<.. <243 <245<..<2263<2205<...<x2%<22<2<]

It f has a periodic orbit of period n and if n<m, then f also has a periodic
orbit of period m.

In order to study the nature of trajectories which are not periodic, it
is useful to define a scrambled set. A set § < is called a scrambled
set if it possesses the following two properties.

(i) If x,ye § with x #y, then,

lim sup |f"(x) - ") >0
n-—)oe
and

lim inf |"(x) - ") = 0

n =00

(it) If x€ § and y is any periodic point of f,
lim sup |f"(x) - f"()|>0

n— o

Thus trajectories starting from points in a scrambled set are not even
‘asymptotically periodic’. Furthermore, for any pair of initial states in
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the scrambled set, the trajectories move apart and return close to each
other infinitely often.!

The following theorem, due to Li and Yorke (1975), is fundamenta]
in establishing a connection between the existence of period-three
cycles and ;ﬁéucxistence of an uncountable scrambled set.

ProposITION 2. (L1 and Yorke): Assume that there is some point x* in [ such
that:

FO*) <% <f@*) < ) (o %) 2% > 165 > %) )
Then (i) for every positive integer k=1, 2,. .., there is a periodic point of
period k;
(i) there is an uncountable scrambled set S C 1.

We will say that the dynamica}/ system (/, f) exhibits Li—Yorke chaos
if conditions (i) and (ii) of Proposition 2 are satisfied.® It is easy to
check that (Z, /) exhibits  Li-Yorke chaos if and only if (I,f) has a
periodic point of period three.

]Property (i1) is meant to capture the aspect of ‘irregular’ or ‘erratic’
behaviour. It means that long-run behaviour of this dynamical system cannot be
approximated by regular periodic motion, however long the period of the cycles.
Property (i), on the other hand, is meant to capture the aspect of sensitive
dependence of the system to initial conditions. Thus, small (computation or
estimtion) errors in initial conditions can be transformed into large errors over
time, making ‘intermediate-run’ predictions inaccurate.

The reader is referred to Block and Coppel (1992) and Devaney (1989) for
further discussion of these issues.

The reason for including condition (i} in the definition of chaos should be
explained. The point of view being expressed here (as in much of the literature
on ‘topological’ chaos) is that the concept of chaos should involve ‘complicated
behaviour’ but also a certain amount of ‘regularity’. The existence of a scrambled
set is meant to capture the first aspect, and the presence of the periodic points
the second.

There are, of course, variations on condition (i) that have been used. It has
been suggested that one could use, instead of (i), ‘there is a positive integer k*
such that for every positive integer k 2 k¥, there is a periodic point of period &’.
Or, one could use, instead of (i), ‘there are infinitely many periodic.points of
different periods’. From the point of view of obtaining discount factor restrictions
assocated with chaotic optimal behaviour (discussed in Section 5), these alternate
definitions do, of course, make a difference. The first variation mentioned above
continues to impose strong discount factor restrictions for chaotic optimal
behaviour [see Mitra (1996)], the second variation does not [see Nishimura and
Yano (1995)].
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2.2 DYNAMIC OPTIMIZATION

The standard framework of dynamic optimization is described by a
triplet (R, u, 8), where Q, a subset of R, xR,, is a ‘transition pos-
sibility set’, u : © —~ R is a utility function defined on this set, and & is
the discount factor satisfying 0 <8 < 1.

The transition possibility set describes the states z € R, that it is
possible to go to tomorrow, if one is in the state x € R, today. We
define a correspondence I': R, — R, by I'(x)={ye R, : (x,y) € Q}
for each x € R,.

A programme {x;}¢ from x € R, is a sequence satisfying,

xp=xand (x,x, )€ Q fort>0

If one is tn state x today and one moves to state z tomorrow [with
(x,¥) € Q] then there is an immediate utility {or ‘reward’ or ‘return’)
generated, measured by the utility function, u.

The discount factor, 8, is the weight assigned to tomorrow’s utility
(compared to today’s) in the objective function. The discount rate
(associated with the discount factor, 8) is given by p = (1/8) — 1.

The following assumptions are imposed on the transition possibility
set, §:

(A1) () (0,0)€ Q, (ii) (0,2) & Q implies z=0.

(A2) Qs (i) closed, and (ii) convex.

(A.3) There is &> 0 such that (x,z) € Q and x> & implies z < x.
(Ad) f(x,2)€ Qand x'2x,0<7 <z then (x',2) e Q.

