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1. INTRODUCTION

In this chapter we review some results on the ‘transfer problem’ in the
context of a general equilibrium exchange model with s agents and n
commodities. Consider, first, an ‘initial’ Walrasian equilibrium of
such an economy given a particular distribution of endowments. Now
let one agent (the ‘donor’) give away (‘transfer’) some of its endow-
ment to another agent (the ‘recipient’), or to some/all of the other
agents, and look at a post-transfer equilibrium. Two questions arise
naturally:

(a) How will the post-transfer equilibrium pnce compare to the
pre-transfer one?

(b)  How will the post-transfer equilibrium welfares of the agents
compare {o the pre-transfer levels?

The effect of a transfer studied in question (a) is called a ‘positive
effect’; that in question (b) a ‘welfare effect’.

Both the above questions were posed by Samuelson (1952, 1954).
Since then, a considerable body of literature has developed. on the
transfer problem. Qur primary interest is in the ‘welfare effect’. Our
exposition is organized as follows. We begin with a brief summary of
the literature. A Walrasian model of an exchange economy with
many goods and agents is outlined in Section 2 [a masterly presenta-
tion of this model, along with results on the existence of a Walrasian
equilibrium is in Nikaido (1956)]. Section 3 focuses on a two-agent
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economy. The main result asserts that the statement ‘for every
feasible transfer the donor is no better-off m the post-transfer
equilibrium’ is equivalent to the statement “for every distribution of
endowment, there is a unique equilibrium’. In Section 4, two ex-
ampies are disélssed in detail: the first demonstrates that the result
in Section 2 ¢annot be generalized to a many-agent economy. The
second, due to Leonard and Manning (1983), is used as an introduc-
tion to some of -the recent literature. In Section 5 we turn to a
many-agent economy. The main result {taken from Majumdar and
Mitra (1985)] indicates that the donor is worse-off after the transfer
if (a) all goods are ‘net substitutes’ for the donor, (b) all goods are
‘gross substitutes’ for all other agents and (c) all goods are ‘normal’
for all agents. '

The comparative static results in Section 3 and 5 are ‘global’; these
are deriy ed without any differentiability assumptions. This presenta-
tion 18 i1 sharp contrast with that in much of the literature. It has
often been stressed [among others, by Morishima (1964, p. 3)] that
attempts should be made to get ‘global’ comparative static results,
since an ‘infinitesimally small” change of & parameter is sof what one
has in mind when one thinks of a transfer problem. An informal
account of the Samuelsoniau comparative static analysis is sketched
in Section 6.

The Transfer Problem of International Trade

A large part of the literature focuses on the two-couniry, two-
commodity model of international trade theory. The main proposi-
tion that emerges from this model is that if the transfer is ‘small’, the
donor cannot be better-off (and so the recipient cannot be worse-off)
after the transfer, provided the Walrasian (World) equilibrium is
‘Tlocally’ stable under the usual ‘tatonnement’ adjustment process.
[See, for example, Section 6 and, for a more extended treatment,
some standard texts in international trade theory, such as Caves and
Jones (1981), or Dixit and Norman (1980}].

More recently, the literature has focused on the three-country,
two-commodity model, as it is felt that this framework leads to
significantly different results, compared to the two-country counter-
part. In particular, Brecher and Bhagwati (1981) and Yano (1981)
have noted, in the context of a three-country, two-commodity
maodel, that it is possible for the donor to be betier-off after the
transfer, even under local stability of the Walrasian equilibrium.
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Gale (1974) noted this phenomenon with a concrete algebraic
example, and established that the Walrasian equilibrium in his ex-
ample is unique. (It turns out in this two-good example that the
equilibrium is also locally stable as the reader can easily verify.)
Gales’s example involved'L-shaped indifference curves for the three
agents; an algebraic example with the same content as Gale’s, but
mvolving smooth preferences for the three agents, was constructed
by Aumann and Peleg (1974). This example, incidentally, shows a
close relationship between the welfare effect of the transfer problem,
and the welfare effect of the problem of ‘immiserizing growth’,
which had been studied earlier quite extensively in international
trade theory by Bhagwati (1958), Johnson (1967) and Bhagwati
(1968). In a recent paper, Bhagwati, Brecher and Hatta (1982) have
undertaken a thorough analysis of the three-country, two-
commodity case integrating the transfer problem, the problem of
immiserizing growth, and the theory of ‘distortions’. (A rather com-
plete history and bibliography of contributions to the transfer prob-
lem, immiserizing growth and distortions is contained in this paper,
so we have deliberately avoided going into all of the details.) The
Leonard-Manning example of Section 4 provides a useful introduc-
tion for the interested reader. Yet another review of the transfer and
other ‘paradoxes’ in trade theory with an emphasis on the role of
imcome effects is in Jones (1985).

2. THE NIKAIDO MODEL OF AN EXCHANGE ECONOMY

We consider an exchange economy in which there are » commodi-
ties, indexed j= 1, ..., n, and m agents, indexed i=1, ..., m. The
total endowment of economy is given, and denoted by e (where e isin
Ry

Each agent has an endowment vector, the sum of all such endow-
menl vectors being the total endowment of the economy. In our
notation, the endowment of the ith agent is elin RY,, and

L
Y e=¢
=1

The distribution of endowmentsis then denoted by E=(el, 2, . . ., &").

