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Abstract We consider a discrete-time dynamic game in which a finite number of players
extract a non-renewable resource and derive consumption solely from the extracted amount
(cake-eating game). Markov perfect Nash equilibria consisting of linear strategies can be
constructed in this game not only if the players have time-preference factors that are smaller
than 1, but also if these factors are equal to or even larger than 1. We demonstrate this result
both for the case of identical players and for the case of heterogeneous players. In addition,
we study the influence of the model parameters on the equilibrium.

Keywords Non-renewable resource · Common property resource · Dynamic game ·
Patient players · Markov perfect Nash equilibrium

JEL Classification C73 · Q30

1 Introduction

Problems caused by climate change and dwindling resources have become major challenges
for mankind. Among the most fundamental stumbling blocks on the way toward a solution
of these issues are the public good nature of the biosphere (especially the property of non-
excludability) and the very long planning horizon that is characteristic of environmental
problems. As for the latter, there is considerable controversy about the size of the discount
factor that should be used in the assessment of different environmental policies; see e.g.,
[11]. Whereas this paper does not make any suggestions regarding the appropriate size of
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the discount factor, it adds a few observations about the set of possible discount factors that
could be used in such an analysis. In particular, we show that equilibria exist and can therefore
also be evaluated if there is no discounting at all so that all future generations are treated
equally. In addition, we provide a comparative analysis of equilibrium solutions with respect
to the key parameters of the model. Among other things, this sheds light on the influence of
impatience on the speed of resource depletion.

There is no universal model to address issues of resource exploitation or environmental
degradation. For that reason, we have decided to work with a very parsimonious model that
still captures both the public good character and the intertemporal nature of environmental
problems. This model is one in which m ≥ 2 players have access to a common property
resource stock and want to exploit it in an optimal way. Each player is an infinitely lived
dynasty as in [1]. In every period, all players simultaneously harvest the resource and derive
instantaneous utility from that amount of resource which they have extracted. The players
want to maximize the sum of their discounted utilities over an infinite time horizon. To
simplify even further, we consider only the case of a non-renewable resource so that our
analysis fits the issues related to limited groundwater reserves better than those related to
climate change.Modelswith the features described above are known as cake-eating problems;
see [4,5] or [2].

If there is a single player and the discount factor ρ ≥ 0 is strictly smaller than 1, then it
is well known that a unique optimal extraction path exists. However, if the discount factor
ρ is equal to 1, then there is no optimal solution: No matter how the single player decides
to consume the resource, there is always a better way; see [4]. Theorem1 below shows that
this result no longer holds if there are m ≥ 2 identical players and if utility maximization
is interpreted in the sense of a symmetric Markov perfect Nash equilibrium (MPNE). As a
matter of fact, we demonstrate that in the game with m ≥ 2 players, there exists a unique
symmetricMPNE that consists of linear strategies if the common discount factorρ is less than
or equal to 1, and there exist two different symmetric MPNE consisting of linear strategies
if ρ is greater than but sufficiently close to 1. This result is derived under the assumption
that the common utility function of the players has a constant elasticity of marginal utility
which is not too large. Hence, the presence of strategic interaction resolves the nonexistence
problem that arises in the case of a single player and no discounting. When there are two
symmetric MPNE in linear strategies (which happens if the discount factor is greater than 1),
then it holds that the MPNE along which the resource is depleted more slowly dominates the
other MPNE in terms of welfare. Finally, we show that the aggregate propensity to extract
the resource stock is a decreasing function of the discount factor and an increasing function
of the number of players. This conforms to the intuition that higher impatience and stronger
competition are bad from a conservationist’s point of view.

The results mentioned above are shown for a model with identical players. In Sect. 5,
we briefly study the case of two heterogeneous players and prove the existence of MPNE
consisting of linear strategies also in this case. It can be shown that MPNE in linear strategies
exist if the discount factors are smaller than, equal to, or even slightly larger than 1 provided
that the elasticities of marginal utility are not too large. A comparative analysis with respect
to all model parameters reveals that both a player’s discount factor and the player’s elasticity
of marginal utility have a negative effect on this player’s propensity to consume. As in the
case of identical players, we find that higher impatience is bad from a conservationist’s point
of view.

The analysis of natural resource problems bymeans of dynamic games has a long tradition
in economics. A quite recent survey of the literature is given in [7]. There is a huge variety
of models that are considered. They can be classified along various dimensions, for example,
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whether the resource is renewable or non-renewable,whether the players derive utility directly
from their own extraction or have to sell the extracted amount on a resourcemarket, orwhether
strategies are assumed to depend on time alone (open-loop) or on the resource stock alone
(Markovian). The present paper is most closely related to [2] and [3]. With Clemhout and
Wan [2] it shares the restriction to a cake-eating game and the specification of the utility
functions. Clemhout and Wan [2], however, use a continuous-time formulation and focus on
issues different from those discussed in the present paper. In particular, they assume strictly
positive discounting throughout their analysis. Dutta and Sundaram [3], on the other hand,
study existence and properties of MPNE in discounted as well as undiscounted resource
games. One important difference between their approach and ours is that they consider
stochastic models and formulate the undiscounted game by means of long-run average utility
functions, whereas we have a deterministic model and do not take any average, but look at
the discounted sum of utilities for discount factors that are smaller than, equal to, or larger
than 1. Despite the lack of discounting, the objective functionals of all players remain finite
as a consequence of the boundedness of the non-renewable resource stock and the nature of
the strategic interaction among the players, which forces the consumption rates to converge
to 0 sufficiently fast.

