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Introduction to Dynamic 
Optimization Theory 

Tapan Mitra 

1. Introduction 

Dynamic optimization models and methods are currently in use 
in a number of different areas in economics, to address a wide 
variety of issues. The purpose of this chapter is to provide an 
introduction to the subject of dynamic optimization theory which 
should be particularly useful in economic applications. The current 
section provides abrief history of our subject, to put this survey 
in proper perspective. It then provides an overview of the topics 
covered in the various sections of this review. 

The contribution by Frank Ramsey (1928) on the optimum rate 
of savings of a nation is generally regarded as the paper which 
introduced the use of dynamic optimization methods in addressing 
economic problems. Ramsey analyzed a continuous-time dynamic 
optimization model, and developed a modification of the standard 
calculus of variations method to deal with the problem of existence 
of an optimum savings rate, when all generations (current and 
future) over an infinite horizon are to be treated equally in the 
objective function. 

Almost thirty years were to pass before there was a renewed in
terest in the problem of optimum savings as formulated by Ram
sey. The method of optimal control formulated by Pontryagin et.al. 
(1962), had a significant impact on this line of research. Ram
sey's problem was reformulated and studied in depth in terms of 
the continuous-time one-sector neoclassical model by Cass (1965), 
Koopmans (1965) and Samuelson (1965), and in the continuous
time two-sector neoclassical model by Srinivasan (1964) and Uzawa 
(1964). 

The 1950s had seen the successful application of the more basic 
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methods of real and convex analysis in general equilibrium the
ory by Arrow-Debreu (1954), McKenzie (1954), Gale(1955) and 
Nikaido(1956), replacing the earlier calculus treatments of the 
problem of existence of equilibrium and its Pareto-Optimality. In 
his seminal work on efficient allocation of resources over time in 
an infinite-horizon framework, Malinvaud (1953) recognized that 
problems of intertemporal allocation could be addressed by em
ploying similar methods, thereby bringing the treatment of capital 
theory closer to that of the theory of general equilibrium. In his 
justly celebrated survey of the state of economic science, Koop
mans (1957) reviewed these developmenfs and advocated the use 
of these methods more generally in all branches of economic the
ory. The impact of this li ne of thinking on the theory of dynamic 
optimization took some time to materialize. The standard problem 
of dynamic optimization was formulated both as a discrete-time 
problem, and in alternative versions of the so-called reduced form 
model, by Radner (1967a), using dynamic programming methods, 
and by Gale (1967) and McKenzie (1968), using the methods of 
duality theory. Gale's paper appeared along with the papers by 
McFadden (1967) and Radner (1967b) in a symposium of the Re
view of Economic Studies, which had a substantial impact on the 
methods subsequently used in dynamic optimization theory. 

The papers by Gale (1967) and McKenzie (1968) were con
cerned, true to the spirit of the Ramsey exercise, with objective 
functions in which future utilities were not discounted. Infinite
horizon programs were compared by means of some version of the 
"overtaking criterion" proposed by Atsumi (1965) and Weizsacker 
(1965). The central problem was seen as the problem of existence 
of an optimal program, and its dynamic behavior (convergence to 
the unique stationary optimal stock) was a by-product, obtained 
en route to solving this central problem. 

The 1950s and early sixties had given rise to a literat ure on 
finite-horizon pure capital accumulation oriented dynamic opti
mization exercises, where optimality was defined in terms of only 
the state of the economy at the end of the horizon. Samuelson 
(1949) had conjectured that programs, optimal according to this 
criterion, would stay close (for most of the planning horizon) to 
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the balanced growth path which had the largest growth factor, as
sociated with a von Neumann equilibrium (1945). This was made 
more explicit in Dorfman, Samuelson and Solow (1958) and came 
to be known as the "turnpike conjecture". Definitive proofs of 
this conjecture were obtained in alternative frameworks by Mor
ishima(1961), Radner(1961) and McKenzie(1963a). The central 
idea contained in Radner's paper was that optimal programs which 
stayed away (uniformly) from the von Neumann equilibrium would 
suffer a (uniform) value loss, and McKenzie (1963b, 1963c, 1971) 
recognized that this was the key concept to generalizations of the 
turnpike property. 

When the interest of the profession shifted from purely capital 
accumulation oriented models to consumption oriented optimal 
growth models of the Ramsey-type, this key concept remained. 
Both Atsumi (1965) and McKenzie (1968) recognized that this 
idea could be used to advantage in studying asymptotic properties 
of optimal programs, with the golden-rule equilibrium (associated 
with a program yielding maximum sustainable utility) replacing 
the notion of the von Neumann equilibrium. 

With a shift in emphasis of many economies away from planning 
at the national level, there was a corresponding change in inter
pretation of dynamic optimization problems of the Ramsey type. 
The problem being solved was previously viewed as a normative 
problem the "social planner" ought to solve; it was now viewed 
as a descriptive problem that a typical representative agent (more 
precisely, an infinitely-lived dynasty of the typical agent) solves. 
The Ramsey objection to discounting future utilities as "ethically 
indefensible" on the part of the social planner was no longer rel
evant. If the representative agent did discount the future, the op
timization problem would have to reflect this. Thus, the central 
problem to be solved in describing the agent's behavior would be 
a discounted dynamic optimization problem of the Ramsey-type. 

This reformulation of the focus of the subject had two significant 
consequences. The issue of the existence of an optimal program, 
which had occupied center-stage for undiscounted dynamic opti
mization models, became a relatively unimportant aspect of the 
theory for discounted models, since it was a relatively straightfor-
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ward exercise, under discounting, to establish the existence of an 
optimal program. In contrast, description of dynamic behavior of 
optimal programs became considerably more difficult. 

Examples due to Kurz (1968) for continuous-time models, and 
Sutherland (1970) for discrete-time models indicated that there 
could be multiple stationary optimal states. Further , even if the 
stationary optimal state was unique, optimal programs starting 
from other initial states need not converge to it over time. Then, 
Samuelson (1973) presented an example due to Weitzman, which 
showed that optimal programs could cyde around a unique sta
tionary state independent of the magnitude of the discount factor, 
and these cydes were not "boundary phenomena". While this de
stroyed any hope of a general turnpike theorem for discounted 
models, Samuelson conjectured that with (differential) strict con
cavity of the utility function, a turnpike property for optimal pro
grams would continue to hold for high discount factors. This led 
to a considerable literat ure on the discounted turnpike problem. 
In alternative frameworks, Samuelson's conjecture was shown to 
be valid by Brock and Scheinkman (1976), Cass and Shell (1976), 
Rockafellar (1976) and Scheinkman (1976). Building on these pa
pers, which appeared in a symposium of the Journal of Economic 
Theory, the theory was refined in the contributions of Araujo and 
Scheinkman (1977), Bewley (1980) and McKenzie (1982,1983), 
among others. A definitive survey of these developments are pre
sented in McKenzie (1986). 

A natural question that arose from this literature was how to 
describe dynamic optimal behavior when the discount factor was 
not dose to unity. We will not go into the details of the history 
of how this quest ion was tackled. It suffices to note that Chapters 
3 - 13 of this book are devoted to various facets of this ques
tion, demonstrating the possibility and robustness of cydical and 
chaotic optimal behavior in a variety of discounted dynamic opti
mization exercises. It should also be dear from these chapters that 
some important aspects of this quest ion still remain unanswered. 

We turn now to an overview of Sections 2-9 of this chapter. 
There are two aspects of the review of dynamic optimization the
ory that should be pointed out at this stage. First, to provide an 
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introduction to the key ideas of this theory, the setting for this 
review is deliberately one-dimensional (the state space is a com
pact subset of the realline) although many of the topics covered 
here have their multidimensional counterparts in the literature. 
We provide some guidance to this literature in the bibliographic 
not es of Section 10. Second, we limit our coverage of dynamic opti
mal behavior to turn pike theory for high discount factors, leaving 
to the reader the task of sampling Chapters 3-13 of the book for 
the nature of dynamic optimal behavior when the discount factor 
is not elose to unity. 

Section 2 presents the standard reduced-form dynamic opti
mization model, as weIl as five examples of dynamic optimization 
exercises in economics which can be reduced to this standard form. 
The existence of optimal programs in this standard reduced form 
is given a complete self-contained treatment. 

Two weIl-known characterizations of optimality have figured 
prominently in the literature of dynamic optimization. The first 
uses a primal approach, and characterizes optimality in terms of 
the existence a value function satisfying the functional equation of 
dynamic programming (often referred to as BeIlman's optimality 
principle). This approach is developed in Section 3, where basic 
properties of the value and policy functions are derived. 

The second characterization (usually referred to as the price 
characterization of optimality) is based on a dual approach, and 
is developed for convex structures, where separation theorems for 
convex sets playa crucial role. Here an optimal program is char
acterized in terms of existence of a sequence of dual variables or 
shadow prices, in terms of which (generalized) profit is maximized 
at the program at each date compared to any alternative activity 
available at that date and, in addition, an appropriate transversal
ity condition is satisfied asymptotically. This material is developed 
in Section 4, where we establish the basic price characterization 
result , and study some of its implications. 

Section 5 is devoted to sensitivity analysis (also known as com
parative dynamics), where we examine how optimal policies (and 
therefore programs) change with changes in the parameters of the 
dynamic optimization model. Two aspects of such changes are 
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studied in some detail: continuity (Section 5.1) and monotonicity 
(Section 5.2, 5.3). The former topic is based on the concept of uni
form continuity, and the latter on the concept of supermodularity. 

Section 6 presents the main result on the existence of a (non
trivial) stationary optimal stock, using the Kakutani fixed point 
theorem. The related concepts of a discounted golden-rule stock 
and a modified golden-rule are also introduced and discussed here. 

While Sections 2-6 are developed using the methods of real and 
convex analysis, with differentiability assumptions playing no role, 
Sections 7-9 use the assumption of smooth preferences. Section 7 
develops two basic properties of the dynamic optimization mod
els under appropriate smoothness assumptions. First, if the utility 
function is continuously differentiable (in the interior of the tran
sition possibility set), then the value function is continuously dif
ferentiable (in the interior of the state space), and the derivative of 
the value nmction is equal to the derivative of the utility function 
with respect to the initial state at the optimal point. Second, if 
the utility function is twice continuously differentiable (in the in
terior of the transition possibility set), then the policy function is 
differentiable at the stationary optimal stock, and the magnitude 
of the derivative of the policy function at the stationary optimal 
stock is equal to smaller (in absolute value) of the characteristic 
roots associated with the Ramsey-Euler equation at the stationary 
optimal stock. 

Section 8 examines the issue of uniqueness of the stationary 
optimal stock. A simple example of non-uniqueness is constructed 
to show how easily this phenomenon can arise. Then, it is shown 
that there is abound on the discount rate (depending on the 
transition possibility set and the utility function) such that for 
all higher discount rates, there is a unique (non-trivial) stationary 
optimal stock. 

Section 9 is concerned with global asymptotic stability of the 
non-trivial stationary optimal stock. First, we present the example 
of Weitzman, as reported in Samuelson (1973), to show that even 
if the stationary optimal stock is unique, it is not globally asymp
totically stable. Then, we pursue Samuelson's idea that if the Hes
sian of the utility function is negative definite at the golden-rule, 
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then there is abound on the discount factor (depending on the 
transition possibility set and the utility function), such that for all 
higher discount factors, there can be no cyclical optimal programs. 
This, in turn, yields global asymptotic stability of the non-trivial 
stationary optimal stock in our one-dimensional state space frame
work. 

2. Dynamic Optimization Problems 

We will describe the reduced-form dynamic optimization prob
lem in Section 2.1 below. This is by now the standard form used 
to describe dynamic optimzation problems arising in economics. 
The reduced-form model is widely used because it has essentially 
a simple mathematical structure; one keeps track of the transition 
over time of only the state variable, from one state to another. It is 
also an extremely flexible model to interpret, and a wide variety of 
dynamic optimization problems in economics can be "reduced" to 
this form. We illustrate this by discussing five examples in Section 
2.2. 

2.1 The Reduced Form Model 

Astate space X = [0, b] c ~ is given, where b > 0. Time is 
measured in discrete periods t E {O, 1,2, ... } - N. At each time t 
the state of the economic system is described by a number Xt EX. 

The typical dynamic optimization problem we will be concerned 
with seeks to maximize the objective functional 

00 

L 8tu(xt, Xt+1) (2.1) 
t=O 

over the set of all sequences (Xt)ü satisfying the constraints: 

t E {O, 1, 2, ... , } (2.2) 

Xo = x (2.3) 
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In the description of the above problem, 8 is to be interpreted as 
a discount factor, uas a (reduced form) utility function, 0 as the 
transition possiblity set, and x E X as the initial state. 

The following basic assumptions will be maintained throughout: 

Al: 0 C X x X is a closed and convex set containing (0,0). 
A2: U : 0 ---> R is a bounded, concave, and upper semicontinuous 

function. 
A3: 8 E (0,1). 

Given (0, u, 8) and x E X, we refer to a sequence (Xt)ü satisfy
ing (2.2) and (2.3) as a program (starting) from (the initial state) 
x. A solution to problem (2.1)-(2.3) is referred to as an optimal 
program from x. 

Proposition 2.1: If (0, u, 8) satisfies A1-A3, then there exists 
a solution to problem (2.1)-(2.3) for every initial state x E X. 

Proof: Since u is bounded, we can find B > 0 such that 
lu(x, y)1 ::; B far all (x, y) E O. Thus, for every sequence (Xt)ü 
satisfying (2.2), 

00 

L 8t u(xt, Xt+l) (2.4) 
t=O 

is an absolutely convergent series, and hence a convergent series, 
with 

00 

L 8tu(xt, Xt+1) ~ B/(l - 8) (2.5) 
t=O 

00 

Let S(x) = sup{L:: 8tu(xt, Xt+l) : (Xt)ü is a sequence satisfying 
t=O 

(2.2) and (2.3)}. We will now show that this supremum is actually 
attained by some (Xt)ü satisfying (2.2) and (2.3). 

By definition of S(x), there is a sequence of programs (xr)~o, 
n = 1,2,3, ... , starting from the initial state x, such that 

00 

L 8tu(x~, X~+l) ~ S(x) - (l/n) (2.6) 
t=O 
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By the Cantor diagonal process, we can find a subsequence n' 
(of n) such that for each t E {O, 1,2, ... }, we have a number x~, 
such that 

as n' - 00 (2.7) 

Since n is closed, (x~, x~+1) E n for t E {O, 1,2, ... }, and xg 
xä' = x. Thus, (x~)~o is a program starting from x. 

We claim that 
00 

I: 8tu(x~, x~+1) = S(x). (2.8) 
t=O 

If the claim were not true, then we could find c > 0, such that 
00 

(2.9) 
t=O 

Pick T large enough so that B8T +1 /(1 - 8) < (c/4). For t E 

{O, 1, ... , T}, we can use (2.7) and the upper semicontinuity of u 
to get 

1· (n' n') < (0 0 ) Imsup U xt ,xt+1 _ U xt , xt+1 
n'~oo 

We can now pick an interger N > (4/ c), such that for 
tE {O, 1, ... , T}, we have 

u(x~', X~~l) ~ u(x~, X?+l) + [c(1 - 8)/4] 

(2.10) 

whenever n' 2: N. Then, for n' 2: N, we can obtain the following 
string of inequalities: 

00 T 

I:8tu(x?,X~+1) 2: I:8tu(x~,X~+1) - (c/4) 
t=O t=O 

T 

2: I: 8tu(x~', X~~l) - (c/2) 
t=O 
00 

2: I:8tu(x~',X~~1) - 3(c/4) 
t=O 

2: S(x) - (l/n') - 3(c/4) 

> S(x) - c 
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which contradicts (2.9) and establishes our claim (2.8). This means, 
of course, that (x~)o is an optimal solution to (2.1)-(2.3). Q.E.D. 

2.2 Examples 

We now discuss five examples, arising in various contexts of 
capital theory, which can be treated as special cases of the reduced
form model of Section 2.1. For each example, described in terms 
of its "primitives" , we show how it can be converted to its reduced 
form. 

Example 2.1. (The One-Sector Model of Optimal 
Growth) 

Let G : lR~ ---+ lR+ be a concave, non-decreasing, continuous and 
constant returns to scale production function, indicating the net 
output level G(K, L) producible with inputs of capital (K) and 
labor (L). Labor is assumed to grow exogenously at a rate n 2: 0; 
that is Lt = La(1 + n)t for t E N and La > O. Capital depreciates 
at a constant rate d where 0 < d ~ 1. The basic growth equation 
IS 

where Kt 2: 0 is the capital stock at time t, and Ct+! 2: 0 is 
the consumption at time (t + 1). Dividing through by L t+!, and 
denoting [Kt/ Lt 1 by Xt and (Ct+! 1 LH I) by Ct+! for t E N, we have 

[G(Xt, 1)/(1 + n)] = CHI + Xt+I - [(1 - d)/(l + n)]xt 

Then letting g(x) = G(x, 1)/(1 + n) for x 2: 0, and f(x) = g(x) + 
[(1 - d)/(l + n)]x for x 2: 0, we obtain 

A continuous, concave and increasing welfare function, 
w : lR+ ---+ lR, evaluates the (period) welfare, w(c), corresponding 
to aper capita consumption level, C 2: O. The discount factor, b E 
(0,1), indicates the weight placed by the planner (representative 
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agent) on tomorrow's welfare relative to today's welfare in the 
intertemporal objective function. 