The preferences of agent i are represented by a continuous utility
function, u: R} — R. For each i, we define D' = {x in R :(x) > u{(0)}.
For each i, the following assumptions on ¢ are maintained:
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(A.1) (monotonocity)
(@) x=X =0implies w(x) 2 ui(Xx )
(b) x>>X =0implies w(x) > (%)
(A.2) (concavit;r)"
X in DM, x# X, u(x) > ui(X) implies
wlox + (1 -0 ) > wi(x ) for0<b <l
An allocation is denoted by X = (x', . . ., x™) with x/ in Rf for each
i, and

(feasibility) X, x/ < e
=1

An equilibrium (given E) is a pair (X, p) such that
Xisan allocation 2.0
pisin R, pe=1 (2.2)
For each i, X is an element of the set
Bi={xin Ripx < pe'} & . 2.3
and #i(x?) = wi(x) for all x in B _.
A few remarks on the definition of equilibrium are in order. Given
the assumptions on «/, condition (2.3) implies pxi=pé, so

m

plé— X x1=0 2.4)

. f=1
Furthermore, by condition (2.3), p is in R%,. Finally, since X is an
allocation, and p is in RY, so using (2.4), one gets

g xXi=e {2.5)

‘We are interested in examining how an equilibrium changes when
one agent ‘transfers’ some of its endowment to another (or to several
of the other agents). This exercise clearly belongs to the more general
class of comparative static problems concerned with the effect of a
change in the distribution of endowments on the set of equilibrium
' allocations. [See Mukherji (1990, Chapter 2.8).]

In describing ‘transfers’, we can suppose, without loss of gen-
erality, that agent 1 pays the transfer (ie., it is the ‘donor’), and some
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or all of the other agents (i=2, . . ., m) receive the transfer. Keeping
this in mind, we can define a set (writing (£ = @,...,em:

T {(E, E): Eand E are dzsmbunons
of endowments, &' < ¢!, & > ¢f
fori=2,..., m} (2.6)

Thus, when we write (E, E) is in 7 we mean that £ is the distribution
of endowments before the transfer, and E affer the transfer.

Now, let (E, E) be in T; (X, p) be an equilibrium given E, (X, p)be
an equilibrium given E. The problem we are concerned with is the fol-
lowing. How do the post-transfer welfare levels '@ ), 2(x)
wn(x )] compare to the pre-transfer welfare levels [w'(x), wX(x), .

" (x)]?

3, THE TWO-AGENT CASE

Some insight into the transfer problem can be gained by examining
the case in which the economy consists of precisely two agents. In this
case agent one is the ‘donor’ and agent two the ‘recipient’ of the
transfer. Indeed, much of the ‘international trade’ literature on the
transfer problem relates precisely to this case. Unlike this literature
(which also restricts the number of commeodities to two), we allow an
arbitrary (finite) number of commodities.

We will demonstrate in this section that the statement, ‘For every
feasible transfer the donor country is no better-off after the transfer’
is equivalent to the statement, ‘For every distribution of endow-
ments, there is at most one competitive equilibrium’.

Thus, whether or not the donor of a transfer is worse-off after the
transfer depends crucially on the uniqueness of competitive equi-
libria in the economy. So, before proceeding to the results, we define
formally the concept of uniqueness that is relevant for the purpose.

Condition U: Given E, if (X, p) and (X, p) are equilibria, then X = X.

Proposition 3.1: Let (E, E) € T let (X, p) be an equilibrium given E,
and (X, p) be an equilibrium given E. If Condition U holds, then
u D) 2 d' @) and 2 < WX 3.1

Proof: Since, in our framework, an equilibrium is necessarlly a
Pareto-optimum, to prove (3.1), it suffices to show that u'(x!) =
1(xl) Suppose, on the contrary, that
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W' (%) > ul(xh) (3.2)
It follows from: (3.2) that:
pxl <px' (3.3)
Note also that:
px! = pel > pé (3.4
Then (3.3) and (3.4) imply that thereis 0 <A < 1, such that
pt W =plL® +(1-21)e] (3.5)

Denote [Ax +(1-2)@] by ¥, define ¥=e- 5. Clearly
0<<Xl<<e, 30 0<< ¥ <<e, and ¥ + X =¢. Define E= (%', ).

Then E is a distribution of endowments,
Now, px'=ipx!l+(1-rpel =pe'; also pX’ =pe — px! =peé’.

“Thus, (X, p)is an equilibrium given E. :

=

Also, by (3.5),p% = px! = pe'; and px” = pe — px' =pe - pe* = pe’.
Thus, (X, p) is an equilibrium given E. Since X #X by (3.3), so
Condition U is violated, a contradiction. This proves that u'(x')
> ul(x").

The idea of the proof of Proposition 3.1 is simple. It can be
depicted (for the case of two commedities) in the familiar Edgeworth
box diagram (see Figure 1). ~

In Figure 1, the endowment pattern at the point E is associated
with two distinct equilibrium allocations X and X. This violates (U).
Observe that the move from E and E reflects a transfer from agent 1
to agent 2. Since E can be conceived of as an endowment patiern
consistent with the ‘pre-transfer’ equilibrium allocation X (at prices
given by the line connecting E to X), and E can be viewed as the
‘post-transfer’ endowment patiern Jeading to X, the ‘paradoxical’

¢ result appears.

