
JOURNAL OF ECONOMIC THEORY 53, 12-50 (1991) 

The Economics of Orchards: An Exercise 
in Point-input, Flow-Output Capital Theory* 

TAPAN MITRA 

Department of Economics, Cornell University, Ithaca, New York 14853 

DEBRAJ RAY AND RAHUL ROY 

Indian Statistical Institute, New Delhi 110016. India 

Received May 27. 1989; revised March 7, 1990 

This paper is concerned with the qualitative properties of optimal intertemporal 
programs in a model of point-input flow-output capital theory, when future utilities 
are discounted. Under a mild condition on the flow-output vector, we establish that 
optimal programs for every discount factor and every initial state (other than a 
unique stationary optimal state) will exhibit non-convergence. Furthermore, we 
provide a necessary and sufficient condition on the flow-output vector for which a 
neighborhood turnpike theorem holds; that is, long-run fluctuations on an optimal 
program are “small” when the discount factor is “close” to unity. Journal of 
Economic Literature Classification Numbers: 111, 131. ‘7 1991 Academic Press. Inc 

1. INTRODUCTION 

Consider the following framework of forest management, which we shall 
refer to as the orchard problem. There is a plot of land of unit size. On this 
land are planted trees of various ages. This initial “forest” is inherited by 
the “planner” or the “manager.” The manager can choose to clear some or 
all of the land under trees of any age. This cleared land is replaced with 
seedlings (trees of age zero). This act of clearing and replacement moves 
the system to a new forest, where the untouched trees are now one year 
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older. At the next date, another process of clearing and replacement takes 
place, and this continues into the indefinite future. 

Each tree has a growth pattern, defined by the fruit it yields in each year 
of its life. This growth pattern is identical for each tree. The yield of the 
forest at any date is obtained by multiplying the yield of age “s” trees by 
the number of such trees, and adding up over all the ages present in the 
forest. The manager possesses a one-period utility function defined on this 
yield. The objective is to choose a policy of clearing and replacement to 
maximize an infinite discounted sum of one-period utilities. 

The orchards model, we feel, is a canonical example of what might be 
termed point-input, flow-output capital theory. Trees may be viewed as capi- 
tal goods that yield a flow of output net of costs over their lifetimes. Capi- 
tal goods age, and finally die out. The orchards model may then be viewed 
as a framework for studying the optimal replacement policy and age com- 
position of capital goods in a planned organization (firm, economy). For 
the interested reader we place our model in a broader context in Section 6. 

A related model of forest management, which might be referred to as the 
timber model, has been much studied in the literature. In this model, a tree 
only yields an output (its “timber content”) when it is cut down. This 
corresponds to “point-input, point-output” capital theory, and the formal 
framework is actually very different from the one studied here. For studies 
of the timber model, the reader is referred to Faustmann [7], Schreuder 
[ 173, Samuelson [ 161, Mitra and Wan [ 11, 121, and Mitra and Ray [ 131. 

Why do we wish to study the orchards model? First, as we have already 
pointed out, it corresponds to an important class of capital-theory models 
which has not been well studied in the literature. Second, it turns out to be 
an excellent device for illustrating certain aspects of global asymptotic 
stability in models of optimal economic growth; in particular, for under- 
standing and evaluating certain “asymptotic turnpike theorems” that have 
been extensively studied in the literature. We shall presently expand on this 
theme. 

We are interested in asking two types of questions. First: can one charac- 
terize the class of optimal stationary forests? These are forests which have 
the property that once you start with such a forest, it is optimal to carry 
out a policy which replicates the age composition of that forest period after 
period. They correspond to optimal stationary stocks in models of multi- 
sectoral economic growth. 

Second: if one starts from an arbitrary initial forest, is it optimal to carry 
out a policy that causes the age composition to converge over time to that 
of an optimal stationary forest ? Such a result would be analogous to 
turnpike theorems obtained in models of economic growth. 

We find the following answers. First, it turns out that the set of optimal 
stationary forests is inoariant with respect to the utility function, as long as 
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the latter is increasing, twice continuously differentiable, and concave. 
(This property, for the “timber” model, was noted by Mitra and Wan 
[ 111.) We find the result of some interest, because our model generally 
corresponds to a multisectoral framework of intertemporal accumulation, 
where such an invariance property is not usually obtainable. In any case, 
the invariance result permits us to easily compute the set of optimal 
stationary forests by simply looking at the growth pattern of an individual 
tree and the discount factor. This entire exercise is carried out in stages in 
Propositions 3.1, 4.2, and 5.1. It might be of some interest to note that in 
the proofs of these propositions, we do not use any duality arguments. An 
elementary primal approach is employed throughout. 

At a more down-to-earth level, the invariance result is of interest, 
because it requires limited information, In particular, apart from 
knowledge of the discount factor, no knowledge of the utility function is 
required. The optimal stationary composition can be easily computed and 
used in practical applications of forest management. 

Now we turn to the second question. We consider two cases: one, where 
the utility function is linear, and the other, where the utility function is 
strictl-y concave. In the first case, if the initial forest is not an optimal 
stationary forest, then convergence to an optimal stationary forest is 
generally not obtained. All trees are always cut down at one of two possible 
ages, which can be exactly characterized. From the point of view of optimal 
growth theory, this result (the aspect dealing with nonconvergence) is 
hardly surprising. With linear utility functions, one does not generally 
expect turnpike properties to be present, 

By far the more interesting case is where the utility function is strictly 
concave. The analogous model is that of optimal capital accumulation with 
a strictly concave utility function. In such a framework the following results 
are now fairly well known: 

(i) With no restrictions on the magnitude of the discount factor, one 
does not usually obtain convergence to an optimal stationary program. 
Instead, optimal programs can “cycle” (for two early examples, see 
Sutherland 1191 and Kurz [S]; for an example in the timber model of 
forestry, see Mitra and Wan [ 11 I). 

(ii) However, there exists, under some “standard” assumptions, a 
critical discount factor strictly less than unity, such that if the actual 
discount factor exceeds this critical value, all optimal programs converge to 
the stationary optimal program. Various versions of this result appear in 
Brock and Scheinkman [S], Cass and Shell [6], Rockafellar [14], 
Scheinkman [18], Araujo and Scheinkman [l], Bewley [4], McKenzie 
[9], and others. 
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The “standard” assumptions in (ii) can, however, be violated for some 
fairly interesting models of capital theory. Furthermore, in such models, it 
can be shown that the result stated in (ii) above fails to hold. Samuelson 
[ 151 reports an example due to Weitzman, which involves a pure aging 
process (wine is produced from grape juice), where for every positive 
discount factor less than one, optimal programs cycle around a unique non- 
trivial stationary optimal program. (For further discussion of this example, 
see Scheinkman [ 183, McKenzie [IO], and Benhabib and Nishimura [2].) 

In the timber model of forestry, Wan [20] has presented an example in 
which there is a critical discount factor strictly less than one, such that for 
all discount factors which are less than one and which exceed this critical 
value, all optimal programs cycle around a unique non-trivial stationary 
optimal program. [For further discussion of this example, see Wan [21]]. 

It turns out that the feature discussed by Wan [20] can be considerably 
generalized and extended to the orchards model (where the “standard” 
assumptions used to obtain the result in (ii) above are, interestingly 
enough, never satisfied). We describe an entire class of situations (not just 
an example) where for every discount factor, and for every initial forest 
which is not an optimal stationary forest, optimal programs fail to con- 
verge. This is Proposition 5.2 below. We feel that this result is indicative of 
the interesting idiosyncracies of the forestry model. Formally it is a special 
case of the general framework of intertemporal accumulation. But the 
assumptions that appear “natural” in that framework, and are in fact 
employed, are just not natural here and cannot be invoked. 

Nevertheless, under a mild condition on growth patterns, we do obtain 
a weaker turnpike property; one that has been notably emphasized by 
McKenzie [9] in the general framework of intertemporal accumulation. 
This is the neighborhood turnpike theorem, stated in Proposition 5.3. It is 
this: given any E > 0, however small, there exists a critical discount factor 
6(s) E (0, 1) such that for any discount factor 6 b 6(s) and every initial 
forest, an optimal program ultimately finds itself in the c-neighborhood of 
the optimal stationary forest, and remains in that neighborhood from a 
certain time onwards. To sum up, optimal programs may not converge for 
any discount factor (viz. Proposition 5.2), but the limiting oscillations go to 
zero as the discount factor converges to unity. 

