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[The] object [of the book] is refinement, not reconstruction; it is a study
in ‘pure theory’. The motive back of its presentation is twofold. In the
first place, the writer cherishes, in the face of the pragmatic, philistine
tendencies of the present age, especially characteristic of the thought of
our own country, the hope that careful, rigorous thinking in the field of
social problems does after all have some significance for human weal
and woe. In the second place, he has a feeling that the ‘practicalism’ of
the times is a passing phase, even to some extent, a pose; that there is a
strong undercurrent of discontent with loose and superficial thinking
and a real desire, out of sheer intellectual self-respect, to reach a clearer
understanding of the meaning of terms and dogmas which pass current
as representing ideas. (Frank H. Knight, in Risk Uncertainty and Profit)

1 INTRODUCTION

An editorial note in the Economic Journal (May 1930) reported the death of
Frank Ramsey, and his 1928 paper was described as ‘one of the most
remarkable contributions to mathematical economics ever made’. In the
same issue the editor organized a symposium on increasing returns and the
representative firm. This symposium scems to be a natural follow-up of a
number of papers published by the Journal during 1926-8, including the
well-known article of Allyn Young (1928) that is still available, and duly
remembered. The problems of equilibrium of a firm under increasing returns,
or more generally, of designing price-guided resource allocation processes to
cope with increasing returns, has since been a tOplC of continuing interest.
Ramsey’s contribution was enshrined as a durable piece with a resurgence of
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546 Dynamic Optimization under Uncertainty

interest in intertemporal economics in the fifties. But neither John Keynes,
the editor of the Economic Journal who was most appreciative of Ramsey’s
talents, neither the subsequent writers on ‘growth theory’ in Cambridge,
England (nor, for that matter, those in Cambridge, Massachusetts), have
made any precise suggestion towards incorporating increasing returns in a
Ramsey-type exercise.

A concise discussion about a phase of increasing returns in a production
process appeared in Frank Knight’s Ph.D. thesis at Cornell (subsequently
published as Risk, Uncertainty and Profit (1921), see pp.100-1), and casual
references to increasing returns in the context of capital accumulation were,
of course, made from time to time. Joan Robinson (1956, chapter 33) and
John Hicks (1960) alluded to the importance of Young’s ideas, but somehow,
increasing returns had to be discussed by crossing ‘the boundary of topics
that can usefully be discussed in the framework of . .: simplifying assump-
tions’ (Robinson (1956), p.336). Systematic and formal expositions of
increasing returns in a Ramsey-type model of dynamic optimization emerged
much ‘later, and, mostly in the context of relatively recent ‘pragmatic’
concern in the economics of exhaustible and natural resources. The paper by
Clark (1971) in Mathematical Biosciences is indeed a landmark in this area,
and our primary objective is to bring together a collection of subsequent
results in a fairly simple framework of dynamic optimization under uncer-
tainty. To be sure, a deterministic exercise can be viewed as a very special case
of our formal stochastic model, and our development of ideas and exposition
owe much to the insights gained from such deterministic exercises following
up Clark’s paper. As with Frank Knight, our object is refinement (not
reconstruction), rigor —not realism.

1.1 Recent Literature: An Overview

Discrete time deterministic models of dynamic optimization with an °S-
shaped production function’ have been explored by Majumdar and Mitra in
(1982) and (1983). These papers dealt with three different evaluation criteria:
intertemporal efficiency, maximization of a discounted sum of one-period
felicities (linear felicities in (1983)), and the case of undiscounted optimality
in the sense of ‘overtaking’. The linear case had been studied earlier by Clark
(1971). Dechert and Nishimura (1983) made significant improvements of
results obtainable in the discounted case, and further extensions in different
directions were made by Majumdar and Nermuth (1982), and Mitra and Ray
(1984).

One-good models of dynamic optimization under uncertainty in the
classical ‘convex’ environments were studied by Brock and Mirman (1972)
(strictly concave felicities), Jaquette (1972) and Reed (1974) (linear felicities,
multiplicative shocks). A useful source of related references is Mirman and
Spulber (1982).
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1.2 A Reader’s Guide

We develop the formal model of sequential decision making under uncer-
tainty as a special case of the stochastic discounted dynamic programming
model explored by Blackwell (1965) and others. The set of technologically
feasible ‘plans’ or policies is non-convex, but the evaluation criterion is a
discounted sum of expected (concave) felicities. In Section 2, we summarize
some basic theorems on the existence of optimal stationary policies. These
are obtained for both linear and strictly concave felicities. The value function
is shown to be continuous and to satisfy the functional equation of dynamic
programming (see (8) and (9)). In Section 3, the main result (Theorem 2) is
that any optimal investment policy function h(y) is monotonically non-
decreasing in the stock y. Such a policy function is a selection from a
correspondence, and is, in general, not unique. Without the assumption of
convexity of the feasible set, the optimal consumption policy function ¢(y) is
not necessarily monotone non-decreasing in y. In fact, under some additional
assumptions, we prove that ¢(y) is non-decreasing if and only if the value
function V is concave. In Section 4, we identify conditions under which
optimal policies are interior and can be characterized (in the case of strictly
concave felicities) by a stochastic version of the Ramsey-Euler condition (see
(13)). We should emphasize that we could prove the interiority property only
under the assumption that utility of zero consumption is minus infinity. In
the context of convex models, an ‘Inada condition’ on the boundary (namely,
that marginal utility goes to infinity as consumption drops to zero) is
sufficient to guarantee that optimal input, consumption and stock processes
are interior (see Theorem 19). Without convexity, however, we were able to
assert only that input and stock (but not necessarily consumption) processes
are interior. Theorem 18 and Example 3 clarify this issue. Section 5 deals with
the problem of non-uniqueness of optimal processes in non-convex models.
The value function is differentiable at an initial stock if and only if there is a
unique optimal process from the same stock, and non-differentiability can
only arise on a set that is at most countable. In Section 6, some results on the
convergence of optimal inputs are obtained (see Theorems 11-13), and the
behavior of optimal inputs in non-convex models is contrasted with that in
convex models. - T

In convex stochastic models, the ‘turnpike’ property obtains: regardless of
the initial stock, the optimal input process converges in distribution to a
unique invariant distribution. With non-convexity, there are potentially
many invariant distributions and, furthermore, the one to which an optimal
input process converges depends on the initial stock (the turnpike one takes
depends on the point of departure!). The analysis of the optimal process that
leads to Theorems 11 and 12 depends, however, on the assumptions that
there are finitely many random events at any date, and (more importantly)
that the technology satisfies an Inada condition at the origin (see (T.8)). A
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different ‘splitting’ condition ensuring that there is sufficient variability in
production yields a strong turnpike result (Theorem 13). Section 7 contains
additional incidental results and provides a technical overview of the related
literature. All the proofs are relegated to Section 8.

1.3 The Role of Non-convexity

What are the most striking differences in the qualitative properties of optimal
decisions when non-convexities are introduced? Ignoring uncertainty.for the
moment, let us stress-a couple of important aspects (see Majumdar and Mitra
(1982) for details). In a deterministic model with an S-shaped production
function, it turns out that average productivity along a feasible program has a
crucial role in signalling intertemporal inefficiency in contrast with the
classical model where the remarkable Cass condition can be precisely
expressed solely in terms of marginal productivities. Secondly, when future
utilities are discounted, the qualitative properties of optimal programs
depend critically on the magnitude of the discount factor. Roughly speaking,
when discounting is ‘mild’, optimal programs behave as in the undiscounted
case (converging to a unique optimal stationary program), when discounting
is ‘heavy’, optimal programs approach extinction. Also, in the ‘intermediate’
range of discounting, the long-run behavior depends critically on the initial
stock. Contrast this with the ‘classical’ tumpike literature where the long-run
behavior of optimal programs is invariant with respect to the initial stock.

The fact that solutions to dynamic optimization problems in one-good
models display striking monotonicity properties has been an important by-
product of research efforts in the area reviewed in the present paper. As noted
above, a version of monotonicity continues to hold even when uncertainty is
introduced, and such properties have been exploited to study the dynamic
behavior of optimal decisions. The main shortcoming of the present paper,
however, is an inadequate analysis of the nature of optimal processes under
uncertainty with an S-shaped production function introduced by Frank
Knight. (The Inada condition (T.8) in Section 6.1 is not consistent with an S-
shape.) A deeper understanding of this case is certainly desirable, and —to
us —is the most important gap in the literature on stochastic dynamic
optimization with non-convexities.

2 THE MODEL

2.1 Sequential Decisions
The standard framework of stochastic dynamic programming (see, e.g.,
Blackwell, 1965; Maitra, 1968) is used to describe a problem of intertemporal
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resource allocation under uncertainty. In each period ¢, the planner observes
the current stock y, of a particular good, and chooses ‘an action’: some point
a in A=[0,1]. One interprets a as the fraction of y, to be used as input in
period ¢, and refers to x,=ay, as the input in period ¢. As a result of the
decision on g, the stock in the next period ¢+ 1 is determined according to the
following relationship:

yl+| f(xnrt+l)_f(ayv t+l) (1)

where fis the gross output function (satisfying the assumptions introduced
below), and (r,) is a sequence of independent, identically distributed random
variables (‘shocks’ to the production process). Choice of a also determines
the consumption ¢,=(1 —a)y,. Consumption generates an immediate return
or utility according to a function u (satisfying the assumptions listed below).
In other words, choice of a generates utility defined as

u(c)=u((1—a)y)

Note that the decision on a is made before the realization of r, |; in the next
period, y,,, is observed after the realization of r,,, and the same choice
problem is repeated.

A policy Tt is a sequence 1= (n,} where =, specifies the action in the ¢-th
period as a function of ‘the previous history m,=(yy,4,,---,2,_,y,) of the
system, by associating with each 7, (Borel measurably) an element a of 4
(hence, the input x®=ay=m(n)y, and the consumption
®=(1—a)y,=[1—nn)]y). Any Borel function g: R, — 4 defines a policy:
whenever y =0 is abserved, choose a= g(y) irrespective of when and how the
stock y is attained. The corresponding policy &= (g) is a stationary policy
and g is the policy function generating the stationary policy.-

A policy T associates with each initial stock y a corresponding ¢-th period
expected utility Eu(c(r)) and an expected discounted total utility defined as

Vi) =3, 8 Eulef) @

where & is the discount factor, 0 <8 < 1. The measure theoretic foundation
underlying the expectation operation in (2) is fully spelled out in Blackwell
(1965).