Proposition 3.2: Suppose Condition U is violated; then there are
(E, E)e T,an equilibrium (X, p) given E, an equilibrium (X, p) given
E, such that

£ () <u'(F) and 2P > 125 (3.6)

Proof: Tf Condition Ulis violated, thep there is E, with two eq}\zilibg_ia
(X, pyand (X , p), given E, such that X' = ¥ . Then x' # %! and x* # X°.
Clearly #'(x") #4'(x"). For, if W(x") = ' ("), then 12D = 2D,
since in our framework equilibria are Pareto-optimal. So
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2
X3
1 =
Figure §
1a 1= A
Hrer, 2=l 1,71
u [Zx + 2X }> u{x'}and
7 1/\ 1:1 b A2
W 53+ 5% > i (x) 3.7)
2 2
Also,
Tag d=] [lay Q=i A Ay ae] M =1 =
|:2x +2xi|a{2x +oX =5 X X+ X + X
= l6’ 4+ le =¢
T2 2T
This means ¥ is not Pareto-optimal, and hence not an equilibrium,
a contradiction.

There are then two possibilities to consider: (i) u'(x') < u'(x") and

PO > 263 () BN > W (3 and A3 < X, We will con-
sider each case in turn.
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Case (i) :
Note that p p #p. For ifp p = p, then
pﬂ—ﬁx:—pe—pemﬁ%l 3.8)
But i (x )<z¢ (x } implies pt > px a contradiction to (3.8). Thus.
p # p. Since pe pe=1 [see (2.2)], there exist i, f such that
P B ande<Pj (3.9) ~
Choose €= ej > ej >0 such that = ,q,fp,)sj < e,, deﬁne &= (pp pz)sj,
then E; <g< e, Now, dcﬁne el as follows: e! = & — 8,, e} m'é}l + Eﬁ
el =e} for k#1i,; deﬁne = =e~ e, Then clearly 0 << e <<e and
0 << 6‘2 << e. Also, pe —pe1 p,e, +p}€t +pj€j pe 50 pe mpe pe
= pr — pe Thus (X p) is an equlhbrlum gwen E (e ez)
Deﬁne &' as follows gl =el — g, ej —-ej +ej, k—ek for k#z j,
deﬁne F=e-e. Then 0<<e <<e and O<<&<<e Alsopél=

pe* ——p,&2+pjsj pé=pe—pe =p—pe. Thus (x, p) is an equi-
librium given E = (el 32) _

Define (X, p) = (X p) and (X, p)= (X ,P). Then (X, p) is an
eqilibrium gwen E, (X, p) is an equilibrium given £ Also §,<§,
implies that & Teel and so #>¢’. Hence, (E,Eye T. Since
Wy = d () <l @) = W@ and PO =25 > PE) = (7,
the proposition is established.

Case (ii): _
Note, again, thatp # p. Forif p = :ﬁ,
ﬁLMJW‘W~m (3.10)

But u (xl) > ul(xl) unphes px > pxi a contradiction to (3.10).

Thus p =7, Since p pe = pe, there exist i, j such that
Pi>piandp;< (3.15)

Choose ¢;— 9; > €> 0 such that EJ =( pﬁj)c} < et, define € e, 7 pjfpl)sj,
then £ <€ <e. Now, deﬁne el as follows: e} =] —&;, eJ = E}l + &, ‘-’k
= ek for k#1,j; Wl’]te = Then clearly 0 << e << e, and

0<<ée<<e. Also, pe—pe—p,ej—pe s0 pe* =pe - pe' =p — pe'
= pe. Thus (X p) 18 an equlhbnum gwenE (e1 ez)

Define &' as follows: & =¢! — E;, g =¢ +g,8e.=¢ for ki, 5

wnte ez—e—el Then D<<?& <<e and 0<< e <<e. Also,
pe = pe p,e,+ pjﬁ} pe 50 pe2 pe pe = pe Thus, (X p) s an

equilibrium given E = (&', &@).
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Define (X, p) = (X ?) and (X, p) = (X p) Then (X, p) is an equz-
librium given E and (X, p) is an equlhbrlum given E. Also, £>E
unphes that e'>e' and so <& Hence, (E, E)E T. Since
w(xh) =l (x") <ul(xY) = ' (x") and AP = u2(‘2) <2 = XD,

the proposition is establ_1§hed

Even though there are tedious calculations involved in the proof of
Proposition 3.2, the idea is essentially simple, and ‘case (i)’ in the
proof can be illustrated as in Figure 2.

4. THE THREE-AGENT CASE: SOME EXAMPLES

The recent revival of interest in the transfer problem of international
trade has its focus on the three-country, two-good case. The point that
is being made in this literature is that in the three-country setting, the

xi

Figure 2
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‘donor’ can improve its welfare after a ‘small’ transfer, even though
the equilibrium is locally stable [see, e.g. Yano (1981) for details].

From the point of view of Section 3, the relevant question to be asked
is somewhat different, since we do not restrict transfers to be ‘small’.
Specifically, the guestion to be asked is the following: Tsit possible to
construct an example of a three-agent, two-good economy, in which
the donor can improve its welfare after a transfer, even though there
is at most one equilibrium for every distribution of endowments?