The rest of the paper is organized as follows. In Sect. 2, we formulate the model and
defineMarkov perfect Nash equilibria (MPNE). In Sect. 3, we derive necessary and sufficient
conditions for a strategy profile consisting of linear strategies to qualify as aMPNE. Section 4
deals with symmetricMPNE in a gamewith identical players, whereas Sect. 5 presents results
for games with heterogeneous players. Finally, Sect. 6 concludes.

2 Model Formulation

Consider a dynamic game in discrete time, inwhichm ≥ 2 infinitely lived players have access
to a non-renewable common property resource and derive utility solely from the consumption
of this resource. The set of players is denoted by M = {1, 2, . . . ,m} and the time-domain
is denoted by N0 = {0, 1, . . .}. Denoting the resource stock at the start of period t ∈ N0 by
xt ∈ R+ and the consumption of player i ∈ M in period t ∈ N0 by ci,t ∈ R+, it follows that

xt+1 = xt −
m∑

i=1

ci,t (1)

holds for all t ∈ N0, where x0 > 0 is the exogenously given initial stock of the resource. By
choosing the consumption path (ci,t )

+∞
t=0 , player i derives utility

+∞∑

t=0

ρt
i

c1−αi
i,t

1 − αi
, (2)

where ρi > 0 is the time-preference factor and αi ∈ (0, 1) is the elasticity of the marginal
utility of consumption.

A stationary Markovian strategy for player i ∈ M is a function σi : R+ �→ R+ satisfying
σi (x) ≤ x for all x ∈ R+. We assume that players can only choose such strategies and we
will drop the adjectives ‘stationary’ and ‘Markovian’ in what follows. At the outset of the
game, each player i ∈ M chooses a strategy σi and determines consumption in period t ∈ N0

according to the rule ci,t = σi (xt ). A strategy profile is an ordered sequence of strategies,
one for each player. The strategy profile (σ1, σ2, . . . , σm) is feasible if
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m∑

i=1

σi (x) ≤ x (3)

holds for all x ∈ R+.
Consider a feasible strategy profile (σ1, σ2, . . . , σm) and an arbitrary player i ∈ M.

Furthermore, suppose that player i’s opponents j �= i play according to their strategies σ j .
In that case, the strategy σi is a best response for player i if choosing ci,t = σi (xt ) for all
t ∈ N0 maximizes the objective functional in (2) subject to the constraint

xt+1 = xt −
∑

j �=i

σ j (xt ) − ci,t ≥ 0 (4)

and the given initial stock x0. A feasible strategy profile is aMarkov perfect Nash equilibrium
(MPNE) if every player’s strategy is a best response to its opponents’ strategies.1 More
formally, the feasible strategy profile (σ1, σ2, . . . , σm) is a MPNE if the following three
conditions hold for all x0 > 0:

(i) For all i ∈ M and given the strategies σ j for all j �= i , there exists an optimal solution
(x̄i,t , c̄i,t )

+∞
t=0 of the dynamic optimization problem of maximizing (2) subject to (4) and

the initial resource stock x0.
(ii) The optimal solution of player i’s optimization problem mentioned in condition

(i) satisfies c̄i,t = σi (x̄i,t ) for all t ∈ N0 and all i ∈ M.
(iii) For all (i, j) ∈ M2 and all t ∈ N0, it holds that x̄i,t = x̄ j,t , where (x̄i,t )

+∞
t=0 is the optimal

state trajectory of player i’s problem mentioned in conditions (i)–(ii) above.

3 Linear Strategies

In this section, we derive conditions under which a feasible strategy profile (σ1, σ2, . . . , σm)

consisting of linear strategies of the form σi = Ai x constitutes a MPNE. To formulate the
conditions, we define for every i ∈ M the function gi : [0, 1] �→ R by

gi (z) = (1 − z)
[
1 − ρ

1/αi
i (1 − z)(1−αi )/αi

]
.

Proposition 1 Let A1, A2,…, Am be nonnegative real numbers and define a strategy profile
(σ1, σ2, . . . , σm) by σi (x) = Ai x for all x ∈ R+. This strategy profile is feasible and
constitutes a MPNE if and only if the following conditions hold for all i ∈ M:

m∑

j=1

A j ≤ 1, (5)

Ai = gi

⎛

⎝
∑

j �=i

A j

⎞

⎠, (6)

ρi

⎛

⎝1 −
m∑

j=1

A j

⎞

⎠
1−αi

< 1. (7)

1 Note that we define the property of being a MPNE only for feasible strategy profiles, i.e., for profiles
satisfying condition (3). Sundaram [10] uses an ad hoc rule to determine the consumption rates for infeasible
strategy profiles. The important point is that there is no way to place conditions on the primitives of the model
that guarantee that a strategy profile will always be feasible.
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Proof It is obvious that the proposed strategy profile is feasible if and only if the coefficients
Ai , i ∈ M, are nonnegative numbers satisfying condition (5). It remains to prove necessity
and sufficiency of conditions (6)–(7). To this end, consider the optimization problem of player
i ∈ M given the strategies σ j of the opponents j �= i . It consists of the maximization of the
objective functional (2) subject to (4) and the given initial state x0. Because of the assumed
form of the strategies for players j �= i , the state equation is

x̄i,t+1 =
⎛

⎝1 −
∑

j �=i

A j

⎞

⎠ x̄i,t − c̄i,t ≥ 0. (8)