A policy 1* = (n}) is optimal if V«( Nz ¥ ) for all y>0and all policies .
We call V.« the optimal) value function defined by 1*. Note that if t* and 7
are both optimal policies, Vy»=V;. Hence, we shall often drop the subscript
in referring to the value function V.
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2.2 Environment, Technology and Utility
Let £ be a compact set of positive real numbers. Two examples of € are of
particular interest: (a) € is a finite set; (b) € is a closed interval [b,,b;) in
positive reals. The elements.of € are alternative states of the environment in
any period. Let (r) be a sequence of independent, identically distributed
random variables with values in € and a common distribution .

The technology is described by a gross output function f:* R + XE-R,
satisfying the following:
(T.1) There is >0 such that for all x=, x> f(x,r) for all re€.
(T.2) For each re€, f(-,r) is continuous on R, .
(T.3") For each reg, f(-,r) is non-decreasing on R..
A stronger version of (T.3') is

(T.3) For each re€, f(-,r) is strictly increasing on R, .

The immediate return or utility function #: R, — R is assumed to satisfy
(U.1) uis continuous on R,.
(U.2) uis strictly increasing on R, .

(U.3) uis strictly concave on R, .

We shall point out that most of the important results can also be proved if
instead of (U.1) we have

(U.1) uis continuous on R, , and ligl u(c)= —oo.

Under (U.1"), to ensure that the value function is finite, i.e. ¥(3)> — oo, we
impose the following assumption:

(T.4) There is a k>0 such that for all 0 <x <k, f(x,r)> x for each r.

When we want to accommodate a linear utility function we replace (U.3)
by:

(U.3") wuis concave on R,.

Given an initial stock y>0, a policy = =(rn,) generates an input process
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x"=(x), a consumption process ¢®=(c™) and a stock process y*= (")
according to the description in Section 2.1. Formally,

Xo=my(P) Y, o =[1 =My, ylozy 3

and, for each =1, and for each partial history n,=(V,dg--sY,- ,4,—1,¥,) One
has:

x,(’],) = “,(Tl,))’n C, = [1 - n;("l:)])’n ylEf(xl— llrr) (4)

Clearly,
ot X= Yo
c,+x,=f(x,_r) forall t=1; %)

¢, 20, x,20 for all t20.

For brevity, we call (x¥,¢¥y"') an optimal (resp. input, consumption,
stock) process generated by an optimal policy * (when it exists).
We first note a useful boundedness property in our model.

Lemma 1: Assume (T.1), (T.2) and (T.3"), and let y >0 be any initial stock. If
7 is any policy generating the stock process y*, then for all =0

0=y <max(B,y) (6)

Proof: An induction argument on ¢ is easy to construct.
QED

It follows from (5) and (6) that the processes x* and ¢ generated by 1t also
satisfy for all ¢20

x,smax (B.y), c, Smax (B.y) Q)

In what follows we restrict the initial stock y <. Define S= [0,B] and denote
by ¢(:|y,a) the conditional distribution of y,,, given the stock y and action a
in period ¢ [as determined by f and the common distribution y of r,, |]. One
can verify:

Lemma 2: Under (T.2), if a sequence (y",a")eS x A converges to (y,a)€S X 4,
the sequence q(*|y",a") converges weakly to q(‘|y,a).
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2.3 Existence of an Optimal Stationary Policy

The basic existence theorem of Maitra (1968) when applied to our case leads
torthe following:

Theorem 1: Assume (T.1), (T.2), (T.3") and (U.1). There exists an optimal
stationary policy * = (A’) where i: S— 4 is a Borel measurable function.
_The value function V,j. defined by nt* on S is continuous and satisfies

Vpr(3) = max [u((1 — @)y) +8 | Vol f(ay. )] ®
=uly = h(y) Y]+ 8 Vool F(A(y) y,1)ldy &)
Remarks

(1) The existence of n* requires assumptions weaker than those listed
above. The stronger continuity conditions are used to establish the continuity
of ¥+ by readily adapting the proof in Maitra (1968).

) 7If (U.]) is replaced by (U.1’) one appeals to Schél (1975) to establish
Theorem 1.

(3) We refer to the function A(y)=#A(y)y as an optimal investment policy
function and the function ¢(y)=[1—A(y)ly as an optimal consumption
policy function.

To simplify notation, we write (x*,c*y*) to denote the optimal input,
consumption and stock processes generated by 1* (see (4) and (5)).

3 MONOTONICITY OF OPTIMAL INVESTMENT POLICY
FUNCTION

3.1 Strictly Concave Utility Function

We first establish a (weak) monotonicity property of optimal investment
policy functions. In all of this section, (U.1) can be replaced with (U.1°) and
(T.4).

Theorem 2: Assume (T.1)-(T.3) and (U.1)-(U.3). Then if 4 is an optimal
investment policy function, 4 is non-decreasing, i.e. ‘y>)'" implies
‘H(y)Zh(y').
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Remarks

(1) Strong monotonicity [‘y>y" implies ‘h(y)>h(y')’] of h is proved later
when the optimal process is characterized by the stochastic Ramsey-Euler
conditions. ’

(2) The proof of Theorem 2 relies critically on strict concavity of the utility
function u.

(3) Itshould be emphasized that Theorem 2 is concerned with the monoto-
nicity of the optimal investment policy function h(y)Eﬁ(y)-y where the
existence of /i is proved in Theorem 1. However, # is a selection from a
correspondence and is, in general, not unique. (Uniqueness of A leads to the
continuity of 4 (hence k) and is obtainable in the classical ‘convex’ model
studied by Brock—-Mirman—Zilcha.)

(4) The strategy of proof that we follow in Theorem 2 is due to Dechert and
Nishimura (1983), who established a parallel result in their deterministic
model with a non-convex technology.

(5) In Theorem 2 above we may replace (T.3) with (T.3").

The functional equation characterizing the value function ¥ can be recast
as (see (8)):

V()= max [u(y—x)+8[Vf(xn]d] (10)
=u(e(y)) + [ VI f(h(y):)ldy an

‘Given y> 0, define @(y) to be the set of all values x where the right side of (10)

attains its maximum. The continuity properties in our model imply that ¢(y)
is non-empty, and that h(p) is a selection from the correspondence ¢.

It is important to note that a stronger version of Theorem 2 is true. If {x,},
{x'}> are optimal input processes from y,y’ then y> )’ implies Xy =X,. This
implies the following ordering relation on ¢. If 4 and B are two subsets of
R, then we say A2 B if acA and beB implies a2 b. ¢ then has the property
that y>y' implies ¢(») 2 0(¥").

Define
h(y)=min [x: xep(y)]

h(y)=max [x: xeq(y)]. (12)
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3.2 Concave Utility Function

In this subsection, we assume(T.1)—~(T.3), (U.1), (U.2) and (U.3"). It should
be stressed that the strict concavity assumption (U.3) on u is replaced by the
less restrictive concavity assumption (U.3’). Our first result provides a
characterization of the correspondence ¢ and its selections k and A.
Theorem 3: Under (T.1), (T.2), (T.3), (U.1), (U.2) and (U.3"):

(a) ¢ is an upper semicontinuous corréspondence;

(b) h is well defined, left continuous and non-decreasing;

(c) his well defined, right continuous and non-decreasing.

Corollary 3: There is a Borel selection h: S— A such that the corresponding

optimal investment policy function h(y)=h(y)'y is non-decreasing and right
continuous.

Remark

There is also a selection such that 4 can be made to satisfy left continuity (and
weak monotonicity).

4 INTERIOR OPTIMAL PROCESSES AND THE STOCHASTIC
RAMSEY-EULER CONDITION

We now impose (U.1") and (T.4) and derive the property that the optimal
processes are interior (a.s.). In addition to (T.1)(T.4) and (U.17HU.3), we
make the following assumptions in this section:

(T.5) f(x,r)=0if and only if x=0.
(T.6) f(x,r) is continuous on R, X &.

Theorem 4: (Interiority) Under (T.1)~(T.6) and (U.1)~HU.3), if (x*,c*p*) is
an optimal process from some initial stock y>0, then for all 120, x}(n)>0,
c*(m,)>0 and y*(n,)>0 for all n,.

In studying the dynamic behavior of optimal processes, it is useful to
exploit the stochastic Ramsey-Euler conditions characterizing an optimal
process. We now introduce additional assumptions:

(T.7) For each r in &, the derivative of f(x,r) with respect to x exists, and is
continuous at each (x,r) for which x>0.
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(U.4) u(c) is continuously differentiable at ¢>0.

Theorem 5: (Stochastic Ramsey—Euler Condition) Under (T.1)«T.7) and
(U.1")~(U.4) if k is an optimal investment policy function and c(y) =y ~h(),

u'(c(y)) =8 fu' (c(F(A(y), S (h(y):r)dy (13)
Corollary 5: If (13) holds, h: R, —R, is strictly increasing.

So far we have discussed monotonicity of the optimal investment policy
function. The following result throws light on monotonicity of the optimal
consumption policy function.

Theorem 6: If the value function V is concave, then it is differentiable at each
y>0. Furthermore, c(y) is non-decreasing if and only if V is concave.

5 SOME PROPERTIES OF THE VALUE FUNCTION AND
UNIQUENESS OF OPTIMAL PROCESSES

We now establish some differentiability properties of the value function and
relate these to the question of uniqueness of optimal processes. Recall that in
the classical ‘convex’ model, with the assumption (U.3), there is a unique
optimal process. With a non-convex technology, uniqueness cannot be
asserted even in deterministic models. However, the nature of non-unique-
ness can be clarified by examining the value function V. In this section we
assume that (U.1"), (U.2)~(U.4) and (T:1)~(T.7) all hold..

Going back to (10), recall that the correspondence @(y) is not in general
single valued, and an optimal investment policy function is a selection from

o().

Lemma 3: There is a countable set D-in S, such that if y is not in D, ¢(y) is
single valued. ' ‘

Remark: Recall that ¢ is upper semicontinuous as a correspondence, hence if
¢(y) is single valued, continuity of h(y) and ¢(y) follows.

Lemma 4: The left- and right-hand derivative (denoted by V~, V*, respecti-
vely) of ¥ exist at all y>0; ¥~ (y) < V"' (y). Furthermore, {y: V= (») < V" (»)}
is at most countable.

The following theorem throws light on non-uniqueness of optimal processes:

Theorem 7: Suppose (x,cy) and (x,¢")") are optimal from y>0. If x,= x;,



556 Dynamic Optimization under Uncertainty

then x,=x! and ¢,= ¢, for all 1= 1. Furthermore, V is differentiable at some
y>0 if, and only if there is a unique optimal process from y.

Remark: The results reported above are stochastic versions of the parallel
deterministic results in Dechert and Nishimura (1983).