The optimal growth problem can be written as: 

00 

Max L: 8tw(Ct+1) 
t=O 

(PI) subject to Ct+l = f(xt) - Xt+l, and (Xt, Ct+1) ~ ° 
for t E N 

Xo = x > ° 
We now indicate how to convert this example to its reduced 

form. First, we have to choose an appropriate state space. Let us 
assurne that lim [g(x)/x] = 0. Then, we can find a number b > 0, 

x->oo 

such that f (x) < x for x > b. In this case, if the initial capital-
labor ratio, Xo, is in [0, b], then all future capital-labor ratios, Xt+l 
(for t E N) must lie in [0, b]. Further, it is easy to verify that a 
solution to (PI) must have Xt E [0, b] for some finite t. Thus, it is 
legitimate to define the state space to be X [0, b], since all the 
long-run dynamics is confined to this set. 

N ow, defining 0 = {(x, z) E ~~ : z :S f (x)}, and u : 0 --t ~ 
by u(x, z) = w(f(x) - z), a solution to problem (2.1)-(2.3) for 
(0, u, 8) corresponds precisely to a solution to problem (PI), and 
Vlce versa. 

Example 2.2 (Two-Sector Model of Economic Growth) 

The two-sector model of optimal economic growth, originally 
discussed by Uzawa (1964) and Srinivasan (1964), is a generaliza
tion of the one-sector model, discussed in Example 2.2 above. The 
severe restriction imposed in the one-sector model, that consump
tion can be traded off against investment on a one-to-one basis, is 
relaxed in the two-sector model, and it is principally this aspect 
that makes the two-sector model a considerably richer framework 
in studying economic growth problems than its one-sector prede
cessor. 

Production uses two inputs, capital and labor. Given the to
tal amounts of capital and labor available to the economy, the 
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inputs are allocated to two "sectors" of production, the consump
tion good sector, and the investment good sector . Output of the 
former sector is consumed (and cannot be used for investment 
purposes ), and output of the latter sector is used to augment the 
capital stock of the economy (and cannot be consumed). Thus, the 
consumption-investment decision amounts to adecision regarding 
allocation of capital and labor between the two production sectors. 

The discounted sum of outputs of the consumption good sector 
is to be maximized to arrive at the appropriate sectoral allocation 
of inputs in each period. [A welfare function on the output of the 
consumption good sector can be used, instead of the output of the 
consumption good sector itself, in the objective function, but it is 
usual to assimilate this welfare function, when it is increasing and 
concave, in the "production function" of the consumption good 
sector.] 

Formally, the model is specified by (F, G, d, 8), where 
(a) the production function in the consumption good sector, F: 

~~ --+ ~+, satisfies: 
(i) F is continuous and homogeneous of degree one on ~~. 
(ii) F is non-decreasing on ~~ . 
(iii) F is concave on lR~. 

(b) the production function in the investment good sector, G : 
~~ --+ ~+, satisfies: 

(i) Gis continuous and homogeneous of degree one on ~~. 
(ii) G is non-decreasing on ~~. 
(iii) G is concave on ~~. 
(iv) lim [G(K, 1)/ K] = 0 

K ..... oo 

( c) the depreciation factor, d, satisfies 0 < d :::; 1; 
( d) the discount factor, 8, satisfies 0 < 8 < l. 
The optimal growth problem can be written as: 

(P2) 

00 

Max E 8tCt+l 
t=O 

subject to Ct+1 = F(kt , nt) for t E N 
Xt+l = G(Xt - kt , 1 - nt) + (1 - d)xt for t E N 

o :::; kt :::; Xt, 0:::; nt :::; 1, for t E N 
Xo = x> 0 
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Here Xt is the total capital available at date t, which is allocated 
between the consumption good sector (kt ) and the investment 
good sec tor (Xt - kt ). Labor is exogenously available at a con
stant amount (normalized to unity), which is allocated between 
the consumption good sector (nt) and the investment good sec
tor (1 - nt). Note that an exogenously growing labor force (at a 
constant growth rate) can be accommodated easily by interpret
ing kt and Xt as per worker capital stocks, and reinterpreting the 
depreciation factor, d. 

As in the one-sector model, we can find b > 0, such that for 
x E [0, b], we have G(x, 1) + (1 - d)x in [0, b], and furthermore for 
any solution to (P2), Xt E [0, b] for some t. Thus, it is appropriate 
to define X = [0, b] as the state space. 

To convert the problem to its reduced-form, we can define the 
transition possibility set, 0, as: 

0= {(x, z) in ~~ : z ::; G(x, 1) + (1 - d)x} 

and the utility function, U, as 

U(x,z) Max F(k,n) 

Subject to ° < k::; x, 0::; n ::; 1 

z < G (x - k, 1 - n) + (1 - d)x 

Then a solution to (P2) corresponds exactly to a solution (2.1)
(2.3) for (0, U, 8), and vice versa. 

Example 2.3 (Optimal Exploitation of a Fishery) 

The economic exploitation of a fishery figures prominently in the 
literature on the management of renewable resources (see, for ex
ample, Clark (1976) for references to the relevant literature). The 
following is an idealized description (following Dasgupta (1982)) 
of the relevant optimization problem. 

The resource stock (biomass of the fish species) at the end of 
period t is denoted by Xt. The biological reproduction function 
(also called the stock recruitment function) yields the biomass, 
Yt+l, in period (t + 1) given by 

Yt+l = f(xt) 
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If Ct+l is harvested in period (t + 1) then the stock at the end of 
time period (t + 1) is XHI given by 

It is usual to ass urne that f(O) = 0, f is continuous, non
decreasing and concave, with lim[f(x)/x] > 1 and lim [f(x)/x] = 

x-+O x-+oo ° [although there are important variations, especially dealing with 
non-concave functions, f]. 

We can find b > ° such that whenever Xt is in [0, b], Xt+1 is in 
[0, b] also. Thus, [0, b] is a legitimate choice for the state space, X. 

Harvesting the fishery is not costless. Specifically, the harvest, 
CHI, depends on the resource biomass available for exploitation, 
YHb and the labor effort, et+1: 

with G a non-decreasing, concave function in both its variables 
(increasing in both arguments when (y, e) is stricty positive), such 
that given any y 2: 0, G(y, e) ::; y for all e. We express the effort, 
eH b required to havest Ct+1 when the biomass available for harvest 
is Yt+1 as: 

with H increasing in its first argument and decreasing in its sec
ond. This is the cost of exploiting the fishery. The benefit obtained 
depends on the harvest level, CHI: 

where B is an increasing, concave function. [For a competitive 
fishery, B is linear, with B(Ct+1) = pCHl, where p > ° is the price 
(assumed constant over time) per unit of the fish.] The return in 
period (t + 1) is then the benefit minus the cost: 
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The optimization problem can then be written as 

00 

Max L 8tw( CH!, Xt) 
t=O 

(P3) Subject to Ct+! = f(xt) - Xt+! for t E N 
Ct+! 2 O,Xt+! 20 for t E N 

Xo = x> 0 

To convert the problem to its reduced form, we define the tran
sition possibility set, !t, as: 

!t = {(x, z) in ~! : z :::; f (x )} 

and the utility function, u, as: 

U(X, z) = w(J(x) - z, x) 

Then, a solution to (P3) corresponds exactly to a solution to (2.1)
(2.3) for (!t, u, 8). 

Example 2.4 (A Three-Sector Model with an Aging 
Process) 

This example is due to Weitzman, as reported in Samuelson 
(1973). It involves a pure aging process in one of the sectors, 
which produces wine, and therefore might be called an "Austrian" 
capital-theoretic model. 

The representative agent has one unit of labor. She can allocate 
it between two sectors: one of these sectors produces bread, the 
other pro duces grape juice. It takes one unit of labor per unit of 
bread production, and one unit of labor per unit of grape juice 
production. A third sector produces wine, and its production pro
cess requires one unit of grape juice per unit of wine, and one 
period of time (for the juice to ferment). 

As a consumer, the agent derives satisfaction from the consump
tion of bread and wine, but not from grape juice. 

Let Xt denote the allocation of labor in period t to grape-juice 
production, with Xo > 0 (initial allocation) as given. Then (1- Xt) 

oflabor is allocated to production ofbread. Thus, in period (t+1), 
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where t 2: 0, we have bread production of (1 - Xt+1) , grape-juice 
production of Xt+l, and wine produciton of Xt. 

Assume that the consumer's felicity function is 

f(b, w) = bOwß, with (a, ß) »0, a + ß :s; 1 

where b and ware the amounts of bread and wine consumed. 
The agent's optimization problem can be written as: 

00 

Max .2:: 8t f(bt+l, Wt+l) 
t=O 

(P4) Subject to bt+1 = 1 - Xt+1 for t E N ° :s; Xt :s; 1 for t E N 

Xo = x> ° 
To convert the problem to its reduced form, we can define the 

state space X = [0, 1], the transition possibility set, n, to be: 

and the utility function, u, to be: 

Then an optimal solution to (P4) corresponds exactly to an opti
mal solution to (2.1)~(2.3) for (n, u, 8). 

Example 2.5 (A Model of Forest Management) 

This example is a simplified version of the forest management 
model, developed in Mitra and Wan (1985, 1986), based on the 
pioneering work in this area by Faustmann (1849). Our exposition 
of the example is based on the presentation of Wan (1987). 

An agent has a plot of land (normalized to unity), which is good 
for growing a certain type of tree. The growth process for the tree 
is as follows: after saplings are planted, the tree grows in timber 
content for two years, the timber content being a E (0,1) after one 
year, and 1 after two years (per unit of land). After two years, the 
tree decays and the timber becomes worthless. 
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The agent derives areturn from selling the timber, the timber 
being assumed of homogeneous quality, whether it is from one or 
two year old trees. Planting and cutting trees are assumed costless 
activities. 

Let Xt denote the amount of land with two-year old trees at the 
end of period t. Then, (1- Xt) is the amount of land with one-year 
old trees at the end of period t. 

At the end of period t, all two year old trees are cut down 
and sold as timber. This clears up Xt of land for reforestation. In 
contrast one-year old trees might or might not be cut down. The 
one-year old trees which are not cut down at the end of period t 
become the two-year old trees at the end of period (t + 1). Thus, 
the land cleared up by cutting down one-year old trees at the end 
of period t is [(1- Xt) - Xt+l]. The total timber content of all trees 
cut down at the end of period t is, therefore, given by 

The agent's optimization problem can be written as: 

00 

Max L 8t R( Ct) 
t=O 

(P5) 
Subject to Ct = Xt + a[(l - Xt) - Xt+l] for t E N 

Xt+l ::; (1 - Xt) for t E N 
o :::; Xt :::; 1, for t E N 

Xo = x 2: ° 
To convert this problem to its reduced form, we can define the 

state space to be X = [0, 1], the transition possibility set, 0, to 
be: 

o = {(x, z) E X 2 : z ::; (1 - x)} 

and the utility function, u, to be: 

U(X, z) = R(a + (1 - a)x - az) 

Then, an optimal solution to (P5) corresponds to an optimal so
lution to (2.1)-(2.3) for (0, u, 8). 
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3. Dynamic Programming 

Dynamic optimization problems of the type described in Sec
tion 2 can be studied conveniently by the method of dynamic 
programming. In this section, we provide the basic results that 
can be established for the dass of problems defined by (2.1)-(2.3) 
by using the dynamic programming approach. 

We can associate with each dynamic optimization problem two 
functions, called the (optimal) value junction and the (optimal) 
policy junction [or, more generally, the (optimal) policy correson
dence]. The value function defines the maximized value of the 
objective function (2.1), given the constraints (2.2), (2.3), cor
responding to each initial state, x. If there is a unique optimal 
solution (x;)ü to the problem (2.1)-(2.3) for each initial state 
x EX, the policy function defines the first period optimal state, 
xi, corresponding to each initial state, x. [More generally, the pol
icy correspondence describes the set of states that it is optimal to 
go to in period 1, corresponding to each initial state, x.] 

Given the stationary recursive nature of the optimization prob
lem, the policy function, in fact, generates the entire optimal so
lution, starting from any initial state. The value function helps us 
to study the properties of the policy function, given the connec
tion between the two through the functional equation of dynamic 
programming. Thus, the value and policy functions are extremely 
useful objects of study in describing dynamic optimal behavior. 

3.1 The Value Function 

Given the existence of an optimal solution to problem (2.1)
(2.3) fore every x E X [Proposition 2.1], we can define the value 
junction, V : X --+ ~ as follows: 

00 

V(x) = L8t u(x;,X;+1) (3.1) 
t=O 

where (x;)ü is an optimal solution to (2.1)-(2.3) corresponding to 
the initial state x E X. 

The following result summarizes the basic properties of the value 
function. 
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Proposition 3.1: (i) The value function, V, is a concave and 
continuous function on X. (ii) V satisfies the following functional 
equation of dynamic progmmming 

V(x) = max{ u(x, y) + 8V(y)} 
yEOx 

(3.2) 

for all x E X (where Ox = {y EX: (x, y) E Oll. (iii) V is the 
only continuous function on X which satisfies (3.2). (iv) (Xt)ü is 
an optimal solution to (2.1)-(2.3) if and only if 

Proof: (i) Let x, x' E X and let 0 < >. < 1. Let (Xt)ü and 
(x~)ü be optimal programs from x and x' respectively. Define x" = 
>.x + (1 - >.)x', and let (xn be an optimal program from x". By 
convexity of 0, the sequence (>'Xt + (1- >')xDü is a program from 
x". Thus, we have 

00 

V(x") = L 8tu(x~', x~+1) 
t=o 
00 

t=O 
00 

> L 8t [>'u(xt, Xt+l) + (1 - >.)u(x~, x~+1)] 
t=O 

>. V(x) + (1 - >')V(x') 

the second inequality following from the concavity of U on O. Thus, 
V is concave on X. 

In order to establish the continuity of V on X, we first establish 
its upper semicontinuity. This can be done by following essentially 
the method used in the proof of Proposition 2.1. 

If V were not upper semicontinuous on X, we can find xn E X 
for n = 1,2,3, ... , with xn ---t XO and V(xn ) ---t V as n ---t 00, with 
V > V(XO). Let us denote by (x~) an optimal program from xn 

for n = 0,1,2, .... 
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Denoting [V - V(XO)] by c, we can find T large enough so that 
B8T +1 /(1 - 8) :::; (c/4). 

Clearly, we can find a subsequence n' (of n) such that for t E 

{O, 1, ... , T} 

x~' -+ x~ as n' -+ 00. 

Then, using the upper semicontinuity of U, we can find N such 
that for t E {O, 1, ... , T} 

u(X~',X~l) :::; u(X~,X~+l) + [c(I- 8)/4] 

whenever n' 2: N. Thus, for n' 2: N, we obtain the following string 
of inequalities 

00 

V(XO) L 8tu(x~, x~+1) 
t=O 
T 

> L 8tu(x~, x~+1) - (c/4) 
t=O 
T 

> L 8tu(x~', X~~l) - (c/2) 
t=O 
00 

> L 8tu(x~', X~~l) - 3(c/4) 
t=o 
V(xn ,) - 3(c/4) 

Since V(xn,) -+ V, we have V(xO) 2: V - 3(c/4) > V - c = V(XO), 
a contradiction. Thus, V is upper semicontinuous on X. 

V is concave on X, and hence continuous on int X = (0, b). 
To show that V is continuous at 0, let xn be a sequence of points 
in X (n = 1,2,3, ... ) converging to 0. Then V(xn ) = V((1 -
(xn /b)) ° + (xn /b)b) 2: [1 - (xn /b)]V(O) + (xn /b)V(b). Letting 
n -+ 00, lim inf V(xn ) 2: V(O). On the other hand, since V is upper 

n->oo 

semicontinuous on X, limsup V(xn ) :::; V(O). Thus, lim V(xn ) 
n--+oo n--+oo 

exists and equals V(O). The continuity of V at b is established 
similarly. 
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(ii) Let Y E Ox, and let (Yt)ü be an optimal program from y. 
Then (x, Yo, Yl, .... ) is a program from x, and hence, by definition 
ofV, 

00 

V(x) > u(x, Yo) + I: 8tU(Yt_l, Yt) 
t=l 

00 

t=l 
00 

t=o 
u(x, Yo) + 8V(y) 

So, we have established that 

V(x) 2: u(x, y) + 8V(y) for all Y E Ox (3.4) 

Next, let (Xt)ü be an optimal program from x, and note that 

V(X) = u(Xo, Xl) + b [~b'-'U(X" X'+1) 1 

u( Xo, Xl) + b [t, b'u( X,+!, x,+') 1 
< u(xo, xd + 8V(Xl) 

Using (3.4), we then have 

Now, (3.4) and (3.5) establish (3.2). 