If
∑

j �=i A j = 1, then the only feasible consumption choice for player i (and, hence, the opti-
mal one) is c̄i,t = 0 for all t ∈ N0. This optimal consumption path is generated by a strategy
of the form σi (x) = Ai x if and only if Ai = 0. Note that in the case where

∑
j �=i A j = 1

holds, the only nonnegative number Ai that satisfies conditions (6)–(7) is indeed Ai = 0.
Now consider the case where

∑
j �=i A j < 1 holds. Due to the infinite steepness of the

utility function c1−αi
i,t /(1− αi ) at ci,t = 0, it cannot be optimal for player i to drive down the

resource stock to 0.Hence, the optimal solutionmust be an interior one, i.e., itmust hold for all
t ∈ N0 that x̄i,t > 0.A sequence (x̄i,t , c̄i,t )

+∞
t=0 is an interior optimal solution of player i’s opti-

mization problem if and only if it satisfies x̄i,0 = x0, the state equation (8), the Euler equation

(c̄i,t )
−αi = ρi

⎛

⎝1 −
∑

j �=i

A j

⎞

⎠ (c̄i,t+1)
−αi ,

and the transversality condition

lim
t→+∞ ρt

i (c̄i,t )
−αi x̄i,t+1 = 0. (9)

The Euler equation can be rewritten as

c̄i,t+1 = ρ
1/αi
i

⎛

⎝1 −
∑

j �=i

A j

⎞

⎠
1/αi

c̄i,t . (10)

Substituting the proposed strategy σi (x) = Ai x into (8) and (10), we obtain

x̄i,t+1 =
⎛

⎝1 −
m∑

j=1

A j

⎞

⎠ x̄i,t (11)

and

x̄i,t+1 = ρ
1/αi
i

⎛

⎝1 −
∑

j �=i

A j

⎞

⎠
1/αi

x̄i,t ,

respectively. Because of x̄i,0 = x0 > 0, these two equations can hold simultaneously if and
only if

1 −
m∑

j=1

A j = ρ
1/αi
i

⎛

⎝1 −
∑

j �=i

A j

⎞

⎠
1/αi

,

which is easily seen to be equivalent to (6).
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As for the transversality condition (9), we note that Eq. (11) holds along the path generated
by the proposed equilibrium, which implies that

x̄i,t =
⎛

⎝1 −
m∑

j=1

A j

⎞

⎠
t

x0.

Using this observation as well as ci,t = Ai x̄i,t , we see that condition (9) holds if and only if
condition (7) is satisfied. This completes the proof of the proposition. 	


4 Identical Players

In this section, we consider the case of identical players, that is, we assume that there exist
real numbers α ∈ (0, 1) and ρ > 0 such that αi = α and ρi = ρ hold for all i ∈ M.
In such a case, it makes sense to study the existence of a symmetric equilibrium, i.e., of a
MPNE (σ1, σ2, . . . , σm) in which the strategies of all m players coincide. Let us denote the
common strategy of the players by σ and let us continue to assume that this strategy takes
the linear form σ(x) = Ax , where A is a nonnegative number. The necessary and sufficient
equilibrium conditions of Proposition 1 are given by

A ≤ 1/m, (12)

A = g((m − 1)A), (13)

ρ(1 − mA)1−α < 1, (14)

where g : [0, 1] �→ R is defined by

g(z) = (1 − z)
[
1 − ρ1/α(1 − z)(1−α)/α

]
. (15)

In what follows, we distinguish between the discounted case ρ < 1 and the case without
discounting ρ ≥ 1. In the latter case, we shall need to restrict the elasticity of marginal utility
by α < (m − 1)/m. It is therefore convenient to introduce the following assumption.

Assumption 1 It holds that ρ < 1 or α < (m − 1)/m.

We shall maintain this assumption for the rest of this section. Moreover, we define

Ā = (1 − α)m − 1

(1 − α)m(m − 1)
(16)

and

ρ̄ = mαα(1 − α)1−α

(m − 1)α
. (17)

We start the analysis with a preliminary lemma.

Lemma 1 If α < (m − 1)/m, then it holds that 0 < Ā < 1/m and 1 < ρ̄ < m.

Proof The statement about Ā follows immediately from the definition of Ā and from the
assumption 0 < α < (m−1)/m. To prove the statement about ρ̄, let us denote the right-hand
side of (17) by R(α). The function R is continuous on [0, 1] and continuously differentiable
on (0, 1) with derivative

R′(α) = −mαα(1 − α)1−α

(m − 1)α
ln

[
(m − 1)(1 − α)

α

]
.
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The assumption 0 < α < (m − 1)/m implies (m − 1)(1−α)/α > 1 and it follows therefore
that R′(α) < 0 holds for all α ∈ (0, (m−1)/m). Hence, we obtain for all α ∈ (0, (m−1)/m)

that

1 = R((m − 1)/m) < R(α) = ρ̄ < R(0) = m.

This completes the proof of the lemma. 	

Wenow turn to Eq. (13). This is a single equation for the unknown parameter A. From (12),

we know that A must be contained in the interval [0, 1/m]. The following lemma presents a
complete characterization of the solution set of Eq. (13) for all possible values of the discount
factor ρ.