We should remark that even the assumptions needed to guarantee the 
neighborhood turnpike theorem in the general framework are not satisfied 
here. Consequently, we use a technique of proof, which, while inspired by 
McKenzie [9], is substantially modified. This modified use of Lyapunov 
functions may be of some technical interest and applicability. Finally, it 
should be noted that unlike the remainder of the propositions, the proof of 
this result relies on a duality argument for the large part. 

642.W.2 
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2. ORCHARDS 

Consider a unit plot of land (say, the unit square of ‘3’) with trees of 
various ages planted on it. Each tree lives for periods 0, 1, . . . . T, after which 
it is incapable of bearing fruit. The tree yields an amount R(s) in period S, 
s = 0, . ..) T. We assume that there exist integers P, Q, with 0 < Pb Q Q T 
such that 

R(O)< I.. <R(P)= ..’ =R(Q)> . . . >,R(T) (2.1) 

with at least one strict inequality between 0 and P and with R(s) > R(s + 1) 
if Q<s< T. 

We also normalize returns so that R(s) 2 0 for all s. 
Our wider interest is, of course, in vintage capital models and not 

orchards. It is easily seen that our assumptions make perfect sense in this 
context. In particular, the assumption that the maximum yield is reached 
at a positive age is easily seen by netting out setup costs, and indeed, 
purchase costs from returns in the period of installment of the new 
machine. 

The manager of the orchard inherits, at time zero, a forest, which we 
identify with a vector a E A, where A is the nonnegative unit simplex of 
!H ‘+ ‘. The interpretation is that a(s), s = 0, . . . . T, is the fraction of land 
devoted to trees of age S. 

A forest LX yields a harvest or consumption c(a), which is given by 

c(a)= i a(s) R(s). (2.2) 
s=O 

Now, given a forest a, at time t, t 2 0, it is possible to move to a new 
forest at time t + 1. The set of possible new forests depends, of course, on 
the existing forest at, and this point-set mapping will be denoted by 4. It 
is given by the following: 

d(a) = {a’ E A ) there exist nonnegative reals E(O), . . . . E(T) with 

a’(s + 1) = a(s) - E(S), s = 0, . . . . T- 1, E(T) = a(T), 

and a’(O) = C,‘=, E(S)}. (2.3) 

The interpretation of &a) is that between any two periods, trees of age 
s grow to the age of s+ 1. Of course, all trees of age T are felled, while 
some, none, or all of the other trees may be felled. The number E(S) denotes 
the land originally devoted to age s trees which has now been cleared. All 
the cleared land is then planted with age zero trees. 
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Given an initial forest c(, a (feasible) program (cl,); from CI is a 
sequence such that 

a() = a and a,, 1 E&a,)? t>O (2.4) 

The corresponding consumption program is the sequence (c, ),“, where 

c* = 4%) for all t 3 0 (2.5) 

Now we describe preferences. We assume that there is a one-period 
utility function u defined on current consumption, and that the future is 
discounted by some discount factor 6 E (0, 1). We will assume further that 
u is increasing, concave, continuous on ‘S+ , and twice continuously 
differentiable on ‘3 + + . 

The problem of forest management is: given an initial forest CI, to choose 
a feasible program ( CI, ) 0” to solve 

max f 6’u(c,). 
l=O 

(2.6) 

Given an initial forest CI, a feasible program (a,)? is optimal if it solves 
(2.6). 

A program (t1,): is stationary if c1,+, = CI, for all t. It is easy to see that 
the set of forests that can be attained as outcomes on stationary programs 
is completely characterized by the condition c( E d(t~), or equivalently by the 
set 

S= {a E A 1 a(s) 2 a(s + 1) for all s = 0, . . . . T- l}. (2.7) 

A stationary optimal program is a stationary program from some initial 
forest a E S which is also optimal. A stationary optimal forest is a forest that 
can prevail along some stationary optimal program. 

In this paper, we explore some answers to the following two questions: 

(1) Is it possible to provide an exact characterization of the set of 
stationary optimal forests? 

The answer to (1) will provide some insight into the dynamics of forest 
management, but is lacking in the following sense. The initial forest is 
historically given, and there is no reason to suppose that it will be a 
stationary optimal forest. Generally, then, the forests along an optimal 
program will vary with time. However, in a manner perfectly analogous to 
turnpike theory in optimal growth models, one can ask: 

(2) From any initial forest ao, does an optimal program (a,) exhibit 
a sequence of forests that “converge” to a stationary optimal forest, as time 
goes to infinity? 

The remaining sections are devoted to these issues. 
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We end this section with some remarks on the orchards model, which 
amplify some points raised in the introduction to this paper. 

It should be clear that the orchards model serves as a canonical example 
of frameworks involving “point inputs” and “flow outputs.” A tree can 
certainly be equated to a machine, which yields a flow of net outputs. The 
questions here then translate into issues dealing with the optimal age 
composition of machines. One caveat should be noted, however, in partial 
equilibrium applications. Our model assumes that there is no “capital 
market,” so that intertemporal fluctuations in consumption cannot always 
be fully smoothed out. If there is a capital market, however, the reader will 
easily note that this corresponds to the case of a linear utility function, 
which is fully analyzed and solved in Section 4. 

Note, however, that our exercise keeps fixed the total stock of machines. 
We focus on the intertemporal behavior of the composition of vintages. For 
a brief sketch of a generalization, see Section 6. It should also be clear that 
the orchards model can be placed in the general framework of optimal 
growth theory (e.g., that used in McKenzie [9]). The problem is that the 
standard assumptions which are made in that general framework are 
simply not satisfied here. Therefore, the results from that framework cannot 
be directly applied, and the particular nuances of this model need to be 
exploited. 

3. THE SINGLE TREE PROBLEM: A PRELUDE TO THE MAIN EXERCISE 

Consider the optimal management of a single tree, with respect to a 
sequence of cutting times, when the utility function is linear. That is, we 
take as our objective the maximization of 

with respect to a sequence of cutting times (X,, X2, . ..). where Xi> 1 
denotes the number of periods the ith installed tree is allowed to exist. 

For the later development of our model, it is essential to characterize the 
optimal solution to this exercise. This is done in 

PROPOSITION 3.1. Let the initial tree be of age z, where 0 d 7 d T. There 
exist two integers N, and N, with N,, N, < T and Q <N, <N, <N, + 1, 
such that the set of optimal cutting sequences is given precisely by those 
sequences which allow tree i, i >, 2, to exist for N, or N, periods, and tree 1 
to exist for max(O, N - t) periods, where N = N, or N,. 
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Moreover, N, and N, form the set of solutions to 

(3.1) 

The solutions N, and N, will play a critical role in the rest of the paper. 

4. FOREST MANAGEMENT: LINEAR UTILITY FUNCTIONS 

The following proposition completely characterizes the set of optimal 
programs from any initial forest ~1. 

PROPOSITION 4.1. If u is linear then given an initial forest u, a program 
(cc,) is optimal if and only if 

(i) g,(s)=0 for all s> N,, and each t > 1 

(ii) for all t 2 0, tit+, is attained from cx, only by cutting down some 
or all trees of age N,, and all trees of age N, or more. 

Proposition 4.1 characterizes what might be called the Faustmann solu- 
tion to the forest management problem (Faustmann [7]). Initially, all trees 
of age N, or greater are cut down (and perhaps some or all of age N, as 
well). Thereafter, trees are never permitted to grow beyond the age of N,, 
and are only cut at the age of N, or N2. Given the linearity of the utility 
function and given Proposition 3.1, the reader should not find this result 
surprising at all. 

A program satisfying (i) and (ii) above will be referred to as a Faustmann 
program. Such programs will be of use in proving some of the results stated 
below. Note that if N, = N,, then for any LYE A, there is a unique 
Faustmann program from a. 

Proposition 4.1 allows us to completely characterize (with only a little 
more work) the set of stationary optimal forests, when the utility function 
is linear. Define the stationary forest a*(/?, y), for any /I, y 20 and 
p+y= 1; as 

p ~ y.y.00 
N,+l+N,+l’N,+l’ 

3 . . . . , (4.1) 

where the first N, + 1 entries in the above vector involve both /j and y, 
while the (N,-N,)th entries (if any) involve only y, and the remaining 
T-N, entries (if any) involve zeros. In the light of (2.7), it should be 
obvious that x*(/I, y) is a stationary forest. We may now state: 
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PROPOSITION 4.2. If utility is linear, then the set of stationary optimal 
forests is given by {a*(/?, y) : (b, y) 2 0 and /? + y = l}. 