Finally, we come to the useful ‘envelope theorem’:

Theorem 8: Suppose that V is differentiable at some y> 0. Then

V() =u (c(y) =8 [ V'I/(h()nLf (h(y).r)dy (14)

6 DYNAMIC BEHAVIOR OF AN OPTIMAL INPUT PROCESS

We now focus on the stochastic process

xl+I=h[f(xr’rt+l)] (15)

where 4 is an optimal investment policy function. Two cases are considered.,
First, we assume that € is finite and that the production function satisfies the
Inada condition at the origin (‘infinite derivative at zero’), One can allow for
a phase of increasing returns once a specific positive level of input has been
committed. The dynamic behavior of the process (15) turns out to be quite
different from that in the ‘classical’ case of a strictly concave f. Next, we
impose a condition that requires that there be sufficient variability in the
production function. We then conclude that the distribution function of x,
converges uniformly to the distribution function of a unique invariant
distribution, regardless of the level of initial stock.

In both cases we shall use a result of Dubins and Freedman (1966); to state
this result we require the following notation.

Recall that v is the probability distribution of r on &. Let y"=yx...xy (n-
times) be the product measure induced by y on €. Let r"=(r,...,r,) be a
generic element of £ and define for any x in S

H(x,r)= hlf(x.r)]

H'(x,r)y= H(H(...(H(x,r\),r5)s--s1,) (16)
If p is any probability on S, define the probability Y"u on S by the relation

Y'(4) = [y (re€ | H'(x,r)eA})u(dx) amn

where A4 is any Borel subset of S.
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Let S be a closed interval in S. S is said to be y-invariant if
y({rin € H(x,r)eS forall x in §})=1. X in Sis a y-fixed point if the singleton
set {X} is y-invariant.

Let ' be y-invariant. For any n=1,2,..., the probability y" is said to split
on S if there is a z in §* such that

v"({r" in €| H"(x,r") < z for each x in $'})>0 (18)
y"({r" in €| H"(x,r") = z for each x in §'})>0

A probability u on S'is said to be an invariant probability on S" if the support
of u is a subset of §’, and for any Borel set 4 in S,

YR(A4) = pn(4) (19)

An invariant distribution is the distribution function of an invariant prob-
ability. We may now state a modification of Dubins and Freedman (1966,
Corollary 5.5, p.842):

Theorem 9: Suppose for some y-invariant closed interval &', and for some
integer n, y" splits on S’. Suppose further that there are no v-fixed points X in
S, and also that the function H(-,r) is monotone non-decreasing on §', for y
a.e. rin €. Then there is one and only one invariant probability p on §’; and
for each probability v whose support is a subset of S, the distribution
function of y"v converges uniformly to the distribution function of p.

6.1 Optimal Input Process When £ Is Finite and the Inada Condition
Holds

In this subsection, in addition to (T.1)~(T.7) and (U.1)~«(U.4), we assume
that the following conditions hold:

(E.1) & is finite.

(T.8) For each ret, 1:1151 f'(x, )= oo (Inada condition at the origin).

(T.9) For any fixed x>0, there does not exist.any y in § such that
r({re€lf(,r)=yH=1.

Since, from Corollary 5, & is strictly increasing, (T.9) implies there are no

positive y-fixed points in S. Roughly speaking, we show that the optimal
process (14) enters one of a number of disjoint sets and stays in it. Unlike the
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Brock—Mirman-Zilcha case of strictly concave production functions (in
which x, converges in distribution to an invariant distribution irrespective of
the m1t1al stock), the set into which x, eventually enters depends very much
on the starting point.

Some new notations are (alas!) needed. Let

L) Em’in f(x,r) and f,,(x)= max J(x,r).

Clearly, f, and f,, are well-defined continuous functions on R,. Recall
H(x,r)=h[f(x,r)]. Define

H(x,»)=h{f(x,n] (20)
H(x,r)=hlf(x,n)]
where the functions k& and A are defined in (12). Finally, let
H (x) =mrin H(x,r) and H,,(x)=max H(x,r).
H _H, and H, ,H, may be similarly defined by replacing H by Hand H.
From the monoton1c1ty of f and h, one can show that (we prove this in

Section 8):

H,(x)=h(f,(x)), Hy(x)=h(f,,(x)) (1)
The main results on the long-run behavior of x, rely on an analysis of fixed
points of the maps just introduced. Fortunately, these fixed points are
independent of the choice of optimal policy function. This is stated formally
below.

Lemma 5

(a) H, H, H all have the same fixed points;

(b) H,, H,,, H,, all have the same fixed points;
(¢ H, H, H, all have the same fixed points.

The following lemma is important for the results that follow.
Lemma 6: There exists £ > 0 such that H(x,r) > x for all x in (0,&) and all r in €.
Next, let us define

Yp=min {x>0: H (x)=x}, y,,= maxyx >0: H,(x)=x} (22)

x,=max {x>0: H, (x)=x}, x,,=min {x>0: H,(x)=x}
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It should be stressed that Lemma 5 implies that the numbers x,,,y,,,X,,.V,, in
(22) are independent of the selection of 4. The following facts are gathered in
the form of a lemma:

Lemma 7

(a) The points x,,,y,,,x,,.y, are well defined;

(®) yu>0;

() H,(x)>x for all xin (0,p,), H,(x)<x for all x in (x,,0);

(d) Hy(x)>x for all x in (0,x,,) and H,/(x)<x for all x in (y,,,00);

© y.<x,and x,<y,,.
From Lemma 7, there are two possible configurations:

(4) x,,<x,, and (B) x,,> x,, (see Fig. 19.1 below).

Configuration A Configuration B
RIRRY | Xeaq
Hpy
|
|t
|
|
|
|
]
| | |
| | |
1 | 1
Ym Xm Xm 14 X¢
Figure 19.1

Configuration 4 holds when for each r, f(,r) is strictly concave. (See
Theorem 17 in Section 7.1.) One can, however, give examples of non-convex
technologies where configuration A still holds.

The dynamic behavior of the optimal input process under configurations A
and B is stated in Theorems 11 and 12 below. In both cases we exploit
Theorem 9 via another theorem of Dubins and Freedman (1966), which we
state below:

Theorem 10: Let S" be a y-invariant closed interval in S. Suppose that for y
a.e. r in & H(,r) is continuous and monotone non-decreasing on §', and
there are no y-fixed points in S'. If there is a unique minimal y-invariant
closed interval in S’ then for some integer n,y" splits and the conclusions of
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Theorem 9 hold. The hypothesis that H(-,r) be continuous on §’ for y a.e. rin
€, may be dropped if instead we assume that & is finite and Lemma 5(a) holds:

We now state two main results characterizing the asymptotic properties of
the optimal input process, {x,}. Let F(x) be the distribution function of x,, i.e.
F,(x)=Prob ({x,<x}).

Theorem 11 If configuration 4 holds, F(x) converges as — oo uniformly in x
to a unique invariant distribution F(x), independently of initial stock y,. The
support of Fis [x,,x,,).

Theorem 12: Suppose configuration B holds. If x,&(0,x,] (resp. x.€lx,,,0))
then F,(x) converges as {— oo uniformly in x to the invariant distribution F(x)
(resp. F(x)) whose support is a subset of [y,,x,] (resp. [x,,,y,])- F(x) (resp.
“F(x)) is the unique invariant distribution with support a subset of (0,x,,]

(resp. [x,,00)).
6.2 Case When Production Is ‘Very Stochastic’
In this subsection we assume (T.1)~(T.3) and (U.1)(U.3) (enough to ensure
the monotonicity result of Theorem 2 holds). We next impose (T.10) below,
which requires that there be sufficient variability in production:
(T.10) Thereis z>0 in S such that
v({re€l|f(x,r) £z for each xeS})>0
and
v({re€if(x,r) 2 z for each xeS}) >0

Recall that F(x) is the distribution function of x,.

Theorem 13: F(x) converges as t— oo uniformly in x to a unique invariant
distribution F(x), independently of the initial stock.

Example: Suppose f(x,r)=1/{1 + me™"}+r, with k>0 and m> 0. This is the
logistic growth function with additive shocks. If £=[a,b] is the support of v,
then b—a>m/1+ m will ensure that (T.10) holds and we obtain the conclu-
sions of Theorem 13.
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7 SOME ADDITIONAL RESULTS
7.1 The Convex Environment: An Overview

We now indicate how the standard results that hold in the ‘convex environ-
ment’ (i.e. with a strictly concave production function) can be obtained as
special cases of our earlier results. Suppose that we impose the following
concavity assumption:

(T.11) For each fixed re€, f(:,r) is strictly concave on S.

The following results summarize some uniqueness and concavity properties
when (T.11) is added to our model:
Theorem 14: Under (T.1)HT.3), (T.11), (U.1), (U.2) and (U.3):

(@) If (x,¢p) and (x',¢')’) are optimal (resp. input, consumption and stock)
processes from the initial stock y>0, then for each 120, x,=x;, ¢,=c;,
and y,=y; a.s.

(b) o(y) is single valued at each y>0.

(c) The value function F(y) is concave in y.

(d) If, in addition, (U.3) holds, the value function, V(y), is strictly concave
in y.

Remarks

(1) In Theorem 14 above, (U.1) may be replaced with (U.1°) and (T.4).
(2) Without (U.3), the strict concavity of u, Theorem 14(d) may not hold.
From Theorem 2 we obtained the monotonicity of the optimal investment
policy function, A(y). In general, the monotonicity of the optimal consump-
tion policy function, c¢(y), cannot be asserted for non-convex technologies.
Further, the functions A(y) and ¢(y) are not necessarily continuous.
We indicate below, however, that in the special case where (T.11) holds,
such monotonicity and continuity results may be obtained.
Theorem 15: Under (T.1)(T.3), (T.11), (U.1), (U.2) and (U.3'):

(a) h(y) is continuous and non-decreasing in y;

(b) ¢(y) is continuous and non-decreasing in y.
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Remarks

(1) Again we note that in Theorem 15, (U.1) may be replaced with (U.1")
and (T.4).

2 Thebrem‘ 15 uses the weaker assumption (U.3’), hence allows for linear

utility functions.

Next, we obtain the differentiability of the value function and the
‘envelope theorem’.
Theorem 16: Under (T.1)«T.7), (T.11) and (U.1"), (U.2)«(U.4):
(@) The value function, ¥(y), is differentiable at each y>0;
(b) The following ‘envelope theorem’ holds at each y>0;

V()= (c(y)=8[ V' (PN (h(y).r)dy (23)
The following corollary strengthens Theorem 15.2

Corollary 16: Under the hypotheses of Theorem 16.3:
(@) A(y) is continuous and strictly increasing in y;

(b) () is continuous and strictly increasing in y.

Next, recall that in Section 6.1 we obtained the dynamic behavior of
optimal input processes. We indicated that this behavior depends upon
whether configuration 4 or B holds. We now show that under (T.11),
configuration 4 holds and we obtain the convergence of the optimal input
process to a unique invariant distribution irrespective of where the process
begins.