Clearly, we can pick 0 < { <&, such thatif x> { and (x, z) € &, then
z<x. It is straightforward to verify that if (x,z2)€ Q, then
z<max ({, x). It follows from this that if {x,}g is a programme from

3The distinction between & and { should be explained. Clearly ¢ can be a
‘maximum sustainable stock’, while & cannot. Thus Y= [0, £} is a somewhat
larger closed interval than the state space X=[0, ], where the important
dynamics will take place.

The distinction is made with assumption (A.7) in mind. It would have been
nice to simply assume the monotone property of # on £. But this creates
problems in establishing (the sufficiency part of) Theorem 3. The assumption
(A.7) states that the monotone property of u holds on Q, when x, x” are restricted
to the closed interval, ¥. The point about Y instead of X appearing in this
definition is that the sufficiency part of Theorem 3 can be established even when
u is required to be monotone on Y, rather than merely on X, [The necessity part
of Theorera 3 is valid even when X is used instead of Y in the statement of
assumption (A.7).]
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x € R, then x, < max (§, x) for 2 0. In particular, if x <, then x,<{
for > 0. This leads us to choose the closed interval [0, {] as the natura|
state space of our model, which we will denote by X. We denote the
interval [0, &] by Y3
The followmg assumptions are imposed on the utility function, u:
(A5) u is concave on Q; further if (x, z) and (¥, 2’) are in Q, and
x#%, then for every O0<A <1, ulA(x,z)+(1~A)x', 7))
> Aulx, 2) + (1 — Au(x’, 2).
(A.6) u is upper semi-continuous in £2.
(A7) ¥ xxe¥ (xz0€Q x2x and 0<7<z then
w(x', 2) 2 u(x, z).
We will refer to a triplet (Q, u, d) satxsfymg (A.D~(AT) as a
dynamic optimization model. A programme {x,}o from x20 is an
‘optimal programme’ if,

oo o A A
Z &u(xy, %4 1) S Z Su(xs X4 1)
0 0

for every programme {x,}g from x.
2.3 TwO EXAMPLES

We now provide two examples of dynamic optimization problems in
economics which can be studied by converting them to the ‘reduced-
form’ problem described in the previous sub-section.

EXAMPLE 1. Optimal Exploitation of a Renewable Resource

The state variable, x, here is to be interpreted as the resource stock. The
future population of the stock is determined from the present population
by means of a ‘reproduction’ or ‘recruitment’ function, f.

If we denote the harvest of the resource (the control variable) by c,
then the return at any date is dependent on the harvest, c, and the stock,
x, through a function, w. Given a discount factor, 8, the problem of
resource management is to determine the sequence of harvests which
will maximize the discounted sum of returns.

Formally, the model* is specified by (f, w, 8), where,

(@ f:Re >R+ is a stock-recruitment function satisfying,
F(0) =0, fis increasing, strictly concave and continuous with
lim [f(x)/x]<1;

Xy

4Maj umdar and Mitra (1994) have established the possibility (and robustness)
of chaotic behaviour in this aggregative model.
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(b) w:R? > R is a return function satisfying,
- . . - y g
(i) w(x, ¢) is continuous in (x, ¢);
(i1) w(x, ¢) is non-decreasing in ¢ (given x) and in x (given
¢); also it s increasing in ¢ if x> 0;
(iii) w(x, c) is:concave in (x, ¢); also it is strictly concave in
cif x>0
(¢) 0<8< 1 is a discount factor.
A programme from x is a sequence {x,} such that:

x=x,0<x,,,5f(x) fort=0
Associated with a programme {x;} is a sequence of harvests {c¢,,}:
Cre1=f0) = x4y fore20

A programme {x}} from x is optimal if,

Z 8'w(x, ¢ 1) SZ 8wl ¢41)
0 0

for every programme {x,} from x.

If we define Q= {(x,2) in R?:0<z<f(x)}, and for all (x,z) in
Q, u(x, z) = w(x, f(x) — z), then the reduced-form model (Q, u, 8) satis-
fies assumptions (A.1)-(A.7), and programmes (optimal programmes)
in the reduced-form model correspond exactly to programmes (optimal
programmes) in the primitive form of the model.