As a corollary: if N, = N, z N, so that the solution to the one-tree 
problem has a unique cutting time N, then there is a unique stationary 
optimal forest, given by 

a* 
1 1 1 

= -~ -. 
N+l’N+l’““N+l’ 

0 ) . ..) 0 > . (4.2) 

N + I times 

Proposition 4.2 completely characterizes the set of stationary optimal 
forests, and therefore fully answers the first of our two questions in the 
linear case. Proposition 4.1 provides the answer to our second question. In 
the linear case, there is no tendency for optimal forests to converge to a 
stationary optimal forest if the initial forest is not a stationary optimal forest. 
For example, if N, = N2 = N, then optimal programs from any initial forest 
which is not a stationary optimal forest will exhibit, from time 1 onwards, 
a periodicity of length N + 1. 

5. FOREST MANAGEMENT: STRICTLY CONCAVE UTILITY FUNCTIONS 

5.1. Introductory Remarks 

This section is the heart of our paper. Throughout, we assume that the 
utility function is strictly concave, with U”(C) < 0 for all c > 0. In Sec- 
tion 5.2, we characterize the set of stationary optimal forests. In Section 5.3, 
we take up the question of convergence. We recall that the issue of 
existence of an optimal program is not serious here; existence can be 
readily established using standard compactnesscontinuity arguments. 

5.2. Stationary Optimal Forests 

It is of some interest that the set of stationary optimal forests is invariant 
with respect to the utility function, as long as it is concave. Of course, this 
property is not generally true of multisectoral growth models. Specifically, 
the main result of this section is 

PROPOSITION 5.1. If u is concave and twice continuously differentiable, 
then the set of stationary optimal forests is identical to that in the linear case; 
namely, it is 
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To compute the set of stationary optimal forests, then, the exact form of 
the utility function is quite irrelevant. All one needs are the growth charac- 
teristics of a single tree and the discount factor, and these may be used to 
solve problem (3.1). The solutions N, and N2 may then be used to generate 
the set of stationary optimal forests, according to the formula (4.1). 

The set of stationary optimal forests is therefore either uncountably 
infinite, or it is a singleton. Here is an example of a model with uncoun- 
tably many stationary optimal forests. 

EXAMPLE 5.1. T = 4. R(0) = 0, R(1) = 12, R(2) = 20, R(3) = 32, 
R(4)=% The discount factor 6 = 5. The solution to (3.1) yields N, = 3, 
Nz = 4. So, using Proposition 4.2, there are an uncountable number of 
stationary optimal forests. 

However, the reader can easily verify the truth of the following assertion, 
a proof of which is omitted: 

Given the growth pattern R, there are only a finite number of discount 
factors for which N, and N, are distinct. Consequently, for all but a finite 
number of discount factors, we have a unique stationary optimal forest. 

5.3. Convergence of Optimal Forests to a Stationary Optimal Forest 

Suppose that an initial forest which is not a stationary optimal forest is 
exogeneously given. Consider the sequence of forests generated along an 
optimal program. Does this sequence converge to a stationary optimal 
forest? 

Throughout, we shall concentrate on the case where there is a unique 
stationary optimal forest. An assumption to formally guarantee this will be 
made shortly. 

We first note that, in line with multisectoral capital theory models, such 
a result cannot be expected to hold in general for the discounted case. For 
an example in the context of optimal growth theory, see, for example, 
Sutherland [19]. The forest management problem is no different in this 
regard, as we shall presently see. 

In the literature an optimal growth, it has therefore been customary to 
study asymptotic turnpike properties; that is, turnpike properties when the 
discount factor is “close to” unity. In the present context, does there exist 
a discount factor S* E (0, l), such that if 1 > 6 > 6*, then every sequence of 
optimal forests converges to the stationary optimal forest? Under some 
“standard” assumptions in optimal growth theory, the answer is “yes” (see 
the references given in Section 1). 

These “standard’ assumptions concern themselves with certain smooth- 
ness and strict concavity properties of the utility function. It turns out that 
in the present model, these assumptions are not satisfied. This by itself, of 
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course, does not imply that the model lacks asymptotic turnpike properties, 
but only that the proofs followed in the literature are not directly 
applicable. However, for the “timber” model, Wan [20] has produced an 
ingenious example where there is a critical discount factor, 6* E (0, l), 
such that for every discount factor 1 > 6 2 6*, the model lacks turnpike 
properties. 

We first argue that this feature of nonconvergence holds good for the 
“orchards” model. Not only that, we provide a fairly general subclass of 
cases where there is neuer any convergence to the stationary optimal forest, 
regardless of the discount factor. This subclass of cases is obtained by 
making the additional assumption on the growth pattern of an individual 
tree that Q = T (recall (2.1)), or in other words, 

R(0)6R(l)< . <R(T), (5.1) 

with at least one strict inequality. 
Now define a forest BE A by 

for s=O, . . . . T. (5.2) 

It is easy to check that N,(6) = N,(6) = T whenever (5.1) holds, for all 
6, so that: 

Under (5.1), a” is the unique optimal stationary forest for every 
6 E (0, 1). 

We can now state an important non-convergence result: 

PROPOSITION 5.2. Under (5.1), there do not exist any a #a and any 
6 E (0, 1) such that if (CC,) is optimalfrom a (under 6), then a, -+ & as t -+ co. 

We reiterate that this result stands in striking contrast to the asymptotic 
stability theorems that have been obtained for optimal growth models. 
Nonconvergence to B is obtained for every discount factor (strictly less than 
unity) and for every initial forest (not equal to the stationary optimal 
forest). The reader can easily verify, using a continuity argument, that 
Proposition 5.2 implies that optimal programs from a # E do not converge at 
all to any a’ EA. 

However, while optimal programs fail to converge, this does not rule out 
the possibility that the “amplitude” of their oscillations may tend to 
“dampen” as the discount factor goes to unity. This is what we turn to 
next. 

The best result that one can hope to obtain in this regard is a 
“neighborhood turnpike theorem” [McKenzie [9]]. Such a result would 
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state that for any preassigned s-neighborhood of the stationary optimal 
forest, there exists a discount factor 6(s) E (0, 1) such that for any initial 
forest CL and any discount factor 6 E [B(E), l), the optimal program even- 
tually finds its way into the s-neighborhood of the stationary optimal forest, 
and never leaves it thereafter. It is, of course, obvious that a neighborhood 
turnpike theorem of this sort is obtainable under somewhat weaker condi- 
tions than the asymptotic results discussed earlier. Unfortunately, even the 
weakest known conditions for the general model of capital accumulation 
(see McKenzie [9]) are not satisfied in the present model. 

The main result of this section is the presentation of a necessary and suf- 
ficient condition on the parameters of the model such that a neighborhood 
turnpike theorem will hold. The condition is necessary in the sense that 
when it fails, one can find some initial forest and an E > 0 such that for no 
discount factor close enough to 1 does the optimal program permanently 
enter the a-neighborhood of the stationary optimal forest. And when the 
condition is satisfied, we should reiterate that it is not implied by the 
assumptions made for the general capital accumulation model. For exam- 
ple, the assumption of uniform strict concavity of the utility function in the 
“general” case is not satisfied here. So, while our technique of proof is 
inspired by the arguments of Bewley [4] and McKenzie [9], a substan- 
tially different line of reasoning is involved. 

We proceed in steps. First, we make an assumption that will guarantee 
that a stationary optimal forest is unique, even in the limiting “undis- 
counted” case. 

(A) There is a unique integer N that solves 

max XL=‘, R(s) 

A4 E (0, . I-) Mfl . 

The following lemma is a useful preparatory step. 

LEMMA 5.1. There is 4 E (0, 1) such that if 6 E [S, l), then N, = N, s 
N(6), sa)t. Moreover, N(6) = IV, where N is defined by (A). 

Lemma 5.1 states that if the discount factor is sufficiently close to unity, 
then the stationary optimal forest is unique and invariant to the discount 
factor. Let 

ct*= 
1 1 

N+1’...) -;o, . ..) 0 
N+l 

N + 1 times 

Then, given Lemma 5.1, for all 6 3 4, c1* is the unique stationary optimal 
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forest. Because we are concerned with limiting behaviour when 6 is suf- 
ficiently close to unity, we will simply suppose, without loss of generality, 
that 6 2 ~3, and consequently study “neighborhood convergence” to c(*. 