Theorem 17: Assume (T.1)«T.9), (T.11), (U.1"), (U.2)~(U.4) and (E.1). Then
configuration A, hence, the conclusions of Theorem 11 hold.

Remarks

(1) The proof of the result above that configuration 4 holds under (T.1 1)is
due to Mirman and Zilcha (1975, lemma 2).

(2) In Theorems 16 and 17 the assumptions (U.1°) and (T.4) are used. This
is because (U.1") and (T.4) are required to show that optimal processes are
interior (Theorem 4); this is then used to prove the stochastic Ramsey-Euler
condition (Theorem 5), which is crucial to the proofs of Theorems 16 and 17.
Consider the following Inada condition at the origin:
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(U.5) ligl w'(c)=ow

In Theorem 19 of Section 7.2 below, we indicate that Theorem 4 (Interior
Optimal Processes), continues to hold if (U.1") and (T.4) are replaced with
(U.1), (U.5) and (T.11). Hence, in Theorems 16 and 17, we may replace (U.1")
and (T.4) with (U.1) and (U.5).

7.2 Interior Optimal Processes

In this subsection we discuss Theorem 4 (Interior Optimal Processes) when
the assumptions (U.1") and (T.4) are replaced with (U.1) and (U.5) (the
‘Inada condition’ at the origin), which we repeat here:

(U.5) limu'(c)=c0.
cl0
We will also require,
(T.12) li}‘(l’l inf f'(x,r)> 0 for each r.

First we indicate that if (U.1") and (T.4) are replaced with (U.1), (U.5) and
(T.12) in Theorem 4, we can show that the optimal input and stock processes
are interior.

Theorem 18: Under (T.1)~(T.3), (T.5)(T.7), (T.12), (U.1) and (U.2)~(U.5), if
(x*.¢*y") is an optimal process from some initial stock y>0, then forall 1 =0,
x*(m,)>0 and y*(n,)> 0 for all histories n,.

Remarks

(1) Under the hypotheses of Theorem 18, we are unable to show that
optimal consumption processes are interior.

(2) Theorem 18 may fail if (T.12) does not hold (see Section 7.3, Example
3).

(3) Notice that (T.11) is not required in Theorem 18.

We now indicate that under (T.11), Theorem 18 may be strengthened to
show that optimal consumption processes (as well as input and stock
processes) are interior.

Theorem 19: Under (T.1)(T.3), (T.5)«T.7), (T.11), (U.1) and (U.2)(U.5), if
(x*, ¢*,y) is an optimal process from some initial stock y>0, then for all
120, x¥(n,)>0, c*(n,)>0 and y*(n,)>0 for all histories 7,.
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7.3 Some Examples

We shall now present a collection of examples where one or more of the
assumptlons in our model do not hold, and as a result, some conclusions that
we have derived fail to remain valid.

Example 1: We relax the assumption (U.3) in Theorem 2 and show that with
“a linear utility function, an optimal 1nvestment policy functlon need not be
monotone non-decreasing.

Let u(c)=1/6c for ¢=0 and f(x,r)=1/3x if 0< x <M, M >0 and for all r in
€ and f(x,r)= M/5 for x> M. (We bound f{(x,r) from above so that it satisfies
the assumptions we placed earlier on our production function, f(x,r)).

Let ye(0,M), and let {x}2, be an optimal input process from y. Suppose
x,<1/6x, and x,<3y.
Let 0<e<y—x, Construct a process {c;,x;}; as follows: -

’__ r __ —
Xo=XoT €, cg=cy—¢

1 ,
c,=g(x0+a)—xl, X, =X,

{c;,x}}={c,x} forall 122

Then clearly {c},x;} is feasible from y. Furthermore,

Q0

Y 8u(c)— Y, Su(c))=ulce)+ du(c,) — u(ct)— du(c)

=%(co)+8<%) (%xo—x,) —% (co—s)—8<%> (%(x0+e)—x,)=0

Hence, the process {x;}" is optimal. In particular if x, is optimal from y, and
x, S xa<y then x is also optimal from y. Thus A(y)=y for y in [0,M] is an
optimal policy function.
Under the assumption that x, <y we obtain the following as an optimal
policy function, on [0,M).

h(y)=y forall y#y

h(p)=x,<y.
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Clearly this optimal investment policy function is not monotone non-
decreasing.
If x,=y and x,<1/8x, we can use the above method and define

e=2"0% 1o 5—e<y, k()= for all y% and h(7)=x; <7

and obtain the result that 4(y) is not monotone non-decreasing.
Finally, we note that x, = 1/8x, and x,=y cannot hold for any ye(M,M)
where M =38M (see Fig. 19.2)

I
|
|
|
|
|
|
y M x X

Figure 19.2

For in the case notice that x, lies in the horizontal flat portion of the
production function. Thus we may put x; =x, —¢€ with £ >0 small enough so
that x| also lies in‘the horizontal flat portion. Then output in the next period,
period two, is unchanged; hence, defining ¢ =€ and {x],c;} = {x,,c } for > 1 we
obtain a process with higher expected discounted total utility.

Example 2: Now we present an example where the production function is not
uniformly bounded away from zero for each positive input level, and as a
result, Theorem 5 (Stochastic Ramsey—Euler Condition) ceases to remain
valid. Suppose u(c)= —1/c, f(x,r)=rx'? and r is uniformly distributed on
[0,1]. Then, since <(f{h(y),))=<f(h(y),r), if the.stochastic Ramsey—Euler -
condition holds,

N ZB U YOI BNy =3 P | 1dr=c0

This is a contradiction as, from Theorem 4, ¢(y) >0, hence u'(¢(y)) is finite.
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Example 3: Here we show that without (T.12), Theorem 18 may fail. Let
u(e)=c?, fx,)=f(x)=x"for 0=x=1, y=4%, §=1. If (x,c)p) is any process
from y, since y<1 and f(x,r)<x for 0<x =<1, then 0<x,<1 for each ¢, hence
the definition of f(x,r) for x>1 is unimportant in the discussion below.
Notice that (T.12) does not hold. Define the process (x*,¢*y*) from initial
stock y, by y¥*=c¥=y, x¥=0and forall 121, x} = c¥=y}=0. We will show
that (x*,c*y*) is optimal from initial stock y, hence Theorem 18 does not
hold. . ‘

- “The discounted total utility of (x*,c*y*) is ()" Let (x,¢y) be any process
from initial stock y with some fixed input level x,> 0. We shall show that the
discounted total utility of (x,¢,p) is less than (3)'”. Define the total accumula-
tion process {X,} from input x, by X,=x, and x,=f(X,_) for all z= 1. Notice
that X,= x4 < x¥ for t=1. Also ¢, <X, for 21, hence, the process (x,¢,y) has
discounted total utility less than ;

G—x+ 3 @YY =G+ 2 2

The difference between the discounted total utility of (x*,c*y*) and (x,c,)
exceeds

D(xy)= B+ q,(xp) + g5(x0) - (25)

where g, =~ (3~ % and gy(x)= = 1 2

To show that (x*.c*y*) is optimal, it suffices to show that D(x,)>0 for
x,>0. Notice that D(0)=0, so we only have to show that D'(x)>0 for
0<x<1. However, one can check that g(x) is convex so ¢;(x)=¢(0)=
3)¥>1/1.5 and also that g,(x) is concave so gyx)=g;(3)> —1/1.5 for
0< x<1%. Addition then yields D'(x)>0 for 0<x< 4. So (x*,c*y*) is optimal
and hence Theorem 18 fails to hold. ;

8 PROOFS

Proof of Theorem 1: One may readily adapt the basic existence theorem of
Maitra (1968) to obtain Theorem 1. We now indicate how to obtain Theorem
1 using (U.1") in place of (U.1) [see Remark 2 following the statement of
Theorem 1]. Since S is compact, (U.1") implies u is bounded above on S,
hence, using Lemma 2, one may check that all the conditions of Schél (1975,
theorem 16.1) hold, so we conclude there'exists an optimal stationary policy
n*=(A~)) where h: S—»A is a Borel measurable function. The functional
equation (eqs (8) and (9)), follow from the same theorem. From Schil (1975,
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Corollary 6.3) we obtain that the value function, V, is upper semicontinuous
(u.s.c.). Since, clearly, V is monotone non-decreasing, this implies that V' is
right contintious. To show that V is left continuous, fix any y>0, and
suppose x* is an optimal input from y, and ¢*=yp—x*. Assume c*>0, for
otherwise V(y)= — oo and left continuity of ¥ at y is trivial. Next, let y,1y, so
that for large enough #n, y,—x*=0. Then, from the functional equation,

V(y)=u(c*)+8 [ V(f(x*n)y(dr)
V(p) Zu(y,—x*)+3 [ V(f(x*,n)y(dr)
hence, V(y,)— V(y)=u(y,— x*)—u(c*), and taking limits gives

lim V(y,) 2 V(y),

so combining with the fact that ¥ is u.s.c. yields the left continuity of V.
QED

Proof of Theorem 2: We will now prove a stronger version of Theorem 2.
Theorem 2(S): Suppose y>)', and {x}3, {x]}¢° are optimal input processes
from y,y’, respectively. Then x,= x;.

Proof: Theorem 2 follows from Theorem 2(S) by defining x,=A(y) and
xo=h(y").

Suppose, on the contrary, that x,<x; Define new input processes from
y,y" as follows. Let x,=x/ for all t+=0. Then Xx,=x;<y'<y, and for t21,
X,=x, <f(x|_,r)=f(%,_,r), hence {x} is feasible from y. Next, define x; =x,
for 120. Then X,=x,<x;<y" and for r=1, X,=x,<f(x,_,r)=f(X_1.r),
hence {x]} is feasible from y’. Let {c;}, {¢;} be the consumption processes
corresponding to {x,}, {x}}, respectively.

Using the functional equation (see eqs (10) and (11)) we obtain

u(co) + 8 { V(f(xon))1(dr) = V(y) Z (@) + 8 [ V(f (xor))y(dr)
u(cy) + 8§ V (S (dr) = V(¥ ) Zu(e) + 8§ V(f(3,n)v(dr) (26)
Adding these two inequalities and noting that x,=x;, x;= X, we obtain -
u(ce) + u(co) Z u(cy) + u(cy) _ @7)
Now, Cy=y—x5>y —xy=cpand ¢,=y—x5<y—X,= ¢y, 50 thereisa 0 <0 <1

such that ¢,=0c,+ (1 —0)cy. Then ¢;=y" —x,=(y —x) + (¥ —x0) —(y —xp) =
¢+ co—¢y=(1—0)c,+6cy. This gives, using the strict concavity of u,
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u(Cy) > Bu(cy) + (1 — Bulcy) (28)
and
u(Cy) > (1 = 0)u(c,) + Ou(cy) / (29)
so by addition
u(Cy) + 1(Sy) > u(cy) + u(cy) (30)
(30) contradicts (27), and proves that x,=x, for y>y".
QED

Remark: The proof of Theorem 2 above is a modification of the proof of
Dechert and Nishimura (1983, theorem 1).

