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Mathematical form powerfully contributes to defining a philosophy of
economic analysis whose major tenets include rigor, generality and sim-
plicity. It commands the long search for the most direct routes from
assumptions to conclusions. It directs its aesthetic code, and it imposes
its terse language. Another tenet of that philosophy is recognition, and
acceptance, of the limits of economic theory, which cannot achieve a

grand unified explanation of economic phenomena.
Gerard Debreu'

1 INTRODUCTION

The rigorous elaboration of the Walras-Pareto ‘theory of value’
has often been hailed as ‘one of the most notable intellectual
achievements’ of economic theory. The volume of research on
the refinements of the Arrow-Debreu-McKenzie model, the axio-
matic style of exposition, and the growing use of a variety of
mathematical techniques have led to appraisals of the area by

* Mukul Majumdar wishes to thank the Institute of Economic Research at
yoto University for research support. The authors are indebted to Professors
itava Bose, Venkatesh Bala, Kaushik Basu, Valerie Bencivenga, and Kazuo
ishimura for their comments on earlier drafts of this paper and dedicate this
per with affection and respect to Professor Tapas Majumdar.

1 See ‘Random Walk and Life Philosophy’, in Eminent Economists, p. 114.
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methodologists, philosophers, historians of economic thought as
well as by well-known economic theorists.? Some of the appraisals
not surprisingly, have been quite negative, characterizing the state
of axiomatic general equilibrium theory as ‘a wealth of mathe-
matics but no proper object of study’ (Jolink 1993, p. 1311). But
more balanced assessments have also raised serious questions
about the direction of future developments. To take a recent
example, one might turn to Morishima’s article (1991) on general
equilibrium theory (‘GET"). Morishima feels that ‘unlike physics
economics has unfortunately developed in a direction far
removed from its empirical source, and GET in particular, as the
core of economic theory, has become a mathematical social philo-
sophy’. Morishima emphasizes that the price taking behaviour that
underlies the Walrasian model is applicable to only a small part
of the modern industrialized economies. Moreover, the axioms of
utility and profit maximization are inadequate to capture the mo-
tivations behind economic decisions, and may well be irrelevant
in understanding the institutions of the highly productive eco-
nomies of the Far East. On the whole, Morishima’s article reflects
unhappiness over the ‘inadequate concern for actuality’ reflectec
by the research efforts in GET.

Whether a model should be judged by the realism or empirical
content of its assumptions has been a prominent issue in many a
methodological debate. A somewhat extreme view (Friedman
1946) emphasized predictive power of the ultimate propositions as
opposed to the realism of the assumptions as the key test. Others
look for an explanatory power or more broadly, an ‘understanding
of economic phenomena and institutions from a model, with due
recognition that simplifications (in choosing assumptions) are in-
evitable for making significant progress in economic theory. A
prominent theme in Samuelson’s Foundations was the need to
derive ‘meaningful’ (in principle refutable by empirical evidence

2 A survey of some of the appraisals is in Weintraub (1985). This book alsc
contains a fascinating discussion of the developments in research leading to the
landmarks ofithe early fifties. See also Radner (1991).
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results on comparative statics and dynamics from formal mathe-
‘matical models. In Causality in Economics (1979), Hicks mentioned
five reasons for pursuing economic theory, but stressed: ‘When
theory is applied, it is being used as a means of explanation: we
ask not merely what happened, but why it happened’.

If one recognizes that economic theory has its limits, and it
‘cannot achieve a grand explanation of economic phenomena’,
one ought not to be surprised that a particular formal model is
inadequate for explaining or understanding the forces behind the
evolution of market prices in different economies and in different
periods of history. It is better to interpret some of Morishima’s
criticisms as items on the agenda for future research. In this article,
our focus is the difficulty of prediction in a Walrasian framework.
In Section 1, we consider a Walrasian exchange economy. The
price-taking agents have well behaved indifference curves, and
maximize utility subject to the budget constraint. But, it turns out
that maximizing behaviour and the standard assumptions on pref-
erences (including strong convexity and monotonicity) do not
impose any special restriction on the excess demand function of
the economy. In the absence of special structures on the excess
demand function, there is no bound on the number of Walrasian
equilibria, and the scope of comparative statics or qualitative
economics appears quite limited. Next, we go on to more
‘concrete’ models, namely, those with only two goods, and ex-
amine a Walrasian tatonnement cast in the form of a non-linear
difference equation (following the tradition of ‘period analysis’ in
economic dynamics). Even with two goods, one can construct
examples of ‘chaotic’ tatonnement. The price path or trajectory
over time may turn out to display sensitive dependence on initial
conditions: trajectories emanating from nearby initial conditions
exhibit remarkably different qualitative behaviour. Also, there
may be an uncountable set of initial conditions from which the
trajectories do not converge to an equilibrium or a periodic trajec-
tory. At the same time, periodic or cyclical trajectories of all
periods may be present (see Theorem 4.1 for a precise statement).