(3.5) 

(iii) Let W be a continuous function on X satisfying (3.2). Let 
D maxIV(x) - W(x)l. Given any x E X, denote by Y a solution 

xEX 

to the maximization problem on the right-hand side of (3.2). Then, 
V(x) = u(x, y) + 8V(y), and W(x) 2: u(x, y) + 8W(y), so that 

[V(x) - W(x)] ~ 8[V(y) - W(y)] ~ 8D (3.6) 
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Denote by y' a solution to the maximization problem on the right
hand side of (3.2), when V is replaced by W. Theil, W(x) = 
u(x, y') + 8W(y'), and V(x) 2: u(x, y') + 8V(y'), so that 

[W(x) - V(x)] :S 8[W(y') - V(y')] :S 8D (3.7) 

Using (3.6) and (3.7) we get 

IV(x) - W(x)1 :S 8D 

and since x E X was arbitrary, 

D - maxIV(x) - W(x)1 :S 8D 
xEX 

Thus, D = 0, and so W = V on X. 
(iv) If (Xt)ü satisfies (3.3), then we get for any T 2: 1, 

T 

V(x) = L 8tu(xt, Xt+1) + 8T+1V(XT+1) 
t=O 

Since IV(x)1 :S B/(1 - 8) for all x E X and 8T +1 --+ 0 as T --+ 00, 

we have 
00 

V(x) = L: 8tu(Xt, xt+d 
t=O 

Then, by the definition of V, (Xt)ü is an optimal program (from 
x). 

To establish the converse implication, let (x;)ü be an optimal 
solution to (2.1)-(2.3). Then, for each T 2: 1, (xr, xr+l? ... ) is an 
optimal solution to (2.1)-(2.3) for x = xr. For, if (Yt)ü is a pro
gram from Yo = xr such that 

00 00 

L 8tu(Yt, Yt+l) > L 8t- T u(x;, X;+l) 
t=O t=T 

then the sequence (xo, ... , xr, Yl, Y2, ... ) has a discounted sum of 
utilities 

T-l 00 00 

L 8tu(x;, x;+1) + L 8tu(Yt, Yt+1) > L 8tu(x;, x;+1) 
t=O t=T t=O 
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which contradicts the optimality of (x;)ü from x = xo. Now, us
ing the result (3.5) in (ii) above, we have V(x;) = u(x;, X;+l) + 
8V(x;+1) for t E N. 

3.2 The Policy Function 

An optimal solution to the problem (2.1)-(2.3) need to be unique. 
For some states Xt, there might be more than one successor state 
Xt+1 satisfying (3.3). To ensure that an optimal solution to (2.1)
(2.3) is unique for every x EX, we use a strict concavity assump
tion on u. 

A4: u is strictly concave in its second argument 

If A4 holds, then given any x EX, there is a unique solution 
to the maximization problem on the right-hand side of (3.2). For 
if y and y'(y' i- y) in f2x both solved this problem, then V(x) = 
u(x, y) + 8V(y) and V(x) = u(x, y') + 8V(y'). However, (x, O.5y + 
O.5y') E f2, and u(x, O.5y+O.5y') +8V(O.5y+O.5y') > O.5u(x, y) + 
O.5u(x, y') +8[O.5V(y) +O.5V(y')] = V(x), a contradiction to (3.2). 

For each x, denote the unique state y E f2x which solves the 
maximization problem on the right hand side of (3.2) by h(x). We 
will call h : X ---+ X the policy junction. 

The following result summarizes the basic properties of the pol
icy function. 

Proposition 3.2: (i) The policy junction h : X ---+ X is con
tinuous on X. 

(ii) For all (x, y) E f2 with y i- h(x) we have 

u(x, y) + 8V(y) < V(x) = u(x, h(x)) + 8V(h(x)) (3.8) 

(iii) (Xt)ü is an optimal solution to (2.1)-(2.3) ij and only ij 

(3.9) 

Proof: (i) Let (xn)(n = 1,2,3, ... ) be a sequence of points in X 
converging to xo. Then for n = 1,2,3, .... 
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Let (ynl) be an arbitrary convergent subsequence of (h( xn)) con
verging to yo. We claim that yo = h(xO). For the subsequence n' , 
using (3.10), the upper semicontinuity of u and the continuity of 
V, 

n/~oo 

< u(xO, yO) + 8V(yO) 

But, by (3.2), V(XO) ~ u(xO, yO)+8V(yO), so that V(xO) = u(XO, yO) 
+8V(yO). This means that yO = h(xO), establishing our claim. 
Thus, h(xn ) -+ h(xO) as n -+ 00, establishing continuity of h. 

(ii) We have V(x) = u(x, h(x)) + 8V(h(x)) from (3.2) and the 
definition of h. For all y E Ox, we have u(x, y) + 8V(y) ~ V(x) by 
(3.2). Furt her , if equality holds in the previous weak inequality, 
then y = h( x). Thus if y =1= h( x), the strict inequality must hold. 
This establishes (3.8). 

(iii) If (Xt)ü is an optimal solution to (2.1)-(2.3), then by Propo
sition 3.1 (iv), for every t E N, 

so that by Proposition 3.2 (ii), Xt+l = h(xt). 
Conversely, if (3.9) holds, then by Proposition 3.2 (ii), we have 

for t E N 

so that (Xt)ü is an optimal solution to (2.1)-(2.3) by Proposition 
3.1 (iv). 

4. Duality Theory 

Optimal programs can be characterized in terms of dual vari
ables (or shadow prices). At the shadow prices supporting an op
timal program, there is no activity which yields a higher "gener
alized profit" at any date (value of utility plus value of terminal 
stocks minus value of initial stocks at that date) than the activity 
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chosen along the optimal program at that date. This support prop
erty is referred to as the competitive condition, and the shadow 
prices as competitive prices. 

In addition, optimal programs must satisfy the condition that 
the aymptotic value of the stocks (at the shadow prices) must be 
zero, which is referred to as the tmnsversality condition. 

The two conditions taken together are also sufficient to ensure 
optimality, so that they provide a complete characterization of 
optimal programs, generally called a price chamcterization of op
timality. 

It was observed by Weitzman (1973) that the shadow prices 
appearing in the competitive condition also provide a support for 
the value function, which was introduced in Section 3. Given the 
competitive condition, the validty of the transversality condition 
is equivalent to the property that the competitive prices support 
the value function. 

This connection between dynamic programming and duality 
theory forms the basis of Weitzman's approach to the price char
acterization of optimal programs, which we will describe below. 

It is convenient (although not essential) to develop the theory 
under an additional "monotonicity assumption", which ensures 
that the relevant competitive prices are non-negative at each date. 

A5: If (x, z) E n, and x' E X, x' ~ x, 0 ::; Zl ::; z, then 
(x', Zl) E n and u(x' , Zl) 2: u(x, z). 

Proposition 4.1: 1f (Xt)ü is a progmm from x E X, and there 
is a sequence (Pt)ü such that Pt E R+ for t E N, and the following 
conditions hold: 

(i) 8tu(xt, Xt+l) + Pt+lXt+l - PtXt 2: 8tu(x, z) + Pt+lZ - Pt X 

for all (x, z) E n, tE N (4.1) 

(ii) limptxt = 0 
t-+oo 

( 4.2) 

then (Xt)ü is an optimal progmm from x. 
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Proof: Let (x~)ü be any program from x. Using (4.1), we have 
for t ~ 0, 

8t[u(x~, X~+l) - u(Xt, Xt+l)] ~ (PHIXt+l - PtXt) - (Pt+lX~+l - p~x~) 

Summing this from t = 0 to t = T 

T 

L 8t[u(x~, X~+l) - u(Xt, Xt+l)] < (PT+lXT+l - Poxo) -
t=O 

(PT+IX~+l - Pox~) 
(PT+lXT+l - PT+lX~+l) 

< PT+IXT+l 

Letting T ~ 00, we get 

00 00 

'"' 8tu(x~, X~+l) - '"' 8tu(xt, Xt+l) ~ lim PT+lXT+l = 0 L.J L.J T-->oo 
t=O t=O 

which proves that (Xt)ü is optimal from x. 

Remark 4.1: (i) Condition (4.2) can be replaced by 

lim inf PtXt = 0 
t-->oo 

(4.3) 

in Proposition 4.l. 
(ii) Condition 4.2 is called the transversality condition. Its sig

nificance was first noted by Malinvaud (1953) in his study of in
tertemporal efficiency. Condition 4.1 is referred to as the competi
tive condition; the sequence (Pt)ü of dual variables are called com
petitive prices. The result of Proposition 4.1 is then paraphrased 
as: "A competitive program satisfying the transversality condition 
is optimal." 

In contrast to Proposition 4.1, the converse result (Proposition 
4.2 below) exploits the convex structure of the dynamic optimiza
tion model. 

Proposition 4.2: Suppose (Xt)ü is an optimal program from 
x > O. Suppose also that there is some (x, z) in 0 with z > O. 
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Then, there is a sequence (Pt)ü such that Pt E ~+ for tE N and 
the following conditions hold: 

(i) {jtu(Xt, xt+d + Pt+l Xt+l - PtXt 2 {jtu(x, z) + Pt+lZ - PtX 

for all (x, z) E nand tE N (4.4) 

(ii) {jtV(Xt) - PtXt 2 {jtV(x) - PtX 

for all x E X and t E N 

(iii) limptxt = 0 
t-+oo 

(4.5) 

(4.6) 

In order to establish Proposition 4.2, we first state and prove two 
Lemmas. 

Lemma 4.1: 1f x E X and x > 0 , then there is P E ~+ such 
that 

V(X) - px 2 V(y) - py for all y E X (4.7) 

Proof: If x E (0, b], and we define P to be the left-hand deriva
tive of V at x, then (4.7) holds. [Note that the left-hand derivative 
of V is weH defined for aH x E (0, b) by concavity of V, and also 
at x = b by A5]. A5 ensures that P is non-negative. 

Lemma 4.2: Suppose (Xt) is an optimal pragram fram x EX, 
and suppose also that there is (x, z) in n with z> O. 1f for some 
t E N there is Pt E ~+ satisfying 

then there is Pt+l E ~+ satisfying 

and, furthermore, 

{jtU(Xt, Xt+l) + Pt+lXt+l - PtXt > {jtu(x, y) (4.10) 

+Pt+1Y - PtX for all (x, y) E n 
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Proof: Using Proposition 3.1, we have V(Xt) = u(Xt, Xt+1) + 
8V(Xt+1) , and for all (x, y) E n, V(x) ~ u(x, y) + 8V(y). Using 
these in (4.8), we get 

()t+l 8tu(xt, Xt+1) + 8t+1V(Xt+l) - PtXt 

> 8tu(x, y) + 8t+1V(y) - PtX for all (x, y) E n 

Thus, we have 

()t+1 - 8tu(x, y) + Pt X ~ 8t+1V(y) for all (x, y) E n (4.11) 

Define two sets A and B as follows: 

A { ( W, y) E ~2 : (x, y) E n for some x E X 

andw > ()t+1-8tu(x,y)+Ptx} 

B = {(w, y) E ~2 : y E X and w :::; 8t+1V(y)} 

Clear ly, A and Bare non-empty and convex (since U is concave 
on n and V is concave on X). Also, by (4.11), A and Bare disjoint. 
Hence, by the Minkowski separation theorem, there is (J-L, v) in ~2 
with (/-L, v) -=I 0 and a ERsuch that 

J-LW+vy ~ a for all (w,y) E A (4.12) 

J-LW + vy :::; a for all (w, y) E B (4.13) 

Using (4.13), we have J-L ~ O. Define qt+l = (-v). Then, using 
(4.12) and (4.13), 

J-L[()t+1 - 8tu(x, y) + Pt x] - qt+1Y > 
J-L8t+1V(y') - qt+lY' for all (x, y) E n 

and all y' E X (4.14) 

Substituting x = Xt and y = Xt+1 in (4.14), 

~t+lV() > ~t+lV( ') , J-Lv Xt+1 - qt+1 Xt+ 1 J-Lv Y - qt+1 Y 
for all y' E X (4.15) 
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Substituting y' = Xt+I in (4.14), 

fL[otU(Xt, Xt+I) - PtXt] + qt+IXt+1 > 
fLWU(X, y) - Ptx] + qt+IY for all (x, y) E n (4.16) 

We claim now that fL i- O. For if fL = 0, then by (4.15), we have 
qt+IXt+I :s; qt+1Y' for all y' in X, while by (4.16), qt+IXt+1 2: qt+1Y 
for all Y such that (x, y) E n for some x E X. Thus 

qt+IXt+I = qt+IY for all Y such that (x, y) E n for some x E X 
( 4.17) 

Since (x, z) E n with z > 0 and (x,O) E n by A5, we have 
qt+1Xt+I = qt+IZ = qt+I0 = O. Thus, qt+I = (-v) = 0, and so 
(fL, v) = 0, a contradiction. Thus, fL i- 0, and since fL 2: 0, we have 
fL > O. Define Pt+I = (qt+dfL) and use (4.15), (4.16) to get 

ot+IV(Xt+I) - Pt+IXt+I > ot+IV(y') - Pt+IY' 

for all y' E X (4.18) 

otU(Xt, Xt+I) - PtXt + Pt+I Xt+I > 
otu(x, y) - PtX + Pt+IY for all (x, y) E n (4.19) 

It remains to show that Pt+I 2: o. If Xt+I E [0, b), then by 
choosing y' E X, y' > Xt+I in (4.18), we get Pt+1 2: 0 by the (weak) 
monotonicity of V on X (which follows from A5). If Xt+I = b, 
then by choosing (x, y) = (Xt, y) with y E [0, b) in (4.19), we get 
Pt+I 2: 0 by A5. 

We can now provide the proof of Proposition 4.2. 

Proof (of Proposition 4.2): Using Lemma 4.1, there is Po E 

R+ satisfying 

V(Xo) - POXo 2: V(x) - POX for all x E X 

Using Lemma 4.2, there is a sequence (Pt)ü with Pt E R+ for t E N 
satisfying (4.4) and (4.5) 
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Using x = 0 in (4.5), we get 

8t[V(Xt) - V(O)] ~ PtXt for t E N 

Since I V (x) I is bounded on X by B / (1 - 8), and 8t ~ 0 as t ~ 00, 

and PtXt ~ 0 for t E N, we have PtXt ~ 0 as t ~ 00, establishing 
(4.6). 

5. Sensitivity Analysis 

Sensitivity analysis is concerned with studying the nature of 
the change in the (optimal) policy function, given a change in the 
parameters of the dynamic optimization problem. 

In the present context, the parameters of the dynamic optimiza
tion problem (2.1)-(2.3) are (0, u, 8) and the initial state, x. 

Our treatment of sensitivity analysis will confine itself to the 
case where the transition possibility set, 0 (and the state space, 
X) are fixed. We will then study the effect of changes in (u, 8) and 
the initial state, x, on the nature of the policy function. 

We will be concerned with two types of sensitivity questions: 
(i) does h change continuously with a change in the parameters? 
(ii) does h change monotonically with a change in the parame-

ters? 
We have already seen (in Section 3) that h(x) changes contin

uously with respect to changes in the initial state x. Thus, in the 
present section, we will address quest ion (i) above with respect to 
variations in (u, 8). 

It is difficult to address (even formulate) quest ion (ii) above 
with respect to variations in the utility function, u. Thus, we will 
address question (ii) with respect to variations in 8 and the initial 
state, x. 

5.1 Continuity 

The principal result of this subsection is that the policy nlllction 
is uniformly continuous on the space of all (u, 8), endowed with the 
metric of uniform convergence. Our exposition is based on Mitra 
and Sorger (1999). 
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To proceed, given the space M of (0, u, 8) satisfying AI-A4, 
define the metric 

p((O, u, 8), (0, u/, 8/)) max{lu(x, y) - u/(x, y) 1 

(x, y) E O} + 18 - 8/1 

Proposition 5.1: For every positive integer n, let U n : ° ---+ R 
be a utility function and let 8n be a discount factor, such that 
(0, un , 8n ) E M. Further, let u : ° ---+ R be a utility function and 
8 be a discount factor with (0, u, 8) E M, such that 

Denote by Vn and hn fV and hj the value and policy functions 
for (0, un, 8n) [(0, u, 8)]. Then Vn converges uniformly to V and 
hn converges uniformly to h. 