In Example 4.1, we follow essentially the Aumann-Peleg example
(1974), modified suitably to make it easy to answer the above ques-
tion in the affirmative. The lesson of the example is clear: the results
of Section 3 will #ot generalize to the many-agent case. Additional
assumptions are clearly needed to prove any definitive result in the
many-agent setting.

Example 4.1
Lete=(3, 1) el =(2,0),e2=(0,1), & =(1, 0); e =(1,0,8=@01,
2 =(2,0). Denote (¢!, &2, &) by E; (@, &, &) by E. Observe that
? ¢ = ; # = ¢. The assumption ¢’ € R%, made earlier in Section 2 to
sidestep the awkward problem of non-existence of a Walrasian equi-
librium is not satisfied here. We shall show by direct computation
that a Walrasian equilibrivm exists.

Let ul(x?j, x5} = [ + 52 for (o, x) >> 05 ul(xy, x) =0 for
Xy = 0 0r x, = 0. Let td(xy, xp) = ' (x5, %503 703, 263) = x5 +1n(1 + ).

Define x'=(2/5, 1/5), x> =(85,4/5), x*=(1,0); py=11L,
py=8/11; X= (x!, %2, x*); p=(py py). Then it can be checked that
(X, p) is an equilibrium given E.

First, note that pe = 1. Denote py/p, by r. Then r = 1/8. Note that X
is clearly an allocation. Also, at X,

8u1(x1)/8u1(x1)_ x_%3_ ls_l,
ox dx, |xi] |2] 8
a9l (4] _(1)_L
Ix, ox, (x] (2] 8

L apengd o L[(2), 8(1)_10_ 2 ligin B

Also, pe =2/11;px —11(5]+ alsFss=11 % isin B

o 1(8Yy 8 40 8 .
s 2 _ . DU 0 o3 IR e U = . 2 ; 2.
Similarly, pe =8/11; px* = 11[5}- 11[5} 55 =11 so x° i8in B
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pe =111 px* =111 so x* isin B

Since ' is quasi-concave, 5o u'(x) > w(x) for all xin B.. Similarly,
o s quasi-concave, so 1*(x%) = u(x) for all x in B> Finally, for any
x in B, (111)x + (8/11)x, S V11, So #¥(x,, xp) — 18'(x3, x3) = [x,+
In(l+x)] = 1= (6= 1) + In(1 + x;) < [1 - 8x,— 1] + In(l +x,) =
In(1 + x;) - Bx, < 0. Thus (X, p) is an equilibrium, given E.

Next, define X1 =(1/2, 1/2), ¥*=(1/2,1/2), @ =(2, 0); p:=1/4,
=14 X=F,2, ), p= (p1, P2). Then it can be checked that
(X, P) is an equilibrium given E.

First, note that pe = 1. Denote (5,/p,) by 7; then 7 = 1. Note that ¥
is clearly an allocation.

Also, px' = 1/8 + 1/8 = 1/4 =pe'; px’=1/8 + 18 = 1/4 = pé: Px’ =
2/4 = pé.

So¥e Bfori=1,23 Alsoat X,

du'(xY) 7 du'(x) _ (___5}3 =1

axl a.xZ - xf
0 (%1) / ad(x) (33 ’ 1
axi axz h f% -

Since ul is quasi-concave, u'(¥") 2 u!(x) forall x in B, Similarly, since
W is quasi-concave, (%) = u(x) for all xin B%. F inally, for any x in
B, (14) x, S 1/2. So 1#3(xy, xp) — (%, B) = [x, + In(1 + x,)] -2
=[x, = 2]+ In{l + x2) S [2 - x, ~ 2] + In(1 + x,) = In(1 + ) — x; 5 0.
Thus, (X, p) is an equilibrium, given E.

Finally, note that

ul(x) > u'(x!)
W) < 1P(x)
(2 > 1 ()

Thus, agent 1, the donor, increases its welfare by transferring (1, 0) to
agent 3. Agent 3, the recipient, also increases its welfare. Agent 2,
which is neither the donor nor a recipient finds its welfare reduced
after the transfer takes place!

The next step is to show that given the total endowment of the
economy, e = (3, 1), and the utility functions of the three agents, there
is at most one equilibrium for every distribution of endowments. (By
this, we willmean e’ > 0, e > 0, ¢° > 0, such that e' + ¢* + ¢* = e, since
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if e/ =0 for some i in {1, 2, 3}, we really have a two- country model)
We know that if (X, p)is an equihbrium given some E, p>>0, x1 >>0
and x2>>0.

F or any p >> 0, defining r = (p/p,), we know that (lexl) =7, and
rel +el= rx1 + rik-Also, ((%/x})* = r, and re2 =rx] + x3. S0 re1 +el=
rxh+ A8 = (r + P13, Henoe x}=[rel + elr + r”3] and x} = r13re}
+ed)r + rif. Similarly, xt=[ret + r + 713 xF=rBréd + &)
[r + 173,

The derivation of the demand function for agent 3 requires some-
what more detailed analysis, depending on the pattern of its endow-
ment. We distinguish two cases for ease of exposition: (i) €3 < 1;
(iye 2 1.