One way to look at the examples is to recognize the very limited
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possibility of predicting long run behaviour. From another per-
spective, since the initial condition crucially affects the dynamic
behaviour, we are reminded of the importance of historical evolu-
tions that presumably start the process from a particular initial
condition. And, finally, we see that to ‘explain’ complicated dy-
namics, we do not have to invoke ‘external shocks’ (although
these may be of importance in a particular context) or to develop
complicated models with many variables (see May 1976).

2 THE BASIC MODEL

2.1 Notation

If x=(x,) is any vector in R, we say that x is non-negative
(x20) if x, 2 0 for all k; x is positive (x> 0) if x is non-negative and
x, >0 for some &, x is strictly positive (x >> 0) if x, > 0 for all k. For
any two vectors X, y in R, we write x2y (respectively,
x>y, x>>y)if x—yz0 (resp. x—y=20,x—y>>0). The set of all
non-negative (resp. strictly positive) vectors in R!is denoted by
R! (resp. RL).

By a preference preorder < on R!, we mean a binary relation
on R! that is reflexive, transitive and complete (i.e., ‘x < x for all
x in RL, ‘x <y, y <2 implies ‘x <z for any x, ), 2 in R; for any
pair x, y in R! either x cy or y <x (or both)). We write x ~ y if
x<yandy<x;and x<yifx <y holds but y < x does not hold.
We interpret ‘x <y as ‘the commodity bundle x is no better than
the commodity bundle y;' x ~ y means that the consumer is indif-
ferent between x and y, x <y means that 'y is preferred to x.’

2.2 Excess Demand Functions

Consider first a Walrasian exchange economy with {2 2 goods,
the prices of which are represented by strictly positive vectors
with unit Euclidean norm, i.e., the set of prices is given by
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S={pe R:p>>0,11p|| =1} (2.1)

! 12

where |[p || = Z‘Pi,
k=1

We shall restrict our attention mostly to prices bounded away
from zero: for a sufficiently small positive &, let

Se={pe Sp,ze>0k=1,...,1] 2.2)

A consumer is defined by a pair (<, e) where < represents his
preferences and e is his endowment vector. We assume:

(C.1) < isastrictly convex, monolone, continuous preference preor-
der on R{ and the endowment e is an element of RL

Recall that < is strictly convex if the convex combination with
weights different from 0 and 1 of two distinct indifferent consump-
tion vectors is strictly preferred to both.

We say that < is monotone if for any two vectors x, y in R/ with
X >y, itis true that y < x. The preference preorder < is continuous
if for any x in R/, both the sets:

[yveRl:y<x}and[ze Rlx <z}

are closed in R/,

Given our assumptions, it is known that ‘<’ can be ‘represented’
by a utility function u; in other words, there is some u: R! — R
such that:

u(x) 2 u(y) if and only if y <x.

For the sake of completeness, we recall a simple method of con-
structing such a utility function. Define

M={xe Rj:x:(k,...,k),xz()}

When /=2, M is just the ‘forty-five degree line’ from the origin.
For any x=(A".., ) in M, define u(x)=A. Next, since ‘<’ is
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continuous as well as monotone, corresponding to any ﬁ in
R., there is a umque X=(A, ..., A)in M such that y ~ x. Hence,
define u() = u(x) = k Again, whenl 2, it is helpful to vxsuahze
the construction by drawing the indifference curve through y
which intersects the forty-five degree line at a unique X

Now, given a price system p in S, a consumer i, represented

by (<, e), chooses the best element d, for <; in his budget set

B,={xe Ri:pxﬁpei}.

The monotonicity assumption on <; ensures that d, will be on the
‘budget hyperplane’, i.e., pd,= pe, (the expenditure on d; will be
equal to the income pe)). The excess demand of consumer iis the
vector z;=d, — e, Thus, the value of excess demand of consumer
i is necessarily zero, i.e.,, pz,=0. Hence, the aggregate excess
demand of the economy with n agents defined as

B sty

also satisfies ‘Walras’ law’:
pz=0 (2.3)

The motivation behind the next two definitions should now be
clear.

A function £ .S — R'is the individual excess demand function of
consumer (<, e) if for every p in S, e + f{p) is the best element for
<of B={xe R:ipx<pe}, ie., any x in B satisfies x < (e + f(p)).