Lemma 2 Let the parameters m, α, and ρ be given such that Assumption 1 holds.

(a) If 0 < ρ < 1, then there exists a unique solution of Eq. (13) in the interval [0, 1/m].
This solution satisfies A ∈ ( Ā, 1/m).

(b) If ρ = 1, then there exist two solutions of Eq. (13) in the interval [0, 1/m]. One of them
is A = 0 and the other one satisfies A ∈ ( Ā, 1/m).

(c) If 1 < ρ < ρ̄, then there exist two solutions of Eq. (13) in the interval [0, 1/m]. One of
them satisfies A ∈ (0, Ā) and the other one satisfies A ∈ ( Ā, 1/m).

(d) If ρ = ρ̄, then the unique solution of Eq. (13) in the interval [0, 1/m] is A = Ā.
(e) If ρ > ρ̄ > 1, then there does not exist a solution of Eq. (13) in the interval [0, 1/m].
Proof We note that Eq. (13) can be written as h(A) = 1/ρ, where h : [0, 1/m) �→ R is
defined by

h(A) = 1 − (m − 1)A

(1 − mA)α
. (18)

Note that h(0) = 1 and limA→(1/m)− h(A) = +∞. Furthermore, h is continuously differen-
tiable with derivative

h′(A) = 1

(1 − mA)α

{
αm[1 − (m − 1)A]

1 − mA
+ 1 − m

}
.

It follows that

h′(A)

⎧
⎨

⎩

< 0 if A < Ā,

= 0 if A = Ā,

> 0 if A > Ā.

Consequently, the graph of h is U shaped on [0, 1/m) and attains its unique minimum at Ā.
Suppose first that ρ < 1. In this case, we have h(0) < 1/ρ < limA→(1/m)− h(A) such

that the equation h(A) = 1/ρ must have at least one solution in the interval [1,m] and this
solution must be an interior one. Moreover, because h has only one minimum in [0, 1/m],
the solution must be unique.

Next, suppose that ρ = 1. In this case, we have h(0) = 1/ρ such that A = 0 qualifies as
a solution of the equation h(A) = 1/ρ. Moreover, it holds that h′(0) = 1 − (1 − α)m < 0
which, together with the U shape of the graph of h, implies that there must exist a second
solution satisfying A ∈ ( Ā, 1/m).

Finally, suppose that ρ > 1. We can see that the minimum of h on [0, 1/m) is given by

h( Ā) = (m − 1)α

mαα(1 − α)1−α
= 1

ρ̄
.
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Together with h(0) = 1 > 1/ρ and limA→(1/m)− h(A) = +∞, it follows that statements
(c)–(e) must hold. 	


Having studied the possible solutions of Eq. (13), we need to check whether condition
(14) is satisfied or not.

Lemma 3 Let the parameters m, α, and ρ be given such that 0 < ρ ≤ ρ̄ and Assumption 1
hold. Assume that A ∈ [0, 1/m] is a solution of Eq. (13). If ρ = 1 and A = 0, then condition
(14) is not satisfied. In all other cases mentioned in Lemma 2, condition (14) holds.

Proof It is clear that (14) fails to hold when ρ = 1 and A = 0. Let us therefore assume that
A is a strictly positive solution of (13). From the proof of lemma 2, it follows that A must
satisfy

h(A) = 1 − (m − 1)A

(1 − mA)α
= 1

ρ
.

Consequently, we have

ρ(1 − mA)1−α = ρ

(1 − mA)α
(1 − mA) = 1 − mA

1 − (m − 1)A
< 1.

This completes the proof of the lemma. 	

After these preliminary steps, we can state the main result of the present section.

Theorem 1 Let the parameters m, α, and ρ be given such that Assumption 1 holds.

(a) If 0 < ρ ≤ 1 or ρ = ρ̄ > 1, then there exists a unique symmetric MPNE consisting of
linear strategies of the form σ(x) = Ax.

(b) If 1 < ρ < ρ̄, then there exist two symmetric MPNE consisting of linear strategies of
the form σ(x) = Ax.

(c) If ρ > ρ̄, then there does not exist a symmetric MPNE consisting of linear strategies of
the form σ(x) = Ax.

Proof The theorem follows from Proposition 1 and Lemmas 2 and 3. 	

The above theorem shows that there existMPNE even in the casewhere the discount factor

exceeds 1.Despite the lack of discounting, the objective functionals of all players remainfinite
because the boundedness of the non-renewable resource stock and the nature of the strategic
interaction of the players imply that consumption rates converge to 0 sufficiently fast. This
is in sharp contrast to the case of a single decision maker, in which optimal extraction paths
fail to exist even in more general circumstances; see [4]. Theorem 1 therefore demonstrates
that competition for the resource can somehow compensate for lack of time-preference.

Clemhout and Wan [2] study the existence of MPNE in a continuous-time cake-eating
game with strictly positive time-preference rates (which would correspond to the assumption
ρ < 1 in our formulation) and the very same class of utility functions (with constant elasticity
of marginal utility) as in the present paper. It is interesting to note that in their setting,
existence is ensured only if the elasticity of marginal utility α is sufficiently high, namely
α > (m − 1)/m. In contrast, Theorem 1 does not restrict the parameter value α at all if ρ

is smaller than 1. Only if we consider the case of ρ ≥ 1, Assumption 1 bites and imposes
the upper bound α < (m − 1)/m. Hence, the modeling of time seems to make a substantial
difference.