Notice that we allow for a ‘stock effect’ in the return function, but
our assumptions allow us to consider the special case in which the
return, w, is independent of the stock, x. In that case, the above model
is formally equivalent to the one-sector neoclassical optimal growth
model, a la Cass—Koopmans.

EXAMPLE 2. Two Sector Model of Optimal Economic Growth

Formally, the model is specified by (f, g, W, ) where,
(a) the production function in the consumption good sector,
f: R R,, satisfies;
(i) fis continuous on RZ ,
(ii) fis non-decreasing on R> and increasing on R2, ,
(iii) f is concave on R%, and strictly concave in the first
argument (capital) when the second argument (labour)
is positive;
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(b) the production function in the investment good sector
g: R% > R, satisfies;
(i) g is continuous on R7 ,
(i) g is non-decreasing on R> and increasing on R,
(i&i'i) ¢ is concave on R%, and strictly concave in the first
argument (capital) when the second argument (labour)

is positive,
@iv) im [g(X,1)/K]<1;
K—yeo

(¢) the depreciation factor, W, satisfies 0<p < 1;
(d) the discount factor, §, satisfies 0 <8< 1.

A programme from x is a sequence {k,, n, x,} such that,
xp=x,and0<n<1,0<k<x, fort=0
Xp1 =M +glx,—k,1—-n) fort=0

Associated with a programme {k, n,, x,} from x is a consumption
sequence {c,, 1} given by,

crv1=flkpn) for20

A programme {k, nf, x)'} is optimal if
&k 1 228c,
0o - o

for every programme {k, n,, x;} from x.
If we define,

Q={(x,2)in R : z< px + glx, 1)},
and for all (x, 2) in &, define,
u(x, z) = max f(k, n)
subject to 0<k<x
0<n<gl
z<px+glx—k 1 -n)

then the ‘reduced form model’ (Q, u, 8) satisfies assumptions (A.1)-
(A.7) and optimal programmes in the reduced-form model correspond
exactly to optimal programmes in the primitive form of the model.’

3Boldrin and Montrucchio (1986) have established the possibility of chaotic
behaviour in a two-sector model similar to this one.
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3. DYNAMIC PROGRAMMING AND DUALITY THEORY

3.1 THE DYNAMIC PROGRAMMING APPROACH

Under the maintaincc_f assumptions of the previous section [(A.1)-
(A7), it is standard exercise to show that there is a unique optimal
programme from every x € R,. This leads us to define the value and
policy functions as follows.

The value function V: R, — R is defined by,

Vix)=2% Stu@n -QH- 1)
0

where {%}3" is the optimal programme from x € R,.
The ‘policy function’ & : R, — R, is defined by,

h(x) = %,

where {Q,}(T is the optimal program from x € R,.

The properties of the value and policy functions can be summarized
in the following result. This is based on Dutta and Mitra (1989) and
Stokey, Lucas and Prescott (1989).

PROPOSITION 3:

(i) The value function V is strictly concave and continuous on R, and
non-decreasing on Y. Further, V is the unique continuous function on
Y={0, £] which satisfies the functional equation of dynamic program-
ming,

V(x) =max [u(x, y) + 8V(y)]
ye Ik

(i1) The policy function 4 satisfies the following property: for each x& Ry,
h(x) is the unique solution to the constrained maximization problem,
Maximize u(z, y) + 6V(y)
Subject to yeI'()
Further, % is continuous on Ry, and A(0) =0.

Remarks: ,
(i) In view of the definition of the policy function 4, the optimal
programme from x € X is the trajectory {h(x)}5 generated by
the policy function. Thus, an optimal programme from x € X
can be called periodic (with period k) if x is a periodic point
of A (with period k).
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(i1) Since V is concave on R,, it has well-defined left-hand and
right—hand derivatives for all x>0, which we denote by U(x)
and Vv(x) respectivelyy If x>y>0, then we have
1) 2 v(y) > u(x) = v(x), the strict inequality following from
the strict concavity of V.

We will find it convenient to state a result here [see Mitra (1996) for 4
proof] which compares the value and policy functions of two dynamic
optimization models. To proceed more formally, let us refer to a triplet
(Q, u, 8) satisfying (A.1)—(A.7) as a dynamic optimization model. Now, let
3 =(Q, u, 8) be a dynamic optimization model, with value function Vand
policy function 4. We can then construct another dynamic optimization
model $* = (Q*, u*, §*) with §* = §%, such that the policy function, &* of
S3* is h” and the value function, V*, of 3*is V.