Case (i) [e3 < 1]:
Note that if x3 = 0 at a price ratio r, then by the budget constraint,
x3 = re + 5. For this point to be a demand point, we must have

W _ 3_ 3,3
rZ—u—3-—l«+*x2—l+rel+ez
2
50 rz(l+ey(l-e)>1.

From this it certainly follows that for theranger < 1, x3 > 0.1t x} is
also positive, then r=uj/td =1+ x3> 1, a contradiction. So for
r<l, x=0. :

Next, for 1 < r < (1 + ed)/(1 — e}), we can also conclude that x3 > 0.
If x3 is zero, then for this to be a demand point

u ) - -
r< u% =1+ x3 = 1, a contradiction.
2 .

So x3 is also positive, and r = u/18 = (1 + xJ).
So,forl<r<(l+edil —ed), x3=(r-1).

Finally, for r 2 (1 + €))/(1 — }), note that x3 is positive by the
immediately preceding argument. If x; is also positive then
r= ul,’u2 1 +x3,50 X3=(r - 1) But P+ =re + el 1mp11es that
xi<ré}+ei. Hence (r—1)<rej+e3, and so r < (1+e)(l~e)) a
contradiction. Hence, for r (1 +&)/(1—¢}), x1 0, and by the
budget constraint, x3 = re; + e3.

We can, therefore, summarize the demand information as follows:

x3=0 forr<l

<(r-1) forl <r<(l+e)i(l-e)
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=rel+e forr.2 (1+e3)/(1 - ¢})

Case (ii) (€ 2 1):
Note that if x? = () at a price-ratio, r, then by the budget constraint,
x3 = ref + e3. For this point to be a demand point, we must have

r .

2;“37 }.+x3=1+re?+e%21+r

2

since €} 2 1. This contradiction means that x3is always positive,
Turning to x%, we note that if at a price ratio, r, x2 =0, then

re3=1l+x=1

aﬁ»li%

sor < 1. On the other hand, if x3 > 0, then
3
U
r=—s=1+x3>1.
i

Thus, we can summarize the demand information as follows:
x3=0 forr<1
=(r—1) forrz1

This completes our analysis of the third country’s demand.

We now turn to the aggregate demand for commodity 2. Denote by
'Z(r) the total demand for good 2 of the three agents at the price ratio,
r. If r is an equilibrium price ratio, then Z(r)= 1, and r > 0.

For this analysis, too, we find it convenient to distinguish between
the aforementioned two cases of the third agent’s endowment hold-
ings.

Case (i) (& < 1):
First note that if r is an ethbnum price-ratiq, then r < 1. For, if
r 2 1, then Z(r) = 1 yields

(14723 =rlef + &1 + [} + ] + [1 + r2P]x3
(1 + 731 - x3 = el + ]+ [eb + €3],

Now, x3 2 0, so the left-hand side is less than or equal to (1 +r23),
Also e] < 1, 50 e} + ¢ > 2 and the right-hand side is greater than 2r.
That is, (14 r%3)>2r. Since r21, so r¥2<r, and we finally have
- 1'+r> 2r, which yields ¥ < 1, a contradiction.

This simplifies matters greatly, for we now know that at an equi-
librium price ratio, r, we must have r < 1, and furthermore
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(1 + 123 = rle} + ef] + &) + ]

Denote [e! + €] by di, and [e}+e] by b For 0<r<1, It
(1) =1+ and g(r) = rd; + d,. Then, there is at most one solution
to f{r) =g(r), sﬁtisfying 0 <r<1. Suppose, on the contrary, there
were two, call them r* and r**. Without loss of generality, suppose
0 < r* <+ < 1. So there s 0 <8 < 1, such that " = r*. Note thal f
is strictly concave on [0,1].

So, gfrf1=f10r**1=716."" +(1-0)- 0} > 87 (r* ) + (1 — 0)f(0)
and f[r*] = gl0r**1 = d,(0r*) + dy = 8dyr™ + 0d, + (1 = 0)d,
= 0g(r™) + (1 - 0)d,.
Since f(r*)=g(r*), so we have
67 + (1 — B) = () + (1 - 8)f(0) < Bg(r*™™) + (1 - 0)d,
and (7)< g™y + [(1 - 0)/0]d; — 1]
< g(r**) = f(r*), a contradiction.

Case (i) (e? > 1)
If 7 is an equilibrium price ratio, then

el +ed] +[eb+edl=[1+ /2 if r<1

and rlel + &3] +[eb + el =11 + /271 — (r = D] if r 2 L. Clearly, if ris
an equilibrium price ratio, 0 <r<2. Denote (e} +¢3) by di and:
(¢} + €3) by db. Also, let g(r) = rd| + dy; leth(ry=(1 +r#)ford=sr<l
and (=1 + r¥H2~rforlsrs

It can be checked that h(0)=1, h(1) =2, h(2)=0; K~(1)=2/3,
JrH(1) = (=4/3); for O0<r<1, () <0, and for 1 <r< 2, H'(r)<0.
Also, g0 =d, s L. g =d, £2; g"(n=0. '

We can now show that # is strictly concave on [0, 2]. To see this,
pickr, # in [0, 2], r< s If r,#" are both in [0, 1], then for every
0 < k<1, we must have A(hr + (1 = L)) > AR() + (1 = AYh(r"). Sim-
ilarly, if r, ¥ are both in {1, 2], then for every 0 < A < 1, we mnst have
B + (1 = W)F) > Ma(r) + (1 = Mh(). These follow easily from the
observation that #/(r) < 0for0 < r < L,and #”"(r) < Ofor 1 <r<2.