Part (c) of Theorem 1 shows that there does not exist a symmetric MPNE consisting of
linear strategies if ρ > ρ̄. The following result generalizes this finding.
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Proposition 2 Let the parameters m, α, and ρ be given such that ρ > ρ̄ > 1 and Assump-
tion 1 hold. There is no symmetric MPNE with an equilibrium strategy σ : R+ �→ R+ that
is continuously differentiable and satisfies σ ′(0) �= 0.

Proof Suppose to the contrary that such a MPNE exists. Feasibility of the strategy profile
(σ, σ, . . . , σ ) requires that mσ(x) ≤ x and therefore

σ ′(0) = lim
x→0+

σ(x)

x
∈ (0, 1/m].

Furthermore, note that ci,t = σ(xt ) and xt+1 = xt − mσ(xt ) must hold for all t ∈ N0 and
all i ∈ M. From the Euler equation, it follows therefore that

σ(x)−α = ρ[1 − (m − 1)σ ′(x − mσ(x))]σ(x − mσ(x))−α.

We rewrite this equation as

σ(x − mσ(x))

σ (x)
= ρ1/α[1 − (m − 1)σ ′(x − mσ(x))]1/α

and take the limit as x approaches 0 on both sides. Because of limx→0+ σ(x) = 0 and
limx→0+[x − mσ(x)] = 0, the limit on the right-hand side is ρ1/α[1 − (m − 1)σ ′(0)]1/α .
As for the left-hand side, we can use de L’Hopital’s rule and the assumption σ ′(0) �= 0 to
obtain

lim
x→0+

σ(x − mσ(x))

σ (x)
= 1 − mσ ′(0).

Combining the above results and abbreviating σ ′(0) by A, it follows that A ∈ (0, 1/m] and
1 − mA = ρ1/α[1 − (m − 1)A]1/α. (19)

The latter equation can also be written as A = g((m − 1)A), where g is defined in (15).
Since we know from Lemma 2 that for ρ > ρ̄ there does not exist a solution of Eq. (13) in
the interval [0, 1/m], the proof of the proposition is complete. 	


In the rest of this section, we discuss the properties of the MPNE identified in Theorem 1.
First of all, let us point out that for the special case ρ = 1, Assumption 1 is not only sufficient
for the existence of a symmetric MPNE of the form σ(x) = Ax but also necessary. As a
matter of fact, if ρ = 1, then assumption 1 boils down to α < (m − 1)/m. It is easily seen
from the proof of lemma 2 that α ≥ (m − 1)/m implies h′(0) ≥ 0 and, therefore, that A = 0
is the unique solution of h(A) = 1/ρ. But since Lemma 3 shows that condition (14) fails to
hold for that solution, the strategy σ(x) = Ax with A = 0 cannot be an equilibrium strategy.

Next, we turn to the case ρ ∈ (1, ρ̄), in which there exist two different MPNE. The
following result compares these two equilibria in terms of the utility derived by the players.

Lemma 4 Let the parameters m, α, and ρ be given such that 1 < ρ < ρ̄ and Assump-
tion 1 hold. Consider the two symmetric MPNE with linear strategies that exist according to
Theorem 1(b). The MPNE with the smaller coefficient A leads to higher utility for all players
than the one with the larger coefficient A.

Proof Along every symmetric equilibrium with strategies of the form σ(x) = Ax , it holds
that

+∞∑

t=0

ρt
c1−α
i,t

1 − α
=

+∞∑

t=0

ρt (Axt )1−α

1 − α
= (Ax0)1−α

1 − α

+∞∑

t=0

[ρ(1 − mA)1−α]t .
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Because of condition (14), the infinite sum on the right-hand side of this equation has a finite
value which is given by

x1−α
0 W (A)

1 − α
,

where W : [0, Â) ∪ ( Â, 1/m] �→ R is defined by

W (A) = A1−α

1 − ρ(1 − mA)1−α

and where Â ∈ (0, 1/m) is given by

Â = 1 − ρ−1/(1−α)

m
.

Thus,we have to compare the valueW (A) for the two solutions ofEq. (13) that exist according
to Theorem 1(b). Note that the function W has a singularity at A = Â and that it is strictly
decreasing on the two intervals (0, Â) and ( Â, 1/m). Hence, it is sufficient to prove that both
solutions of Eq. (13) are located on the same side of Â. Since we know from the proof of
lemma 2 that Eq. (13) is equivalent to the equation h(A) = 1/ρ, where the function h is
defined in (18), all we need to show is that h( Â) > 1/ρ. From the definition of Â and from
(18), it follows that

h( Â) = ρα/(1−α)

[
1 − ρ−1/(1−α)

m
+ ρ−1/(1−α)

]
= ρα/(1−α) − ρ−1

m
+ 1

ρ
>

1

ρ
,

where the last inequality follows from the assumptions α ∈ (0, 1) and ρ > 1. This completes
the proof of the lemma. 	


Finally, we study how the aggregate propensity to consume, mA, depends on the model
parameters ρ and m. To this end, we restrict ourselves to the case where ρ ∈ (0, 1], in which
the MPNE in linear strategies is unique.

Lemma 5 Let the parameters m, α, and ρ be given such that 0 < ρ ≤ 1 and Assumption 1
hold. In the MPNE described in Theorem 1, it holds that the total propensity to consume,
mA, is decreasing with respect to ρ and increasing with respect to m.