Proof: Since U n converges uniformly to u, it follows that the 
sequence (un)~~ is uniformly bounded. Therefore we can find 
real numbers m and M such that m ::::; u(x, y) ::::; M and m ::::; 
un(x, y) ::::; M for all (x, y) E ° and all nE {I, 2, ... }. Without loss 
of generality we may assume that m = o. 

Step 1: We start by proving that Vn converges uniformly to V. 
Let c > 0 be given. There exists T ~ 1 such that 

~ (1 +8)T+l <~. 
1-8 2 -4 

Because of the convergence of the sequences (8n)~~ and (un)~~ 
we can find an integer N such that for all n ~ N the following 
three properties hold: 

sup{lun(x, y) - u(x, y)1 
8n < 

max{ 18~ - 8t I 

(x, y) E O} < c(l - 8)/8, 

(1+8)/2, 
tE {I, 2, ... , T}} ::::; c/(4MT). 

Consider an arbitrary state x E X and fix an arbitrary n ~ N. 
Let (xt)i=~ be an optimal path from initial state x for (0, u, 8). 
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Note that this path is also feasible for the model (0, Un , 8n ). The 
following chain of inequalities holds because of the above proper
ties: 

+00 

Vn(x) > L 8~un(xt' Xt+l) 
t=O 
T 

> L 8~un(xt' Xt+l) 
t=O 
T T 

L(8~ - 8t)un(xt, Xt+1) + L 8tun(xt, Xt+1) 
t=O t=O 

T 

> -(c/4) + L 8tun(xt, Xt+1) 
t=O 
T 

> -(c/4) + L 8tu(xt, Xt+1) - (c/8) 
t=O 

+00 +00 

> L 8tu(xt, Xt+1) - L 8tu(xt, Xt+1) - (c/2) 
t=O t=T+l 

> V(x) - (E/4) - (E/2) 
> V(x) - c. 

Using an analogous calculation one can also show that V(x) > 
Vn(x) - c. Since both n 2:: N and x E X have been chosen arbi
trarily, we have shown that Vn converges uniformly to V. 

Step 2: N ow we prove that hn converges uniformly to h. To this 
end first note that hand hn are continuous nmctions for all n and 
that X is compact. If hn would not converge uniformly to h then, 
by Royden (1988, p. 162, Exercise 40e) it would be possible to find 
Xo EX, () > 0, and a sequence (xn)!~ such that limn ___ +oo Xn = Xo 
and Ihn(xn) - h(xo)1 2:: () for all n. By compactness of X we may 
assurne without loss of generality that Zo = limn ___ +oo hn(xn) exists. 
Since Zo =f- h(xo) one can find c > 0 such that 

V(xo) 2:: u(xo, zo) + 8V(zo) + c. 
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Because of uniform convergence of U n to u and Vn to V, conver
gence of 6n to 6, as weIl as continuity of U and V, one can find an 
intetger N such that for all n 2:: N and all x E X the following 
properties hold: 

IVn(x) - V(x)1 < c18, 

IV(xn) - V(xo) I < c18, 
Iu(xn, hn(xn)) - u(xo, zo)1 < c/8, 

IV(hn(xn)) - V(zo)1 < c18, 
16n - 61 < c(l - 6)/(8M). 

From these conditions we obtain 

Vn(xn) [Vn(xn) - V(xn)] + [V(xn) - V(xo)] + V(xo) 

> -(cI8) - (c/8) + V(xo) 

> u(xo, zo) + 6V(zo) + (3c/4) 
> u(xn, hn(xn)) + 6V(hn(xn)) + (c/2) 

u(xn, hn(xn)) + 6V(hn(xn)) + (c/2) + (6 - 6n) 
V(hn(xn)) 

> u(xn, hn(xn)) + 6n V(hn(xn)) + (3cI8) 

> u(xn, hn(xn)) + 6n Vn(hn(xn)) + (c/4) 
Vn(Xn) + (c/4). 

Clearly, this is a contradiction and the result is proved. Q.E.D. 

5.2 Monotonicity with Respect to the Initial State 

The concept that is crucial to establishing monotonicity proper
ties of the policy funciton is known as supermodularity, and was in
troduced into the optimization theory literat ure by Topkis (1978). 

Let A be a sub set of ~2 and f a function from A to ~. Then 
f is supermodular on A if whenever (a, b) and (a', b') belong to A 
with (a', b') 2:: (a, b), we have 

f(a,b) + f(a',b') 2:: f(a,b') + f(a',b) (5.1) 

provided (a, b') and (a', b) belong to A. 
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If A is a reet angular region, then whenever (a, b) and (a', b') 
belong to A, we have (a, b') and (a', b) also in A. Further , for such 
a region if 1 is continuous on A and C2 on int A, then 

112(a, b) ~ 0 for all (a, b) Eint A (5.2) 

is equivalent to the eondition that f is supermodular on A. [For 
this result, see Ross (1983), Benhabib-Nishimura (1985).] 

Let (0, u, 8) be adynamie optimization model. The prineipal 
result on the montonicity of its poliey function, h, with respect to 
the initial condition (x), is that if u is supermodular on 0, then 
h is monotone non-deereasing in x. [This result is based on the 
analysis in Topkis (1978), Benhabib and Nishimura (1985).] 

Proposition 5.2: Let (0, u, 8) be adynamie optimization model, 
with value lunction V and policy lunction h. 11 u is supermodular 
on 0, then h is montone non-decreasing on X. 

Proof: Let x, x' belong to X with x' > x. Denote h(x) by z 
and h(x') by z'. We want to show that z' ~ z. Suppose, on the 
eontrary that z' < z. 

Since (x, z) E n and z' E X with z' ::::; z, we have (x, z') E n. 
Since (x, z') E ° and x' E X with x' ~ x, we have (x', z) E n. 
Using the definition of supermodularity, and (x', z) ~ (x, z'), we 
have 

u(x, z') + u(x', z) ~ u(x, z) + u(x', z') (5.3) 

Sinee z = h(x) and z' = h(x'), we have 

V(x) = u(x, z) + 8V(z) (5.4) 

and 

V(x') = u(x', z') + 8V(z') (5.5) 

Since (x, z') E n and (x', z) E n, and z' i= z, we have z' i= h(x), 
z i= h(x'), so 

V(x) > u(x, z') + 8V(z') (5.6) 



and 

V(x') > u(x', z) + 8V(z) 

Adding (5.4) and (5.5), 
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(5.7) 

V(x) + V(x') = u(x, z) + u(x' z') + 8V(z) + 8V(z') (5.8) 

Adding (5.6) and (5.7) 

V(x) + V(x') > u(x, z') + u(x', z) + 8V(z') + 8V(z) (5.9) 

Using (5.8) and (5.9), 

u(x, z) + u(x', z') > u(x, z') + u(x', z) 

which contradicts (5.3) and establishes the result. Q.E.D. 

Remark 5.1: It follows from the above result that, in the frame
work of Proposition 5.2, if (Xt) is an optimal program starting from 
x E X, then either (i) Xt+l ~ Xt for all t E N or (ii) Xt+l :::; Xt for 
all t E N. 

5.3 Monotonicity with Respect to the Discount Factor 

Let (0, u) be given with u supermodular on O. Then, for every 
specification of the discount factor, 8, and initial state x, we can 
solve the dynamic optimization problem (2.1)-(2.3) and obtain the 
value V(8,x) and policy h(8,x). 

It turns out that (i) V is supermodular as a function of the two 
variables (8, x), and (ii) it follows from this fact that h is monotone 
non-decreasing in 8. 

The second step of this two-step result is fairly straightfoward, 
using arguments similar to those employed in Section 5.2. The 
first step is more involved because one cannot use the functional 
equation of dynamic programming directly to obtain this property 
of V (since V appears on both si des of the equation). Thus, the 
method employed is an iterative procedure, in which a sequence of 
functions, Vn , are shown to be supermodular, and to be converging 
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to the value function, V (Proposition 5.3). In order to make this 
iterative procedure work, we need to make sure that the property 
of supermodularity of the maximand is preserved by the maximum 
value in a maximization problem, a general result due to Topkis 
(1978). We provide a proof of this result as well (see Lemma 5.1 
below) in our special context. 

Our analysis in this section is based on Dutta (1987) and Amir, 
Mirman and Perkins (1991), where similar results are obtained 
in the more special context of the one-sector model of optimal 
growth (Example 2.1 of Section 2). Our exposition follows Mitra 
and Nishimura (1999) closely. 

Lemma 5.1: Let (0, u) be given, with u supermodular on O. 
Let G(8, x) be a supermodular junction on lxX, where l = (0,1), 
which is continuous on l x X and non-decreasing and concave on 
X. Let H be a junciton on l x X defined by 

H(8, x) = max[u(x, z) + 8G(8, z)] 
zEn", 

(5.10) 

Then H is supermodular and continuous on l xX, and non
decreasing and concave on X. 

Proof: Given the information on G, the maximization problem 
on the right hand side of (5.1) has a solution. Thus H is well
defined. It is clearly non-decreasing on X. 

Using the concavity of u on 0 and G on X, H is concave on 
X. The continuity of H on I x X can be established by using 
arguments similar to those employed in the proof of Proposition 
3.l. 

It remains to check the supermodularity of H on lxX. Let (8, x) 
and (8' , x') belong to l x X with (8' , x') ~ (8, x). Let z [resp.Z'] 
be a solution to the maximization problem (5.1) corresponding to 
(8' , x) [resp.(8, x')]. 

There are two cases tQ consider: (i) Z' ~ z (ii) z> Z'. 

Case (i) [Z' ~ Z]: From the definitions of z and Z' it follows 
that 

H(8, x') = u(x' , Z') + 8G(8, Z') (5.11) 
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and 

H ( 15' , x) = u (x, Z) + 15' G ( 15', Z) (5.12) 

Also, considering the maximization problem (5.10) for (15, x) and 
(15', x') yield: 

H(t5,x);::: u(x,Z) +t5G(t5,Z) (5.13) 

and 

H(t5', x') ;::: u(x', '7) + t5'G(t5', Z') (5.14) 

Since (t5', z') ;::: (t5, Z) and G is supermodular, we get 

G(t5', Z') + G(t5, Z) ;::: G(t5', Z) + G(t5, Z') 

which yields 

G(t5', Z') - G(t5', Z) ;::: G(t5, Z') - G(t5, Z) ;::: 0 (5.15) 

using the fact that G is non-decreasing on X. Thus, we get 

t5'[G(I5', '7) - G(t5', Z)] > t5'[G(t5, Z') - G(t5, Z)] 
> 8[G(8, zt) - G(8, Z)] 

which in turn yields 

t5'G(t5', Z') + t5G(t5, Z) ;::: t5'G(t5', Z) + t5G(t5, Z') (5.16) 

Adding (5.11) and (5.12), and (5.13) and (5.14), and using (5.16), 
we get 

H(t5, x) + H(t5', x') ;::: H(t5, x') + H(t5',x) 

which shows that H is supermodular. 

Case (ii) [z > ?]: Note that (x, Z) E n and z > Z', so that 
(x, z') E o. Also, (x, Z) E 0 and x' ;::: x, so that (x', Z) E o. Thus, 
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considering the maximization problem (5.10) for (8, x) and (8', x') 
yield: 

H(8, x) ~ u(x, zt) + 8G(8, zt) (5.17) 

H(8', x') ~ u(x', Z) + 8'G(8', Z) (5.18) 

Also, note that (5.11) and (5.12) continue to be valid. Adding 
(5.11) and (5.12), and (5.17) and (5.18), and using the supermod
ularity of u, we get 

H(8, x) + H(8', x') ~ H(8, x') + H(8', x) 

which establishes the supermodularity of H. Q.E.D. 

Proposition 5.3: Let (0, u) be given with u supermodular on 
O. Then (i) V(8, x) is supermodular on I x X, and (ii) h(8, x) is 
monotone non-decreasing on I. 

Proof: Normalize u(O, 0) = 0, and define: 

Va(8, x) = u(x, 0) (5.19) 

Vn+1(8, x) = max[u(x, z) + 8Vn (8, z)] (5.20) 
zEOx 

Note that Va ( 8, x) is continuous on I x X and non-decreasing and 
concave on X. Further, it is (trivially) supermodular. Thus, using 
Lemma 5.1, (5.20) defines a sequence {Vn (8, x)} of functions on 
I x X, such that Vn is continuous and supermodular on I x X, 
and non-decreasing and concave on X. 

Since u is bounded on X, we can find B > 0 such that lu(x, z)1 :::; 
B for all (x, z) E O. Then IVn (8, x)1 ::; B/(l - 8) for each 8 E I, 
as can be easily verified by induction. 

Next, we show that Vn+1(8, x) ~ Vn (8, x) for n = 0,1,2, .... 
Notice that Vi(8,x) ~ u(x, 0) + 8Va(8, 0) = u(x, 0) + 8u(0, 0) = 
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u(x,O) = Vo(8, x). Assurne now that Vn+1(8,x) 2': Vn (8,x) for 
n = 0, ... , N, where N 2': 0. We will now show that VN +2(8, x) 2': 
VN +1(8, x). Let z be the solution to the problem: 

max[u(x, z) + 8VN (8, z)] 
zEflx 

Then VN +2(8, x) = max[u(x, z) + 8VN +1(8, z)] 
zEflx 

2': u(x,z) + 8VN +1(8,z) 2': u(x,z) + 8VN (8,z) = VN +1(8,x), by 
definition of z. 

Fix any 8 in I, and consider the sequence of functions 
{Vn ( 8, • )} ~=o. Define V ( 8, x) = lim Vn ( 8, x) for each x EX, not-

n--->oo 

ing that the limit is wen defined. Then (using Theorem 7.13, p. 150 
of Rudin (1976)) Vn ( 8, .) in fact converges uniformly to V (8, • ), 
and so V ( 8, .) is continuous on X. Also, V (8, .) is concave on X. 

Fixing 8 in I, denote by Zn the solution to the maximization 
problem on the right hand side of (5.20). Then, there is a subse
quence of {zn} which converges to some z. Using the fact that 

we obtain 

V(8, x) ~ u(x, z) + 8V(8, z) (5.21 ) 

Also, for every z E Ox, we have Vn+1(8, x) 2': u(x, z) + 8Vn(8, z), 
so that 

V(8, x) 2': u(x, z) + 8V(8, z) 

Using (5.21) and (5.22), we get 

V(8, x) = max[u(x, z) + 8V(8, z)] 
zEflx 

(5.22) 

Since V ( 8, .) is continuous on X, we must have V (8, .) = V (8, • ) 
by Proposition 3.l. 

Since Vn is supermodular on I x X, and Vn (8, x) ---+ V(8, x) as 
n ---+ 00, for an (8, x) in I x X, V is supermodular on I x X. This 
establishes (i). 



70 Chapter 2. Dynamic Optimization Theory 

To establish (ii), let x E X, and 8, 8' E I with 8' > 8. Denote 
h(8,x) by z and h(8',x) by z'. We want to show that z' ~ z. 
Suppose, on the contrary, that z' < z. 

Since z = h(8, x) and z' = h(8', x), we get 

V(8, x) = u(x, z) + 8V(8, z) (5.23) 

and 

V(8', x) = u(x, z') + 8'V(8', z') (5.24) 

Also, we clearly have (since z i= z'), 

V(8, x) > u(x, z') + 8V(8, z') 

and 

V(8', x) > u(x, z) + 8'V(8', z) 

Using (5.23)-(5.26), we have 

8V(8, z') + 8'V(8', z) :::; 8V(8, z) + 8'V(8', z') 

which yields 

(5.25) 

(5.26) 

8'[V(8', z) - V(8', z')] :::; 8[V(8, z) - V(8, z')] (5.27) 

Since z > z', [V(8', z) - V(8', z')] ~ 0, so that, using 8' > 8, we 
get 

8'[V(8', z) - V(8', z')] ~ 8[V(8', z) - V(8', z')] (5.28) 

Using (5.27) and (5.28) we get 

V(8', z) - V(8', z') :::; V(8, z) - V(8, z') 

which yields 

V(8', z) + V(8, z') :::;V(8', z') + V(8, z) (5.29) 

But since 8' > 8 and z > z', (5.29) violates the supermodularity 
of V. Q.E.D. 
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6. Existence of a Stationary Optimal Stock 

The concept of a (non-trivial) stationary optimal stock plays a 
central role in the theory of optimal intertemporal allocation. Its 
primary significance derives from the fact that it is the rest point 
of the dynamical system (X, h), which is aglobaI attractor for 
optimal programs from all positive initial stocks (usually referred 
to as the turn pike property) when the discount factor is close to 
unity. 

We will discuss this stability property in Section 9 below. In the 
present section, we confine ourselves to discussing the existence of 
a stationary optimal stock. Our exposition is primarily based on 
Flynn (1980), McKenzie (1982) and Khan and Mitra (1986). 