ProrosirioN 4:  Let 3 = (Q, u, 8) be a dynamic optimization model, with value
function V and policy function . Then, there exists Q¥ and u™* satisfying
(A.1)~(A.7) such that with 8* = 8%, (i) the value function V*, of the dynamic
optimization model 3* =(Q*, u* 8%) is given by V, and (i) the policy
function, A*, of 3% is given by A%

3.2 DUALITY THEORY

Optimality can be characterized in terms of dual variables or shadow
prices. At the shadow prices supporting an optimal programme, there
is no activity which yields a higher ‘generalized profit’ at any date
(value of utility plus value of terminal stocks minus value of initial
stocks at that date) than the activity chosen along the optimal
programme at that date. It was observed by Weitzman (1973) that these
shadow prices support the value function as well.® The basic result of
the theory, describing this characterization, can be stated as follows. [A
full discussion can be found in Weitzman (1973) and McKenzie
(1986).]

PROPOSITION 5: (Weitzman)
(@) If {x}g is an optimal programme from x<€ X and x>0, and there is

some (%, y) € Q with > 0 then there is a sequence {p;}5 of non-nega-
tive prices such that for t 20,
(i) 8'V(x) — pxs 2 8'V(x) — pyx for all x= 0

SWeitzman’s proof of this price characterization of optimality also fully
exploited Bellman's principle of optimality. o
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(i) 5‘"()% X4 1) FDr4 1 %41 T P 2 S‘u(x, W+pery—px  for all
(x,y)e &
(lll) Hm Pt = 0
f—>eo
®) Fi{xlgisa programme from x>0, and there is a sequence {p;}o of
non-negative pricés such that for >0, (ii) and (iii) above are satisfied,
then {x;}¢ is an optimal programme from x. '

If {x}; is a programme from x>0, and {p,}; is non-negative
sequence of prices satisfying (i), (ii) and (iii) of Proposition 5(a), we
will say that the program {x,}g is price supported by {p,};. When
{x,}o is price supported by {p,}g, we refer to {p,}y as a sequence of
present-value prices. Associated with {p,}5 is a sequence {p,}g of
current value prices defined by,

P,=(p,/8) fort=0

This price characterization of optimality leads to a basic tool for
analyzing the nature of policy functions which we state in the following
proposition J

PROPOSITION 6: Let (2, %, 8) be a dynamic optimization model. Suppose
{x/}0 is an optimal programme with price support {p;}0 and {y:}¢ is an optimal
programme with price support {g:}5. Denoting (p¢/8") by P: and (g:/8") by Qs
“for £ 20, we have,

@ (P, - Qr+1)(yr+1 X)) SP - 0)0,—x) forrz0

Gi) (P, - Q)y,-x) 20 fort20
Furthermore, if y; # x; for some ¢, then the inequalities in (i) and (ii) are strict
for that 1.

Proof. Let {x,}; be an optimal programme with price support {p;}g,
and {y,}o be an optimal programme with price support {g}g. Then
using (ii) of Proposition 5, we get,

S'u(xt, e ) PreiXesy — D2 5tu@ra Yi+1) P +‘1)’t+ 1—pye (6

"The inequalities of Proposition 6 are very familiar objects from the point of
view of the turnpike theory literature, where they suggest a natural choice of a
Lyapunov function for the study of global asymptotic stability of optimal growth
paths; see especially Cass and Shell (1976) and McKenzie (1986). The same
inequalities have figured prominently in the literature on the intertemporal
decentralization of the transversality condition; see Brock and Majumdar (1988),
and Dasgupta and Mitra (1988).
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and

8u( Yeu )+ QraVes 1~ Gy 2 U0 X1 1) + G X1~ % (7
Adding (6) and (7) and cancelling common terms,

(‘I;-‘:;Pr)(xt “YDZGrv 1~ Pra1)Xei1 — Yes1) )

Denoting (p,/8) by P, and (g,/8") by Q, we get (i). By (A.5), the
inequality in (i) is strict when x, 5 y,.
Using (i) of Proposition 5, we get,

V(x) - P, 2 8'V(y) ~ P %)
and v
S’V(y,) ~ gy 2 8V(x) ~ q.x, (10)
Adding (9) and (10) and cancelling common terms,
(@~ p)x—y)20 (11

which yields (ii), upon dividing (11) by &. By the strict concav1ty of
V, the inequality in (ii) is strict when y, # x,.