Proof From the proof of lemma 2, we know that the equilibrium value of A satisfies A > Ā
and h(A) = 1/ρ, where the function h is given by (18). We know furthermore that A > Ā
implies h′(A) > 0. These properties obviously demonstrate that A is a decreasing function
of ρ. Hence, mA must also be decreasing with respect to ρ.

To study the dependence of mA on m, we rewrite the equation h(A) = 1/ρ as h̃(mA)

= (m − 1)/m, where

h̃(z) = ρ − (1 − z)α

ρz
.

The derivative of the function h̃ is given by

h̃′(z) = (1 − z)−(1−α)(1 − z + αz) − ρ

ρz2
.
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Whenever h̃(z) = (m − 1)/m holds, it must be the case that

(1 − z)α = ρ[m − (m − 1)z]
m

and we obtain

h̃′(z)
∣∣∣
h̃(z)=(m−1)/m

= 1 − (1 − α)(m + z − mz)

mz(1 − z)
.

Therefore, we have

h̃′(z)
∣∣∣
h̃(z)=(m−1)/m

⎧
⎨

⎩

< 0 if z < m Ā,

= 0 if z = m Ā,

> 0 if z > m Ā,

where Ā is given by (16). Because we know that A > Ā holds, it follows that z = mA > m Ā
and, hence, h̃′(z) > 0. Since (m − 1)/m is increasing in m and h̃(mA) = (m − 1)/m must
hold, it follows that mA must be increasing in m. 	


5 Two Heterogeneous Players

In the present section, we drop the assumption of homogeneity of the players, but, for ana-
lytical convenience, we restrict the presentation to the case of m = 2 players. We continue
to focus on linear strategies. Under these assumptions, the equilibrium condition stated as
Eq. (5) can be written as

A1 + A2 ≤ 1 (20)

whereas condition (6) becomes

A1 = g1(A2), (21)

A2 = g2(A1). (22)

We start the analysis under the assumption that the time-preference factors ρ1 and ρ2 are
strictly less than 1, in which case, condition (7) is automatically satisfied.2 Let us define �

by

� = {(A1, A2) | A1 ≥ 0, A2 ≥ 0, A1 + A2 ≤ 1}.
We can prove the following result.

Theorem 2 Assume that there are m = 2 players and that the parameters α1, α2, ρ1, and
ρ2 are real numbers contained in the interval (0, 1). There exists a unique MPNE (σ1, σ2)

consisting of linear strategies of the form σi (x) = Ai x. The pair of coefficients (A1, A2) is
the unique solution of Eqs. (21)–(22) in the set �.

Proof Under the present assumptions, the necessary and sufficient equilibrium conditions
from Proposition 1 boil down to (20)–(22). It is therefore sufficient to prove that Eqs. (21)–
(22) have a unique solution in�. To this end, just note that gi (0) = 1−ρ

1/αi
i > 0, gi (1) = 0,

gi (z) ∈ (0, 1), and

g′
i (z) = ρ

1/αi
i (1 − z)(1−αi )/αi

αi
− 1

2 Later in this section, we shall discuss the model without discounting.
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Fig. 1 Equations (21)–(22) for α1 = 2/3, α2 = 1/4, ρ1 = 0.85, and ρ2 = 0.9

hold for all z ∈ [0, 1]. The derivative g′
i (z) is strictly decreasing with respect to z which

implies that gi is a strictly concave function. Moreover, it holds for all z ∈ [0, 1] that
g′
i (z) ≥ g′

i (1) = −1. Drawing the graphs of the mappings A1 �→ g2(A1) and A2 �→ g1(A2)

into a diagram with A1 on the horizontal axis and A2 on the vertical one (as shown in Fig. 1),
it follows that the graph of A1 �→ g2(A1) is a strictly concave curve that starts in the point
(0, g2(0)) on the A2-axis, ends at the point (1, 0) on the A1-axis, and is located inside the set
�. Analogously, the graph of the mapping A2 �→ g1(A2) is a strictly concave curve (as seen
from the A2-axis) starting at (g1(0), 0) on the A1-axis and ending at (0, 1) on the A2-axis. It
follows from the continuity of the two curves that they have an intersection in the interior of
�, and it follows from the curvature properties of the two curves that this intersection must
be unique. This completes the proof of the theorem. 	


Having established the existence of a unique MPNE (in linear strategies), we can now do
a comparative static analysis of this equilibrium. This is greatly facilitated by the fact that
(A1, A2) is the unique solution of the system (21)–(22).

Lemma 6 Let the assumptions of Theorem 2 be satisfied and consider any player i ∈
M = {1, 2}. Then, it holds that

∂Ai

∂αi
< 0 and

∂Ai

∂ρi
< 0.

Proof Equation (21) can be written as

A1 = 1 − A2 − ρ
1/α1
1 (1 − A2)

1/α1 .

Consider any fixed value of A2 ∈ (0, 1). Since ρ1 and 1 − A2 are positive and smaller than
1, it follows that the right-hand side of the above equation is decreasing with respect to α1.
Hence, the graph of the mapping A2 �→ g1(A2) in Fig. 1 shifts to the left as α1 increases.
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Obviously, this implies that the value of A1 at which the two curves intersect goes down.
An analogous argument proves that A1 is also decreasing with respect to ρ1 such that the
statement of the lemma for i = 1 is proven. The case i = 2 follows in an analogous way. 	