Proof of Theorem 3
(a) o(p) is the set

{x: x solves max u(y — x) +8 [ V(f(x,n)y(dr)}

=x<y

Since both », and ¥ are continuous, (a) follows from the Maximum Theorem
(see, e.g., Berge (1963), p.116). (b) @(y) is a subset of S, hence is bounded.
For fixed y in S, since ¢ is upper semicontinuous, ¢(y) is closed. A(y) is
therefore the minimum of the compact set ¢(y), and hence is well defined.

Next, we show that A(y) is monotone non-decreasing. Notice that if u were
strictly concave then the result would follow from Theorem 2(S).

If u is concave (not necessarily strictly) we modify the proof in Theorem
2(S) as follows. Suppose y >y’ and let {x}, {x]} be the optimal input processes
from y,y’, respectively, using 4. Without strict concavity of u, eqs (28), (29)
and hence (30) hold only with weak inequalities, in the proof of Theorem 2.
However, we may still derive a contradiction to (27) by noting that (27) in
this case holds with strict inequality, since Xxp=x,<x;=h(y")=min @(y").
Hence, %} is not optimal from, ', so (26), and therefore (27), hold with strict
inequality. Hence, h is monotone non-decreasing.

Next, we show that A(y) is left continuous. Let y,Ty,. Since h(y,) is
monotone non-decreasing and bounded above we obtain that

X" =lim (y,)

exists. But for all n, A(y,) <h(y,), so
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x" Zh(y,) (31

Next, let x, = h(y,)e0(y,), and notice that x,—x", y,—¥, and x,ep(y,). Since
¢ is upper semicontinuous, x'eq(y,). Hence,

x" Zmin o(yg) = h(y,) (32

From (31) and (32),

lifm h(y,)=h(y,);

Yuldy

so h is left continuous.

(¢) Proof is similar to that of (b) with obvious changes.
QED

Proof of Corollary 3: Choose h(y)=h(y) (or h(y) if left continuity is
required), and apply Theorem 3.

QED

Proof of Theorem 4: First we show that under (T.4), V(y)> — oo for y>0.
Fix any y>0. Given the k>0 in (T.4), choose any 0 <x,<min {y,k}. Then
the following input and consumption process is feasible: For each ¢, and
history n,xM)=X, ¢=y—x,>0 and for t=1, c¢=f(x,_,,r)—x,=
J(xg,r)—x,>0. Using (T.6) and compactness of &, there exists a ¢'>0 such
that ¢,=¢' for all 1= 1. Then

V)2 uly—x)+ 3, () =ule) + > gu(e)> — o (33)

If from any y>0, ¢(y)=0, then (U.l") implies V(y)= — o0, contradicting
(33). Hence, ¢(y)>0 for y>0. Finally, if h(y)=0, then by (T.5), next period

stock, and hence consumption, is zero, which by (U.1°) implies ¥(y)= — oo,
again contradicting (33). Hence, h(y)> 0, from which the theorem follows.
' QED

Proof of Theorem 5: First we prove the following lemma.

Lemma 2A: If A=|a,,a,] with 0 <a,<a,< 0, then

inf ¢(y) > 0.
yed
Proof: Suppose, on the contrary, that

ir}‘f ¢(y)=0 and suppose y"e4 and lim ¢(y")=0.
Ye n—x®
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Since A4 is compact we may assume without loss of generality that y"—»y*eA.
Define ¢(y)=y— h(y) and &(y) =y — k(). If y" contains a subsequence (retain
the same index n) converging to y* from below such that y"<y"*! for all n,
then by Theorem 2(S), A(y" D)< A(y") £ h(y"*") so taking limits as n— oo,

Jim (") = lim h(") or lim (") =lim c(")=0.

Then using the left continuity of ¢(y) yields ¢(y*)=0, which contradicts
Theorem 4. A similar contradiction may be obtained if there is a subsequence
y'ly*. This concludes the proof of the lemma.

We now proceed to prove Theorem 5. Fix y*>0, and define ¢* = ¢(3¥),
x*=h(y*) and x(r) = h(f(x*,r)). Define

H(c)=u(c) + 8 [ulf(y* —c,r)— X(r)]y(dr) (34)
for all ¢ such that the expression is well defined. We begin with:
Claim 1: The following maximization problem (P) is solved by c*:

‘max H(c) subject to 0<c¢=<y* and f()* —c,r)=x(r) (P)

To verify claim 1, note that if ¢* did not solve (P), there is some ¢ such that
0=¢=y*, f(y*—ér)=x(r) and H(E)> H(c*). Define a new process (¢,%) as
follows: &y=¢, Xy=y*—é, ¢, =f(X,r)—X,(r), X,=X,(r), ¢,=¢,, X,=x, for all
t22, where (¢,x) is an optimal process from y*. The difference between the
expected total discounted utility of (¢,x) and (¢,%) is H(c*)— H(¢)<0, a
contradiction to optimality of (¢,x). This establishes claim 1.

Claim 2: There exists a £>0 such that for all ¢ in U=(c*—E§,c*+E), the
contraints ‘0=<c¢<y* and ‘f(y* —c,r)— x(r)=0’ are satisfied.

To prove claim 2, note that from Theorem 4, 0 <c* < y*, so let £, >0 be such
that 0<c*—§ <c*+§,<y* Then for ¢ in U =(c*—§,c*+&)) the first
constraint in claim 2 is satisfied.

Since &£ is compact, (T.6) implies that the following are well defined and
positive for x> 0;

Jo()=min f(x,) and £,,(x)=max f(x1).
Then f(x*,r)elf, (x*), /,,(x*)], so Lemma 2A implies there is a k> 0 such that
S —h(f(x* )2k y—ae (35)

/ is continuous on the compact set S & and so is uniformly continuous
in (x,r), hence there exists some & €(0,€,) such that
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k
sup e +e.0) = (x| <5

for all € in (—&,£). Define U=(c* —& c*+E&). Then for any ¢ in U, putting
g=c*— ¢, we obtain

S = o)~ 5V =f(e* +6,0) = X =[x+ + &0~ h(f(x*)
— [t ) — KO+ L 60— fxt ] > = S =,

ie forcin U
N _ k
JO*—er)=x(r)>5 yae (36)

In particular the second constraint is satisfied for each ¢ in U. Since U= U,,
the first constraint is also satisfied for each ¢ in U. This completes proof of
claim 2.

For ¢ in U and any € such that c+¢ is also in U, [H(c+e)—H(c)l/
e=A(ce)+ Sj'D(c,s,r)y(dr) where A(c,e)=[u(c+e)—wu(c)l/e and D(ce,r)=
[u(f(* — c—&,r) = X(r) —u(f(* —c,r) — X(N)]/e.

Claim 3: There is an M < oo such that for each ¢ in U and for any € such that
c+eisin U, |D(ce,r)|SM y—a.e.

To prove claim 3, suppose c is in U, and & is such that c+¢is in U. Then (36)
implies for some k>0, f(y* — c—¢&,) — X(r) 2 k/2 and f(y* —c,r) — x(r) 2 k/2 v

ae. Since y*—c—e<y*—c*+E we obtain f(y*—c—gr)—Xx(r) and
J(y*—¢,r)— x(r) both lie in the interval [k/2,f,(y* — c* +E)] where

Su(X)= n}ezéx f(x,n).
Hence, (U.4) implies there is an M, >0 such that for each ¢ and c+ein U,

u(f(y* —c— &) — X(r) — ulf(y* — e,;r) = %(r)) ~ ‘
| FO*— e —en =M, y-ae  G7)

Also, since y* — ¢ — & and y* — ¢ both lie in [x* — Ex* +E], (T.7) implies there
is an M, < oo such that for all ¢ and c+¢&in U,

V.(J,*——c—s,rz _f(y*_c’rhiéMz y—ae. (38)

But (37) and (38) imply |D(c,&,r)| £ M| M,, so putting M = M M, then proves
claim 3.
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Now
lgi_l:l’(} A(c,a) =u'(c).
Also
lim Dic.6.r) =~ (f(y* = e.) = XONf (7* = e,
so using claim 3 above and the Domir;ated Convergence Theorem yields

tim DI _ 0 - 5 (% — )~ BN % ) (39)
Hence, H(c) is differentiable at each ¢ in U, and H’(c) equals the expression
on the right of (39).

Finally, since c* solves the problem ‘maximize H(c) subject to
c*—E<c<c*+&, and H is differentiable on the open constraint set, we
obtain by the classical first-order conditions of calculus that H'(c*)=0 and
the stochastic Ramsey—Euler condition follows immediately.

QED

Proof of Corollary 5: h(y) from Theorem 2 is monotone non-decreasing.
Suppose there exists y, y with y>y >0 such that A(y) = h(y)=h* (say). Then
for all ye[y,y], H(p)=h*. From the stochastic Ramsey-Euler conditions, this
implies

u'(c(y)) =8 fu'(c(f(h(y),rS (h(y).rYv(dr)
= 8j'u’(c(f(h*,r)))f’(h*,r)y(dr) =m*, say, for all ye[y,y].

Hence, since u is strictly concave, c¢(y)=c* (say) for all y in [y,j], so
y=h(y)+c(p)=h*+c*=yp* (say) for all y in [p,y] which is a contradiction,
proving that A(y) must be strictly increasing.

QED

We shall prove Theorem 6 after we have proved all the results of Section 5.

Proof of Lemma 3: Let E={yeS|h(y)—h(y)>0}. Given any integer n, let
E,={yeS|h(y)— h(p)>1/n}. Then E,1E as nfoo. Let C={yeS|A(y) is conti-
nuous at y}. Since h(y) is monotone non-decreasing, C'=S— C is at most
countable (see, e.g., K. L. Chung (1974), p.4). Fix an n and let y,cCnE,, and
Yilyo- Then ‘
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lim A(y) = h(y,)
since y,eC; so there is a k* =k*(n) such that for all k> k¥,

W) Sh(n) + o<y + < H0). “0)

The last inequality is from the hypothesis that y,eE,. Pick any k> k* and let
¥ =y, xX'=h(y,) and x,=h(y,). Then (40) tells us that even though y' >y we
have x’ < x. This contradicts Theorem 2(S); so for all n, CnE, is empty. Thus
E,cS—C=C, so E, is at most countable.

Finally, since

E=|) E, E is a countable union of countable sets and hence is
n=1

countable.