4. THE NATURE OF POLICY FUNCTIONS

4.1 THE BOLDRIN-MONTRUCCHIO RESULT

We know (from Proposition 3) that given a dynamic optimization model
(Q, u, 8) satisfying (A.1)-(A.7), the policy function, 4 : R, — R,, is
continuous on R, and ~(0) = 0. We now ask the following question: Are
these the only restrictions on the policy function that the exercise of
dynamic optimization imposes?

The starting point of the discussion regarding an answer to this
question is, of course, the result of Boldrin and Montrucchio (1986),
who showed that if # is any, twice continuously differentiable function,
then one can always construct a dynamic optimization model, such that
h is the policy function of that model. We state the result here in a
slightly modified form, since the maintained assumptions on a dynamic
optimization model that we use differ from theirs. ‘

PROPOSITON 7: (Boldrin and Montrucchio) Let #: R4 — Ry be any C2 func-
tion on Ry satisfying h(0)=0. Then, there is dynamic optimization model
(€2, u, 8), such that its policy function, H, coincides with % on the state space
X, associated with it.
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This result has sometimes been interpreted as showing that dynamic
optimization imposes no non-trivial restrictions on the nature of the
policy function. The rest of this section is devoted to examining the
validity of this claim.

We should observe at this point that differentiability of the policy
function of a dynamic optimization model has been obtained only under
quite strong restrictions [see Araujo (1991), Santos (1991)]. This indi-
cates that it is not a ‘natural’ restriction imposed by the optimization
exercise. Indeed, if we consider the standard, two-sector model of
optimal economic growth (see Example 2 in Section ‘Preliminaries’),
with fully-depreciating capital (U = 0) and with Cobb-Douglas produc-
tion functions [f(k, n) = k%!~ ® and g(K, N) = K*N' %], such that the
consumption goods sector is more capital-intensive than the capital
goods, sector [a > ], then the policy function will be a tent-like map
with a kink in the interior of the associated state space [see Nishimura
and Yano (1994) for a demonstration of this interesting result].

This means that there is no hope of strengthening Proposition 3 to
conclude differentiability (and certainly, twice continuous differen-
tiability) of the policy function, even if the primitives of the model
(utility and production functions) were smooth.®

Recognition of this fact compels us to consider the C? restriction in
the Boldrin~Montrucchio result as a strong one, and consequently, it
becomes important to examine whether their result can be extended to
the class of continuous functions. Neumann et al. (1988) have shown
that we can replace the C? restriction in Proposition 7 with the
restriction that 4 be C* and the derivative of /& be Lipschitz continuous.’
As we have already argued, we have to address the problem where £
is continuous, but not necessarily differentiable, and so, this extension
result is not useful in this regard.

One route to a possible extension of the Boldrin~Montrucchio result
is to uniformly approximate the given continuous function (using the
famous Weierstrass theorem) by polynomials (which are, of course,

$The differentiability of the value function (in the interior of the state space)
can be considered to be a ‘natural restriction’ imposed by the optimization
exercise; see Benveniste and Scheinkman (1979).

%Unlike the Boldrin-Montrucchio paper, where the state space is a subset of
R", the paper of Neumann et al. (1988) deals entirely with the special framework,
in which the state space is a subset of R. However, the result of Newmnann et al.
has been established in the more general framework, by using a different method
of proof, in Montrucchio (1994).



222 | Dynamics

C*? functions), and use the Boldrin—Montrucchio result on the sequence
of approximating functions. But, obtaining a dynamic optimization
model as the limit of the associated sequence of dynamic optimization
models, which will yield the limiting function as its policy function,
turns out to be 4 major obstacle, even under uniform approximation,
In fact, we will show below, by examining the nature of policy
functions at their fixed points (boundary or interior) that the Boldrin-
Montrucchio result cannot be extended to the class of continuoug
functions. We turn to this demonstration in the next sub-section.

4.2 BEHAVIOUR OF A POLICY FUNCTION NEAR A FIXED POINT

We will present two results in this sub-section which will show that the
optimization exercise imposes non-trivial restriction on the nature of
the policy function near fixed points.”® Our first result explores such
restricltlions at a boundary fixed point, and the second at an interior fixed
point.