We have, therefore, to check only the case in which r < 1 <7, Pick
.any Ain (0, 1), and let /" = Ar + (1 - 2)¥. There are then three cases to
consider: (" > 1, (2) " <1; (3" =1

Case (1) ¢ >1) An this case; there is 0<0<1, such that
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r’=0+(1-0r .80, A+ (1A >+ (1 -2y =r" =86+ (1 ~0).
Soh-0)>(—0),and (L — 8) < 0(since ¥ > 1). S0 8 > A. Now, we
simply note the following sequence of inequalities.

Mr’y =h6+(1.- 0)r]
> 0h(1)+ (f — @)A(r") [since I” < 0on (1, 2)]
= (6 — WA + Mr(1) + (1 - §)A(r?)
=(8 - WAL + M) + (1~ WAE) + O, — OA()
= (8~ MIA(L) = A0 + A1) + (1 = Mh(r')
> (1) + (1 — A)A(r) [since A(1) > h(r') and 6 > A]
> Mi(r) + (1 — Wh(r") [since A(1) > A(r)].

Case [2) [r" <1]: In this case, there is 0 <0 <1, such that
Fr=0r+(1-9). 8o, r+(1-N<dr+ (1= =r"=0r+ (1-9).
So (A—0r<(h-9), and (A —8) >0 (since r< 1). So A > 0. Now,
note the following sequence of inequalities.

"y =hior+ (1 ~8)]
>8h(r) + (1 — () [since i <0 on (0,1)]
= (8 — A + M) + (1 = A1)
= (0 — MA(r) + AR(r) + (1 = WA + b — k(1) -
= (A = O[A(1) — A(N] + Na(r) + (1 — DA(1)
> Ah(r) + (1~ A1) [since A1) > A(ry and A > 9]
> Mi(r) + (1 — W) [since A(1) > A(r)]
Case 3 (" = 1) : Here
A = h(1) =AR(D) + (1 — AY(1)
> AE + (1 = DA(r)
[Since k(1) > A(r}, and A(1) > k()]
Note that if r is an equilibrium price-ratio, then 0 <. r < 2, and
g =hiry
We claim now that there is at most one solution to g(r) = A(r),
satisfying 0 < r < 2. Suppose, on the contr .., there were two, call
them r* and r**. Without loss of generality, 0 < #* < #** < 2. So there

is 0 < 8 < 1, such that r* = 8r**. Now, following the method used in
Case (1), we get a contradiction. [Replace fby A throughout].
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We have thus established that, in both Case (1) and Case (ii}, there
is at most one positive vahue of r, satisfying Z{(r)=1.

Now, suppose (X*, p*)and (X**, p**) are equilibria, given a distribu-
tion of endowments, E. Then Z(r*)=1 = Z{r**), and r* > 0 and r** > 0.
Hence, r* =¢**, afid so p* = p**. But, then x!* = x1** x2* = x2** by using
the demand functions of agents J and 2. So x3* = e~ x!* = x¥* = ¢ -
XK 2% = 3% Thus X* = X**, which shows that there is at most

‘one equilibrium, given an arbitrary distribution of endowments, E.

Example 4.2

Instead of starting out with a complete numerical specification of the
characteristics of the agents, we want to share the insights of Leonard
and Manning (1983) on how to generate ‘paradoxical’ or “‘unortho-
dox’ examples. Suppose that agent 1 is characterized by

1 12,172
u (xq, Xy) = %) x3

el =(a, O
whereas agent 2 is described by

uz(xl, xZ) x?."s 1/8
er=(b, )

Let commodity 2 be the numeraire. Then the demands of the two
agents are (a/2, pa/2) and (7b/8, pb/8) respectively. If agent 3 has the
endowment & = (0, ¢), then his consumption must be (a/2 + b/8, ¢ —
pal2 — pbi8) in ethbrmm (—smce he consumes What the others do
bundies must be ( (5 5), (7/2 112) and (11/2 ¢ — 11/2) respectively. Now -
consider a transfer of four units of the first commodity from agent 1
to agent 2. At the equilibrium price p, consumption bundles become
(3,3p), (7, p) and (4, c — 4p). If agent 1 is to be better-off as a result of
the transfer, then'it must be that p > 25/9. Certainly, p = 3 permits the
transfer to be advantageous to both agents I and 2; whether this can
be an equilibrium depends on the utility function 3 of the third agent:
u* must be such that at p = 1, he consumes (11/2, ¢ — 11/2) whereas at
p = 3 his consumption is (4, ¢ — 12). There are then only two restric-
tions on #3. Attention may, therefore, be concentrated on a two-
parameter family of utility functions. For instance, one can take

(X1, Xg) = 0. xlr—% Bx3 +xy; 0, B> 0 4.1)
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For an appropriate range of p, compute the demand function of
agent 3 for the first good: .