A continuous function £.S — R!is an excess demand function
(for the economy) if for every p in S, p f(p) = 0.

The basic result of Debreu (1974) can now be stated. Recall
that / is the number of commodities.

Theorem 2.1 Let f be an excess demand function. For every
£> 0, there are [ consumers whose individual excess demand
functions sum to fon S,.

Any continuous function satisfying Walras’ law can be viewed
as an excess demand function (on S,) of an appropriately con-
structed exchange economy with [ consumers. Thus, the utility

-
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maximization hypothesis in the context of the Walrasian economy
imposes no special structure on the excess demand function of
the economy (besides Walras’ law) even when the preferences are
required to be monotone, strictly convex and confinuous, i.e., the
“ndifference curves’ look like those appearing in Hicks’ Value and
Capital.

Debreu’s theorem has been extended in many directions. In
particular, there is no hope of getting any special property of
excess demand functions by restricting the dispersion of endow-
ments and income. Also of interest is the following result due to
Kirman and Koch (1986):

Theorem 2.2 Let n be a positive integer greater than or equal to [,
and v,, ..., "V, be distinct positive real numbers with v, +...+
=1 Letf.S— R!be an excess demand function. Then for every
£ > 0, there exists a continuous, monotone, strictly convex prefer-
ence preorder < on R! and an endowment vector e in R/, such
that the _individual excess demand functions of agents
i(=1,...,n) represented by (<, v;€) sum up to fonS,

We see that even when we impose the additional restriction
that all agents have the same preference preordering and that
their endowments are of the type v, e (so that the distribution of
relative income is fixed and price independent) there is still no
special restriction on the class of excess demand functions for
the economy.

Let us spell out some implications of these results for qualitative
economics. The set of Walrasian equilibrium prices is formally
given by

W={pe S: f(p)=0] 2.4)

Clearly, for ‘explaining’ some observed prices perceived as equi-
librium prices, or predicting equilibrium prices from appropriate
information on excess demand functions, it is essential to have as
detailed a knowledge of W as possible. The first task, of course,
is to understand conditions on f such that W is non-empty. Here,
in addition to Walras law, some continuity, desirability and
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boundedness conditions on f certainly suffice to assure that W'is
non-empty.’ However, the existence of an equilibrium price sys-
tem (mathematically, a ‘fixed point’ problem) does not imply that
W consists of a single element: indeed, examples of non-unique-
ness cannot be dismissed as pathological. A programme of re-
search initiated by Debreu aimed at studying the properties of W
for ‘typical’ or ‘generic’ models of exchange economies. The litera-
ture is understandably technical, and leads to the conclusion that
a ‘typical’ or ‘regular’ economy has a finite number of equilibria
(i.e., the set W is discrete). Furthermore, it was also proved that
in a ‘neighborhood’ of a regular economy (i.e., for small ‘local’
variations around a typical model) the set of equilibrium prices
will change continuously with variations in the parameters (pref-
erences/endowments). The importance of such continuity was
stressed by Debreu (1975) along these lines: [in the absence of
such continuity] ‘the slightest error of observation on the data of
the economy: might lead to an entirely different set of predicted
equilibria. This consideration, which is common in the study of
physical systems, applies with even greater force to the study of
social systems’.

But it is not possible to put any upper bound on the number
of elements of W, and our Theorem 2.1 indicates why it is difficult
to make ‘general’ qualitative predictions on W.

There are two other routes that have been explored. The first
possibility (pioneered by H. Scarf) is to rely on explicit computa-
tion of W by assuming particular forms of excess demand func-
tions. The functional forms presumably have to be chosen on the
basis of estimates from the relevant data (and practical considera-
tions of computational feasibility will be relevant). ‘Computable’
general equilibrium models will bring the theory closer to the
empirical world (as often urged) and will be used more effectively
as researchers gain experience with more sophisticated machines
that have a vast memory and exceptional speed.

3 Formally, assume that f is continuous at any p >> 0, and for any sequence
p in S converging to some p in the boundary of S, | [F(P™ || = o; also fis
bounded below. See Arrow and Hahn (1971).

L3
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Yet another route has been to develop ‘concrete’ Walrasian
models. Here, drastic assumptions on the number of goods and/or
the nature of technology and preferences are usually made in
order to derive insightful comparative static or dynamic results.
The literature on ‘pure’ theory of international trade is probably
the best example of successful efforts in this direction.