Proof of Lemma 4: Fix y>0 and let y"y. Let {x}{° be the optimal input
process from y" obtained using the optimal investment policy function #. We
proceed to show

u'(y—xg) Slim inf VU’;;}V"(X )_g lim sup _V(_";)’;;(—K ) <u'(y—x,)

which implies V™ (y)=1'(y—x;). By the left continuity of A(y), x5=h(y")
Th(y)=x, where {x,} is the optimal input process from y (using 4 again). By
Theorem 4, x,<y. Thus y"1y implies that there is an n* such that x,<y” for
all n>n*. So by the functional equation B

V(y)=uly— x0) +8 | V(f(xo,r))y(dr).
V(y") Zu(y"— Xo) + 8§ V(f (x6,1)1(dr) for n>n*.

This leads to

Vi) —Wy) é»u(y — X~ u(y" — Xp)
Su'(y"— xp)[y — "] from concavity of u.

lim sup (1)

So (y)— V(")
=0 Y=

Su'(y—x)

Since 4 is monotone non-decreasing,

X=h(y")SH»=y.
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Hence, by the functional equation

V() zu(y —x5) + 3 V(F(xg,r)y(dr).

V() =u(y = x5)+ 8 [ V((xg.n)v(dr).

We then obtain V(y)— V(y")2u(y —x5) —u(y"—xp) 2 u'(y — xp)[y — ] from
concavity of u, so

lim inf = u'(y—xy). (42)

n—»oo

Viy)— V(")
y—y"

Combining (41), (42) yields V'~ (y)=u'(y — x,). Similarly, by letting 7|y and
using the optimal investment policy function 4 one obtains V*(y)=u'(y — x,)
where X,=h(y). Hence, the right and left derivatives exist. Further using 2> h
and concavity of u,

V- =u'(y—h(y)Sd'(y—h())=V"(y) (43)

To prove the last part of the theorem, we obtain from Lemma 3 that
h(y)="h(p) except for countably many values of y. Hence, except for those
countable values of y, x,=h())=h(»)=Xx, so V ()=u'(y—x)=
uw'(y—%,)=V"(y), and V'(y) exists outside this countable set.

QED

Proof of Theorem 7: Suppose from y>0, {xy,x,,X,,...} and {xy,x],x;,...} are
optimal input processes. By induction, it suffices to prove that x, = x| a.s.
Suppose, ad absurdum, that h(f(x,r))>h(f(x,r)) with strictly positive 7y
probability. Define &(y)=y—h(y) and <(y)=y—h(y). Then, under the

hypotheses of the stochastic Ramsey—Euler condition, since ¢(f(x,,r)),
c(f(x,,r)) are both optimal consumptions from f(x,,r), we obtain

' (y = %) =8 fu' @) f Oxo, .S (e )¥(dr)
and
U (y=x0) =8 fu' (€(f Oxo,r D) (e, )¥(dr)
s0
§ ' @ Cegor)) = ' (e Ceou DN (5,1 )Y (dr) = 0. (44)

But &(f(x,,r) S c(f(x,,r)) for each r, with strict inequality holding with ¥
positive probability. Since u is strictly concave (U.2), and f is assumed
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increasing (T.3), the left-hand side of (44) is strictly positive. This is a
contradiction, and proves that A(f(x,,r) = h(f(xy,r) so x, =X a.s.

We now prove the second part of the theorem. If the optimal path is
uniquely determined then X,=h(y)=/h(y)=x,, hence from equation (43)
above we see that V()= V"*(y) so V is differentiable.

If V is differentiable, since u is strictly concave we obtain from eq. (43) that
%= h(y)=h(y)= x,. Then the first part of this theorem implies that the entire
input process is uniquely determined.

QED

Proof of Theorem 8: From eq. (43), for y> 0, since y — Ry Zc(p)Ey—h(y),
we obtain V- (y)=u'(y—h(M)Zd' (c(y)=u'(y— R())=V*(y). If Vis differ-
entiable at y, then V'(y)=u'(c(y)), which is the first equality in eq. (14).
Since V is differentiable at y>0, Theorem 7 implies that there is a unique
oplimal process from y; so for y a.e. r, there is a unique optimal process from
=f(h(y),r); hence, using Theorem 7 again, V is differentiable at
y —j(h(y),r) The second equality in (7) then follows immediately from the
stochastic Ramsey—Euler condition, and the first equality (replacing y with
1= ().
QED

Proof of Theorem 6: Concavity of V implies that for all y>0, V" (y)2 V().
Combining this with equation (43) proves the first assertion. Next, suppose
that V is concave. Then V is differentiable, so from Theorem 8§,
V'(y)=1u'(c(y)). Monotonicity of c(y) then follows from concavity of ¥ and
u. Finally, if ¢(y) is monotone non-decreasing, to prove that V is concave, it
suffices to show that «'(c(»))= V'(y) for all y>0. Let C be the set of points
y>0 where the equality does not hold. From Lemma 4 and Theorem 8, Cis
the set of points where V is not differentiable, and C is at most countable. To
complete the proof we will show that C is empty. Suppose, instead, that yeC.
Since C is countable, we may choose sequences {,}, {7,} such that y, 1y, v,y
with y,., outside C for all n. Using eq. (43) and the right continuity of h,
gives

v+ () =y~ b =lim ' (5, ~ K(F) =lim V'(5,).
Similarly, we may show

V() =lim V'(3,).
Monotonicity of ¢(y) implies V’(j),,)=u_’(c(jz,,))§uf(q( y)=V'(y,), so taking
limits ¥*(»)< V" (), which from eq. (43) means ¥ is differentiable at yeC,

contradicting the definition of C. Hence, C is empty.
QED
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Proof of eq. (21):
H,(x)=hf,(x)), Hy(x)= h(fy,(x)) (1)

We prove 6nly the first equation, the second following: similarly. By
definition, f,.(x)<f(x,r) for all r, hence from monotonicity of &,
h(f, (%)) < h(f(x,r)) for all r, so

h(f, () S min B Cxr)y =, (x) (45)

Next, since € is finite,

1
min f(x,r) .
ret

is attained at some r'; i.c. £, (x) =/(x,r"). Hence,

M1, = h(f(x,r")) 2 min A(f(x,r)) = h(x) (46)

From (45) and (46) we obtain the first equation in (21).
QED

Proof of Theorem 9: One checks that if H(-,r) is monotone non-decreasing
(but not necessarily continuous) y a.e., one may still apply Dubins and
Freedman (1966, corollary 5.5) [see, e.g., Bhattacharya, 1985].

Proof of Lemma 5

(a) Suppose for some fixed r, x* is a fixed point of H(:,r) but is not a fixed
point of one of H(,r), H(:,r). Then H(x*;r)=x* and H(x*r)> H(x*r). Let
y=f(x*r). Define two processes (x,¢,y) and (x',¢’ ") from y as follows; the
process (x,¢,y) is obtained by using A4 in the initial period, and 4 in each
subsequent period. The process (x',¢'y") is obtained using the policy 4 in the
initial period, and the policy function } in each subsequent period.

Then (x,¢p) and (x',¢’y’) are both optimal processes from the initial stock
>0, and x,= xg=h(y) = h(f(x*,r)) = H(x*,r)=x*. Let x,(r), x|(r) denote the
inputs in period one corresponding to the processes (x,e), (x',¢" "), respecti-
vely, when the shock occurring in period one is r. Then

x,(7) = h(f (o) = h(Fe* ) = HOx*,P) < B e%, 1) = RO Gev )
=K/, ) = xi(0).

Under (E.1), the shock r occurs with positive probability,.so we obtain a
contradiction to the uniqueness result of Theorem 7.
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(b) Suppose that x,= H,[(x,), and that the maximum defining f(x,) is
attained at r,, (see eq. (21)), ie. f(xpr)=fi{x). Then
Xo= H,,(xx5) = h(f(x,51,,)); hence, by (a) above, H(xy,r ) = H(x,,r,,) = xo which
gives, using eq. (21), H,,(x,)= H,(x,)=x,. Therefore, H,, H,, H,, all have
the same fixed points. Proof of (c) is similar to (b).

QED

Proof of Lemma 6: We require the following:

Claim 1: Suppose G: S—S is monotone non-decreasing and there exists
x,<x, in S such that G(x,)>x, and G(x,)<x,. Then there exists an x, in
(x,x,) with G(x;) = x5.

The claim can be proved using a simple sequential argument.

Claim 2: Fix an r in € Then H(-,r) cannot have a sequence of positive fixed
points {x,} such that x,—»0 as n—oco.

Proof: Fix an r in €. Suppose, contrary to the claim, that H(x,,r)= x, for each
n, and x,—0 as n—o0. From the stochastic Ramsey—Euler condition,

W (c(f(x,1)) = 8 fu' (c(f(H(x,or),0))f (H(x,:r),0)Y(do)
= (W ((f(x,,0N)f (x,,0)1(do)
2 Y({r)u (c(f G (o7
Hence, 1287 (x,0r)-

Under (T.8), the Inada condition at the origin, the right-hand side of the
above inequality tends to infinity as » tends to infinity, which is a contradic-
tion, which completes proof of claim 2.

Now we prove Lemma 6. Since & is finite it suffices to show that for fixed r,
there exists an &> 0 with H(x,r)> x for all x in (0,¢,). Fix an r in & Define
M’ =inf {x> 0|H(x,r)=x}, then by claim 2, M'>0. Suppose, ad absurdum,
that there is no £, < M’ such that H(x,r) > x for each x in (0,¢,). Pick any M in
(0,M") such that H(M r)< M. If there is a z < M with H(z,r)> Z, then claim I
implies there is a z'>0 with z<z'<M<M’ such that H(z',r)=2". This
contradicts the definition of M.

Therefore,

H(x,r)< x for each x in (0,M) 47

Next, we show there is a K in (0,M) such that

c(f(h(y),r))> ¢(y) for each y in (0,K) (48)
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To prove (48) pick any y in (0, ]W) Then from the stochastic Ramsey—Euler
condition

w(c(y)=3[f (h(),0) (c(f(h(3),0)))(do)
2 8y({r)S (h(»))ud (c(f(h(y),7)))

~ Hence,

< W(c(f(h(y),r)))
57({r})f P W)

Since f'(h(y),r)— o0 as y—0, the left-hand side of the above inequality tends
to zero as y—0. Choose X in (0,M) such that for all y in (0,K),

LACVILIE)RD))
ey

so by strict concavity of u, c(f(h(y),r))> c(y) and (48) follows.
Next, pick any y,€(0,K) and define x,= h(y,), ¢,=y,—h(y,) and for n>1,
x,=H(x,_,r), y,=f(x,_,,») and ¢,=y,— x,,.

Claim 3: H(x,r)<x for all x in (0,M) [i.e. (47)], implies x,~0, y,—0 and ¢,—0
as n—oo.