X =[(e- pyB]2 4.2)
The restrictions on »3 explained above imply
5.5 = [(or— 1)/B12 4 = [(ou ~ 3)/B]2 (4.3)

One can solve (4.3) for o, B and substituting in (4.1) get a numerical
specification of #* which will allow the particular advantageous real-
location of their initial endowment. Note that ¢ can be chosen ar-
bitrarily as long as ¢ > 12. The excess demand function for good 1 is

@2+ T8 + (0 — pIR)M2 — a— b

This has a negative first derivative, thereby ensuring uniqueness and
Walrasian stability. Clearly, by reversing the transfer from the final
to the initial situation (so that agent 2 becomes the ‘donor’ and 1
becomes the recipient), one constructs an example of a transfer that
makes both the donor and the recipient worse-off (to the satisfaction
of agent 3). For useful comments on linking this example to the
necessary conditions of Bhagwati-Brecher-Hatta, the reader can turn
to the paper of Leonard and Manning (1983, footnote 3).

5. THE MANY-AGENT CASE

This section ivestigates the transfer problem in a many-agent,
many-commodity setting. It is well-known that definitive results are
hard to come by at this level of generality, Thus, we will need some
additional assumptions on our model in order to proceed.

Let us start by recalling a few facts from the theory of demand. We
take these facts (and others to be noted later) to be sufficiently
well-known that one need not go into the details of their derivations.
[The reader can consult a standard text like Varian (1978).] For each i
=1,...,mgivenpin RY and din RY,, there is a unique solution gi( p,
d) to the following problem:

vi(p, d) = max ui(x) .
subjecttopx < pd, x in R}

That is, for each i = 1,..., m, there is an ordinary ( Marshallian)
demand function, g'(p, d), and an indirect utility function, v(p, d) for p
in Rq,, din R,



238  Majumdar and Mitra
For our next fact, it is convenient to assume:

(A.3) Given any w in R, there is x in R%, such that Wixy>w(i=1,...,
n}.
Then, foreachi=1, ..., m, givenpin R, win R, w>ul{0), thereis
a unique solution #i(p, u) to the following problem:

Mi(p, w) = min px
subjecttoi(x) 2w, x I R}

That is, for each i = 1, ..., m, there is a compensated (Hicksian)
demand function, W(p, w) and an expenditure function Mi(p, w)forp
in R, win R, w> /(0).

In order to prove the main result of this section, we need the
following additional assumptions. These assumptions are stated
without assuming differentiability of the demand functions, follow-
ing the style of Nikaido (1968, p. 305).

(Ad) For each i in [2,...,m], and for p, p in RL, din R}y, p2p
implies '
gip ) zgip d) if ke | p>p)
{(A.8)Forp,p in Ri,w in R, w>u'(0),p> pimplies
(B, w) = hipow) i ke G | > p
(A.6) Foreachiin[l,...,m] forpin R%,, d, d in R, d> dimplies

gip, dy > gilp, d) for j=i,....n

Note that (A.4) says that all goods are ‘gross substitutes’ for agents
[2,...,m], while (A.5) says that all goods are ‘net substitutes’ for
agent 1 {which, it will be recalled, is the ‘donor’). Finally, (A.6) says
that all goods are ‘normal’ for all agents. [Assumptions {A1(A.6)
are consistent with arbitrary Cobb-Douglas utility functions for all
agents.]

For p in R%., and d in RY, it is known that the indirect utility
function, v!(p, d) is continuous in (p, ), by the Maximum Theorem
[for a statement of Maximum Theorem, see Berge (1963), p. 116] and
increasing in each component of d [by (A.2)]. Thus given any p in R#,
win R, w > u'(0), and using (A.3), there is 4 in R%, such that v*(p, 4)
= w. Similarly, for win R, w > w, there is d > d such that v!(p, dy=w.
Now, h'[p, v(p, D] =¢'[p, d] and B'[p, (p, D] = g'[p, d]. Using
(A.6), we therefore have w > w implying
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Blp, w>hip, w] for j=i,...,»n (5.1)

Proposition 5.1; Let (X, p) be an equ111br1um given E, and (X, p) be
an equilibrium given £. If (E E)isin T, then

w7 < ul(xh (5.2)
Proof: Since (X, p) is an equilibrium given E, so p is in R4, x'is in R%,,
€ is in R, and #/(x") (0) foriin[l,. m). Similarly, (X, p) is an

equilibrium given E, so p is in R%, x‘ isin R} & is in RY,, and
u!(x") > ui(0). Using the fact that (X, p) and (X, p)are equilibria given
Eand E respectively,

ng(p e)=e= Eg*(p, ) (53)
Let w'=ul(g! (p, e )) w =ulgl(p,g")). Then, since gl(p e
=hY(p, w!) and g'(7, &) = h(F, W), s0 (5.3} becomes
H(p, wh) + l_:228"(10, e)=e=h'(p, W)+ igi(ﬁ & (54)
Thus, we have .
[Hp, W)~ K7, %0 + L [g(p. ) - g(B 2 =0 (5.5

Let min (p/p) = (B/py)- Then defining g = (p/p,), = (5/p;), we
7
have
[h'(g, wh) - '@, wh] + § [g4g, ) —gi(g. &]=0  (5.6)

and 4G=0i/ P2 Pl p=qrpi=1,.. (5.7)
Suppose now, contrary to (5. 2) that w' > w!. Then note that

hidg, w') = hi(@, W) =hidg, w') - hi(@, w')+hiG, w') - k@, W)). Now

using (5. 7) and (A. 5), hy(G, w' = hl(g, w"). And, using (5.1) and
W' 2wy, hig, WY 2 kG, w'). Hence

g, wh) - BiG, w) <0 (5.8)