Now define an (N+ 1) x (N+ 1) matrix in the following way: let 
y(i) = R( i + 1) - R(i), for i = 0, . . . . N - 1, and .v( N) = R(0) - R(N). Define 
the “circulant matrix” 

(5.4) 

The basic turnpike result is the following: 

PROPOSITION 5.3. Suppose that Y is of rank N. Then for each E > 0, there 
is 6, E (0, 1) such that for every initial forest CI and each 6 2 6,, if (a,) is an 
optimal program, then 

lim sup [IN* - c(,II d E. 
I + cx 

(5.5) 

On the other hand, if Y is of rank less than N, then there exist E > 0 and 
an initial forest c( such that for all 6 close enough to 1, if (a,) is an optimal 
program, then 

lim inf I/E* - aJ > E. (5.6) 
I--r00 

Observe that while Y is an (N + 1) x (N + 1) matrix, its rank can never 
be equal to N + 1, because its row sums are zero. However, its possession 
of rank N is certainly generic in the space of all growth patterns 
(R(s)):=,. For example, a sufficient condition for Y to have rank N is the 
non-singularity of the circulant matrix 

R(0) R(1) ... R(N) 

R(1) R(2) ... R(O) 1. 
LR(N) R(O) . . R(N-i)J 

We conclude, therefore, that a neighborhood turnpike result is typical of 
the point-input, flow-output capital theory framework. However, no con- 
vergence result can be expected for any discount factor 6 strictly less than 
unity. This is in sharp contrast to the standard frameworks of optimal 
growth theory where “asymptotic turnpike” results have been obtained. 
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6. REMARKS ON THE VINTAGE CAPITAL INTERPRETATION' 

At a number of points in the exposition, we have alerted the reader to 
the obvious links between our exercise and a vintage capital framework. An 
unsatisfactory component of the exercise is the fixity of the land stock, 
which has no comfortable interpretation in the context of vintage capital 
theory, except perhaps as an inflexible “space” constraint. Nevertheless, it 
served as a useful device for focusing on issues of composition, and points 
the way towards a natural generalization. 

Consider an extension of the model, where, at a cost to current con- 
sumption, the number of new trees installed is a choice variable which is 
not limited by the available free land from “felling.” In such a model, one 
might focus on two state variables, The first is the vector of age co~~posi- 
tion, LX, just as it was present in our exercise. The second is the total stock, 
a new variable. To capture the effect of varying returns to scale, the return 
from each machine at each date must now be viewed as functions of the 
stock. 

At this stage, all we can offer is speculation about the intertemporal 
behaviour of such a model. But it is a reasonable conjecture that if returns 
to scale are decreasing, the stock variable would converge to a steady state 
(even in the discounted model, because there is a single output), while the 
age composition would continue to fluctuate in the manner we have 
described. 

7. PROOFS 

Proof of Proposition 3.1. First consider the case where r = 0. 
Define N* as a solution to the following maximization problem: 

max [l -aNfl 1-l [; R(s)6” . 
O<N<T x=0 1 

Clearly N* exists, though not necessarily uniquely. 
If N* > 0, we obtain 

R(s)@ <Cl-@‘-I 1 I-’ [ : R(s) d”], (7.1) 
S=O 

’ These suggestions for an extension owe much to discussions with Aloisio Araujo and to 
comments by an anonymous referee. In this connection, we would like to draw the reader’s 
attention to the recent work on the choice of optimal capital vintages by Benhabib and 
Rustichini [3]. We became aware of their work after our paper was largely completed. While 
there are obviously several points of overlap between their paper and ours, a complete 
comparison of the models and results of the two papers will not be attempted here. 
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which yields, after some manipulation, 

N---l 

c [R(N*) - R(s)] 6” > 0. 
S=O 

Also, if N* < T, we get 

(7.2) 

N’f I 
[l -(fjN’f? ]-’ c R(s)6” <[l-h”*+* 

3 = 0 1 1-l [5to R(s) 6’1 (7.3) 

which yields, after some manipulation, 

5go [R(N*+ 1)-R(s)] 6”<0. (7.4) 

First we show that N* > Q. If not, R(Q) 2 R(N* + 1) Z R(s) for all s = 0, 
. . . . N*, with strict inequality for some s. This yields C:‘[R(N* + 1) - 
R(s)] 6”> 0, contradicting (7.4). Now we show that N* can take on at 
most two adjoining values. Suppose not. Then there are N’ and N” with 
N” > N’ + 1 and (7.2) and (7.4) satisfied, respectively, for N* = N’ and 
N* = N”. We have 

.Go CWN”) - R(s)1 6” 

N,‘-2 N”-I 

= 1 [R(N”-l)- R(s)] 6” + 1 [R(N”)- R(N”- 1 )I 6” 
s=o s=O 

NO-2 

= 1 [R(N”- 1)-R(s)] 6”+g [R(N”)-R(N”- 1)-j 
3=0 

= ; [R(N’+~)-R(s)]~“+~;~~;+*[R(N’+~)-R(N’+~)] 
S=O 

+ ... +!f$- [R(N”)-R(N”- l)]. (7.5) 

Note that N’ 2 Q, by the same argument made for N*. So for all M> 
M’ > N’, R(M) < R(M’), and therefore 

$$ [R(M)-R(M- l)]<O. (7.6) 
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But the left-hand side of (7.5) is non-negative and so together with (7.6) we 

get 

; CR(N’+ 1)-R(s)] 6”>0: 

contradicting (7.4). 
This proves that N* can take at most two values, N, and N,, with Q d 

N,dNzdN1+1. 
Next, we prove that any cutting sequence (A’,) with X, = N, or N, has 

the same value and any other cutting sequence has strictly smaller value. 
For any (X,), the total value obtained, V((X,)), is given by 

V((X,))= z R(s)s”+s”‘+’ 
s = 0 [,4 R(s) 6’1 

+~~1+~~+2[,~~oR(s)6’]+ . . . 

<[l--S N*+‘]-’ [E R(s)6”] ((1 -,x1+‘) 
0 

(with strict inequality if any Xi # N, or N,, and with equality if all X, = N, 
or N2). 

But the term in the curly brackets equals unity because 6” -+ 0 as n --) co. 
Hence, 

with equality if and only if Xi = N, or Nz for all i. This completes the proof 
in the case r = 0. 

Finally consider the general case where 0 <r 6 T. We divide this into 
two cases: 

(A) z,<N,: The proposition here immediately follows from the 
Principle of Optimality and the previous argument. 

(B) z>N,: Here we need only show that X, = 1 (that Xi = N, or 
N,, i 3 2, follows from the arguments above). Define a sequence X“ by 
X, = k, and Xi = N, or N2, i 2 2. We are done if we show that V(X’) > 
V(Xk+‘). We have 



28 MITRA, RAY, AND ROY 

k-l 

V(Xk) = 1 S”R(T + s) + skV* 
S=O 

(7.8) 

V(XkG+I)= i sSR(T+s)+sk+‘V*, (7.9) 
x=0 

where V* is defined in (7.7) above. Subtracting (7.8) from (7.9) yields 

V(Xktl) - V(X”) = dkR(r +k) - dk( 1 - 6) V*, 

so 

s-k[V(Xk+l )- V(Xk)](l-P”) 

=(l-SN2+')R(5+k)-(l-6) z R(S)& 
A=0 

=(1-d) 2 [R(T+~)-R(s)]~’ 
s = 0 

<(l-6) 2 [R(N,+ l)- R(s)] 6” 
S=O 

This completes the proof. Q.E.D. 

Proof of Proposition 4.1. If utility is linear, we can take it to be of the 
form u(c) = c. Consider any program (or,) from some initial forest a. Then 

f G’u(c(a,)) = f G’c(a,) = f 6’ ( i a,(s) R(s)). 
t=0 t=0 1=0 S=O 

Let J denote the unit plot of land, and let E,(s) be the (measurable) 
subset of J with trees of age s at time t. Clearly, a,(s) = p(E,(s)), where p 
is Lebesgue measure. Let xE be the characteristic function of E. Now 

< s Ku, h(o), (7.10) I 
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where VT,,, is the maximum return obtainable from the one-tree problem 
with initial age z, and where z(o) is the age of a tree “at point 0” at time 
zero. 

Using Proposition 3.1, it is now easy to check that the last equality in 
(7.10) can hold with equality if and only if (tl,) satisfies the conditions of 
Proposition 4.1. Q.E.D. 

Proof of Proposition 4.2. It is immediate from Proposition 4.1 that 
all stationary forests of the form cc*@, y), where j?, y b 0 and B + y = 1, 
constitute stationary optimal programs. 

Now we will show that this is exactfy the set of stationary optimal 
forests. Pick any cc; suppose that it is a stationary optimal forest. Then, by 
Proposition 4.1, 

a(s)=a(s+ 1) for all s = 0, . . . . N, - 1 

a(N, + l)Ga(N,) 
(7.11) 

a(s) = a(s + 1) for all s = N, + 1, . . . . N, - 1 

a(s) = 0 foralls>N,. 