It is of interest to note that in assessing Paul Samuelson’s
contributions to economics, Lindbeck (1970) observed that
Samuelson’s ‘most important contributions in general equilibrium
theory is probably a “concretization” of the Walrasian system,
implying a simplification of general equilibrium theory. This makes
it possible to analyse concrete problems and to reach operationally
meaningful theorems, rather than limiting the analysis to counting
of equations and unknowns and saying that “everything depends
on everything else”.’

In what follows, we look at such a ‘concrete’ model with only
two commodities. It turns out that even with such an extreme
simplification, we face complex problems if we want to develop
the dynamic processes that underlie comparative static exercises.

3 WALRASIAN TATONNEMENT

What can we say about the behavior of markets when the price
system is not an equilibrium? Walras himself discussed a market-
by-market adjustment process through which an equilibrium can
be attained. He emphasized that the direct pressure of excess
demand in a market on its prevailing (non-equilibrium) price will
push it towards an equilibrium level at which the equality of
demand and supply will prevail. He recognized that such a change
in one market would disturb other markets, but these ‘indirect
influences, some in the direction of equality and others-in the
opposite direction’ . . . ‘up to a point cancelled each other out’
(Walras, Elements of Pure Economics, 1954 Jaffee translation from
the 1926 edition).

A mathematical formulation of the Walrasian tatonnement was
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presented by Samuelson in his Foundations. We know now
that unless one has some special features (see Arrow and Hahn
(1971) on sufficient conditions for local and global stability of
tatonnement), a dynamic price process in which the price in one
market increases (decreases) if there is positive (negative) excess
demand need not converge to an equilibrium. In a model with
two commodities, however, a particularly interesting result was
obtained by Arrow and Hurwicz (1958), a result which indicates
the possibility of using the tatonnement to approach an equi-
librium. We shall first describe a similar situation somewhat
informally.

3.1 Adjustments in a Two Commodity Model

We can conveniently represent a two commodity economy (given
(W)) by a single excess demand function

L@ =zp, 1-p), 0<p; <1 &3

In this section we shall drop the subscript for the commodity
in order to simplify notation.

Now suppose that we have a family of economies E, each
described by an excess demand function of the type (3.1). For-
mally, the family of economies £y is described by a family of
functions {{y(p)} where the parameter 0 belongs to some (non-
empty) set C. Assume that for each 8 in C, Cy(p) is continuous on
(0,1), and has finitely many zeros (i.e., Lo(p) =0 has ﬁnftely many
solutions). Also, assume the following boundary condition:

‘Foreach 6 € C, Ce(p) > 0 (resp. < 0) for all p sufficiently close to 0.
(resp. 1).

Consider any equilibrium p, of the economy By L€y
Cq(Pg) = 0; mext, we change the value of 8 to some other 8". For
concreteness, assume that Gy (Pg) > 0. In other words, we imagine
that the economy £ is initially in equilibrium at price p, and
then there is a shift of the excess demand function generating
positive excess demand at the price P, Now, suppose that the
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price adjustment in disequilibrium is modelled as a continuous
fime tatonnement process

% = oLy (p()), 00> 0 (3.2)

where o> 0 is the speed of adjustment. In this case a theorem
of Arrow and Hurwicz can be invoked to assert that p(?) starting
from p, will converge to some equilibrium of the economy Ej.
Since at py, excess demand of the economy £y, is assumed to be
positive (i.e., {y(pg)>0), and, by our boundary condition,
Ce' (p) <0 when p is sufficiently close to one, we can use the
intermediate value theorem and assert that there is some p in
(Pg: 1) such that Cg, (p) = 0. Clearly, if we take the smallest such
pin (g, 1), say py, the process (3.2) starting from p, will increase
to py. Hence, a shift from {, to {, that generates a positive
[respectively, negative] excess demand at the initial equilibrium
Py leads to an increasing [resp. decreasing] p(¢) that will converge
to a new equilibrium pg > py. A formal proof of convergence is
spelled out in Arrow and Hahn (1971), and convergence does
not imply that ‘markets will settle down to the new equilibrium
Dy In finite time’, but the special structure of the model yields
an unambiguous prediction as to the direction of change from
the old equilibrium p, to the new equilibrium p.

But economic theory has a tradition of ‘period’ analysis in
which time is treated as a discrete variable. Whether a continuous
time formulation is adequate or well-suited for depicting the
evolution of an economic process has been discussed extensively
(see Baumol 1971). When we think of the Walrasian auctioneer
whose role is to announce prices and then to make the ap-
propriate revisions in the light of responses from the agents in
various markets, we feel that Saari’s remarks (1985, p. 119) on
period analysis are quite persuasive. ‘It can be argued’, he said,
‘that the correct dynamical process associated with the tatonne-
ment process is an iterative one. Just one supporting argument
is that the differential dynamic process requires a continuum of
information. At each instant of time the information must be
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updated; so a continuous mechanism is far beyond the capability
of any “auctioneer”.’