6.1 Existence of a Discounted Golden-Rule Stock 

A discounted golden-rule stock k is an element of X such that 
(i) (k,k) E 0 
(ii) u(k,k) ~ u(x,y) for all (x,y) E 0 suchthat 8y-x ~ 8k-k 
(iii) u( k, k) > u(O, 0) 
We establish the existence of a discounted golden-rule stock un

der a "8-normality" condition. We say that (0, u, 8) is 8-normal if 
there exists (x, y) E 0 such that 8y ~ x and u(x, y) > u(O, 0). 

Proposition 6.1: If (0, u, 8) satisfies Al-A3 and A5, and is 
8-normal, then there exists a discounted golden-rule stock. 

Proof: For z in X, define cp( z) = {(x, y) E 0 : 8y - x ~ 8 z - z} 
and 'ljJ(z) = {(x,y) E 0: u(x,y) ~ u(x',y') for all (x',y') E cp(z)}. 

Note that for each z E X, the set cp(z) is non-empty (since 
(0,0) E 0), compact (since 0 is closed) and convex (since 0 is 
convex). Thus, for each z E X, the set 'ljJ(z) is non-empty (since u 
is upper semicontinuous on 0) and convex (since u is concave). 

Next, we show the upper hemicontinuity of 'ljJ. Let z* be an 
arbitrary point of X. Consider a sequence zn EX, with zn -+ z* 
as n -+ 00. Let (xn, yn) E 'ljJ(zn) , and (xn, yn) -+ (x, fj). We want 
to show that (x, fj) E 'ljJ(z*). Since 0 is closed, (x, fj) E cp(z*). 
Suppose (x, fj) is not in 'ljJ(z*). Then there is some (x*, y*) E 'ljJ(z*) 
and c > 0 such that u(x*, y*) ~ u(x, fj) + c. 
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Now, since u is an upper semicontinuous function, lim sup 
n ...... oo 

u(xn, yn) :::; u(x, y). Thus, there is NI such that for n > NI, 
u(xn, yn) :::; u(x,11) + c/3. Consequently, for n ~ NI, 

(6.1) 

Choose 0< A < 1 such that (1- A)[U(O, 0) - u(x*, y*)] ~ -c/3. 
We claim that there is an N2 such that for n ~ N2 , (AX*, AY*) E 

cp(zn). To see this, observe that (0,0) E n and convexity of n imply 
that (AX*, AY*) E cp(AZ*). Since zn --t z*, there is N2 such that for 
n > N2 , zn ~ AZ*. Thus OAY* - AX* ~ (0 - l)Az* ~ (0 - l)zn, 
establishing our claim. 

Since (xn, yn) E 'IjJ(zn), we have for n ~ N2 , 

u(xn, yn) > U(AX*, AY*) ~ AU(X*, y*) + (1 - A)U(O, 0) 
= u(x*, y*) + (1- A) [u(O, 0) - u(x*, y*)] 
~ u(x*, y*) - c/3. 

Using this in (6.1) for n ~ Max(NI , N2 ), 

u(x*, y*) ~ u(xn, yn) + 2c/3 ~ u(x*, y*) + c/3, 

which leads to a contradiction and completes the demonstration 
that 'IjJ is upper hemicontinuous. 

Define for z E X, Q(z) = {x EX: (x, y) E 'IjJ(z)}. We will 
show that this correspondence Q satisfies an the requirements of 
Kakutani's fixed-point theorem. 

Clearly, Q is a non-empty, convex-valued correspondence fram 
X to the subsets of X. We check that Q is upper hemicontinuous. 
To see this, take an arbitrary z* E X. Let zn E X, with zn --t z* 
as n --t 00. Let xn E Q(zn), and xn --t X as n --t 00. We have 
to show that x E Q(z*). Since xn E Q(zn), there is yn such that 
(xn, yn) E 'IjJ(zn). This means (xn, yn) E cp(zn), and we can pick a 
subsequence (xnl , ynl) tending to (x, y) E cp(z*). Since'IjJ is upper 
hemicontinuous, (x, y) E 'IjJ(z*) and so xE Q(z*). 

Thus, an the conditions of Kakutani's fixed point theorem are 
fulfilled, and there exists XO E Q(XO). This means there is some yO 
such that (XO,yO) E 'IjJ(XO). That is, 

u(XO, yO) ~ u(x, y) for an (x, y) E cp(XO). 
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But (XO, yO) E cp(XO) implies XO ~ yO, and we obtain from A5 that 
(XO, XO) E 0 and u(XO, XO) ~ u(XO, yO) ~ u(x, y) for all (x, y) E 0 
with 8y - x ~ 8xO - XO. Given 8-normality, there is (x', y') E cp(XO) 
such that u(x', y') > u(O,O). Thus u(XO, XO) > u(O,O), and hence 
XO is a discounted golden-rule stock. 

6.2 Existence of a Non-Trivial Stationary Optimal Stock 

An optimal program (x(t))ü from k is a stationary optimal pro
gram if x(t) = k for t E N. A stationary optimal stock k is an 
element of X such that (k)ü is a stationary optimal program. It 
is called non-trivial of u(k, k) > u(O, 0). 

Using Proposition 6.1, we can establish the existence of a non
trivial stationary optimal stock. 

Proposition 6.2: If (0, u, 8) satisfies Al-A3 and A5, and is 
8-normal, then there exists a non-trivial stationary optimal stock. 

Proof: By Proposition 6.1, there is a discounted golden-rule 
stock, k. Now, let (Xt)ü be any program from k. We will show 
that 

00 

L 8tu(k, k) ~ L 8tu(xt, XHl) (6.2) 
t=O t=O 

T-l T-l 

Let X T = 2: (1-8)8txt/(1-8T ) and YT = 2: (1-8)8txHd(1-
t=O t=O 

8T ) for T = 1,2,3, .... Given convexity of 0, we have (XT , YT ) 

in 0 for T = 1,2,3, .... Since Xt E X for all t E N, the pair 
(x, y) lim (XT , YT ) is well-defined and in O. 

T--+oo 
Now, by concavity of u, and the fact that 0 < 8 < I, Jensen's 

00 

inequality yields u(x, y) ~ 2:(1- 8)8tu(xt, XHl). But (x - 8y) = 
t=o 

(1 - 8) [f 8txt - f 8H1 xH1] = (1 - 8)k. Since k is a discounted 
t=o t=O 
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golden-rul stock, u(k, k) ~ u(x,11), which in turns implies that 

00 00 00 

t=O t=O t=O 

which establishes (6.2). Thus, k is a stationary optimal stock. Since 
k is a discounted golden-rule stock, we have u(k, k) > u(O, 0), and 
so k is a non-trivial stationary optimal stock. 

6.3 The Existence of a Modified Golden-Rule 

A modified golden-rule is a pair (k, p) such that 
(i) (k, k) E 0, P E ~+ 
(ii) u(x, y) + bpy - px ~ u(k, k) + bpk - pk for all (x, y) E 0 
Given Proposition 6.1, we can establish the existence of a mod-

ified golden-rule by providing aprice support to the discounted 
golden-rule stock. 

Proposition 6.3: 1/ (0, u, b) satisfies Al-A3 and A5, and is 
b-normal, then there exists a modified golden-rule. 

Proof: By Proposition 6.1, there is a discounted golden-rule 
stock, k. 

Define two sets A and B as follows: 
A = {(a, b) E ~2 : u(x, y) - u(k, k) ~ a, (by - x) - (bk - k) ~ b 

for some (x, y) E O} 
B = {(a, b) E ~2 : a > 0 and b > O} 
Then A and Bare non-empty, convex sets. By the definition 

of a discounted golden-rule stock, A and Bare disjoint. Then, by 
a separation theorem (see Nikaido (1968), Theorem 3.5, p. 35), 
there is (J.1, v) E ~~, (J.1, v) -I 0 such that 

J.1a + vb ~ 0 for all (a, b) E A 

We claim that J.1 -I O. For if J.1 = 0, then we have vb ~ 0 for all 
(a, b) E A. Define a = u(O, 0) - u(k, k) and b = (k - bk). Since 
(0,0) E 0, (a,b) E A, andsov(k-bk) ~ o. Sinceu(k,k) > u(O,O), 
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we have k > 0 and so (k - 8k) > o. Thus, v :::; 0, which means 
v = 0, contradicting the fact that (J1, v) i= 0. Thus, J1 > 0, and so 

a+ (v/J1)b:::; 0 for all (a,b) E A. 

Defining p = (v / J1), we have 

u(x, y) + 8py - px :::; u(k, k) + 8pk - pk for all (x, y) E n 

Thus, (k,p) is a modified golden-rule. 

7. Smooth Preferences 

So far, we have developed the theory of dynamic optimization 
without assumptions on the smoothness of the reduced form utility 
function. 

However, significant progress in the theory can be made (beyond 
the material covered in Sections 2-6) if one assumes that the utility 
function is smooth in the interior of the transition possibility set. 

We will concentrate on two sets of ideas that emerge from this 
theory. First, if the utility function, u, is Cl in the interior of n, 
then an interior optimal program satisfies the Ramsey-Euler equa
tions. Further, the value function is continuously differentiable in 
the interior of the state space, and the derivative of the value func
tion is the derivative of the utility function (with respect to its first 
argument) when evaluated at the optimal point (by the envelope 
theorem). 

Going back to the material on duality theory covered in Sec
tion 5, we now see that the shadow prices supporting an optimal 
program are given exactly by the derivatives of the value function 
(at the appropriate optimal states). This leads to arestatement of 
the characterization of optimal programs in terms of the Ramsey
Euler equations and a transversality condition that is quite use
ful. In particular, any interior stationary (and, in fact, any peri
odic) optimal program can be characterized solely in terms of the 
Ramsey-Euler equations. 

The second set of ideas is developed under the hypotheses that 
the utility function, U, is C2 in the interior of 0, and optimal 
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programs are in the interior of n (when the initial state is in the 
interior of X). Now, the Ramsey-Euler equations involve contin
uously differentiable functions which can be linearized around an 
interior stationary optimal stock to study the local stability of op
timal programs in terms of the characteristic roots associated with 
the Ramsey-Euler equation at the stationary optimal stock. 

The interesting feature that emerges is that the dynamic behav
ior of optimal programs in governed by the smaller (in absolute 
value) ofthe characteristic roots associated with the Ramsey-Euler 
equation. This feature is made precise in the result that (i) the pol
icy function is differentiable at the stationary optimal stock, and 
(ii) the derivative of the policy function at the stationary optimal 
stock is equal to the smaller (in absolute value) of the charac
teristic roots associated with the Ramsey-Euler equation at the 
stationary optimal stock. 

7.1 Ramsey-Euler Equations and the Differentiability of 
the Value Function 

Ramsey-Euler equations can be derived as first-order necessary 
conditions of the optimization problem (2.1)-(2.3). Thus, if (x;) 
solves the optimization problem (2.1)-(2.3), then for each t E N, 
X;+l must solve the problem: 

(Q){ Maxu(x;,y)+8u(y,X;+2) 
subject to y E Ox;, X;+2 E Oy 

Introduce now the following smoothness assumption on u: 

A6: u is continuously differentiable in the interior of n. 

If the optimal program is in the interior of 0 for all t (that is, 
if (x;, x;+ 1) E: int n for all t E N), then the first-order condi tions 
for (Q) are: 

which are the Ramsey-Euler equations. 
We summarize this finding in the following result. 
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Proposition 1.1: Suppose the policy function, h, satisfies 
(x, h(x)) Eint n foT' all xE int X, then 

foT' all xE int X. 
If an optimal program (Xt) is interior (that is, (Xt, xt+d Eint n 

for all t E N), then the shadow prices (Pt) obtained in Proposition 
4.2 must satisfy (using (4.4)) 

If V were differentiable, then we would also have from (4.5) 

Thus, when V is differentiable, we should have (for x Eint X), 

V'(x) = Ul(X, h(x)) 

We now show that (under A 7), V is continuously differentiable in 
int X, and the above formula, relating the derivatives of the value 
and utility functions, holds. This result is due to Benveniste and 
Scheinkman (1979). 

Proposition 1.2: Suppose the policy function, h, satisfies 
(x, h( x ) ) Eint n foT' all x Eint X. Then V is continuously 
diffeT'entiable on int X, and 

V'(x) = Ul(X, h(x)) (7.2) 

foT' all x Eint X. 

Proof: Pick any xO Eint X, and note that by assumption 
(XO, h(xO)) Eint n. Then there is a neighborhood N of XO such 
that (x, h(xO)) Eint n for all x E N. Define W on N by 

(7.3) 
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Then W is concave and continuously differentiable on N. Fur
ther, W(XO) = V(XO), and far all x E N, W(x) = u(x, h(xO)) + 
bV (h( XO)) ::; V (x). Let p be any subgradient of V at xo. Then 

p(x - XO) 2: V(x) - V(XO) 2: W(x) - W(XO) 

Since W is concave and continuously differentiable on N, p = 
W'(XO). Thus, V has a unique subgradient at xO, so it must be 
differentiable at xO, with p = V'(XO). Since xO Eint X was arbi
trary, V is differentiable on int X. Since V is concave, V is in fact, 
continuously differentiable on int X. 

Using (7.3) to evaluate the derivative of W at xO, we get 

Since W'(xO) = p = V'(xO), we get 

V'(XO) = Ul(XO, h(xO)) 

Since XO Eint X was arbitrary, this establishes (7.2). 

(7.4) 

(7.5) 

Q.E.D. 

Giventhe above results, it is now possible to restate the re
sults on the price characterization of optimal programs somewhat 
differently as follows. 

Corollary 7.1: 1f (Xt)ü is a programfrom x E X, with (Xt, Xt+1) 
Eint n for t E N, and the following conditions hold: 

(i) U2(Xt, Xt+1) + bUl(Xt+l, Xt+2) = 0 (7.6) 

(ii) limbtul(Xt, Xt+1)Xt = 0 (7.7) 
t--+oo 

then (Xt)ü is an optimal program from x. 

Proof: Define Pt = btUl(Xt, Xt+1) for t E N. Note that Pt E R+ 
for t E N by A5. Then for all (x, z) E n and t E N, 

U(X, z) - u(Xt, Xt+1) ::; Ul (Xt, Xt+l)(X - Xt) 

+U2(Xt, Xt+l)(Z - Xt+1) 



Mitra 79 

Multiplying through by f/, and using (7.6) and the definition of 
Pt, 

bt[u(x, z) - u(Xt, Xt+I)] < Pt(x - Xt) 

-Pt+I (z - Xt+I) (7.8) 

Transposing terms in (7.8) yields (4.1). Also, (7.7) and.the defi
nition of Pt yields (4.2). Now the result follows from Proposition 
4.1. 

Remark 7.1: (i) It is worth noting that unlike Proposition 
4.1, the sufficiency result of Corollary 7.1 does exploit the convex 
structure of the dynamic optimization model. 

(ii) It follows from Corollary 7.1 that if x is astate satisfying 
(x,x) Eint n, and U2(X,X) + bUI(X, x) = 0, 
then X is a stationary optimal stock, since the transversality con
dition (7.7) is automatically satisfied. 

(iii) Generalizing the result in remark (ii) above, if (xo, Xl, ... , XN) 
(with N 2: 1) is a vector such that (Xt, Xt+1) Eint n, and 
U2(Xt, xt+d + bUI(Xt+I, Xt+2) = 0 for t = 0, ... , N - 2 (if N 2: 2), 
U2(XN-I,XN) + bUI(XN,XO) = 0, then (XO,XI, ... ,XN) is a periodic 
optimal program. 

A converse of Corollary 7.1 can be established, using Proposition 
4.2. 

Corollary 7.2: Suppose (Xt)ü is an optimal program from X E 

X, such that (Xt, Xt+1) Eint n for t E N. Then the following 
conditions hold: 

(i) U2(Xt, Xt+l) + bUI(Xt+l, Xt+2) = 0 for t E N 
(ii) limbtul(Xt,Xt+I)Xt = 0 

t~oo 

(iii) V'(Xt) = UI(Xt, Xt+I) for t E N 

Proof: Using (4.4) and the fact that (Xt, Xt+I) is in int n for 
tE N, we have 

(7.9) 
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(7.10) 

This yields (i). Using (4.6), (ii) follows from (7.9). 
By the proof of Proposition 7.2, V is differentiable at Xt for each 

tE N. So, using (4.5), 

(7.11) 

Thus, (iii) follows from (7.9) and (7.11). 

7.2 Characteristic Roots of the Ramsey-Euler Equation 
and Differentiability of the Policy Function 

The study of the differentiability of the policy function is one of 
the hard topics of dynamic optimization theory. For the present 
exposition, we will confine our attention to the differentiability of 
the policy function at a stationary optimal stock, which turns out 
to be the most useful aspect of this theory for applications. 