THEOREM 1: Suppose k: R+ — Rs is a continuous function, and there is
b >0, such that, ]

h(0)=0=h(b) (12)
If & is the optimal policy function of a dynamsic optimization model (Q, «, §),
then,

dw<1 (13)
where, _
= lim sup [A(x)/x] (14)
x>0

Proof: Since (13) is clearly satisfied when w < 1, we consider only the
case ® > 1. This means, in particular, that there is some a > 0 such that
h(a)>0.

Since & is the optimal policy function of a dynamic optimization
model (L, u, 8), and A(b) =0, the sequence (b, 0,0, ...) is the optimal

IoBy Proposition 4, and its obvious extension to (4", §") where n>2 [see
Sorger (1992b) for a version of such a result], we conclude that the optimization
exercise also imposes non-trivial restrictions on the nature of the policy function
near penodlc points.

Sorger (1992a, 1992b) obtains a discount factor restriction under a condi-
tion like (12), but he also requires 4 to be surjective, which makes it less widely
applicable than our result.
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programme from b. By Proposition 5, it can be price-supported by
(rg» 11> T3, - - ) since h{a) >0. Then the sequence (0,0,...) is price
supported by (pg, py, py . ..) where p,=r,,; for t20.

We claim that there is ;/; such that p, can be chosen to be 5’9 for
¢ > 0. To see this, denote'the current-value price sequence associated with
(Pos P1> P2s - - ) by (Py, Py, Py, .. .) and note that for all 2 0,

u(x, )+ 0P, .1y — Px<u(0,0) forall (x,y)e Q

and
Vix) -Px<V(0) forallx=0

We divide our analysis into two sub-cases.

Case (i): Suppose P, 2 P, for some ¢=1. Then, it follows that
u(x, y) + 0P,y — Px<u(0,0) forall(x,y)e Q
and
V(x) - Px<V({0) forallx=>0

A
Thus, choosing P = P, the claim is established.

Case (ii): Suppose Py <P, for all > 0. Then P, converges to some
P20, and so,
u(x,y)+ 8Py — Px<u(0,0) forall (x,y)e Q
and
AV(x) —PxsV(0) forall x>0

Thus, choosing P = P, the claim is established again.

Since > 1, there is a sequence x* — 0 such that A(x*) >x*> 0 for
§=1,2,3,...,and @= lim [A(x*)/x’]. Using Proposition 5, for each

§—> o0
s, the optimal programme can be price-supported by (pg, pj, - . .), with
associated current price sequence (Pg, Py, . . .). Using Proposition 6, we
then have,
5(1’ P (<) - 0) < (P Py’ - 0)

Now, we have, by the strict concavity of V, P > u(x‘) > P32 v(x®)
> u(h(x’)) = Pi, where (V) denotes the left (right) hand derivative of V.
Thus, we get,

: STR(E)x"] < (P — POIP - P < 1
and letting s — o, we obtain 3w < 1.
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Theorem 1 allows us to write down a family of continuous functions,
h, with A(0)=0, which cannot be policy functions of any dynamlc
optimization model.

COROLLARY 1: Su_]:):pose h(x) = (1 - x%), where 0<u<4, O0<a<l, and
x€ [0,1], then there is no dynamic optimization model (R, 4, §), whose
optimal policy function is given by 4 on [0, 1].

Corollary 1 raises the question of whether the difficulty in extending
the Boldrin-Montrucchio result to continuous functions is a ‘boundary
phenomenon’ similar to that in the Sonnenschein—~Mantel-Debrey
theorem on market excess-demand functions [see Shafer and Son-
nenschein (1982)]. Our next result on the behaviour of a policy function
near an interior fixed point indicates that this is not the case.'?

Theorem 2: Suppose h: R+ — Ry is a continuous function, and there is
b >0, such that,

b =h(b) (15)
If & is the optimal policy function of a dynamic optimization model (€2, «, ),
then,

80<1 (16)
where,

0= h'misup {[A(x) - A(b)V/Ix - b]} (7
xdb

Proof.  Since (16) is clearly satisfied when 6 < 1, we consider only the
case in which 6 > 1. This means that there is a sequence {x°}., such
that i(x") > x> b and [h(x*) — h(b))/(x* - b) converges to O as s —» o,

Since h(b) = b, the sequence (b, b, b, .. .) is the optimal programme
from b, and can be price-supported by (pg, py. - . .). Usi/x\lg the method of
Sutherland (1967) End McKenzie (1986), we can find P such that p, can

be chosen to be §'P for > 0.