We would like to note that the dependence of Ai on the opponent’s parameters α j and
ρ j is not clear-cut. For example, in the case that is shown in Fig. 1, the intersection of the
two curves occurs at a point where the graph of A1 �→ g2(A1) is increasing, but the graph
of A2 �→ g1(A2) is decreasing. This shows that a sufficiently small downward shift of the
former curve increases A1, whereas a shift to the left of the latter curve decreases A2. We
do get clear-cut result if we assume heterogeneity only with respect to one of the parameters
(elasticity of marginal utility or time-preference factor) but not with respect to the other one.
To see this, we first note that Eqs. (21)–(22) can also be written as

A1 + A2 = 1 − ρ
1/α1
1 (1 − A2)

1/α1 = 1 − ρ
1/α2
2 (1 − A1)

1/α2 , (23)

which implies that
ρ

α2
1 (1 − A2)

α2 = ρ
α1
2 (1 − A1)

α1 . (24)

We have the following result.

Lemma 7 Let α and ρ be arbitrary real numbers in (0, 1).

(a) If 0 < α1 < α2 < 1 and ρ1 = ρ2 = ρ, then it follows that A1 > A2.
(b) If 0 < ρ1 < ρ2 < 1 and α1 = α2 = α, then it follows that A1 > A2.

Proof (a) In this case, we obtain from Eq. (24) that

ρα2(1 − A2)
α2 = ρα1(1 − A1)

α1 > ρα2(1 − A1)
α2

and, hence, A1 > A2.
(b) In this case, Eq. (24) implies that

1 − A1

ρ1
= 1 − A2

ρ2

and, hence, that A1 > A2. 	

The interesting consequence of part (b) of the above lemma is that, unlike the well-known

proverb, patience is not a virtue. In the equilibrium outcome, the more patient player gets
to use less of the resource at each date, compared with the less patient player. From a
conservationist’s point of view, however, patience is beneficial as shown in the next lemma.
This lemma explores the effect of impatience on the total propensity to consume, which we
define as A = A1 + A2.

Lemma 8 Assume that α1 = α2 = α ∈ (0, 1). Consider two games which differ from each
other only in that the time-preference profile of the players in the first game is (ρ1, ρ2),
whereas it is (ρ′

1, ρ
′
2) in the second game. Assume that (0, 0) < (ρ1, ρ2) ≤ (ρ′

1, ρ
′
2) < (1, 1)

and (ρ′
1, ρ

′
2) �= (ρ1, ρ2) hold. Denote by A and (xt )

+∞
t=0 the total propensity to consume

and the state trajectory in the unique MPNE from Theorem 2 in the first game, and by A′
and (x ′

t )
+∞
t=0 the corresponding variables in the MPNE in the second game. Furthermore let

ct = Axt and c′
t = Ax ′

t , respectively, be total consumption of the resource in period t along
the two MPNE. It holds that

A′ < A (25)
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and, for all t ≥ 1,

x ′
t > xt (26)

t−1∑

s=0

cs >

t−1∑

s=0

c′
s and

+∞∑

s=0

cs =
+∞∑

s=0

c′
s (27)

Proof From (23), we obtain that

1 − A2 = (1 − A)α

ρ1
and 1 − A1 = (1 − A)α

ρ2
.

Adding these equations, it follows that

2 − A = (1 − A)α
(

1

ρ1
+ 1

ρ2

)
,

which yields the formula
1

ρ1
+ 1

ρ2
= 1

q(A)
, (28)

where q : [0, 1] �→ R is defined by

q(z) = (1 − z)α

2 − z
.

It holds that q(0) = 1/2 and q(1) = 0. Further, for all z ∈ [0, 1), we have

q ′(z) = (1 − z)α

(2 − z)2

[
1 − (2 − z)α

1 − z

]
.

Thus, defining z̄ = (1 − 2α)/(1 − α), we see that

q ′(z)

⎧
⎨

⎩

> 0 if z < z̄,
= 0 if z = z̄,
< 0 if z > z̄.

Clearly, q is continuous on [0, 1] and, therefore, attains a maximum at some point in [0, 1].
Because q(1) < q(0), this point cannot be z = 1, and because q ′(0) > 0, it cannot be z = 0.
Thus, q has an interior maximum at which q ′(z) = 0. This proves that the maximum is
attained at z = z̄. Using the fact that q(0) = 1/2 and that q is increasing on [0, z̄], it follows
that q(z) ≥ 1/2 holds for all z ∈ [0, z̄]. Condition (28) together with the assumptions ρ1 < 1
and ρ2 < 1 implies that

1

q(A)
= 1

ρ1
+ 1

ρ2
> 2

such that we can conclude that q(A) < 1/2. Because we have seen that q(z) ≥ 1/2 holds
for all z ∈ [0, z̄], we finally obtain that A ∈ (z̄, 1) and therefore q ′(A) < 0.

Because the change in time-preference factors from (ρ1, ρ2) to (ρ′
1, ρ

′
2) makes the

left-hand side of (28) smaller, the right-hand side must get smaller too, which implies that
q(A′) must be larger than q(A). Because of q ′(A) < 0 this implies that A′ < A.