The differentiability property of the policy function at an SOS 
can be used to establish that the derivative of the policy function 
equals the smaller (in absolute value) characteristic root associated 
with the Ramsey-Euler equation, at the SOS. (See Santos (1991) 
for the most general result). 

We will approach the topic in reverse order. That is, we will 
establish a relation betwenn the Dini derivatives of the policy 
function and the characteristic roots associated with the Ramsey
Euler equation at the SOS. This will then be used to establish 
simultaneously the differentiability of the policy function at the 
SOS, and the equality of the derivative of the policy function to 
the smaller (in absolute value) characteristic root associated with 
the Ramsey-Euler equation. This approach is based on Mitra and 
Nishimura (1999). 

We proceed with our analysis under the following condition: 

Cl: There is a stationary optimal stock, k8 E X, such that 
(k8 , k8 ) Eint 0, un(k8 , k8 ) < 0, U22(k8 , k8 ) < 0 and 0 < (1 + 
8)lu12(k8 , k8)1 < [-U22(k8 , k8 )] + 8[-un(k8 , k8 )]. 
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We will carry out our analysis for the case U12(kö, kö) > 0, noting 
that the analysis for the case U12(kö, kö) < 0 is analogous (and is 
worked out explicitly in Mitra and Nishimura (1999)). 

We write k for kö to simplify the notation. Since (k, k) Eint 
0, we can find an open interval NI ( k) containing k, such that 
Nl (k)2 is in the interior of 0, and for all (x, z) in Nl (k)2, we have 
U12(X, z) > O. Now, we can find an open interval N(k), containng 
k, with N(k) c Nl(k), such that for all x E N(k), h(x) and h2(x) 
belong to Nl(k). 

Then, for all x, x' in N(k), with x' > x, we must have h(x') > 
h(x). To see this, note that we have 

U2(X', h(x')) = -8V'(h(x')) 

U2(X, h(x)) = -8V'(h(x)) 

Thus, by the Mean-Value Theorem, 

U2l(X' - x) + U22(h(x') - h(x)) 
8[V'(h(x)) - V'(h(x'))] 

where U2l and U22 are evaluated at a point (y, z) in between 
(x, h(x)) and (x'(h(x')), as given by the Mean-Value Theorem. 
If h(x') :s; h(x), then V'(h(x')) ~ V'(h(x)), so that 

U2l(X' - x) + (-U22)(h(x) - h(x')) :s; 0 

But since U2l > 0, (-U22) > 0, we have a contradiction. 
We break up our analysis into several steps. 
Step 1: We can write the characteristic equation [associated 

with the Ramsey-Euler equation at x = kö] as follows: 

Denoting the roots of the characteristic equation by Al and A2 
(where Al has the least absolute value), we can infer that k is 
"saddle-point stable"; that is 

(7.13) 
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To see this, observe first that by using Cl, >'1 and >'2 are real, and 

>'1>'2 = (1/8); (>'1 + >'2) = -{[U22(k, k) + 8ull(k, k)]j8u12(k, k)} 
(7.14) 

Thus, >'1 and >'2 are both positive, with (>'2)2 ~ >'1>'2 = (1/8), so 
that >'2 > 1. 

Using (7.14) and Cl, we obtain (1- >'1)(1- >'2) = 1- >'1 - >'2 + 
>'1>'2 = [1/8u12(k, k)][(l + 8)U12(k, k) + U22(k, k) + 8un(k, k)] < O. 
Since >'2 > 1, we must have >'1 < 1. This verifies (7.13). 

Step 2: If x E N(k), x =1= k, then 

U21 + [( -U22) + 8( -un)]{[h(x) - h(k)]/(k - x)} 

where U21 and U22 are evaluated at an appropriate convex com
bination of (x, h(x)) and (k, k), and Ull and U12 are evaluated at 
an appropriate convex combination of (h(x), h2(x)) and (k, k) as 
given by the Mean-Value Theorem. 

Ta see this, write the Ramsey-Euler equations: 

u2(k, k) + 8U1(k, k) 0 

U2(X, h(x)) + 8U1(h(x), h2(x)) 0 

Use the Mean-Value Theorem to get 

U21(k - x) + (-U22)(h(x) - k) + 8( -Ull) (h(x) - k) 

+0u12[k - h2(x)] = 0 

Dividing by (k - x) =1= 0, we obtain (7.15). 

Step 3: For x E N(k), n =1= k, define 

. [1' . flh(x)-h(k)ll' . flh(X)-h(k)ll m=mm 1mm ,1mm 
x-tk+ X - k x-tk- X - k 
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M [1· 1 h(x) - h(k) 1 1. 1 h(x) - h(k) I] = max lmsup k' lmsup k 
x--->k+ X - x--->k- X -

We claim that 

(i) M is either Al or A2; (ii)m is either Al or A2. 

We will establish only (i), since the proof of (ii) is similar. Let 
us define: 

g(A) = U2l(k,k)+U22(k,k)A+8un(k,k)A 

+ 8U12(k, k)A2 

Claim 1: g(M) > 0 is not possible. For if g(M) > 0, then 

U2l(k, k) + [U22(k, k) + 8Ull(k, k)]M + 8U12(k, k)M2 > 0 

We can choose c > 0 such that 

U2l(k,k) > [(-U22(k,k)) + 8(-Ull(k, k))] 
(M + c) - 8U12(k, k)(M2 - c2 ) 

Given c > 0, one can find ZS ---+ k(zS =I k) such that 

[h(k) - h(zS)]j(k - ZS) ~ (M - c) (7.17) 

One can then find S' and XS such that h(xS) = ZS for s ~ S'. Then 
XS ---+ k(xS =I k) as s ---+ 00, and one can find S 2: S', such that for 
s ~ S, 

[h(xS) - h(k)]j(xS - k) S; (M + c) (7.18) 

Using (7.15) with x = x S , (7.17) and (7.18), we have 

U2l = [( -U22) + 8( -Ull) - 0u12 (h(Z:~ = ~(k)) ] 
[h(X;~ = ~(k)] 

~ [h(XS) - h(k)] < [( -U22) + 8( -Ull) - 8U12(M - c)] XS _ k 

< [( -U22) + 8( -un) - 8U12(M - c)](M + c) 
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Letting X S ---+ k, we get 

U21(k, k) < [( -U22(k, k)) + 8( -u11(k, k)) - 8U12(k, k)(M - c:)] 

(M + c:) < U21(k, k) 

a contradiction, which establishes the claim. 

Claim 2: g( M) < 0 is not possible. Otherwise, 

We can choose c: > 0 such that 

U21(k, k) < [( -U22(k, k)) + 8( -u11(k, k))](M - c:) - 8U12(k, k) 
(M2 _ c:2 ) 

One can find XS ---+ k(xS i= k) such that 

[h(k) - h(xS)]/(k - XS) ~ (M - c:) (7.19) 

Define ZS = h(xS). Then ZS ---+ k(zS i= k) and we can find S, such 
that for s ~ S, 

[h(k) - h(zS)l/(k - ZS) ~ (M + c:) (7.20) 

Using (7.15) with x = xs, (7.19) and (7.20), we have 

U21 = [( -U22) + 8( -U11) - 0u12 [h(k k = ~~ZS)]] 
[ h(XS) - h(k)] 

X S - k 

> [( -U22) + 8( -U11) - 0u12(M + c:)](M - c:) 

Letting X S ---+ k, we get 

U21(k, k) > [( -U22(k, k) + 8( -u11(k, k))](M - c:) 
- 8U12(k, k)(M2 - c:2) 

> U21(k, k), 
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a contradiction. From Claims 1 and 2, we get g(M) = 0, so M = Al 
or A2. 

Step 4: Let x E N(k), with x i- k. To be precise, let x < 
k, so that h(x) < k and h2(x) < k. [The case x > k can be 
handled similarly.] Then V'(x) = Ul(X, h(x)) and 8V'(h(x)) = 

8Ul(h(x), h2(x)) = -U2(X, h(x)). Similarly V'(k) = ul(k, k) and 
8V'(k) = 8Ul(k, k) = -u2(k, k). Thus, using concavity of u, we 
obtain the following two inequalities: 

U(x, h(x)) + 8V'(h(x))h(x) - V'(x)x > u(k, k) + 8V'(h(x))k 
- V'(x)k 

u(k, k) + 8V'(k)k - V'(k)k > u(x, h(x)) + 8V'(k)h(x) 
-V'(k)x 

Adding the inequalities and transposing terms 

8[V'(h(x)) - V'(k)][k - h(x)] :::; [V' (x) - V'(k)][k - x] 

Iterating on this relationship, we get 

8[V'(h(x)) - V'(k)][k - h2(x)] :::; [V' (x) - V'(k)][k - x] 

This yields the inequality 

82[k - h2(x)]/[k - x] :::; [V' (x) - V'(k)]/[V'(h2(x) - V'(k)] 
(7.21) 

We claim now that 

(7.22) 

For, if (7.22) were violated, we would have [k - h2(x)] > [k
x]/82 > [k - x]. Thus, we must have h2(x) < x < k, and V'(h2(x)) 
2 V'(x) 2 V'(k), so that [V'(x) - V'(k)]/[V'(h2(x)) - V'(k)] :::; 1. 
But then by using (7.21), (7.22) must hold, a contradiction. This 
establishes (7.22). 
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Step 5: By the analysis in Step 3, we know that M is either >'1 
or >'2 and m is either >'1 or >'2. We now show that M = m = >'1. 

By (7.15), we have 

U21 + [( -U22) + 8( -un)]{[h(x) - h(k)]f(k - x)} + 
0u12{[h2(k) - h2(x)]f(k - x)} = 0 

Using (7.22) we get 

[( -U22) + 8( -un)]{[h(x) - h(k)]f(x - k)} :::; U21 + [U12/8] 

Thus, we obtain (by letting x ---t k), 

IDh(k)1 :::; (1 + 8)[+U12(k, k)]f8[( -U22(k, k)) + 8( -un(k, k))] 

for every Dini-derivative at k. Using Cl we get IDh(k)1 < (1/8) < 
>'2. Thus, M < >'2 and consequently M = >'1 < 1. Since m is either 
>'1 or >'2, and m :::; M, m = >'1, also. 

The above analysis implies that h is differentiable at k, and 
h'(k) = >'1. 

We summarize OUf finding in the following result. 

Proposition 7.3: Under Cl, the policy junction h is differen
tiable at k, and 

where >'1 is the characteristic root associated with the Ramsey
Euler equation at (k, k), with the sm aller absolute value. 

8. U niqueness of the Stationary Optimal Stock 

In general, a non-trivial stationary optimal stock need not be 
unique. However, one can provide a useful sufficient condition on 
the reduced-form utility nmction under which a uniqueness result 
can be obtained, independent of the discount factor. These two 
topics are discussed in Sections 8.1 and 8.2. 
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An especially useful theory of uniqueness can be developed 
when (0, u) are given, and the discount factor is restricted to take 
values dose to unity and we examine below the elements of this 
theory in some detail in Section 8.3. 

8.1 An Example of Non-Uniqueness 

We examine a situation in the context of Example 3 of Section 
2 by specifying (w, J, b), for which we can verify the existence of 
two non-trivial stationary optimal stocks. 

Let X = [0,4], and the function J : X ---+ X be specified by 

J(x) = 2X1/ 2 for all x E X 

We show now how two stocks can be shown to be stationary 
optimal stocks by appropriate choice of (w, b). 

Let us pick x' = (1/4) and x" = (1/9). Then J(x') = 2(X')1/2 = 
1 and J(x") = 2(X")1/2 = 2/3. Thus, consumption levels associated 
with stationary programs (x')ü and (x")ü are c' = (3/4) and 
c" = (5/9). 

In order that these stocks be stationary optimal stocks, it is 
enough to check that the Ramsey-Euler equations hold for our 
choice of (w, b). To make computations easier, we take w to be of 
the additive separable form: 

w(c, x) = g(c) + h(x) 

Then the Ramsey-Euler equations would hold at (x', c') and (x", c") 
if 

g'(c') 8[g'(c')f'(x') + h'(x')] 
g' (eil) b[g' (eil) l' (x") + h' (x")] 

These can be rewritten as: 

g'(c') [1 - bf'(x')] 
g' ( eil) [1 - 81' (x") ] 

8h'(x') 
bh'(x") 

Since f'(x) = [1/X 1/ 2], we have f'(x') = 2 and f'(x") = 3. Let 
us choose b = (1/6). Then bf'(x') = 1/3 and bJ'(x") = 1/2, so 
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that [1- 8f'(x')] = (2/3) and [1- 8f'(x")] = (1/2). Thus, in order 
for the Ramsey-Euler equations to hold, all we need to ensure is 
that 

g' (c') (3/2) (1 /6)h' (x') 
g' (c") 2(1 /6)h' (x") 

We can clearly simplify our calculations by taking h to be linear; 
so, choose h(x) = 12x for x E X. Then, our restrictions on gare 
given by 

g'(c') 3 

g'(c") 4 

So, all one needs is to provide an increasing, concave function 9 
on X with these two-point restrictions. Clearly, a two-parameter 
function will suffice for our purpose, and we specify 9 to be the 
quadratic map: 

g(c) = ac - bc2 for cE X 

Then we need (a, b) to satisfy 

a - 2bc' 

a - 2bc" 
a - 2b(3/4) = 3 

a - 2b(5/9) = 4 

This yields a = (453/144) and b = (7/72). It can be checked that 
9 is strictly increasing and strictly concave on X. 

To summarize, with f(x) = 2X1/ 2 for x E X, w(c, z) = (ac
bc2) + 12x for (c,x) E X 2 (where a = (453/144) and b = (7/72)), 
and 8 = (1/6), both x' = (1/4) and x" = (1/9) are non-trivial 
stationary optimal stocks. 

8.2 A Sufficient Condition for Uniqueness 

Let us assume that we are given a dynamic optimization model 
(0, u, 8) for which u is twice contnuously differentiable on int 0, 
with Ul1 (x, x) < 0 and U22(X, x) ::; 0 for all (x, x) Eint 0. 
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If x' and x" are two distinct stationary optimal stocks, with 
x" > x', such that (x', x') Eint 0 and (x", x") Eint 0, then the 
Ramsey-Euler equations yield: 

(8.1) 

(8.2) 

Using the Mean-Value theorem, we can find z and y in (x', x"), 
such that 

8Ul (x', x') - 8Ul (x", x") = [8un (y, y) + 8U12(Y, y)](x' - x") (8.4) 

Then (y,y) Eint 0 and (z,z) Eint 0, so un(Y,Y) < 0 and 
U22(Z, z) < O. 

Let us assume that the following condition holds: 

U12(X, x) ::; 0 for all (x, x) Eint 0 (8.5) 

Then adding (8.3) and (8.4), we would get 

0= (x" - x')[( -U21 (z, z)) + 
(-U22(Z, z)) + 8( -un(Y, y)) + 
8( -U12(Y, y))] > 0 

a contradiction. Thus, (8.5) is sufficient to ensure uniqueness. 

Remark 8.1: (i) In Example 4 of Section 2, we have U12(X, z) < 
o for all x, z in (0,1) x (0,1). Thus, (8.5) is satisfied, and a sta
tionary optimal stock must be unique. 

(ii) If U12(X, z) < 0 far (x, z) in int 0, then we know that 
the policy function, h, is decreasing in a neighborhood of xo, if 
(XO, h(xO)) Eint O. This rules out multiple stationary optimal 
stocks, x, with (x, x) in the interior ofO. However, (8.5) is a weaker 
condition ensuring uniqueness. 



90 Chapter 2. Dynamic Optimization Theory 

(iii) The uniqueness of a non-trivial stationary optimal stock 
in the one-sector model of optimal growth (Example 1) can be 
viewed as a special case of the above theory, even though, defining 
u(x, z) = w(f(x) - z), we have U12(X, z) = [-w"(f(x) - z)lf'(x) > 
o. 

To see this, note that if there are two non-trivial stationary 
optimal stocks, x', x", then x' must solve 

Max w(f(x) - z) } 
subject to 8f(x) - z 2 8f(x' ) - x' (PI) 

(x, z) E 0 

and x" must solve 

Max w(f(x) - z) } 
subject to 8f(x) - z 2 8f(x") - x" (P") 

(x, z) E 0 

But with w strictly increasing (PI) and (P") are the same as: 

Max f(x) - z } 
subject to 8f(x) - z 2 8f(x' ) - x' (PD 

(x, z) E 0 

and 

Max f(x) - z } 
subject to 8f(x) - z 2 8f(x") - x" (P{') 

(x, z) E 0 

Thus, x' solves (PD and x" solves (P{'). Then, defining U(x, z) = 

f (x) - z, x' and x" are non-trivial stationary optimal stocks for 
the model (O,U, 8). But since U12 = 0, U satisfies (8.5) and with 
f" > 0 on int X, Un < 0 and U22 = 0, so we must have uniqueness 
of the stationary optimal stock; that is, x' must be equal to x". 
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8.3 Uniqueness of the Stationary Optimal Stock for 
High Discount Factors 

Let (0, u) be given satisfying Al, A2, and A5. Consider the 
maximization problem: 

subject to z - x ~ 0 (P) 
11ax u(x,z) } 

(x, z) E 0 

Clearly, there is a solution (x, z) to (P), and so (x, x) solves (P) 
as weIl. We refer to x as a golden-rule stock. 