Using Proposition 5, for each s=1,2,3,..., the optimal
programme from x* can be price-supported by (p, pi, . ..), with as-
sociated current price sequence (Pg, Py, . . .). Using Proposition 6,

8P - P3)(h(x*) B < (P - P (x* - b)

124 similar result is established in Hewage and Neumann (1990), by using
methods different from ours,
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A
By the strict concavity of V, we have P> u(x’)=P5=v(x")
> Wh(x*)) = P{, where w(v) denotes the left (right) hand derivative of
V. Thus, we get,

8(h(x") ~ B(x" ~ b < (P~ POI(P - P < 1

and so, letting s — o0, we obtain 868 < 1.

Theorem 2 allows us to write down a continuous, increasing,
function, &, with 2(0) =0, which cannot be the policy function of any
dynamic optimization model, even on a restricted domain which ex-
cludes the boundary of the natural state space.

COROLLARY 2: Suppose /A(x)=1+{(x~ 1)” 3 for xe [0,1]. Given any
0<e<1, there is no dynamic optimization model (L, u, §) whose optimal
policy function is given by & on [g, 2 ~€].

Both Corollary 1 and Corollary 2 provide examples of continuous
functions, with unbounded steepness at some point of the relevant
domain. One might, therefore, conjecture that the Boldrin—-Montrucchio
result might be extended to the class of Lipschitz continuous policy
functions. We leave this as an open question.

We note, however, that even Lipschitz-continuity of the policy
function can be ensured only under fairly stringent conditions on the
dynamic optimization model [see Montrucchio (1987)]. In fact, if we
take the standard neoclassical one-sector model of economic growth
[obtained as a special case of Example 1, where there is a function
g R, >R, such that w(x, c)=g(c) for all (x,c)e R}, it is fairly
straightforward to obtain policy functions which do not satisfy
Lipschitz-continuity.

To see this let f(x) = 2x'2 for xe R, ; g(c) =2¢ for ce R,; and
0<8<1. We claim that the policy function, A, of this dynamic op-
timization model satisfies,

lim sup [A(x)/x] = oo (18)

x—0
For, suppose there is 0 <M < oo, such that,
lim sup [A(x)/x] <M 19

x>0
Then, there is €,>0 such that on Z=(0, &), [A(x)/x] <M. Choose
0 < € < &, such that (1/e"?) > max [M, 22M>4/5].
Choose any x € (0, €). We know that an optimal programme from
x is interior (x,>0 and ¢,,>0 for £=0), and so, the following
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Ramsey-Euler equation holds,
(g (er)/g (el = 8f (x1) , (20)
Using (19), we get
! ) = fTAG) < M) < 2047,

so that
Cy = f(%)) — X3 S f(x)) S 2MM2512,
Also,
1 =f() = x; = f(x) - h(x) 2 267~ Mx 2 212 + (&2 ~ Mx) > X2
since (1/x1%) > M. Thus, we get,
['(c1)/g ()] < 2V°m™ @1)

Using (19), we also get x; = A(x) < Mx, so that,

& (x1) = [8/x)4] = [8/M*x12) 22)

Combining (20), (21), and (22), we obtain,
21/2M1/4 > [S/M[.Qxl/Z]
so that,

[21/2M3/4/8] > [l/xl/?.] > [1/81/2}
But this contradicts the definition of &, and establishes our claim (18).

5. DISCOUNT FACTOR RESTRICTIONS FOR CHAOTIC
POLICY FUNCTION

When Boldrin and Montrucchio applied their result to the logistic
function,
A(x) =4x(1 —x) forxe [0, 1]

they found a dynamic optimization model [Q,x, 8] whose policy
function coincides with % on [0, 1], and the discount factor, 8, of this
constructed dynamic optimization model was approximately 0.01. This
discount factor was considered to be ‘low’. Let us follow Nishimura
and Sorger (1996) to explain what we -mean by this.

Let the model’s time period be equal to m >0 years. Let r be the
long-run annual real interest rate. Then the discount factor, 3, is related
to r and m by the usual formula,

§=[1/1 +ry™
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Suppose r=5%. Then the model’s time period is 1 year if
8 =0.952; 10 years if § =0.614; 20 years if 8 =0.377.