Using (7.11) and the fact that z:,?=, a(s) = 1, we have, defining (I = 
C4N, ) - 4NI + 1)1/W, ), that 

a(O)[N, + l] + (1 -a) cc(O)(N, -N,) = 1 

or 

1 
a(o)=(N,+l)+(l-~)(N,-N,)’ 

(7.12) 

Consequently, using (7.12) and the fact that O<CJ< 1, we have 

so that there exist (j, y) > 0 with fi + y = 1 such that 

a(o)=a(l)= . . . =a(N,)=&+-&. 
I 2 

It is now easy to check that LX(S) = y/(N, + 1) for all s = N, + 1, ,.., N,, and 
this completes the proof. Q.E.D. 

Proof of Proposition 5.1. This proof is along the lines of Mitra and Wan 
[ 111. First we show that if X* is a stationary optimal forest under a linear 
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utility function, then it is a stationary optimal forest under a concave utility 
function, say u. Let ~(a*) = c*. For any feasible program (~1,) from LX*, we 
have 

where the first inequality uses the concavity of u and the last inequality 
exploits the fact that u* is an optimal stationary forest for a linear utility 
function. 

Now we show that if CL* is an optimal stationary forest under a concave 
C2 utility function, then it is so for a linear utility function. Suppose this 
is not true. Then there are a concave C2 utility function u, a discount factor 
6 E (0, l), and some c(* which is a stationary optimal forest under u, but at 
the same time there is a program (cI’) from c1* with 

f G’c(u,) > &. 
f=O 

(7.13) 

On the other hand, because CI* is an optimal stationary forest under u, 

Pick f E (0, 1). For any 0 < A < 2, note that the program (&,) given by 
oi,=&+(l -A)@*, t 20, is a feasible program from c1*. Let c(GI,)=c~, 
c(it)=tf, for t>O. Now 

f d’[u(P,) - u(c*)] 
t=0 

= f 6’ ju’(c*)[t, - c*, + u”(r,) (?, y*j2} 
t=0 

= A u’(c*) 5 6’(c,-c*) +I 2 SW’((,) (cg-2c*)2] 

i 

(7.15) 
t-0 t=O 

for some 5, lying between 2, and c *. Note that E,=Ic,+(l-A)c*> 
(1 -R)c*, so that for all t, <,a min{E,, c*} 2 (1 - 1) c* > 0. Using the fact 
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that u”( .) is continuous on % + + and that (1 - 1) c* < 5, <maxi G iGr R(i), 
we know that there exists K > --co such that 

f &“((,) (” ---*I2 >, K, 
t=O 

(7.16) 

where the inequality in (7.16) holds uniformly in A. E (0, 11. Consequently, 
using (7.13), (7.15), and (7.16), we see that for 1” small enough but positive, 

f #[u(?,) - u(c*)] > 0, 
r=0 

which contradicts the fact that Q* is a stationary optimal forest under u. 
Q.E.D. 

Proof of Proposition 5.2. We will use the following result. 

CLAIM. Suppose that CI E A is of the form a(s) = 1 for some 0 < s < T. Let 
(oi,> be the Faustmann program from cq and (a,> be any other program 
with al(O)= 1. Then there is @(S)E (0, 1) such that 

O(S) f S’c(ci,) > g S’c(a,). (7.17) 
r=0 t=0 

Proof. Fix any SE (0, . . . . T - 11, and CL E A accordingly as given by the 
claim. Let (c(;) be the program from o! such that (i) a’,(O) = 1 and 
(ii) (4>,, I is a Faustmann program from a;. Then, just as in Proposi- 
tion 4.1, 

x1 xc 
c S’c(d) b (go S’C(‘!x,), 

I=0 

(7.18) 

where (cr,) is any program from a satisfying c( r(O) = 1. Moreover, by 
Proposition 4.1 and using the fact that N, (6) = N2(b) = T, we have, for the 
Faustmann program, 

Because there are only a finite number of programs of the form (mi) 
(one for each SE (0, . . . . T- 1)) there exists @(B)E (0, 1) (possibly 
depending on 6) such that 

O(S) -f S’c(oi,)> z S’c(&). 
1=0 r=O 

Combining (7.18) and (7.20), we have established the claim. 
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Now we turn to the main argument. Suppose the proposition is false. 
Then there are 6 E (0,l) and some Cc # a* such that for some optimal 
program (cI,) from Cr, 01, + a* as t --) co. 

Observe that there exists E > 0 with the following properties: 

(i) IlCr-cz*I/ >E (7.21) 

(ii) there exist _c, C> 0, and q > 0, with _c - v > 0, such that if 
((a--cr*ll GE, then 

_c<c(a)dC (7.22) 

u’(C + r]) I=- u’(_c - q) O(6), (7.23) 

where O(6) is given by (7.17) above. 

Now note that if ~1, + c1* as t + co, there must exist some date M> 0 
such that 

@A4+1(j+ l)<aIGI(s^) for some s^ # T (7.24) 

II%--*II <& for all t B M, (7.25) 

To see this, it suffices to look at the first date t when (~1,) permanently 
“enters” the s-neighborhood of c1 *. By (7.21), t > 1. For ME t- 1, (7.24) 
and (7.25) must hold. 

Without loss of generality, (by the Principle of Optimality) take M = 0. 
So, by (7.25), _c < ~(a,) < E for all t B 0. Now we can find A> 0 such that 

1<a,(s’)-lx,@+ 1) (7.26) 

and 

r-rl~c(a,)-ilR(T)~c(a,)+AR(T)~E+rl for all t 3 0 (7.27) 

Now, it can be easily verified that because of our choice of A in (7.26), 
there exist two initial stocks U’ E A and ~8’ E A and two programs (c(i), 
(elf ) from 01’ and CL”, respectively, such that 

cr,=(l-n)a;+lla:, t>O (7.28) 

a”(.?) = 1, a”(s) = 0 for s#s^ (7.29) 

a;‘(O) = 1, a;I(s) = 0 for s#O. (7.30) 

These follow from the fact that 1 can be identified with the measure of 
a subplot which only possessed age s^ trees that were all cut down at date 
0 (see (7.24) and (7.26)). On this subplot, the initial forest (a”) consisted 
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of only age s^ trees. The forest a’ may be identified with the initial forest on 
the remainder of the land. 

Let (oi,) be the Faustmann program from CL”. Define a program (a:) 
from ji by 

a: = (1 - 2) u: + ;loi,, t 2 0. (7.31) 

Let CT = c(cr,*), c,= c(c(,), and c: = ~(a;), t 20. Note that by virtue of 
(7.27 L 

r-q<(1-;1)c(a:)<F+q (7.32) 

_c-?eC(C(:)<E+q. (7.33) 

Now, for t > 1, 

u(cT) - U((1 - 2) c;) 3 U’(CT) AC(&) 

b u’(C + q) k(oi,) 

> u’(C- q) O(6) Ilc(oi,), (7.34) 

using (7.31) (7.33), and (7.23). At the same time, for t 2 1, 

u(c,) - u((l - 2) c:) d u’(( 1 - 1) c;) iC(cq) 

6 u’(C- 9) k(c(), (7.35) 

using (7.28) and (7.32). 
Combining (7.34) and (7.35), we have, for t > 1, 

u(cF) - u(c,) > u’(C- v) A{@(6) c(oi,) - c(c(,}, (7.36) 

while c$ = cO. Consequently, 

f S’{u(c.?)- u(c,,} > u’(C-r]) A O(6) f LYc(di,)- f 6’c(a;l) 
I=0 r=0 ,=O 1 > 0, 

using (7.17). This contradicts the supposition that (a,) was optimal. 
Q.E.D. 

Proof of Lemma 5.1. Consider the maximization problem (3.1), nor- 
malized by the discount factor and augmented to include the case 6 = 1, 

max S(6, M), 
OGMGT 

(7.37) 
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f. R(s) 6” for 8~ [0, 1) 

s(6, M) = c,“= 0 R(s) 
(7.38) 

M+l 
for 6= 1. 

By assumption (A), there is E > 0, such that for all 0 < M < T, M # N, 
S( 1, M) < S( 1, N) - 3s. Now, S(6, M) is continuous in 6 on [0, i ] for each 
0 < M < T. Consequently, for each 0 < M < T, there is 0 < 6, < 1 such that 
S,~6<1implies(S(6,M)-S(l,M)~~~.Define~=max{6,,...,6~};then 
0<_6<1. Furthermore, for 6<6<1, we have S(6,M)<S(l,M)+.s< 
S( 1, N) - 2s d S(6, N) - E. Thus, for all 6 E [fi, 11, N is the unique solution 
of (7.37). Q.E.D. 

Proof of Proposition 5.3. We will break up the long proof of this 
proposition into a series of steps and lemmas. First, let 6 be given by 
Lemma 5.1. 