In the tradition of ‘period analysis’ an adjustment process may
also be cast in terms of a discrete-time difference equation. For
example, we might write

Pp =Pt 0 Co (p,) where p, = Py

or simply
p[+1 = Ge’ (p() (33)

The global behaviour of (3.3) may be in sharp contrast with that
of (3.2). It is remarkable that even a simple ‘one dimensional’
system (3.3) may display extremely complicated behaviour. In the
next section we elaborate on this point.

4 A DISGRESSION ON CHAOTIC DYNAMICS

4.1 Abundance of Cycles

Itis useful to recall some mathematical definitions. Consider a first
order difference equation

X, = F(x) 4.1

where Fis a continuous map from some interval X of real numbers
into itself. The set X is the state space and F is the law of motion
of the dynamical system defined as the pair (X, F). To set the
notation, write F°(x)=x, and for each j= 1, Fi() = F [F ()]
Starting from an initial x in X, the rule (4.1) provides us with the
trajectory (Ff(x))ji’;(). Once the initial state x is specified, the law of
motion unambiguously specifies x, the state of the system in
period t. A point x is a fixed point of F if F(x)=x. A point x is
periodic if there is some k21 such that F%(x) = x; the smallest
such kis the period of F. In particular, a fixed point of Fis a periodic
point of period one. If X is a (non-empty) compact interval and F'
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is continuous, then F has at least one fixed point. A fixed point x
is [ocally stable if we can find an open interval V containing x such
that for each y e V, the trajectory {F/'(y)};0 converges to x (ap-
proaches x).

Generations of undergraduate students are introduced to dif-
ference equations by the linear ‘cobweb’ models. Recall that if we

have a first order, linear, homogeneous difference equation:

X =AX, 4.L)

We know that the solution
Xp=AiXy (4.LS)

displays ‘oscillatory’ behaviour when A < 0. But if [A| >1, it is
‘explosive’; and, if |A| <1, it is ‘damped’. A persistent oscillation
or cycle is produced when A =— 1, and in this case the solution
is periodic with period 2. When A > 0, the solution is monotone
(increasing if 2> 1, constant if L=1, and decreasing to zero if
A < 1). Thus, the periodic behaviour is somewhat of an accidental
feature, a knife-edge possibility in this linear world (4.L). Turning
to the solution of a non-linear first order equation (4.1), Samuelson
observed in his Foundations:

‘It could no doubt be shown that it must do one of the following:
(a) go off to infinity; (b) approach an equilibrium level; or (c)
approach a periodic motion of some finite period.’

Of course, if we choose in (4.1) a function F from a bounded
set X into X, the possibility (a) that Samuelson alluded to is ruled
out. We are then left with possibilities (b) and (c). As far as we
recall, in our student days no other systematic analysis of non-
linear first-order systems (4.1) that was accessible to us challenged
Samuelson’s conjecture. But we are now in a position to ap-
preciate the spectrum of possibilities much better.

To-gain some insights into the possible complexities of trajec-
tories of (4.1), consider the tent map F defined as:

A [2x forxe [0,1/2]
F(x) —{2(1 -x) forxe [1/2,1] &
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Fis ‘piece-wise’ linear. It has two fixed points, namely, x =0 and
x = 2/3. Neither, however, is locally stable (by drawing the graph
of Fand looking at the iterates of points close to the fixed points,
this can be easily seen).

The map (4.2) is admittedly just a step away from the linear
case (4L) and is simple to describe; yet, it is quite useful for
illustrating some general results and capturing some subtle argu-
ments. Let us recall some well-known results from real analysis.
I what follows by an interval we shall always mean a non- -de-
generate interval, and if X is an interval, a subinterval, X, of X is
an interval X, contained in X (for example, =0, 1/ 2] and

= [1/2, 1] are both subintervals of the interval X= [0, 1]). An
interval is compact if it is both closed and bounded (i.e., contains
both the end points and does not stretch out into infinity in either
direction!). If X is an interval and Fis a continuous real valued
function on X, F(X) is an 1nterval moreover, if X is a compact
interval, so is F(X). Observe that F maps the subintervals A and
T of [O 1] onto [0, 1] i.e., F(H) F(T) [O 1]. Thus, T is a subinter-
val of F(H) and H is a subinterval of F(D

We shall characterize a family of dynamical systems (of which
the dynzimical system with state space X = [0,1] and the law of
motion F defined by the tent map (4.2) is a member) in which
there is an abundance of periodic points. The main theorem, due
to Li and Yorke (1975), is one of the most striking results in the
literature on dynamical systems. On the way, we pick up some
propositions that throw light on the difficulties of predicting the
long run qualitative properties of dynamical systems. To avoid
misunderstanding we shall state the results somewhai formally.