Next, for i=2,...,m, we have gi(q, e’ - gi(d, &) =gi(q, &) ~

8i(q. ¢) + gi(g, &) - gfc(_ g &). Now, using (5. 7) and (A.4), gi(g, ) 2
gl{g, ¢). And, using (A.6), and &= ¢ [i=2, ..., m], we lave
gi(@, ") = gi(g, €'). Also for some i in [2, . .. ,m}, &> ¢l,80 using
(A.6), gi(q, &*) > gi(q, ") for this i.
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Thus,
gig, &) — gi(g, @ < Oforalliinf2, ..., m] (5.9)
and giq, e’) gk(q, &) < 0forsome iin [2 , M| (5.10)
Using (5.9) and (5. 1(})
E [gi(g, €) - g4(@, &)1 < 0 (5.11)

But (l5.8} together with (5.11) contradict (5.6). Hence w; < wy, which
establishes (5.2).

Remark

Clearly Proposition 5.1 shows that the donor is worse-off after a
transfer, under a set of sufficient conditions. Alternative sufficient
conditions can also be derived. For example, we have verified that if
all countries have the same utility function, and furthermore thisis a
differentiable homothetic function, then the result of Proposition 5.1
will also hold. The reason is that in this case relative prices do not
change from one equilibrium to another, given the total endowment
of the world economy. In other words, the terms of trade effect is
totally absent. We think that, for this reason alone, such sufficient
conditions are somewhat less interesting in this context than the ones
we have used to prove Proposition 5.1. Consequently, we have not
gone into the detailed derivation of this additional result.

6. FURTHER REMARKS

‘We shall sketch the Samuelsonian comparative static approach to the
transfer problem in a heuristic manner. Consider the two-agent,
two-commodity model. As usual, agent 7 is characterized by (¢, €.
Furthermore, let ¢! (ex s exz) e Rﬂ and choosing the appropriate

_units of measurement, e?=(1- exi, —eb ) Assume the relevant in-
teriority and differentiability assumptions so that by invoking the
implicit function theorem one can justify taking the derivatives in a
neighbourhood of el. Let (X, p) be an equilibrium corresponding to
the endowment pattern e= (¢!, e2). Choosing the first commodity asa
numeraire, write p = (1, r) where r > 0. The equilibrium condmon in
the second market is: :

B+B=1 .(6.1) |
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Let 7 = u(x)) and @ = u(X*). Write the expenditure functions M! and
M2 as:

M(p,w,u)= Ml(r, ek trel, U =F+r%y (6.2)
M(p,w, @)= M1 - ek +r(t - &), W]=F+rG (6.3
Using a standard result [Varian (1978, p. 123)], one has
oM} -5 oaM:

o TR
Hence, the equilibrium condition (6. 1) is rewritten as:
M M
T, (U ')+ “"""""""““(r =1 (6.4)

From (6.2)-{6.4), after differentiation with respect to eIl (denoﬁng
the derivative of a variable x with respect to e} by X), one has:

Mir+ +Mbit=1+ey+
Mir+ Mzt =-1+(1-ey)f
MLr+ MLV + Mo b+ Ma2 =0
Let D be the determinant of the matrix
Mﬁ.w e M20
Mi-(l-el) 0 M
My+ My My M

Solving for 7 and it we get
F=[— ML MZ+ MY MAAD
u' = MAM, + M3 D

The signs of r and # depend, in particular, on the sign of D. This is
interpreted as a stability condition (an application of the corres-
pondence principle) For further analysis of necessary conditions for
determining the signs of #' (and &%) (as in other applications), the
Samuelsonian approach leads to voluminous algebra, and often a
taxonomic presentation of alternative conditions under which the
signs of the derivatives can be unambiguously determined. While one:
can provide an interpretation of the sign of D as a ‘local’ stability
condition in the 2 x 2 case, any interpretation for more than two
goods must be in terr‘ns\ of uniqueness. Some clarification remarks on
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the issue of ‘uniqueness’ and ‘stability’ conditions are perhaps in
order. It is recognized in general equilibrium theory that a comparat-
ive static analysis may not even get off the ground without postulat-
ing at least a local uniqueness condition. This is because without
uniqueness the question that naturally arises is which equilibrium
after an (infinitésinal) parameter change are we comparing to which
equilibrium before change [see Arrow-Hahn (1971, pp. 207, 242,
245)]. Secondly, Samuelson was, of course, right in noticing the link
between comparative statics and dynamics. However, there may well
be alternative adjustment mechanisms (i.e., alternative models of
disequilibrium behaviour) associated with a particular notion of
equilibrium: and ‘stability’ conditions might be quite different. Ii-
nally, although, in general, local and global uniqueness and stability
are conceptually different, in the particular case of a two-good model
(with an arbitrary, finite number of agents), the various concepts, in
effect, collapse into one (provided excess demand functions are con-
tinucus). That is, local stability of every equilibrium (under the
Walrasian tatonnement adjustment process) implies there is only one
equilibrium. This, in turn, implies that the equilibrium is giobally
(hence, locally!) stable. This explains why trade theorists using
primarily the two-good model have focused on the local stability
condition. :
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