Throughout this proof, unless otherwise stated, 6 will be taken to be in the 
interval [_S, 1). 

Define c* s ~(a*) and 

W(GI, 6) = max f G’[u(c(U,)) - u(c*)]. 
<w>;ao=~ t=fJ 

(7.39) 

LEMMA 7.1. There exists a real-valued function B(u) > B > --CO for all 
a E A, such that B(U) -+ 0 as a + a*, with 

W(cr, 6) 2 B(a) for all 6. (7.40) 

Proof Fix c1 E A. Define 

g= min 4s). (7.41) 
SE {O, . . . . NJ 

Clearly, _a < l/(N+ l), with equality holding iff u = a*. Let 

A=g(N+ I)< 1. (7.42) 

Then there exists CL’ E A such that 

cr=icl*+(l-jl)cr’. (7.43) 

Define a program from CL’ in the following way: 
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ah = a’; 

for t = 1, . . . . N, 
r-l 1 

a;= I--.---- - 
( 

1 
-; 0, . . . . 0 

N+l’N+l’““N+l > 
; (7.44) 

f - I times 

a: = a*, t>,N+ 1. 

Clearly, (a;) is feasible from a’. Now define a program (a,) from a by 

a,=Ia*+(l-A)aj, ? k 0. (7.45) 

Note that c(a,) = c*, for t Z N + 1. And for t = 0, . . . . N, 

c(a,) = Ic* + (1 - A) c(a:) 

>g(N+l)c*. (7.46) 

Therefore, 

Wa, 6) b f G’[u(c(a,)) - u(c*)] 
1=0 

Cc 

2 1 G’[u(tx(N+ 1) c*) - u(c*)]. (7.47) 

Define 

B(a) = f G’[u(g(N+ 1) c*)- u(c*)]. 
t=0 

Noting that g + l/(N + 1) as a + a*, it is easy to see that B(a) has all the 
required properties. Q.E.D. 

We start the main argument by constructing a suitable Lyapunov func- 
tion. This will be done by first establishing a “price support property” of 
stationary optimal forests. To this end, we define a “price vector” ps E % I+ 
in the following way: first, define qs E ‘Sir+ + , for 6 E [S, l), by 

l-6” 
qds)= l +pp -yv+l] r=O 

f 6’R(s) -; “C’ 6’R(r) 

r=O 

for s = 1, . . . . N (7.48) 

q,(N+l)=l-s forsome l>&>O 

48(s) = 1 for s>N+l. 
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For 6 = 1, define 

q,(N+l)-1-E 

q,(s) = 1 for s>N+l 

Now define for 6 E [_S, 11 

P&) = u’(c*) cl&) for s = 0, . . . . T (7.49) 

and 

i 

l-6 E 6’R(z)-(I-6) 

w(6) 3 
1 -vtl r=O 

if s~[& 1) 

Cko R(r) 
(7.50) 

N+l 
if 6=1. 

LEMMA 7.2. The vector qa has the following properties for E small enough 
but positive: 

(i) R(N)-q,(N)+6q,(0)=R(s)-q,(s)+6gs(s+1) 
= w(d), s = 0, . . . . N - 1 

(ii) qb(0) > qa(N + 1) 

(iii) 4ds)’ 4dO) for s = 1, . . . . N 

(iv) R(s) - q&l + 6 max{qdO), qa(s+ 1)) <w(d) 

for s= N+ 1, ..,, T- 1 

R(T) - qa( T) + Q,(O) < w(6). 

(7.51) 

(7.52) 

(7.53) 

(7.54) 

The value of E can be chosen independently of the discount factor. 

ProojI We show (i), (ii), and (iii) for 6 < 1. The details for these cases 
at 6 = 1 are easily worked out. Subsequently, we prove (iv). 

IfN>l,pickanysE(l,..., N-l}.Then, 
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R(s) - 46(S) + &I& + 1) 

i 
1-S” 

=W)- 1 +6’[1 -6Nf1, r=O f S’R(z) -$ ‘c’ cm(r)] 

r=O 

+ s+ 
[ 

1 -p+’ 

5 S’R(z) -; i 6’R(T)] 
CV[l-GN+‘] r=O r=O 

= -(l-6)+ 1 i,;+r r 6’R(z)=w(6). (7.55) 
?=O 

For s = 0, we have 

R(O)-q,(O)+ 6q,(l)= R(O)-1 + 6-t '--' f ~'R(T)-R(0) 
Cl -P+ll r=O 1 

= w(S). 

To complete the proof of (i), note finally that 

R(N) - q,(N) + h,(O) 

l-SN 
i 6'R(r)-~N~1d'R(i)]+6=w(6) 

S”[l -Vf’] r=O 
?=O 

Part (ii) is obvious from the fact that F > 0. To establish (iii), note that 
by C-41, 

C:z”=, ~‘R(T) > C::; ~‘R(T) 
I-&“+ f-6” 

for all 1 < s Q N. (7.56) 

Using (7.56) in (7.48) completes the argument. 
Finally, we establish (iv). To do so, we first show that we can obtain 

1 > 2 > 0 such that 

R(s)dE^[w(6)+( l-S)] (7.57) 

for all s = N+ 1, . . . . T and all 6 E [IS, 13. By Proposition 3.1, it suffices to 
show this for s = N + 1, because N 2 Q and so R(N + 1) > R(s) for all 
s > N + 1. Now, using Lemma 5.1, we have for 6 E (6, 1 ), 

or 

C:-+; @R(s) < Cfco 6”R(s) 
1 -@‘f* 1 --@“+I 

GN+'R(N+ 1) 
< f S”R(s) 

1 1 
1-6N+2 

s=O 
l-~N+l-l-~N+* 1 



38 MITRA, RAY, AND ROY 

Therefore, 

R(N+l)<l-y+’ l -s 5 S”R(s). 
S=O 

Note also that at 6 = 1, by assumption (A), 

R(N+ l)<~~~(? 

Combining these two inequalities with the definition of w(6), we have 

R(N+l)<w(6)+(1-6) for all 6 E [_S, 11. (7.58) 

Since w(6), defined for 6 E [_S, 11, is continuous in its domain, we can find 
1 > E  ̂> 0 such that (7.57) holds for s = N+ 1 and for all 6 E [& 11. 

Now pick E = g//2. We claim that for such E, (iv) holds (independently 
of the value of 6). To check this, first note that, for all 6 E [_S, 11, if 
s=N+2, . . . . T- 1, 

R(s) - qs(s) + 6 max(q,(O), q6(s + 1)) = R(s) - 1 + 6 < w(6), 

using (7.57). Also, if T> N+ 1, (7.57) yields 

R(T)-q,(T)+dq,(O)=R(T)-1+6<w(6) 

by the same argument; and finally (if T> N+ l), 

R(N+l)-q,(N+l)+~max(qs(O),qa(N+2)) 

=R(N+l)-1+&+6 

< w(Q, 

using (7.57). (If T= N+ 1, use a similar argument.) 
This completes the proof. Q.E.D. 

LEMMA 7.3. For all 01, IX’ E A such that u’ E &a), 

u(c*) - psa* + Gp,a* > #(c(a)) -ppsa + 6paa’ (7.59) 

with strict inequality holding in (7.59) whenever at least one of the following 
holds: 

(a) cz’(s + 1) <a(s) for some s # N 

(b) cr’(N+ 1) >O 

Cc) 4s) ‘0 for some s > N 

(d) c* # c(u.). 

(7.60) 
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Proof Pick any a, a’ E A, with a’ E &a). Note that 

c(a) - q6a + dq,a’ 

= i. 4s) R(s) -i. 46(s) a(s) + 6 $ 4&) a’(s) 
x=0 

N-l 

= *To a(s)lINd - 4ds) + hh + 1 )I 

+ a(WNN) - 4dN + h,(O)1 

+ 6 ? ss(s)Ca’(s) - 4s - 1 )I + ahq,(O)[a’(O) -a(N)] 
S=l 

T-1 

+ C a(s)CNs)- q&l +6 max{q&+ 11, q6(0)}1 

+a(T)CR(T)-q,(T)+6q,(O)l+ i a’(s) @As) 
s=N+l 

- C a(s) 6 max{q&+ l), 4dO)) -a(T) h,(O) 
s=N+I 

r N 

<w(S)+6 a’(O)+ C (a’(s)-a($ 
1 s= I 

- 1)) 

+ ) =z+ z (a’(s) - 4s - 1 )I - a(N )+a’(N+ 1)-a(T) 
I 

, (7.61) 

where the inequality above is derived from the following: Lemma 7.2, parts 
(i), (ii), (iii), and (iv), and the fact that qa(N+ 1) = 1 -E, qa(0) = 1, 
qb(s) = 1 for s 3 N+ 2. The reader is invited to check, using the strict 
inequalities of Lemma 7.2, that the above weak inequality will hold strictly 
whenever part (a), (b), or (c) of the current lemma holds. 