Lemma 4.1 Let G be a real-valued continuous function on an
interval I. For any compact subinterval /;, of G(D), there is a com-
pact subinterval Q of / such that GQ) =

One can figure out the subinterval Q directly as follows. Let
I, = [G(p), G(q)] where p and ¢ are in /. Assume that p<gq. Let r
be the last point of the interval [p, ] such that G(r) = G(p); let s
be the first point after r such that G(s) = G(g). Then the subinterval
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O=[r, s] is mapped onto I, under G. The case p > g is similarly
dealt with.

The next lemma has some fairly deep implications regarding
the complexity of a class of dynamical systems. Fortunately, the
‘proof’ based on an induction argument is short and entirely
elementary.

Lemma 4.2 Let J be an interval and let F*J — J be continuous.
Suppose that (7, Jneo 1S @ sequence of compact subintervals of J
and, for all n,

Ly CRU). (4.3)

Then there is a sequence of compact subintervals (Q,) of Jsuch
that, for all n,

Q1 ©Q,
and . (4.4
FY(Qy) =1,
Hence, for any xe Q=n Q,, we have F(x) e L.

The proof ‘by induction’ is constructed as follows: Q,=1, Then
iF O(QO) =lyand ], c F(1).1f Q,_, is defined as a compact subinterval
such that F"(Q, ,)=1 _, then I, c F(I,_ )=F"(Q, ). Apply our
previous Lemma, 4.1 to the map G=F"on Q,_; to get a compact
subinterval Q, of Q,_; such that F”(Q,) =1 . This completes the
induction argument.

A fundamental characterization of compactness implies that the
intersection Q =) Q, of the ‘nested’ compact intervals {Q,} must
be non-empty. Hence, there is surely some x in Q, for which we
have F'(x) eI for all n.

Let us reflect on some implications of Lemma 4.2 using our tent
map (4.2) for the sake of concreteness. Let A be the uncountable
set of all sequences with two symbols [H, T}. Choose an arbitrary
element s of A. By identifying H with the subinterval [0, 1/2] and
T with [1/2, 1] as before, we see that the chosen s corresponds to

L™
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an ‘arrangement’ or a sequence of compact intervals (/),, where
each [ is either H or T. Let us stress that the sequence s is
completely arbitrary: it could even be viewed as a record of the
outcomes of an infinite sequence of coin-tossing; the order in
which H and T appears is not ‘controlled’ in any way whatsoever‘
Now, we have already noted that T is a subinterval of F(H) and H
is a subinterval ofF(T) thus, for this sequence (I ), itis certainly
true that [, is always a subinterval of F(I ). The last statement of
Lemma 4. 2 now applles there is some initial x in [0, l] which
generates a trajectory {F "(x)}r, with the property that "(x) is in
I. Thus, however ‘randomly’ we arrange H and T, the dynamical
system (X, F) where X = [0, 1] and Fis the tent map (4.2), is capable
of generating a trajectory that will bounce from /_into / ,, over
time according to this arrangement. Among other things, this
means that we can think of ‘repeating’ or ‘cyclical’ arrangements
like

(HHH...)

(TTT...)

(HTHTHT...)
(THTHTH...)
(HHT HHT . ..)
(HTTHTT ...)
(HTHHTH . ..)

No matter which ‘cyclical’ arrangement is contemplated, we can
generate a trajectory that will provide an exact ‘match’. Now, the
set of all such cyclical arrangements (sequences with repeating
finite ‘blocks’) is countable. But, as we said earlier, the set A is
uncountable. Hence, there is an uncountable number of aperiodic
arrangements And, our simple dynamical system following the
law of motion (4.2) on the state space [0, 1] is also capable of
producing a trajectory matching any such aperiodic arrangement!

By using the two results discussed above, and the ‘intermediate
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value theorem’ we can prove the first part [T.] of the following
theorem of Li and Yorke (1975); [T.1] is also a special case of a
deep theorem of Sarkowskii (see Devaney (1989)).

Theorem 4.1 Let J be an interval and F:J —J be continuous.
Assume that there is some point a in J for which there are points
b= F(a), c = F¥(a) and d = F*(a) satisfying:

d<a<b<c(or,dza>b>c)

Then:

[T.1] For every positive integer k=1,2, ..., thereisa periodic
point of period k.