Thus, if 8 < 0.5, then the model’s time period (which represents the
decision-making time) is longer than 14 years, which is much too long
to be realistic. L

In the case of the logistic function, a very low discount factor of
about 0.01 raised the question of whether the logistic function had
actually been ‘rationalized’. Of course, it was not clear whether this
feature of the dynamic optimization model was simply a shortcoming
of the particular method used in its construction, or whether chaotic
policy functions could never be rationalized when ‘reasonable’ discount
factors prevailed.

Sorger (1992a, 1992b) began a systematic study of discount factor
restrictions that must be satisfied by any dynamic optimization model,
which generates a chaotic policy function. These were followed by
more definitive results by Sorger (1994), Mitra (1996) and Nishimura
and Yano (1996).

We will not try to do justice to all the contributions. Instead, we will
show how the two theorems of the previous section, which were used
there to obtain restrictions on policy functions generated by dynamic
optimiiation models, can be conveniently used also to obtain discount
factor restrictions on the dynamic optimization model generating a
logistic, or a tent map as its policy function.

COROLLARY 3:  Suppose A(x) = px(1 —x), where 0 <p <4, and x e [0, 1], and
h is the optimal policy function of any dynamic optimization model (£, », §),
then & < (1/u).

Corollary 3 readily follows from Theorem 1, since h(0) =0 = (1),
and ® = lim sup [A(x)/x] = .

x—30

The class of functions covered by Corollary 3 is called the ‘quadratic
family’. The logistic function is a member of this family (obtained
when W =4), and so, the discount factor restriction on any dynamic
optimization model, which generates it as a policy functien, is 0.25.

COROLLARY 4:  Suppose hg: [0, 1] - [0, 1] is given by the following family of
tent-maps,

f (x)={ ax for 0 <x < (1/a)
a {alla~1)] - [al(a - 1)]x for(lla)<x<1
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where a > 1, and A, is the optimal policy function of any dynamic optimization
model (£, u, 3), then,
8 <min {(a — 1)/a, l/a}

Corollary 4 follows from Theorems 1 and 2. Since #(0) =0 = A(1),
and ® = lim sup [A(x)/x] = (1/a), Theorem 1 implies that,
x>0

< (1/a) 23
The interior fixed point of h, is at x,=a/(2a~1). Clearly 4, is
decreasing in x at this fixed point, with slope = —[a/(a — 1)]. Thus, the
- second iterate of h, denoted by K2, is increasing at x, with slope
afa-1)%> 1.
Since h, is the policy function of the dyn'amw optimization model
(Q, u, 8), using Proposition 4, we can find a dynamic optimization
model (Q*, u*, 8*), such that §* = 8% and k2 is the policy function of
(Q*, u*, %). Applying Theorem 2 to 42, and noting that,
0 =lim sup {[2(x) = K2/ [x — x)} = a®l(a - 1)?

we obtain 8°[a*/(a ~ 1)*] 1, so that,
5<(a-1)a 24)

Combining (23) and (24) yields the corollary.
Note that the symmetric tent-map,

() = 2x for0<x<05
2-2x for05<x<1

is a member of the family of tent-maps covered by Corollary 4 (obtain-
ed when a =2). Thus, the discount factor restriction on any dynamic
optimization model, which generates the symmetric tent-map as its
policy function, is 0.5. For the non-symmetric cases, the discount factor
restriction is more severe than 0.5, for if a>2, then & <(l/a) <05,
while if 1 <a<2,then 8<(a—~D/a=1~(1/a) <1 -05=05.

While the discount factor restrictions obtained above are very strong
indeed, they are derived for specific chaotic functions (logistic or
tent-maps). The question arises whether there are uniformly strong
restrictions on the discount factor for every dynamic optimization
model, whose policy function exhibits Li-Yorke chaos (equivalently, an
optimal period-three cycle). Sorger (1994) showed that ‘period three
implies heavy discounting’, and his discount factor restriction was
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refined independently by Mitra (1996) and Nishimura and Yano (1996)
to obtain the following definitive result.

THEOREM 3: Let (Q, , 8) be a dynamic optimization model, with a policy
function k. If & exhibits Li~Yorke chaos, then,
8 < [(V5 - 1)/21*=0.3819 (25)

Further, if 0<8<[(V5 —1)/2]% then one can comstruct (€2, u)} such that
(Q, u,8) is a dynamic optimization model whose policy function exhibits
Li~Yorke chaos. ' ’
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