But now note that the term in the square brackets of (7.61) exactly 
equals zero. So 

c(a) - q&a + 6q,a’ d w(6) for any a, a’ E A such that a’ E &a). 

Furthermore, it is easy to check using Lemma 7.2, part (i), that 

c* - q6a* + Gq,a* = w(d). 

so 

c(a) - qsa + 6q,(a’) <c* -qaa* + Sq,a* 
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or 

(7.62) 

Now observe that by strict concavity of U, 

u(c(c()) - u(c*) B u’(c*)(c(M) - c*), (7.63) 

with strict inequality holding if part (d) of the current lemma holds. 
Combining (7.62) and (7.63), and using the definition of p6 given in 

(7.49), we are done. Q.E.D. 

Now define, for any CI, a’ E A with ~1’ E &c(), and for 6 E [S, 11, 

I(& a’, 6) = [u(c*) - pact* + sp~a*] - [u(c(cr)) - psu + Sp&]. (7.64) 

Note that l(a, cz’, 6) 20, with strict inequality holding whenever (a, cr’) 
satisfy at least one of conditions (a), (b), (c), or (d) of Lemma 7.3. 

For any program (cr, ) from CI~, define, for each r > 0 and 6 E [S, 1 ), 

LEMMA 7.4. For every a E A, every discount factor 6 E @, l), and each 
optimal program (c(,) (under b) from a, 

L,((a,), 6) d F-c co, s 2 0. (7.66) 

Moreover, there exists a function f: R + + R + such that f (E) + 0 as E -+ 0, 
with the property that 

L,((4)> 4Gf(E)Y s 2 0, (7.67) 

whenever (a,> is an optimal program under 6 from some a E A and 
Ila,--*ll GE. 

Proof It clearly s&ices to establish these results for L,. For any a E A, 
and 6 E [S, l), and any optimal program (IX,) from GI, it is easy to see that 

Lo(<%), 6) f f c4c*) - MC(%))1 - Paa* + PaM 
t=O 

=G -B(a) + ps(cr - a*) 

d -B(a) + lIPall lla - a. (7.68) 
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Note that supg, ra,i, lI~~\l < 00, and so, using Lemma 7.1, (7.66) is true. 
Now defining 

f(c)= sup C-B(a)+ { sup IM) Ib-~*lll (7.69) 
112--1*ll GE 6tC&l] 

and again using Lemma 7.1, it is easy to check that f(E) has all the required 
properties and that (7.67) is true. Q.E.D. 

LEMMA 7.5. Suppose that Y is of rank N. Then there exists a real valued 
function g: %++ -+%++ such that if /ICI - c1* II 2 E, for some E > 0, then for 
every discount factor 6 E [S, 1) and every program (CC, ) from ~1, 

T-l 
c 4%%+1,~)>g(E)>O. (7.70) 

r=O 

Proox It suffices to show that for every cx such that u # a*, and for 
every program (c(,) from 01, there exists tE (0, 1, . . . . T- l} such that 

4% a,+13 a)>0 (7.71) 

Let us first prove this claim. Suppose (7.71) is true but not (7.70). Then 
for some E >O, there exist a sequence 6,, a sequence CY~ such that 
IIak - chill b E, and a sequence of programs (CC!) from mk such that 

T-l 

lim C r(af, c(:+ i, 6,) = 0. 
k+m ,=o 

(7.72) 

Without loss of generality we can suppose that 6k + 6 E l-4, l] and that 
CC~, (cc:), converge pointwise to some initial forest and program, tl, (a,). 
Note that (CC,) is feasible from CC. The reader can also check, using the 
definition of q for 6 < 1 and for 6 = 1, and the definition of Z, that Z(a, GI’, 6) 
is a continuous function on A x A x [S, 11. So, passing to the limit and 
using (7.72) 

T-l 

2 Qf&,%+1,6)=0 
1=0 

which means that 

4a,, a,+,, 6)=0 for all t E (0, . . . . T- l}. (7.73) 

But (7.73) contradicts (7.71), and this proves the claim. 
So we now establish (7.71). By Lemma 7.3, it suffices to prove that if 

c1 #LX* and (a,) is feasible from ~1, then there exists t E (0, . . . . T- 1 > such 
that one of the following obtains: 
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(a) a,+*(s+ l)<a(s) for some s # N 

(b) a,+,(N+l)>O 

(cl a,(s) > 0 for some s > N 
(7.74) 

(d) ~(a,) #c*. 

Suppose this is not true. Then, it can be checked that there exists a 
feasible program (CC,) from some a #a* such that 

c(a,) = c* 

a,(s) = 0 

for all t E (0, . . . . T) 

for all s > N, for t E { 1, . . . . T} 

(7.75) 

(7.76) 

a, + 1(s + 1) = a,(s) 
a,+ I(O) = a,(N) 

for s = 0, . . . . N - 1 
t E (0, . ..) T}. (7.77) 

This implies that there exists a #a* such that 

a(O)R(O)+a(l)R(l)+ ‘.. +a(M)R(M)=c* 

a(M)R(O)+a(O)R(l)+ ... +a(M-l)R(M)=c* 
(7.78) 

a(l)R(O)+a(2)R(l)+ ... +a(O)R(M)=c*. 

In turn, (7.78) implies that 

Ya=O, (7.79) 

where Y is defined in (5.4). The set of all a’s satisfying (7.79) is, of course, 
the null space n(Y), and it is well known that 

dimn(Y)+rank(Y)=N+l. (7.80) 

If rank(Y) = N, it follows that 

dim n(Y) = 1. (7.81) 

Therefore all a’s satisfying (7.79) are scalar multiples of each other, and 
given the additional restriction a E A, it follows that there is a unique solu- 
tion to (7.79). But we know that a* is a solution to (7.79). This contradicts 
the supposition that a # a*, and proves the lemma. Q.E.D. 

The next two lemmas are much weaker variants of what we finally want 
to establish. The first (Lemma 7.6) essentially states a “maximum theorem” 
when the discount factor parametrically converges to one; its proof is not 
covered by any standard maximum theorem in the literature. The second 
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(Lemma 7.7) is a version of the well-known “visit lemma” (see Scheinkman 
[lS]) which states that for discount factors close enough to unity, an 
optimal program must “visit,” at some finite date, an s-neighborhood of the 
stationary optimal forest. 

LEMMA 7.6. Suppose that rank Y= N. Let ak be a sequence in A such 
that ak + a* as k + co. Let dk be a sequence of discount factors in [J, 1) 
such that ~3~ + 1 as k + co, and let (cr f > be a sequence of optimal programs 
under dk, from CY~. Then, for each t > 0, 

a+a* as k+cc. (7.82) 

Proof Suppose not. Then for some sequence (ak, 6,) + (cc*, l), with 
6, < 1, and for the corresponding sequence of optimal programs (cz:), we 
can suppose, without loss of generality, that 

where, for some t > 0, 

Let s be the first date such that ~1 s+ i # cx*. Clearly, because IX; = LYE for 
all k, and because xk + CI*, we have s > 0. It is easily seen that without loss 
of generality, we can regard s as equal to 0. 

Recall pa as defined by (7.48) and (7.49). Write pak E pk and c: E c(c$) 
for all k and t > 0. Using (7.64), we have, for all t > 0 and for all k, 

hall, a:, 13 6,) = cute*) - pka* + 6kpk~*l - [@f, - pka; + dkpkaf+ 11. 

Multiplying both sides by Si, and taking the infinite sum over all t, 

5 &&:, a;+ 1 , dk)= f hL[u(c*)-u(c:)]-ppk(a*-a:) 
1=0 r=0 

< -B(a$)-pk(a*-ai), (7.83) 

where B( . ) is given by Lemma 7.1. 
Now, by Lemma 7.1, B(cri) + 0 as k -+ co, because at + a*. Also, pk is 

bounded in k, so that 

lim sup C 6;l(a:, a:+ 1, 6,) d 0. (7.84) 
k-m t=0 

However, by our construction, there is E > 0 such that for all k suf- 
ficiently large, 

I/a:-a*11 >E. 
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Using Lemma 7.5, we have 

(7.85) 
I=1 

Therefore, using (7.85) and the fact that 6 B 4 for all t and that I B 0, we 
have, for all k, 

But (7.86) contradicts (7.84). Q.E.D. 