To prove claim 3 it suffices to show x,—0 as n—o0. x,<y, and y,e(0,M)
implies x,e(0,M). If x,_,e(0,M) then since x,= H(x,_,,r)<x,.,, we have
x,6(0,M). So by induction x,&(0,M) for each n, hence x, = H(x,,r) < x, for
each n, and x,|x* (say). We will show x* =0. Using the monotonicity result
of Theorem 2(S), since x,,,<x,<x,_,, H(x,,+,,r)<H(x DS H(x,_ 1.

Taking limits and using the right continuity of H,
H(x*,r)=lim H(x,,r)= lim H(x,r)=limx,,  =x*. 49)

Hence, x* is a fixed point of H. From Lemma 5(a), x* is a fixed point of H.
Clearly x* < M. If x*> 0, we obtain a contradiction to the definition of M; so
x*=0, and this completes proof of claim 3.

However, by putting y=y, in (48) we obtain c,,,> ¢, for each n, so ¢,> ¢,
for each n. By Theorem 4, ¢,>0, hence c, cannot converge to zero,
contradicting claim 3. So for fixed r, there is an g, > 0 with H(x,r)> x for all x
in (0,&,), and r is in &, a finite set.

QED
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Proof of Lemma 7

(a) We shall show only that y, is well defined, the others following
similarly. Suppose x*| y,, with H, (x*)=x* for all k. Then Lemma 5(c) and eq.
(21) imply x*= H, (x*) = x*)). Taking limits, and using the continuity of f,(x)
and right continuity of k, y,=h(/,(»,)=H,(»,). Applying Lemma 5(c)
again, we get y,,= H,(»,,), hence y,, is well defined.

(b) Follows from Lemma 6.

(©) If H,(x)<x for some x in (0,p,,) then claim 1 in proof of Lemma 6, and
Lemma 6 itself, would imply there is some x'e(x,y,,) such that H, (x")=x"and
this contradicts definition of y,. Hence, H,(x)>x for xe(0,y,,). Similarly,
using (T.1) which implies H,(B)<p, we can show that H,(x)<x for x in

(x,,00).

The proof of (d) is similar to that of (c). (¢) follows immediately from (c),
(d) and the fact that H,(x) < H,(x) for all x.
QED

Proof of Theorem 10: Let S'=[c,d] and let [a,b] be the unique minimal -
invariant subset of S’. We proceed to show that for some integer m, y" splits,

and in particular,

atb

Y"({re€m| H"(x,r") <—— for all x in §73)>0
and

y"'({f"es'"uq"*(x,f");‘“2r b for all xin §)>0 (50)
Define

a,=sup {z|H"(d,") = z, for all r"e€"} and a*=inf a,. We will show a*=a.
First, since [a,b] is y-invariant, H*(d,") = H'(b,”") = a for all ref". Hence,
a,=afor each n, and a* = a. Next, to show ¢* <a, we will prove that |a*,d] is
y-invariant, which implies, since [a,b] is minimal, that [a,b] = [a*.d] so a* =a.
To show [a*,d) is y-invariant, it suffices to show

H(a*,r)=a* for all r : . (&19)

First we prove the following general lemma. Recall H(x,r)=h(f(x,r)) where h
is defined in (12). From Theorem 3(c), H is right continuous.
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Lemma 8

I:I(a*,irj) =a* for each r. (52)
To prove Lemma 8, we will first prove the following claim:

Claim: Fix an n. Then for all r in some subset B, of & with y(B,)=1

I:I<a,,+%,r> za,,, (53)

Proof: Suppose the claim is false. Then on some subsét D of € with y(D)>0,

an+|>I_{<an+%,r) gH(an+%,r> :

By definition of a,, for 7" in Some subset 4, of & with y'(4,)>0,
H'(d,r)<a,+1/n. Hence, for r"*'=(r",r)ed, x D,

H A= HE AN SH (a4 ) <a.

which, since y"*'(4, x D)=y"(A,)y(D)> 0, contradicts the definition of a,, ,.
This completes the proof of the claim.
To prove Lemma 8, define

then y(B)=1. Since H(d,r)<dy a.e., by induction H"*'(d,”"*") < H"(d,r") so
a,,,=a, for each n, hence a,]a*. Taking limits in (53), and using the right
continuity of H gives (52), for reB. This completes the proof of Lemma 8.

If H were continuous, then a simple modification of the proof of Lemma 8
results in (51). We now show

Lemma 9: The inequality (51) holds if we assume that € is finite and Lemma
5(a) holds.

Proof: Define By={re&| H(a*,r) <a*} and suppose ad absurdum that y(B,) > 0.
Since € is finite, for some r’ in B, '

M =max fla*,r)=f(a*r),
reB,

SO
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h(M)=h(f(a*,r))=H(a*r)<a* (54)

If H(a*,r)=a* for some r in B,, we obtain an immediate contradiction to
Lemma 5(a), so from (52),

H(a*,r)>a* for each r in B, (55)
and, in particular,
h(M)=h(f(a*,r"))= H(a*r')> a* (56)

For r not in By, h(f(a*,r))= H(a*,r) Za*> h(M); so from monotonicity of 4,
f(a*,r)> M, and hence by monotonicity of % and (56),

H(a*,r)=h(f(a*,r)) = h(M) > a* for each r not in B, (57

From (55) and (57), H(a*,r)>a* for all r in €. Since € is finite, there is some
& >0 such that

H(a*,r)>a*+E for all re€ (58)

and a* + < d (the latter inequality is possible since a* <d; this follows from
the fact that H(d,r) <d for all r, hence by (T.9), H(d,r'") < dfor some r'’, hence
a*<a < H(dr")<d).

We will show that (58) leads to a contradiction. Define a=a* + . Then for
each r, H(a,r)= H(a* +&,r)= H(a*,r)>a* +§=a (where the first inequality
follows from Theorem. 2(S), .and the second follows from (58)). Then
H(d,r)= H(a,r) > a, so by induction, H"(d,r") 2 a for each r". Hence, a,=a for
each n, so a*=a=a*+&, a contradiction. This shows that H(a*,r)=
H(a*,r)>a*, and concludes proof of Lemma 9.

Hence, we have shown that a* = a. The proof of Theorem 10 then proceeds
just as in Dubins and Freedman (1966, theorem, .5.15). We provnde the rest of
the proof here for the sake of completeness.

Since there are no y-fixéd points, a<b,.s0 a*=a <a+b/2. Hence, for some
n;, there is an 7'€€" in the support of y" such that H"\(d,7")<a+ b/2.
Repeating a similar argument, there is an integer n, and an r2€€" in the
support of y"2 such that H"(¢,r'2)>a+ b/2. 3

Define 71t "2 = (r"2,”)e€" ™, i.e. the first n, coordinates are r"2, and the last
n, are 7. Then for each x in S’— [c.d],

H'n|+n2(x’?ll+n2) é H"l+"2(d,?'1 +n2)
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= H"(H"(d,r?),r")
< H(d,)

atb
< T -
Similarly, if we define r* "= (¥"1,r"2)e€"*" then H™*"2(x,r"*")>a+ b/2 for
each xeS’. Putting m=n, + n, proves (50) and concludes proof of Theorem
10. ’
QED

Proof of Theorem 11: From Lemma 6 there is an €>0 such that for all #,
H(x,r)>x for all x in (0,6), so we may redefine our state space to be
S§'=8-[0,6). We proceed to show that [x,,x,] is the unique minimal -
invariant closed interval in S’, so that by applying Theorem 10 we may
conclude the proof of this theorem. First, [x,,,x,,] is a closed y-invariant set,
since for xe[x,,,x,,], x,,= H (x,)SH (x) S H(x,r) S H,(x) < H,(x,)=x,,, SO
v a.e., H(x,r)e[x,,x,]. Next, we show that [x_,x,] is a minimal closed y-
invariant set. Suppose [a,b] = [x,,,x,/] is y-invariant. If we assume x,, <a, then
[a,b] y-invariant implies H(a,r)=a, so H,(a)=a, which contradicts Lemma
7(c). Hence, x,,=a. Similarly, we may show b=x,,, so [x,,,x,] is a minimal
closed y-invariant set.

Finally, we show that [x,,,x,,] is the only minimal closed y-invariant subset
of §’. Suppose [a,b} with b<x_, is y-invariant. Then H(b,r)<b so H,(b)<b,
which, since b<x,, <x,, contradicts Lemma 7(d). Similarly, we may show
that [e,b] with a2 x,, cannot be y-invariant. Hence, [x,,x,,] is the unique
minimal closed y-invariant subset of ', hence applying Theorem 10 con-
cludes proof.

QED

Proof of Theorem 12: Define x,_ =max {xe[y,,,x,]H,(x)=x}, and proceed
asin Lemma 7(a) to show that x, _ is well defined. From Lemma 6, there is an
£>0 such that H(x,r)> x for any x in (0,¢) and for all r. Define S =[e,x,,],
then one can check that S” is y-invariant. We may then follow the steps in the
proof of Theorem 11 to show that [x,,_,x,] is the only minimal y-invariant
closed interval in S”. An application of Theorem 10 then proves that if
x,€(0,x,,], then F(x) converges as t—oco uniformly in x to an invariant
distribution F(x) with support [x,,_,x,].

Similarly, if we define x,,, = min {xe[x,,,y,]|H,(x) = x}, we may show that
if x,e[x,,00) then F(x) converges as t—oco uniformly in x to an invariant
distribution F(x) with support [x,,x,,.].

QED



Mukul Majumdar, Tapan Mitra and Yaw Nyarko 583
Proof of Theorem 13: From (T.10), with z' = h(z), we obtain
v({re€|H(x,r) <z’ for each x in $})>0
and
Y({re€|H(x,r) 2 z' for each x in §})>0

So v splits, and we may apply Theorem 9 to complete the proof of the
theorem.
QED

Proof of Theorem 14

(a) Suppose (x,¢)) and (x',¢'y") are optimal processes from some initial
stock y>0. Define a new process (X,¢,) as follows: Fix any o in (0,1). Let
X,=ax,+(1—a)x; for t=0; y,=y and for 1>1, y,=f(x,_,,r); and for ¢=0,
¢,=y,— x,. Clearly, X, 20 and y,20 for each 1=0. Further, using (T.11),

C=fx_r)— %, =flox,_+(1—a)x,_,r)—ox,— (1 —a)x]

Zaf(x,r) (1 —a)f(xi_,r) —ax,— (1 —a)x; (59)
=ac,+(1—a)c, (60)
=0

Hence, (x,¢,)) is a well-defined (resp. input, consumption and stock) process
from initial stock y. Under (U.2), the monotonicity of u, we obtain from (60),

Eu(C) = Eu(ac,+ (1~ a)c;) for each £ =0 (61)

If for some 1> 1, x,_, is different from x!_, on a set with strictly positive

probability, then under (T.11) (the strict concavity of f), (59) above holds

with strict inequality; hence, (60) holds with strict inequality for t=1, so
under (U.2), the strict monotonicity of ,

Eu(c,)> Eu(oc, +(1—a)cl) _ (62) -

Then, using (61) and (62),

Y §Eu(z)> fo 8'Eulac, + (1— a)c’)
=0 t=
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2a ¥ 8Bu(c)+(1—0) 3. 5Euc!) [from U.3Y] (63)

=al(y)+(1-a)(y) [Since (x,¢), (x'i¢' ") are optimal]
=V
This is a contradiction, hence proves x,=x/ a.e. for each — >0. From this
one obtains immediately that y,= ! and ¢,= ¢ a.e. for each 1>0.
(b) This follows immediately from (a) above.