Assume, now, that the following condition holds: 

C2: (i) (x, x) Eint 0 

(ii) u is twice continuously differentiable on int 0, with the 
Hessian of u negative definite at (x, x). 

Note that there is a neighborhood N (in int 0) containing (x, x), 
such that the Hessian of u is negative definite on N. 

It follows that (x, x) is the only solution to (P). For if (x, z) 
were any solution to (P), then so is (x, x), and by convexity of 0 
and concavity of u, so is ('xx + (1 - ,x)x, 'xx + (1 - 'x)'X) for all 
o :S ,X :S 1. For 0 < ,X < 1 and sufficiently dose to zero, this is 
in N, but since u is strictly concave on N, we must have x = X. 
Similarly, using the fact that (z, z) solves (P), we can infer that 
z = X. Thus (x, z) = (x, x). 

We can now find Cl > 0 such that (x, x) Eint 0 for all x E 
[x- Cl, X+Cl]- /1 c N. 

Since the Hessian of u is negative definite on N, we have 

a = -[U2l(X,X) + U22(X, x) + Ul1(X, x) + U12(X, x)] > 0 

Thus, there is 0 < C2 < Cl such that for all x in /2 - [X-C2, X+C2], 
we have 

-[U2l(X, x) + U22(X, x) +un(x,x) +U12(X,X)] > (a/2) 

We can now find 0 < PI < 1 such that for all PI < P < 1 and all 
xE h, 
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We can find 0 < ß < [u(x, x) - u(O,O)] such that whenever 
(x,x) E n and Ix -xl ~ C2, we have u(x,x) ~ u(x,x) - ß. Now, 
pick 0 < C3 < C2 such that (x, x + c3) Eint n and u(x, x + c3) > 
u(x, x) - ß. Next, find PI < P2 < 1 such that for P2 < P < 1, we 
have p(x + c3) - x > O. 

Now, choose the discount factor, 8, in (P2' 1). Since (x, x + 
c3) E n, with 8(x + c3) > x, we have (x + c3) > xj8 and so 
(x, xj8) E n, and since u(x, x + c3) > u(x, x) - ß > u(O,O), we 
have u(x,xj8) > u(O, 0) and so (n,u,8) is 8-normal. Thus, there 
exists a discounted golden-rule stock. This is also a non-trivial 
stationary optimal stock. 

We show nOw that there can be at most one non-trivial sta
tionary stock (SOS), k. We note that if k is a non-trivial SOS, 
then (k, k) Eint n. To see this note that since (x, x) Eint n, all 
o < x ~ x must satisfy (x, x) Eint n as weIl. Thus, if k' is a 
non-trivial SOS such that (k', k') is not in the interior of n, then 
k' > X. But the program (k', x, x, ... ) from k clearly has a higher 
discounted sum of utilities than (k', k' , k', ... ), so k' cannot be an 
SOS. 

We know that any SOS, k, with (k, k) Eint n is a discounted 
golden-rule stock, and so (k, k) must salve the problem: 

Max u(x,z) 
subject to 8z - x ~ 8k - k 
(x, z) E n 

Since 8(x + c3) - x> 0 ~ 8k - k, we must have u(k, k) ~ u(x, x + 
c3) > u(x, x) - ß. It follows then that Ik - xl < C3' Since 0 < C3 < 
C2, k E 12, and since 1 > 8 > P2' we have 1 > 8 > PI' and so 

Define 13 = [x - c3, X + c3] and G : 12 ~ ~ by 

Then G(k) = 0 and G'(k) < O. 
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Let z be any point in h such that G(z) = O. Then (z, z) Eint 0 
and (z, z) satisfies the Ramsey-Euler equation and is a stationary 
optimal stock. Thus z E 13 and G'(z) < 0 by the above argument. 

It suffices then to show that there can be at most one zero of G 
in h. To this end, define F : h ----t R by: 

z 

F(z) = J G(x)dx 
X-€2 

Then F is continuous on 12 and twice continuously differentiable 
on int h with F'(z) = G(z) and F"(z) = G'(z) for all zEint h. 
Further F is quasi-concave on h. Otherwise there would exist x, x' 
in 12 with x < x', and 0 < A < 1, such that F[AX + (1 - A)X'] < 
min[F(x), F(x')]. Then F attains an interior minimum at some z 
in [x, x'], so that F'(z) = 0 and F"(z) 2 O. But then zEint 12 

and G(z) = 0 and G'(z) 2 0, a contradiction. 
Suppose a and bare distinct zeroes of G in 12 . Then a, b E 

hand G(z) = G(b) = 0 and G'(a) < 0 and G'(b) < O. Thus, 
F'(a) = F'(b) = 0, and F"(a) < 0 and F"(b) < O. Since F is C2 

on int 12 , we can find a neighborhood N(a) of a, such that for 
all x E N(a), F"(x) < O. Then one can find 0 < A < 1 such that 
[Aa+(l-A)b] E N(a), and by the strict concavity of F on N(a), we 
must have F[Aa + (1- A)b]- F(a) < F'(a) [Aa + (1- A)b - a] = 0, 
so that F[>.a + (1 - A)b] < F(a). By the quasi-concavity of F, 
we have F[Aa + (1 - A)b] > min[F(a), F(b)]. Thus F(a) > F(b). 
Exchanging the roles of a and b in the above argument, F(b) > 
F(a), a contradiction. Thus, there is at most one zero of G in 12 , 

9. Global Asymptotic Stability of the Stationary Opti
mal Stock 

Even when there is a unique non-trivial stationary optimal stock, 
it need not be globally asymptotically stable; that is, optimal pro
grams from other inital stocks need not converge to the SOS over 
time. This topic is discussed in Section 9.L 

Parallel to the theory of uniqueness developed in Section 8.3, 
when (0, u) are given and the discount factor, 8, is restricted to 
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take values elose to unity, then a theory of global asymptotic sta
bility of the (unique) non-trivial stationary optimal stock can be 
obtained. This topic (developed in Section 9.2), which falls un
der the general subject matter of "turnpike theory", is one of the 
major developments in dynamic optimization theory. It relies on 
practically all the material developed in the previous sections, and 
the argument is subtle. In particular, it is extremely important 
to obtain the relevant bound on the discount factor in terms of 
conditions (which can be checked easily) placed solelyon (0, u). 

Our approach to this topic is deliberately one-dimensional, al
though it uses many ideas which are used in the literature on 
turnpike theory in the multidimensional setting. We show that for 
discount factors elose to unity, there are no period-two optimal 
programs, and global asymptotic stability of the non-trivial SOS 
is a consequence of this fact (in our one-dimensional state variable 
setting). 

This has two advantages. First, it elarifies the relation between 
turnpike theory and the presence/absence of period-two optimal 
cyeles, an idea which is especially useful as a backdrop in the study 
of periodic and chaotic optimal programs. Second, the problem of 
ruling out period-two optimal cycles (when the discount factor is 
elose to unity) is simply an extension of the problem of ruling out 
multiple stationary optimal stocks. Thus, the idea that is exploited 
is that astronger bound on the discount factor than was used to 
generate uniqueness of the non-trivial stationary optimal stock 
also ensures global asymptotic stability of this SOS. 

9.1 A Counterexample to the Turnpike Property 

We examine a situation in the context of Example 2.4, with 
Q: = ß = 0.5, the case examined by Weitzman. Thus X = [0, 1], 
o = X 2 and u : 0 --+ ~ is given by 

(9.1) 

Given any x E (0,1), we can show that there is z E (0,1) such 
that (x, z, x, z, ... ) is an optimal program from x. To see this simply 



Mitra 95 

consider the Ramsey-Euler equation 

(9.2) 

and note that (9.1) yields 

z = 82 (1 - x) 
(1 - z) x (9.3) 

Denoting by y the right hand side of (9.3), we note that y > ° and 

z=y/(l+y) (9.4) 

leading to a unique choice of z in (0,1), given x in (0,1), to (9.2). 
Further, with x E (0,1) and with z defined by (9.4), that is, 

z = 82(1 - x)/[x + 82(1 - x)] (9.5) 

we can also check that 

(9.6) 

To see this, use (9.1) in (9.6) to get 

z = 82 (1 - x) 
(1 - z) x 

which is exactly the same equation as (9.3). 
Thus, for x E (0,1), and z defined by (9.5), we have (9.2) and 

(9.6) holding. Thus (x, z, x, z, ... ) is the optimal program from x. 
Further , k = 8/ (1 + 8) is the unique stationary optimal stock. 

And, for x E (0, k), z = 82(1- x)/[x+82(1- x)] > k, while for x E 
(k, 1), z < k. Thus, for every x E (0,1), x i= k, there is aperiod two 
optimal program. There is, thus, no tendency for optimal programs 
from x i= k to converge to the stationary optimal stock, k. 

Remark 9.1: The above analysis also demonstrates that the 
(optimal) policy function, h, for the dynamic optimization model 
(0, u, 8) can be solved explicitly. In fact it is given by (9.5). 
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9.2 A Turnpike Theorem for High Discount Factors 

The example (due to Weitzman and discussed in Samuelson 
(1973)) presented in the previous subsection has the feature that 
there are period-two optimal cycles from every initial state (in 
the interior of the state space) other than the (unique) stationary 
optimal state, independent of how high the discount factoT" iso 

While this destroys the hope of proving a general turnpike theo
rem for high discount factors, it was observed by Samuelson (1973) 
that if the utility function has a negative definite Hessian at the 
golden-rule, then for high discount factors, optimal cycles would 
be ruled out, and stability (at least of the local kind) of the sta
tionary optimal stock would be ensured. 

This observation led to a large literature dealing with the turn
pike theorem for high discount factors in a variety of settings. Our 
objective is to carry through a complete analysis of Samuelson's 
original idea, to establish an appropriate turnpike theorem. That 
is, abasie ingredient of our approach is that in the situation de
scribed by Samuelson, optimal cycles can be ruled out, and this, in 
turn, ensures global asymptotic stability of the stationary optimal 
stock. 

We briefly describe the basic steps of our analysis before pre
senting the material formally. Following Samuelson, we assurne 
that the utility function has a negative definite Hessian at the 
golden-rule. That is, we maintain condition C2 (used in Section 
8.3 to ensure uniqueness of the SOS at high discount factors). 
As a first step, we choose an appropriately small neightborhoood 
(N) of the golden-rule, on which the utility function has a nega
tive definite Hessian. Anticipating the proof a bit, this neighbor
hood is so chosen that when the discount factor (to be chosen 
later) is high, there are no period-two optimal cycles confined to 
this neighborhood. The idea here basically mimics the analysis of 
uniqueness of the SOS for high discount factors, with the single 
Ramsey-Euler equation (characterizing an interior SOS) replaced 
by a pair of Ramsey-Euler equations (characterizing an interior 
period-two cycle). 

As a second step, we put bounds on the discount factor, so that 
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the following hold: 
(i) there is a unique non-zero SOS, ko, in the state space X 

(which can be ensured, by following the analysis in Section 8.3, to 
be in the neighborhood N). 

(ii) if there is a period-two optimal cycle, it must belong to the 
neighborhood, N. 

(iii) condition Cl of Section 7.2 holds ensuring that the policy 
function, ho, satisfies I h~ (ko) I < 1. 

(iv) if the initial stock x E (0, b], (x, 0, 0, ... ) is not optimal 
starting from x. 

Findings (i) and (ii) of the second step can be used with the 
first step to ensure there are no period-two optimal cycles when 
the discount factor is high. Then, a well-known result from one
dimensional dynamics ensures us that if (Xt) is the optimal pro
gram from x EX, then Xt converges to one of the fixed points of 
ho. 

Now (iii) and (iv) can be used to ensure that Xt cannot converge 
to zero. Thus, Xt must converge to the unique non-zero SOS, ko, 
and the turnpike theorem is established. 

We now turn to the formal details of turn pike theory. As men
tioned above, we maintain condition C2, so that (x, x) is the 
unique golden-rule (solution to problem (P) in Section 8.3). 

Step 1: Using the fact that the Hessian of u is negative definite 
at (x, x), we can find a > 0 such that 

Given that (x, x) Eint 0, we can find 0 < Cl < x, such that 
Nl(x) - [X-Cl, X+cl] is in the interior of X, and if (x, z) E Nl (x)2, 
then (x, z) Eint 0, and the Hessian of u is negative definite on 
NI (x)2. 

Next, given (9.7), we can find 0 < C2 < Cl, such that N2(x) 
(X-c2,X+c2) c Nl(x), and for all (x,z) E N2(x)2, 

U22(X, z) + Un (z, x) 1 < -(a/2) 
U2l(Z, x) + U12(X, z) 

(9.8) 
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We claim now that we can find ß > 0, such that if ((x, z), (z, x)) 
E 0 2 and (x, z) is not in N2(x)2, then 

~ 

u(x, z) + u(z, x) < 2u(x, x) - ß (9.9) 

Otherwise, we can find a convergent sequence (XS, ZS)~l converg
ing to (xO, ZO), with ((XS, ZS), (zs, XS)) in 0 2 for s = 1,2,3, ... , and 

Since (x, x) belongs to the interior of N2(x)2, we can find 0< >. < 1 
such that Cis, ZS) and (ZS, xS) belongs to N3(x)2 for s = 1,2, ... , 
where N3(x) = [x - 0.5c2, X + 0.5c2], and 

(XS,ZS) = >'(XS,ZS) + (1- >.)(x, x) (9.11) 

Clearly (XS,ZS) converges to (XO,ZO) - t)'(XO,zO) + (1- >.)(x,x)], 
and (XO, ZO) E N3(x)2. 

Using (9.10) and (9.11), we have for s = 1,2,3, ... 

Letting s ---+ 00, we get 

u(XO, ZO) + u(ZO, XO) ~ 2(x, x) (9.13) 

Note that (XO,ZO) i= (x,x). Thus, if XO = ZO, (9.13) contradicts 
the uniqueness of the golden-rule. And if XO i= ZO, then using the 
fact that (0.5XO + 0.5ZO, 0.5ZO + 0.5XO) is in N2(x? and u is strictly 
concave on N2(x?, we get from (9.13) 

u(0.5XO + 0.5ZO, 0.5ZO + 0.5XO) > 
0.5u(XO, ZO) + 0.5u(ZO, XO) > u(x, x) 

which clearly contradicts the definition of the golden-rule. This 
establishes (9.9). 

Define ß = min[ß, u(x, x) - u(O, 0)], and note that ß > O. Pick 
o < C3 < C2 such that 

u(x, X + c3) > u(x, x) - (ß/8). (9.14) 
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Step 2: We now put suitable bounds on the range of the discount 
factor. 

First, using (9.8), we can find 0 < PI < 1 such that for an 
PI < P < 1 and an (x, z) E N2(x)2, 

U22(X,Z) + PUl1(z,x) 1 < -(a/4) 
U2I (z, x) + PUI2(X, z) 

(9.15) 

Second, given (9.9) and the definition of ß, we can find PI < 
P2< 1 such that for an ((x,z),(z,x)) E 0 2 with (x,z) not in 
N2(x)2, and all P2 < P < 1, we have 

U(x, z) + pu(z, x) < u(x, x) + pu(x, x) - (ß/2). (9.16) 

Now, given (9.14), we have for P2 < P < 1, (ß/8) + pu(x, X+c3) > 
p(ß/8)+pu(x, X+C3) > pu (x, x). Therefore, for all ((x, z), (z, x)) E 

0 2 with (x, z) not in N2(x)2, and an P2 < P < 1, 

u(x, z) + pu(z, x) < u(x, X + c3) + (ß/8) 

+pu(x, x + C3) + (ß /8) - (ß /2) 

so that 

u(x, z) + p(z, x) < u(x, X + C3) + Pu (x, x + 1':3) - (ß/4) (9.17) 

Finally, we pick P2 < P3 < 1, such that for an P3 :::; P < 1, we have 

[u(x, x) - u(O, 0) [(b 0) (- -)] 
P ( ) > U, - U x - C2, X 

I-p 
(9.18) 

and 

(9.19) 

Proposition 9.1: Let (0, u) be given satisjying condition C2. 
Ij the discount jactor 8 satisfies P3 :::; 8 < 1, an optimal program 
from x E X cannot exhibit a period-two cycle. 
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Proof: Given (0, u), let P be a number in [P3' 1). Suppose for 
(0, u, p), there is an optimal program from x' E X, such that it 
exhibits a period-two cycle. Then, there is z' E X, z' -=1= x', such 
that (x', z', x', z', ... ) is optimal from x'. Without loss of generality, 
we can take x' > z'. Then x' > 0 and (z', x') E ° with x' > 0, so 
we can find p E ~+ such that 

u(x', z') + pu(z', x') + p2px' - px' 
> u(x", z") + pu(z", y") + p2py' - px' (9.20) 

for all ((x", z") (z", y")) E 0 2. 