LEMMA 7.7. Suppose that rank Y= N. For each E > 0, there exists 
6~ [& 1) such that ifs E [$, 1 ), then for each initial forest a E A, and optimal 
program (a,) (under 6) from a, there exists T-C co such that 

(Ia*-a*IJ <&. (7.87) 

Prooj Let E > 0 be given. Pick s^ such that 

d&l >F 
1-p ’ 

(7.88) 

where g( .) is given by Lemma 7.5 and F is given by Lemma 7.4. Now sup- 
pose, on the contrary, that for some 6 2 $, there are CI E A and an optimal 
program (cI,) (under 6) such that IIa, - a* 11 2 E for all t Z 0. Then, using 
Lemma 7.5, 

(7.89) 
f=O 

But (7.89) and (7.88) together contradict (7.66). Q.E.D. 

Now we prove the more important part of Proposition 5.3. 

Proof of (5.5) in Proposition 5.3. We are given some E > 0. First, choose 
E>O and SE [& 1) such that 

CXEA, Ila - a*ll < 6 and (a, ) optimal for 6 2 S 



POINT-INPUT FLOW-OUTPUT CAPITAL THEORY 45 

mply that 

Il%--*ll <E for t=O, 1, . . . . T. (7.90) 

This is possible by Lemma 7.6. 
Now choose 6’~ [& 1) such that 

for 6B6’. (7.91) 

Next, pick E’ E (0, E) such that 

for 62~5~. (7.92) 

Now, pick E” E (0, E) and 6, E [So, 1) such that 

(i) 01 E A, (~1,) optimal for 6 2 6, implies that there exists T with 

~~C+---cL*~~ <El’; (7.93) 

(ii) ct~ A, JIc(---cI*II <E”, (a,) optimal for 6>,6, implies that 

/Ia1 - cI*ll <E’. (7.94) 

The statement (7.93) follows from Lemma 7.7, while (7.94) follows from 
Lemma 7.6. 

Finally, pick S* E [IS,, 1) such that 

( > $- 1 FT< g(d’). (7.95) 

We will prove that for S > 6* and for any a and optimal program (a,), 
under 6, 

lim sup IIa, - a*[1 <E. 
I-x 

(7.96) 

By virtue of (7.93), we may presume without loss of generality that the 
initial forest a satisfies lla - a*/( < cu. 

Define, for any feasible program (a,), and for any S, k with k 2 s, 

Next, define 

a@, k) - (a,, a,+ 1, . . . . ak). (7.97) 

d(a(s, k), a*) = .m/;“, /Ia, - a*ll. 
. . 

(7.98) 
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By virtue of (7.90), it suffices to prove that 

d(cr(t, t+ T), cr*)dE for all t > 0. (7.99) 

We now prove this claim, to complete the proof. Suppose, on the 
contrary, that (7.99) is false. Then there are some c1 E A with I/U- CI*JI <E, 
some 6 > 6*, and a first integer S such that 

d(cr(S, s+ T), a*) > E 

for the program (cI,) optimal from LY under 6. 
In other words, (/CC,- a*(( > E for all t = S, S+ 1, . . . . S+ T. Because 

IIcto-~*I) = JIc(--a*JI <d’<E, we have S> 1. 
Write I, = I(c(~, CI,+ r, 6) and L, = L,( (tl,), 6) for the program and 

discount factor in question. An easy computation reveals that 

SL ,+1-L,= -I,, for all r > 0 

so that 

L f+T  (7.100) 

Let K be the greatest time period not exceeding S such that 
lja, - u*ll CC”. Then, using (7.94) and the “principle of optimality,” 
IIN K+ r - CI* II < E’ < .F. So, if we define k to be the first integer such that 

(K+ l)+kTe (S, S+ 1, . . . . S+ T), 

we must have k 2 1. Now, for each i = 0, . . . . k - 1, we have 

L (K+- I)+li+ 117- -L tic+ 1>+ir 

< k-1 FT-g(d’)<O. 
( > 

(7.101) 

The second inequality in (7.101) follows from Lemma 7.4, and the fact that 
IJc(,--*II) 2~” for all SE (K+ 1, . . . . S+ T}, so that Lemma 7.5 may be 
applied. The last inequality follows from (7.95). 

Note also that because JIcz~+~ - c1*ll < E’, we have, by Lemma 7.4, 

L K+ 1 <f(O (7.102) 
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Combining (7.101) and (7.102), we get 

L (K+ 1,+kr<f(o. 

Now. 

(7.103) 

L (K+l)+(k+I)T -L (K+l)+kT 

( > 

r-1 

G ‘-1 c L(K+l,+kr+3 

T-l 

60 S=O 
-z. 4K+l)+ki-+s 

so that 

L ,nti,tltiw+ (K+l,+kr+ 

< fL) 

( > 
f- 1 F(T- l)- y l(K+l)+kT+s 

0 s=O 

7+ f-l F(T-1)-g(E) 
0 ( > 0 

< 0, (7.104) 

where the second inequality uses (7.103), Lemma 7.4, and the fact that 

lb rK+ 1j + kT- c1* (1 > E by definition of k, so that Lemma 7.5 may be applied. 
But (7.104) yields a contradiction, because by construction, L, > 0 for all 

t 2 0. Q.E.D. 

To complete the proof of Proposition 5.3 in the case where rank Y< N, 
we need a final lemma. 

LEMMA 7.8. Suppose that rank Y < N. Then there exists CI E A, with 
a#a*, such that 

R(O)a(O)+R(l)cr(l)+ ... +R(N)a(N)=c* 

R(N)a(O)+R(O)cr(l)+ ... +R(N-l)cr(N)=c* 
(7.105) 

R(l)cr(O)+R(2)cr(l)+ ... +R(O)a(N)=c*. 

Proof Suppose rank Y < N. Then, recalling the identity 

dimn(Y)+rank Y=N+l 

(see (7.80)), we have 

dim n( Y) B 2. (7.106) 
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We know already that a* Ed. Because of (7.106), there is j3 E n( Y) 
such that CL* and /I are linearly independent. Moreover, j? can be chosen so 
that 

: fi(i)=l. (7.107) 
i=O 

Because CX* % 0, the reader can easily check that there exists A E (0, 1) 
such that 

cr=[Aa*+(l-A)/I]EA. (7.108) 

Note that a # a*. Moreover, because a*, /I en(Y), we have 

Ya=O. (7.109) 

More explicitly, 

[R(l)-R(O)] a(O)+ [R(2)-R(l)] a(l)+ ... 

+ [R(N) - R(N- l)] a(N- 1) + [R(O) - R(N)] a(N) = 0 

[R(O)-R(N)] a(O)+ [R(l) - R(O)] a(1) + ... 

+ [R(N)-R(N-l)] a(N)=0 

[R(2)-R(l)] a(O)+ [R(3)-R(2)] a(l)+ ... + [R(l)-R(O)] a(N)=O. 

(7.110) 

Put a(0) R(O)+a(l) R(1) + ... + a(N) R(N) =K. 
Then, using (7.110), it can be easily seen that 

R(O)a(O)+R(l)a(l)+ ... +R(N)a(N)=K 

R(N)a(O)+R(O)a(l)+ ... +R(N-l)a(N)=K (7.111) 

R( 1) a(0) + R(2) a( 1) + . . . + R(0) a(N) = K. 

It remains to prove that K= c*. This is done simply by adding up the 
left-hand sides and the right-hand sides of all the equations in (7.111), and 
noting that C,“=, R(s) = (N+ 1) c*. Q.E.D. 

We may now complete the proof of Proposition 5.3. 

Proof of (5.6) in Proposition 5.3. Suppose that rank Y < N. Pick a #a* 
as given by Lemma 7.8. Define (a,) from a as follows: 
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a, = M 

%+,(J+l)=%b) for all s # N, for all t > 0 (7.112) 

%+1(O)=%-(~) for all t > 0. 

Then it is easy to see that 

c(u,) = c* for all t 3 0. (7.113) 

We know that there exists 4 E (0, 1) such that for all 6 > 4, cz* is a 
stationary optimal forest. We claim now that for all 6 b ~5, the program 
(CL, ) is optimal from c1 E A. For any other program (a; ) from CI and any 
discount factor 6 B 4, we have 

f G’[u(c(a;))- u(c(a,))] = f G’[u(c(a;)) - u(c*)] 
I=0 r=O 

,< u'(c*) f d'[c(a:) - c(a,)] 

r=0 

6 0, 

where the last inequality follows by noting that (a,) satisfies conditions (i) 
and (ii) of Proposition 4.1. 

It is now clear that the program (a,) satisfies (5.6) for every 6 E (4, 1). 
This completes the proof. Q.E.D. 
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