[T2] ()There is an uncountable set W containing no periodic
points such that for all

x,yeW,x#y
lim sup |F(x) = F"(y)| > 0; lim inf |Fx)—F"(»)] =0

n—oo n—eo
(i) If x is any periodic point, then for all y in W,
lim sup |F"(x) - F"(»)| > 0.

n—yc0

OfA course, by C(insidering (4.2)Aand the point x = 1/4, one notes
that F(1/4) = 1/2, F(1/2) =1 and F(1) = 0. Hence, with [0, l] as the
state space and the tent map (4.2) as the law of motion F' we get
an example where Theorem 4.1 readily applies.

The fact that the existence of a periodic point of period three
implies the existence of periodic points of all periods is surely
bewildering. In particular, it means that by ‘observing’ a computer
print out of a million terms of a trajectory it may not be possible
to predict whether we have an aperiodic sequence of numbers,
or the first million terms of a periodic orbit of, say, two million
periods. But the second part [T.2] of the Li-Yorke theorem enables
us to challenge Samuelson’s conjecture that we quoted above.
There is an uncountable set of initial points such that the emanat-
ing trajectories will not converge to any periodic orbit, and these
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trajectories will ‘approach’ and ‘turn away’ from one another along
different subsequences of time periods. For brevity, any dynami-
cal system satisfying (7. 1) and (T.2) is often called ‘chaotic’ (there
are other definitions). Taking X= [0, 1], (X, F) is chaotic; so is
X, F*) where F* is a ‘quadratic map’ defined by:

F™(x) = 4x(1 = x) (4.5)

5 EXCESS DEMAND FUNCTIONS ONCE AGAIN

The long digression of the last section was intended to emphasize
the point that there are easily verifiable conditions to identify
‘chaotic’ behavior. A second point is that chaos may be present
in quite simple non-linear (even piecewise linear) dynamical sys-
tems. Our task now is to combine the Li-Yorke results (Lemma 4.2
and Theorem 4.1) with the earlier propositions on excess demand
functions. What emerges is the striking conclusion that even in a
‘concrete’ economy of two commodities and (by Debreu’s
theorem) two agents, the Walrasian adjustment process cast in
discrete time may display chaotic behaviour.* We shall proceed
somewhat heuristically to keep the computational details at a
minimal level.
Let us define a function é from X=[0, 1] into itself by the
formula:
A 1.95x when0<x<1/2
Gt ):{1.95(1~x) when 1/2<x< 1 (R

We can easily see that Gisa piecewise linear continuous leIlCthl’l
that attains its maximum at x= 1/2. The maximum value G(1/2)
is 0.975. We can verify that G maps the compact subinterval

4 We should mention an alternative approach followed by Day and Pianigiani
(1991). Consider an exchange economy with two goods and two agents. Both have
the same utility functions u(x, x,) = xll/2 12 The endowments are specified as
(1, 0) and (0, 1) respectively. Let {(p) be the excess demand vector for the
economy at p >> 0. If we consider Py =Pt o Q(p[), we can, for a ‘high’ value of
the speed of adjustment parameter o, verify the Li-Yorke conditions.
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X, =1[0.02, 0.98] into itself. Now, going back to (3.3), we can define
a price adjustment process

Py =GP (5.2)

starting from some initial price in X. We can compute that if we
set the speed of adjustment parameter o = 1, the map

A - 1095p when0<p<1/2
op) = {1.95 —295p whenl1/2<p<1 G-3)
satisfies
Gy =p+8p) forpin[0,1] (5.4)

Note that ﬁ(p) is positive for all positive p less than 1/2; and, for
all p (in X) greater than p = 0.661, {(p) is negative. There is aunique
positive p at which &(p) equals zero. Now, using Debreu’s theorem,
we can assert that there is a ‘well behaved’ Walrasian economy,
whose excess demand function agrees with our {(p) on, say,
X, =10.02, 0.98]. Thus, for this economy

A
pt+1 =G (pr)
or,
Py =P+ &P (5.5)

provides an example of a tatonnement.

We should point out that there are points (other than p itself!)
from which we can get to the equilibrium p in a finite number of
steps by following (5.5). For example, if the initial p:) = p/0.95 then
we can get to p in just one period. Then, there are surely points
from which we can arrive at p;) in one period, so that the equi-
librium p is attained in two periods, and so on. A look at the graph
of G [defined by (5.1)] is useful to see how these points are
generated. But all such points belong to a ‘small’ countable set
(hence, to a set of Lebesgue measure Z€Ero).

For this dynamical system (X, G), we can select
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a=0.246;

hence, b = G(a) = 0.4797;
and, ¢ = G(b) = 0.935415;
and, d = G(c) = 0.1259407.