Because x0 > 0 is exogenously fixed and the resource dynamics (1) imply
xt+1 = (1 − A)xt and x ′

t+1 = (1 − A′)x ′
t , it follows that

x ′
t > xt (29)
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holds for all t ≥ 1. Since (xt )
+∞
t=0 is a decreasing sequence and ct = Axt , it follows that

(ct )
+∞
t=0 is decreasing as well. Similar remarks apply to (x ′

t )
+∞
t=0 and (c′

t )
+∞
t=0 . From the state

dynamics (1), we obtain for all T ≥ 1 that

T−1∑

t=0

ct = x0 − xT and
T−1∑

t=0

c′
t = x0 − x ′

T .

Combining this with (29), we observe that

T−1∑

t=0

ct >

T−1∑

t=0

c′
t .

Since the consumption sequences are decreasing over time, this inequality implies that the
T − 1 highest consumption rates added together must be less in the game with more patient
players than in the game with more impatient players. By efficiency of the two paths (which
follows from limt→+∞ xt = limt→+∞ x ′

t = 0), we also have

+∞∑

t=0

ct = x0 =
+∞∑

t=0

c′
t .

This completes the proof of the lemma. 	

Conditions (25) and (26) demonstrate that the resource stock is depleted more slowly in

the game with more patient players, which can be seen as a social benefit from the conserva-
tionist’s point of view. Condition (27) says that the path (c′

t )
+∞
t=0 Lorenz dominates (ct )

+∞
t=0 .

The results stated above continue to hold without any change if one of the two players
has the time-preference factor ρi = 1, whereas the other player has a time-preference factor
ρ j < 1. As a matter of fact, the situation depicted in Fig. 1 changes only to the extent that
the curve A j �→ gi (A j ) starts in the origin rather than on the positive Ai -axis. But it is still
the case that there must exist a unique intersection of the two curves, that this intersection is
located in the interior of �, and that the curves have the same curvature properties as shown
in Fig. 1. Under the assumptions of the present section, condition (7) can be written as

ρ1(1 − A1 − A2)
1−α1 < 1, (30)

ρ2(1 − A1 − A2)
1−α2 < 1. (31)

Since (A1, A2) is in the interior of � and since ρ1 and ρ2 do not exceed 1, it is obvious that
(30)–(31) are satisfied.

If both players have the common time-preference factor ρ1 = ρ2 = 1, then both curves
from Fig. 1 start in the origin such that (A1, A2) = (0, 0) is a solution of (21)–(22). But
obviously this solution does not satisfy conditions (30)–(31) and so it does not correspond
to a MPNE. Whether a second solution in the interior of � exists depends on the steepness
of the two curves at the origin. If 1/g′

1(0) < g′
2(0) holds, then the two curves intersect in

the interior of �, otherwise they do not. The condition 1/g′
1(0) < g′

2(0) is easily seen to be
equivalent to α1 + α2 < 1. We can summarize these observations in the following lemma.

Lemma 9 Assume that there are m = 2 players and that the parameters α1, α2, ρ1, and ρ2
satisfy ρ1 = ρ2 = 1, α1 ∈ (0, 1), and α2 ∈ (0, 1). There exists a MPNE (σ1, σ2) consisting
of linear strategies of the form σi (x) = Ai x if and only if α1 + α2 < 1. If this condition
holds, then there is a unique such MPNE.
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Fig. 2 Equations (21)–(22) for α1 = 1/3, α2 = 1/4, and ρ1 = ρ2 = 1.05

Finally, we may consider situations in which one or both discount factors exceed the value
1. It is clear from the graphical arguments used before, that the curves in Fig. 1 may still
intersect in �. If they do, there must generically be two intersections. Instead of deriving the
exact conditions under which this happens, we just provide a numerical example; see Fig. 2.
It illustrates the case where α1 = 1/3, α2 = 1/4, ρ1 = ρ2 = 1.05. Note that compared
to the situation depicted in Fig. 1, we have not only increased the time-preference factors
above 1, but have also changed the elasticity of marginal utility of player 1 from α1 = 2/3
to α1 = 1/3. This was done in order to satisfy the condition α1 + α2 < 1 that was already
stated in lemma 9.3 Obviously, there are two intersections in Fig. 2 and it is easy to verify that
conditions (30)–(31) are satisfied at both of them. Hence, there exist two different MPNE
consisting of linear strategies.

6 Concluding Remarks

We have shown that Markov perfect Nash equilibria exist in a dynamic game describing the
joint noncooperative exploitation of a non-renewable resource even if there is no discounting
at all. Our model is admittedly a very simple one and, we have made explicit assumptions
about the form of the utility functions in order to obtain analytical solutions. Nevertheless,
we believe that the main point of the paper, namely that such equilibria can exist even in the
absence of discounting may have wider applicability. This would mean that the discussion
about pressing environmental problems need not revolve around the question of what the

3 For the parameter set (α1, α2, ρ1, ρ2) = (2/3, 1/4, 1.05, 1.05) there does not exist a MPNE consisting of
linear strategies.
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appropriate discount factor is, but one could abolish discounting altogether and treat all
generations alike.

There are quite a few directions into which one could explore this issue further. One
obvious alternative assumption would be that the resource is renewable as in [6] or [8].
Another direction would be to allow for market interactions between the players. In such
a model, the utility of any given player would not only depend on its own extraction rate
but—via a market demand function—also on the opponents’ extraction rates; see, e.g., [9].
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