Choosing (x", z") = (x, x) and (z", y") = (x, x + c3) in (9.20), 
we get 

u(x', z') + pu(z', x') 2: u(x, x) + pu(x, x + c3) (9.21) 

since [p2pX' - px'] ~ 0, and p2p((X + c3) - px 2: 0 by (9.19) and 
the fact that P3 ~ P < 1. Using (9.21) and (9.17) and u(x, x) 2: 
u(X,X+c3), we see that (x',z') E N2(x)2. 

Using (9.14), (9.19) and the definition of ß, (0, u, p) is p-normal 
for P3 ~ p< 1, so there exists a non-trivial SOS, kp . By the anal
ysis of Section 8.3, kp is the unique non-trivial SOS, and indeed 
kp is the only non-zero SOS. Furt her , kp E N2(x). 

Let N(x) - [x - C2, X+c2] and define the function, H : N(X)2 X 

[0,1] ---t ~ by 

H(x z· >') = [ U2(X,Z) + (>'P3 + (1- >'))Ul(Z,X) 1 (9.22) 
, , U2(Z, x) + (>'P3 + (1 - >'))Ul(X, z) 

We will show that (i) degree H(N2(x)2; 0) = -1, and (ii) degree 
H(N2(x)2; >') = degree H(N2(x)2; 0) for all >. in (0,1]. 

Notice that (9.22) yields: 

H(x z· 0) = [ U2(X, z) + Ul(Z, x) 1 (9.23) 
, , U2(Z, x) + Ul(X, z) 

Clearly since the golden-rule (x, x) solves problem (P) of Section 
8.3, and (x, x) Eint N(X)2, we have H(x, x; 0) = o. Also, if (x, z) E 
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N(X)2 with (x, z) i- (x, x) satisfies H(x, z; 0) = 0, then 

u(x, x) + u(x, x) - u(x, z) - u(z, x) 

< Ul(X, Z)(X - x) + U2(X, Z)(X - Z) + Ul(Z, X)(X - Z) 
+U2(Z, X)(X - x) 
o 

so that [0.5u(x, z) + 0.5u(z, x)] ~ u(x, x). If x = z this contradicts 
the uniqueness ofthe golden-rule. If xi- z, then since [0.5x+0.5z, 
0.5z+0.5x] E N(X)2, and u is strictly concave on N(X)2, 

u(0.5x + 0.5z, 0.5z + 0.5x) 
> 0.5u(x,z) + 0.5u(z, x) ~ u(x, x) 

which contradicts the definition of the golden-rule. Thus, (x, z) = 
(x, x) is the only solution to H(x, z; 0) = 0 in N(X)2. Using (9.8), 
we have degree of H(N2(x)2; 0) = -1. 

Now for any ,\ in (0,1], defining P = '\P3 + (1 - ,\), we have 
P2 < P3 ::; P < 1. If (x, z) in N(X)2 is a solution to H(x, z;,\) = 0 
which is on the boundary of N(X)2, then 

U2(X, z) + PUl(Z, x) 0 

U2(Z,X)+PUl(X,Z) 0 

and so either (i) x = z, and x is a stationary optimal stock 
for (O,u,p); or (ii) x i- z, and (x,z) is a period-two cyde for 
(O,u,p). However, as verified above, in case (i), x = kp E N2(x) 
and in case (ii), (x, z) E N2(x)2. Thus, there is no solution (x, z) 
to H(x, z; >') = 0 on the boundary of N(x)2. It follows that the 
degree of H(N2(x)2;,\) = H(N2(x)2; 0) = (-1) for all >. E (0,1]. 

For any solution (x, z) in N2(x)2 to the equation H((x, z);,\) = 0 
we have an index equal to (-1) by (9.15). Thus, there is exactly 
one solution to the equation H((x, z);,\) = 0 in N2(x)2 for each ,\ 
in [0,1]. 

Now, let (0, u, 8) be a dynamic optimization model with P3 ::; 
8 < 1. Suppose that (0, u, 8) has an optimal program exhibit
ing aperiod two-cyde, then there is (x', Zl) with x' i- Zl, such 
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that (x', z', x', z', ... ) is optimal from x'. Then, as verified above, 
(x', z') E N2(x)2. But, there is a stationary optimal stock, k6, with 
(k6 , k6 ) E N2(x)2. Defining A = (1- 8)/(1- P3)' we have A in (0,1], 
and multiple solutions to the equation H((x, z); A) = ° in N2(x)2 
a contradiction, which establishes the result. Q.E.D. 

Proposition 9.2: Let (0, u) be given satisjying condition C2. 
For every discount jactor 8 satisjying P3 :::; 8 < 1, the optimal 
policy juction, h6, and non-zero SOS, k6, satisjy (i) h6(x) > x 
jor xE (0,k6); (ii) h6(x) < x jor x E (k6,b]. 

Proof: We will write h instead of h6 to simplify notation. We 
know that there is a unique non-zero SOS, k6, which we denote 
by k, and k E N 2(x). 

We claim that for xE (0, k), h(x) > x. Otherwise by uniqueness 
of non-zero SOS, h(x) < x for aH x E (0, k). 

Pick x E N2(x), with x E (0, k) so that h(x) E N2(x) as weH. 
Then, we have 

-U2(X, h(x)) = V'(h(x)) 
-u2(k, h(k)) = V'(h(k)) 

Thus, using the Mean-Value theorem, 

(-U21)(k - x) + (-U22)(k - h(x)) = V'(k) - V'(h(x)) 

where U21 and U22 are evaluated at a point in between (x, h(x)) 
and (k, k). Since h(x) < x < k, we have V'(k) :::; V'(h(x)), and so 

(-U22)(k - h(x)) :::; U21(k - x) 

The Hessian of u is negative definite on N2(x)2, and so (-U22) > 0, 
and [k - h(x)] > [k - x] > 0, so we get 

(-U22)(k - x) :::; U21(k - x) 

Thus, U21 ~ -U22, and letting x ---+ k, we obtain U21(k, k) > 
[-U22(k, k)] > 0. Using (9.15), we have 

(1 + 8)lu12(k, k)1 < [-U22(k, k)] + [-u1l(k, k)] 
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Also, Ul1 (k, k) < 0, U22 (k, k) < 0, since the Hessian of u is negative 
definite on N2(x)2 and (k, k) E N2(x)2. Thus, condition Cl of 
Section 7 is satisfied, so that by Proposition 7.3, his differentiable 
at k, with Ih'(k)1 = lAll< 1. But this contradicts the fact that 
h(x) < x for all x in (0, k), and establishes our claim and hence 
(i). The claim (ii) can be established similarly. 

Thereom 9.1: Let (0, u) be given satisjying condition C2. For 
every discount jactor b satisjying P3 ~ b < 1, the optimal policy 
junction, htj, and non-zero SOS, ktj, satisjy 

h~(x) - ktjas t - 00 (9.24) 

jor every x E X, with x > 0. 

Proof: By Proposition 9.1, there are no period-two optimal 
cycles generated by htj. Thus, by Block and Coppel (1992, Propo
sition 1, p. 121), given any x E X, hHx) converges to one of the 
fixed points of htj. 

There are then two cases to consider: (i) htj(O) -I 0, (ii) htj(O) = 
0. 

In case (i), ktj is the only fixed point of htj, and we are done. 
In case (ii), we will be done if we can show that hHx) cannot 

converge to zero for x EX, x > 0. 
To this end, we establish first that 

htj(x) > 0 for x > 0 (9.25) 

To prove (9.25), suppose on the contrary there is some x E X with 
x > 0, such that htj(x) = 0. Then, since htj(O) = 0, the sequence 
(x, 0, 0, 0, ... ) is the optimal program from x. 

By Proposition 9.2, we must have x > ktj. Since ktj E N2(x), 
ktj > x - C2; and since (x - C2, x) E N2(x)2, (k8 , x) E 0 and 
so (x, x) E O. Thus (x, x, x, x, ... ) is a program from x. Further, 
the discounted sum of utilities on this program is at least u(x -
C2, x) + b[u(x, x)/(1 - b)]. The discounted sum of utilities on the 
program (x, 0, 0, ... ) is u(x, 0) + b[u(O, 0)/(1- b)], which is at most 
u(b, 0) + b[u(O, 0)/(1 - b)]. Thus, we must have 

u(b,O) + b[u(O, 0)/(1 - b)] ~ u(x - C2, x) + b[u(x, x)/(1 - b) 
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But this contradicts (9.18), since P3 ::; 8 < 1, and establishes 
(9.25). 

In view of (9.25), if h~(x) converges to zero, we must have 
some T 2: 1, such that for t 2: T, 0 < hHx) < kc. Further, 
since hH x) converges to zero we can find some T > T, such that 
h~+1(x) < h8(x). But this contradicts (i) of Proposition 9.2. Thus 
hHx) cannot converge to zero for x E X, x > O. We infer then 
that in case (ii) as well, h~(x) must converge to kc as t -t 00, for 
every x EX, with x > O. This establishes the turnpike theorem. 
Q.E.D. 
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For multisectoral versions of the reduced-form model, see Gale 
(1967) and McKenzie (1968) (for the case in which future utilities 
are not discounted), and Sutherland (1970), Stokey and Lucas 
(1989) (for the case in which future utilities are discounted). In 
contrast to most presentations of the reduced form model, where 
the utility function is assumed to be continuous, we develop our 
model with the assumption that the utility function be bounded 
and upper semicontinuous. This is because the assumption of con
tinuity on the felicity function in the primitive form of the model 
(where felicity is derived from consumption) does not always en
sure the continuity of the reduced form utility function. This issue 
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was raised by Peleg (1973); for a complete discussion, see Dutta 
and Mitra (1989a). 
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tinuous time by Cass (1965), Koopmans (1965) and Samuelson 
(1965) . The discrete-time version was presented by Koopmans 
(1967a). A multisector generalization of this model is contained in 
Peleg and Ryder (1972). Example 2.2 is based on the continuous
time models of U zawa (1964) and Srinivasan (1964). For a discrete
time version, see Benhabib and Nishimura (1985) and Boldrin and 
Montrucchio (1986b). Since then, this has become one ofthe most 
familiar models giving rise to cyclical and chaotic optimal behav
ior. 

Example 2.3 has been analyzed in detail in Majumdar and Mi
tra (1994a) for cyclical and chaotic optimal behavior. A similar 
model (in continuous time) was examined by Kurz (1968) to study 
optimal growth with wealth effects. In the renewable resources lit
erature, variations of this model in which the production function 
exhibits an initial phase of increasing returns followed by decreas
ing returns (an "S-shape") have been analyzed by Clark (1971), 
and Majumdar and Mitra (1983). 

Example 2.4 is a generalization of the Weitzman example, re
ported in Samuelson (1973). Variations of this example have been 
analyzed by Scheinkman (1976), McKenzie (1983), Benhabib and 
Nishimura (1985) and Mitra and Nishimura (1998), among others. 

For variations of Example 2.5, see Wan (1993). The point-input 
flow-output version of the forestry model (an "orchards" model) 
was analyzed in Mitra, Ray and Roy (1991). A vintage-capital 
model, with a similar structure, was examined by Benhabib and 
Rustichini (1993). 

Section 3. 

The method of dynamic programming, including the optimality 
principle, was introduced by Bellman (1957). The rigorous founda
tion of stochastic dynamic programming was developed by Black
weIl (1965), Strauch (1966), Denardo (1967) and Maitra (1968). 
For generalizations of the results presented in this section to non
stochastic models with a multi dimensional state space, see for ex-
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ample Dutta and Mitra (1989b), Stokey and Lucas (1989) and 
Sorger (1992). One can use aversion of the maximum theorem of 
Berge (1963) to establish that the value function is upper semi
continuous ; we provide a self-contained exposition. Continuity of 
the value function then follows from the "convex structure" of the 
model. 

Section 4. 

For a variety of multisector vers ions of the basic price character
ization results, see Peleg (1970), Peleg and Ryder (1972), Weitz
man (1973), Cass and Majumdar (1979), and McKenzie (1986), 
among others. When there is a (modified) golden-rule (see Section 
6), it turns out that the transversality condition (which character
izes the optimality of competitive programs) can be replaced by 
(an infinite number of) period-by-period conditions. For a discus
sion of this issue, see Brock and Majumdar (1988) for the undis
counted case, and Dasgupta and Mitra (1988) for the discounted 
case. These papers, together with other papers dealing with the 
issue of intertemporal decentralization are contained in Majumdar 
(1992). 

Section 5. 

The results, on the continuity of the value and policy func
tions with respect to changes in the parameters of the model, 
are closely related to the literat ure on the maximum theorem, 
mentioned above in the notes on Section 3. For a survey of results 
on the general problem of "parametric continuity", see Bank et.al. 
(1983). The use of supermodularity to obtain monotonicity results 
on the solution to optimization problems (due to Topkis (1978)) 
has been extended to the ordinal utility setting by Milgrom and 
Shannon (1994). 

Section 6. 

The existence of a stationary optimal stock by dynamic pro
gramming methods, in the multisector reduced form model, was 
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established by Sutherland (1970). However, Peleg and Ryder (1974) 
noted that this stationary optimal stock could be trivial. They 
proved the existence of a non-trivial stationary optimal stock in 
a multisectoral model, in which felicity is derived from consump
tion alone, by establishing the existence of a modified golden-rule. 
Flynn (1980) and McKenzie (1986) obtained the result in the mul
tisectoral reduced-form model by establishing the existence of a 
discounted golden-rule stock. Khan and Mitra (1986) established 
the result using the upper semicontinuity (rat her than continuity) 
of the utility function. Then the result in the Peleg-Ryder (1974) 
framework can be viewed as a special case, as shown in Dasgupta 
and Mitra (1990). 

Section 7. 

The differentiability of the value function, in a stochastic ver
sion of the one-sector model( discussed in Example 2.1), was estab
lished by Mirman and Zilcha (1975). The result of Benveniste and 
Scheinkman (1979) was developed for a multidimensional state 
space setting. For an exposition of the result, see Stokey and Lucas 
(1989). The technique, developed by Benveniste and Scheinkman, 
was used by Debreu (1976) in his study of least concave utility 
functions. 

The problem of differentiability of the policy function has been 
investigated by Boldrin and Montrucchio (1989), Araujo (1991), 
Santos (1991) and Montrucchio (1998). Araujo addressed the prob
lem in the one-dimensional case. Santos provided the definitive 
solution to the problem in the multisectoral reduced-form model. 
Our result applies only to the one-dimensional case and only to 
the stationary optimal stock. However, we do not assurne that the 
Hessian of the utility function is negative definite, an assumption 
which is crucial to the methods used in all the above cited papers. 

Section 8. 

In a continuous-time framework of optimal growth with wealth 
effects, Kurz (1968) provided an example of non-unique steady
states. Sutherland (1970) provided an example of non-unique sta
tionary optimal stocks directly on a reduced-form model, without 
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discussing any primitive form from which it was derived. In the 
context of the standard forestry model, Mitra and Wan (1985) 
provided an example of multiple stationary forests. The unique
ness result for high discount factors, discussed in Section 8.3, is 
based on Benhabib and Nishimura (1979) and McKenzie (1986). 
The last part of the proof would have to make use of the Poincare
Hopf index theorem, and the not ion of degree of a mapping, in the 
multidimensional case. In our one-dimensional framework, we can 
provide a self-contained elementary treatment. 

Section 9. 

Another example, in which there are optimal period-two cydes 
for all discount factors dose to unity, was developed in the context 
of Example 2.5 by Wan (1989, 1993). In contrast to the example 
due to Weitzman, the optimal cydes in his example are boundary 
cydes, and they are robust to perturbations in the utility function. 
The earlier counterexamples to the turnpike property, provided 
by Kurz (1968) and Sutherland (1970), were for discount factors, 
which were not dose to unity. The turnpike property for high 
discount factors presented in Section 9.2, is crucially dependent on 
the demonstration (in Proposition 9.1) that there cannot be any 
period-two optimal cycles. This is really a uniqueness argument, 
since one is establishing the uniqueness of the solution to a pair 
of Ramsey-Euler equations. But, unlike the uniqueness problem of 
Section 8, this problem is two-dimensional, prompting us to use 
index theory. This theory can be found in Milnor (1965), using 
the method of differential topology, and in Ortega and Rheinboldt 
(1970), using purely analytic methods. 