We can apply Theorem 2.1, and assert that (5.5) gives an example
of a chaotic tatonnement. It should be stressed that the example
is by no means a ‘rare’ or knife-edge phenomenon. Saari (1985)
and Bala and Majumdar (1992) have investigated in detail the
question of ‘robustness’ of chaos, and have demonstrated that
models of chaotic tatonnement are ‘non-negligible’ in a precise
sense. Since the arguments are quite technical we do not pursue
this issue here.

The ‘tent map’ we use leads to particularly simple calculations.
But there are more complicated functional forms which are better
suited to reveal other types of complexities in dynamics. Again,
taking X = [0, 1] consider the map G: X — X defined as:

G(p) = 7.86 p — 23.31 p* +28.75 p* — 13.30 p* (5.6)

For this dynamical system (X, G), G has a unique, positive fixed
point p*=0.72 [and this p* is also ‘locally stable’ |G'(p")| =
0.89 < 1]. But G also has a (locally stable) periodic point of period
two, the trajectory (0.3217, 0.93, 0.3217, 0.93, . .. ) from 0.3217 [as
well as the trajectory from 0.93] is periodic.

Let us contrast a comparative static approach with a dynamic
one with the help of the map G in (5.6). First, consider any eco-
nomy (with two goods and two agents) such that p,=0.3217 is a
unique equilibrium price of the first good. As before (subject to
the ‘e-qualification’ of Theorem 2.1), we can think of the map G(p)
of (5.6) as an excess demand function for the first good, and let
us view it as a ‘new’ excess demand function. Of course, if we are
just interested in comparing the old equilibrium with the ‘new’
equilibrium (p* = 0.72 where G(5") = 0) we can say that the ‘equi-
librium price will change from p, to p* as a result of the shift to
the new excess demand function G.” However, if we consider a
dynamic, process
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Pu1=GP) (CND)

with p, = 0.3217, (and G given by (5.6)), we note that the trajectory
from p, will be periodic (with a two period cycle). There will be
no ‘movement’ towards the ‘new’ equilibrium price.

6 CONCLUDING COMMENTS

‘Concrete’ Walrasian models are now an integral part of the basic
box of tools that economic theorists draw upon. Using such
models to derive insights has been, and hopefully will continue
to be, an attractive direction of research. Whether ‘simple’ models
can provide a firm foundation for advocating policy measures has
been the subject of lively debates and, we are sure, will continue
to be a controversial methodological issue. As Frank Hahn (1983)
observed: ‘the notion of simple is not simple’ and ‘sometimes the
uselessness of the general model is simply a frank statement of
ignorance’.

Our purpose has been to use such models to get a glimpse of the
complex dynamics and to appreciate the programme of research
that started in the thirties and has continued ever since, a pro-
gramme that aims at explaining the nature of dynamic processes
that drive a market which is not in equilibrium. It is now clear that
even the simplest model with two goods and two agents can gen-
erate ‘robust’ chaotic behavior. This, of course, raises questions
about the predictive power of economic models. But, to us, ‘it
seems satisfactory that we should have detailed empirical knowl-
edge before we can go into the prediction business. This circum-
stance in no way reduces the importance of theory’ Hahn (1983).

APPENDIX

Proof of T.1 in Theorem 4.1
In addition to Lemma 4.1-4.2, we need
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Lemma 4.3 Let J be an interval and G: J — R be continuous. Let |
be a compact subinterval of J. Assume /< G([7). Then there is
some p in / such that G(p) = p.

Proof: Let I=[B, B)]. Choose o(i=0, 1) in / such that G(a,) = B..
It follows that o, — G(0) 2 0 and o, — G(ot,) < 0. So continuity of G
implies that G(x) — x must be zero for some x = p in /. To complete
the proof of [T. 1], assume that d < a < b <c as in the theorem. The
proof for the case d>a>b>c is similar. Write K= [q, ] and
L=1[b,c].

Now, let k be any positive integer. For k> 1, let {I } be a sequence
of intervals where / =L for n=0,...,k—2;1 _, =K and define
I, to be periodic inductively: / ,, =1 forn=0,1,2,.... Ifk=1,
let [, =L for all n. Let Q, be the sets in Lemma 4.2. Notice that
Q, € Q, and Fk(Qk) =Q, Apply Lemma 4.3 to the map G = Fkto
get a fixed point p, of F* in Q,. It is clear that p, cannot have
period less than k for F. Otherwise, we need to have
F*¥(p,) = b, contrary to F*I(p,) € L. The point p, is thus a peri-
odic point of period & for F.
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