() Fix any y, y' and suppose y>y’ =0. Let (x,¢)p) and (x',¢'y") be optimal
processes from initial stocks y and y’, respectively. Fix any a in (0,1). Define a
new process (X,cp) as follows: For all (>0, X =ox,+(1 - a)x;;
Yo=0y+(l—a)y and fort=1, y,=/(%, ,.r);and forall 120, ¢,=y,— %, One
employs an argument used in (a) above to show that (x.¢) is a well-defined
(resp. input, consumption and stock) process from y,=ay+ (1 —«)y’; and,

Eu(c )z Eu(oc,+ (1 —a)c)) for each ¢=0. (64)

Then, Vay +(1-a)y)= V()2 S 8'Eu)

[\
8

d'Eu(ac, + (1 — a)c)) [from (64)]

>q f 8'Eu(c)+(1—a) f 8'Eu(c’) [from (U.3")]
=0 F t=0

=aV(y)+(1-a)¥(y) (65)

Hence, V is concave.

(d) To show that ¥ is strictly concave under (U.3), we modify the proof in
(c) above as follows: Let y, ', o, (x.ep), (x',¢"y") and (X.£,p) be as in (c) above.
[f at some date t=0, ¢* is different from ¢! on a set with strictly positive

probability, then (64) and (U.3) imply,
Eu(c)) 2 Eu(ac, + (1 —a)c))> aEu(c) + (1 — a) Eu(c)) (66)

If, alternatively, c,= c; for each 120, then since y > y’, we have x,> x}. So one
may mimic the argument used to obtain (62) above, to show that

Eu(¢))> Eu(ac,+ (1—a)c}) (67)
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Finally, repeating the arguments used to obtain (65), with the aid of (66) and
(67), we obtain,

Moy +(1—0)y)>aV(p)+(1 =)V () (68)

Hence, V is strictly concave.
QED

Proof of Theorem 15

(a) From Theorem 14(b), ¢( ) is single valued, hence i(y)=h(y)=h(y) for
each y>0 (where %, h are defined in (12)). The monotonicity and continuity
of h then follows from Theorem 3(b) and (c).

(b) Since c¢(y)=y—h(y), the continuity of ¢(y) follows from the continuity
of h(y), which has been established in (a) above.

To prove the monotonicity of ¢(y) we use a method similar to that used in
Theorem 2. Let y>y'>0 and suppose on the contrary that c,=c(y)<
c(y")=c;. Define x,=h(y) and x;=h(y").

Let Xx,=y—cp. Then y2y—c;=X, and X,=y—c;>y' —¢;=x3=20. Hence,
X,€[0,y]. From Theorem 14(a), the optlmal process from y is unique.
However, x,=y—c;<y—c,=x, and x, is the unique optimal input from y,
hence X, is not an optimal input from y. Then, using functional equation (sec
(10) and (11) above),

u(co) + M(x) = V(y)>u(y — xo) + M(X,) (69)
where

M(x)=3 [ V(f(x,r))y(dr) (70)
Next, let x;=y —c,. Then y'2y'—c¢,=Xx; and =y —e>y —q=x%z0.

Hence, x,€[0,y']. So using the functional equation again we-obtain
u(ce) + M(x)= V() 2 u(y' — %) + M(X;) - (Y
Adding (69) and (71), and noti}}g that y —x,=¢; and y' — X, =c¢,, we obtain
M(xg) + M(x5)> M(Xy) + M(xq) i - )
Notice that Xy=y—cj<y—cy=x,and x,=y—c;>y — ¢ =x,.
Hence, there is a 6 in (0,1) such that X,=0x,+ (1 —0)x;. Then X=y'—

= (y=cd+ (V' =)= (r—c)=x+x;—X=(1— 9)x0+6x0 Under (T.11)
and the concavity of ¥ (Theorem 14(c)), M(x) is concave. Hence,
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M(x) 2 0M(x)+(1-0)M(xp) . . (73)
M(xg) 2 (1= 0)M(x,) + O M(xp) (74)
so by addition,
M%)+ M(xp) 2 M(x,) + M(xp) (75)

This contradicts (72) and concludes proof of the theorem.

QED
Proof of Theorem 16
(a) This follows immediately from Theorem 14(c) and Theorem 6.

(b) This follows immediately from (a) above and Theorem 8.

Proof of Corollary 16
(a) This is Corollary 5!

(b) Lety>y'>0. From Thedrem'l4(d), V(") is strictly concave, hence V(")
is strictly -decreasing. Then, using Theorem 16(b), «'(c(3))=V'(»)
< V'(y)=u'(c(y"); so under (U.3), the strict concavity of u, ¢(y)> c(y’) for
y>y'>0. Finally, if y>y' =0, then ¢(y')=0 and, from Theorem 4, c¢(y)>0,
so c(y)>c(y"). Hence, c(y)>c(y’) for all y>y'=0.

QED

Proof of Theorem 17: Let x,, x, be any fixed points of H,, h,,, respectively.
We will show that x, < x,, from which the conclusion follows.
Since £ is finite, there exists ,,, r,, in € such that
x,= H,(x)= H(x,,r,) and x,= H,/(x;)= H(x,,r)) (76)
From the stochastic Ramsey—Euler condition (Theorem 5),
u' (c(f(x,r,))) =8 u' (c(f(H(x,,1,,),0))f (H(x,,1,,),0)y(do)
=38 [u'(c(f(x1,0)))f"(x,,0)y(do) (7
But, f(x,r,.) =f,(x)=f(x,0) for each ¢ in &, so since ¢(y) is monotone non-
decreasing (Theorem 6), and u is concave, we obtain u'(c(f(x,,

r.)) =u'(c(f(x,,0))) for each o in E. Putting this in (77) gives

1<8[f(x,,0)y(do) , (78)

Similarly, we may show that 1 ;8.[ /' (x,,06)Y(do); so combining with (78)
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[/ (x,0(do) 2 [ (0 (o) (79)

Strict concavity of f(-,0) for each o implies that the function [f'(x,0)y(do) is
decreasing in x, so from (79) we obtain x, <x,.
QED

Proof of Theorem 18: We shall show that for each y>0, h(y)>0 (where his
defined in (12)). This will conclude the proof of the theorem; for, suppose
(x,¢p) is any optimal process from a given initial stock y>0. Then by
definition of A, x,= h(y); then using (T.5), y,=f(x,,r)>0 for each r; hence
x, 2 h(y))=h(f(x,,r))> 0 for each r. Repeating such an argument, we obtain
that for each date =0, x,>0 and y,>0 a.s.

To prove h(y)>0, for all y>0, fix y>0 and let (x,cy) be the optimal
process from initial stock y, generated by the optimal investment policy
function h, and suppose on the contrary that x,=0 and ¢,=y. Then under
(T.5), x,=0, y,=0and ¢,=0a.s. for all £ 1. Fix any € in (0,y). Then define a
new process (x',¢’)) as follows: yy=y, x;=¢, qy=y—¢, ¥y, =f(x),r)=f(&,r),
x1=0, cj=y|=f(e,r) and for all 122, ¢, =x/=y/=0 a.s. Clearly, &' cYy)isa
well-defined (resp. input, consumption and stock) process from .

Let V() be the expected discounted total utility of the process (x',¢"y").
Then since (x,¢p) is an optimal process from y,

0S V()= P(y)= L, 8'Flutc) ~u(c)]
=u(3) = u(y =) + 8 {[u(0) ~ u(f . Nr(d)
Hence,
Flf ) ~ u(OYr(ar) < glu()~ uy—e)] (30)
Define

_u(f(e.r))—u(f(0,r)
ACD = e =10

and B(e,r)=[f(e,r)—f(0,r)]/. .
Then using Fatou’s lemma (see, e.g., Chung (1974), p.42),
[} lin& inf A(g,r) . ling inf B(e,r)y(dr) <| lirrol inf A(e,r) B(e,r)y(dr)

< ling inf { A(e,r)B(e,r)y(dr)
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- llm 1nfj HU‘(Eer ; u(f((],r)) y(dr)

£—0

< lim inf % -"(y);g(y——i)][from@(j)]

= 5 #(y)< oo [from (U4)] @1

This is a contradiction since the left-hand side of (81) is infinite under (U.5)
and (T.12).
QED

Proof of Theorem 19: From Theorem 18 above, we obtain that opltimal input
and stock processes are interior (notice that (T.11) and (T.3) imply (T.12)). It
remains to show that optimal consumption processes are interior. It suffices
to show that ¢(y)>0 for each y>0, where ¢(’) is the optimal consumption
policy function; for suppose ¢(y)>0 for each y>0. Then if (x,cyp) is an
optimal process from some fixed initial stock >0, we obtain from Theorem
18 that y,> 0 a.s., hence ¢,=¢(y,)>0 a.s. for each #=0.

To show ¢(y)> 0 for each y>0, fix y>0; let (x,¢,y) be the optimal process
from initial stock y, and suppose on the contrary that ¢,=0 and x,=y. From
the functional equation (see (10) and (11)), for all 0<e<1y,

u(0)+38 { V(f(y,r)y(d)=V(») Zu(e) + 8 [ V(S (y —er))y(dr)

hence

u(e) —u(0) V(f(3r) — V([(y—gx) fyr)— /(v - €,1)
£ =8 fyr)=f(y—er) Hdr) (82

Recall £, (x) =min, f{x,r) and f,,(x) =max, f(x,r). Since the value function, V,
is concave (Theorem 14(c)), and f(y,n=/(y —&,r) 21,3 ),

V)~ VU —6) _ Vol pl2)~ V10) &3
for)—fo—en = LD

Next, since the production function is concave (T.11),

S(psr) f(y &r) f(y/2,r)
= »2

for each r in &; also,

S fulyl2)
y/2 = V/Z ’
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Putting this and (83) into (82) gives,

u(e) ~u(0) _ s VUo2/2) = V(O) fulyl2) ”
N (75 (/) ®4)

Taking limits as €0 in (84) yields a contradiction since the left-hand side
tends to infinity under (U.5), while the right-hand side is finite.
’ QED
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