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Complicated Dynamics and Parametric
Restrictions in the
Robinson-Solow-Srinivasan (RSS) Model

M. Ali Khan and Tapan Mitra

Abstract The delineation of the optimal policy function (OPF) in the discounted
setting has remained an open question since the 2005 demonstration of optimal
topological chaos (OTC) in a particular instance of the 2-sector RSS model. This
paper provides an explicit solution of the OPF when the discount factor is less than
the labor/capital-output ratio a. With OTC conceived both as period-three cycles
and turbulence, it establishes the existence of OTC for non-negligible parametric
ranges of the model, shows the identified ranges also to be necessary, presents
exact restrictions on a, and extends the 1996 Mitra-Nishumura-Yano theorems on
discount-factor restrictions.
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The Golden Ratio’s attractiveness seems first and foremost from the fact that it has an almost
uncanny way of popping up where it is least expected.1

Livio (1970, p. 7)

1 Introduction

It has been well-understood, at least since the early nineties, that solutions to single-
agent intertemporal optimization problems can exhibit complicated dynamics in
the form of topological and ergodic chaos precisely defined; see [2] and [23] for
anthologies of the pioneering papers. A recent survey [31] of this work delineates
how endogenous sources of chaos revolve around a variety of considerations:
“upward inertia” as a consequence of zero consumption levels, “downward inertia”
as a consequence of depreciating capital, supermodularity of the felicity functions,
factor-intensity reversals in a two-sector technology, and high levels of impatience
have all been given salience.2 In [15], optimal topological chaos has been shown
in a particularly parsimonious instance of a stripped-down version of the two-
sector model, the so-called borderline case of the two-sector RSS model, one that
involves a specific relationship between only two parameters: ξ, the marginal rate
of transformation of capital today into that of tomorrow, given full employment of
both factors; and d, the rate of depreciation.3 The result is executed with linear
felicities, a polar form of the factor intensity assumption, and a positive rate of

only because of its continuing analytical interest, but also in the hope that it’ll facilitate the
understanding and reception of the Deng-Khan-Mitra results as and when they are written up. In
this connection, he thanks Professors Mukul Majumdar, Toru Maruyama, Debraj Ray and Santanu
Roy for their kind encouragement. He also thanks Mordecai Kurz, Chris Metcalf and Paulo Sousa
for correspondence and conversation on the original draft presented at Urbana-Champaign.

JEL Classification: D90, C62, O21

Mathematics Subject Classification (2010): 91B62, 49J45, 49O2

1The reader uninitiated into the mysteries of the “golden-ratio” may want to check out [13, pp. 25–
27] or [22, pp. 78–86]. A case could be made for singling out [28, 36] as the pioneering applications
of the number in economic theory.
2A narrative is laid out in [31, Section 6] and it revolves around (1) capital depreciation and
linear felicities but with factor intensity reversals in a two-sector model with Cobb-Douglas and
Leontief technologies, as in the numerical results in [6], (2) fully circulating capital but with zero
consumption levels on the optimal path, as in [33], (3) the inclusion of depreciation with Leontief
technologies in both sectors, the so-called Leontief-Shinkai model, and supermodular felicities,
as in [34], and with linear felicities, as in [35, 37], (4) non-zero optimal consumption levels in
the extension in [40] of [35], and finally, (5) the establishment of ergodic chaos and geometric
sensitivity in [39]. Also see the early attempt in [32].
3See [3] where the principal result involves eight parameters, and [40], where the result is whittled
down to a simpler setting, but still with four parameters. This footnote is an obvious subscription
to the simplicity imperative in [24, 45] and others. With Saari [45], it is also a resigned acceptance.
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capital depreciation. It is striking on two counts. First, it goes against the continuous-
time intuition, rather well-established in the early seventies, that optimal programs,
even for a considerably generalized setting of such a model, exhibit saddle-point
stability.4 Second, relative to instances of the more recent literature, it overcomes the
disadvantage of zero-consumption levels5 (in two of the three periods in the period-
three cycle established in [33]) without the tagging of somewhat ad-hoc felicity
functions, as in [35] and [40].6

All this being said, it is important to be clear that the methodological import of
the result in [15] lies not so much in the existence of optimal topological chaos
(work done more than two decades earlier had already established this), but rather
in the fact that complicated dynamics could be shown without any knowledge of the
shape of the OPF other than its continuity,7 and to bring out the power of some
sufficient tests for topological chaos, specifically those guaranteeing turbulence in
the resulting system. However, as interest deepens in the two-sector RSS model, it
is natural to ask whether the OPF can be pinned down for a non-negligible range
of parametric values; and if so, what additional light can be thrown on the question
of the robustness of optimal topological chaos in the model, and in particular, its
demonstration as a consequence of conditions that are easy to check. This question
was explicitly left open in [19], where the authors asked for the optimal policy
correspondence when the discount factor ρ was less than the inverse of the marginal
rate of transformation of capital (1/ξ), and conjectured that “it is possible that . . . the
graph of the optimal policy correspondence is the lower boundary of the graph of
G, which, following the terminology in [8], can be referred to as the “check-map”
policy function since its graph resembles the standard check mark.8 The first, and
perhaps primary, contribution of this paper is to answer this question.

4See [50, 51] and [14] for further genealogical details; also [31, 161–162].
5A point of view insisted on in Joan Robinson’s response to Stiglitz; see [41] and [51]. In [15],
despite a linear utility function, consumption is never zero along any optimal path, except one
starting at zero capital stock, and then only in the initial period. Put differently, Joan Robinson’s
criticism does not apply to the OPF reported in this paper, and seems to be purely an artifact of
the continuous-time formulation.
6In [35], the authors work with the Weitzman-Samuelson reduced-form utility function, and in
[40], with a constant elasticity of substitution felicity function. The substantive motivation for
either specification is not fully apparent.
7For complicated dynamics, see the textbook [7] and the pioneering papers [46, 47]. For the
economic literature, see [29, 38]. Also note that Khan and Mitra [15] shares a similarity with
[40] as regards this feature of working without a specific analytical form of the OPF .
8The concluding remarks in [19] conjecture the shape of the optimal policy correspondence at
the threshold discount factor ρ = (1/ξ), to be G, described in their Eq. (23), and seen to be a
composite of the pan- and check-maps, and everything in between; also see Figs. 1 and 2 in this
paper.
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Fig. 1 The 2-sector RSS model in the borderline case (ξ−(1/ξ ))(1−d)=1 or aξ3 = (ξ2 − 1) or
(1−d)((d/a)+(1−d)2 )=(1/(1+ad))

In the first substantive section of the paper, Sect. 3, we show that for all values of
the discount factor less than the labor-output ratio9 a in the investment goods sector,

ρ < a = (1/(ξ + 1− d)) < (1/ξ), ξ > 1, 0 < d < 1, (1)

9Note that the use of the abbreviation “labor-output ratio” is ambiguous since there are two outputs
in the model; in this paper, we shall use it to refer to the labor required to produce a machine, the
labor/capital-output ratio, so to speak.
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Fig. 2 The 2-sector RSS model in the outside case (ξ − 1)(1−d)=1 or a(ξ2 − ξ + 1) = (ξ − 1)
or (1/a)−1 =(1−d)+(1−d)−1

the OPF is indeed given by the check-map.10 And once this information is
factored into the equation, we move, in the second substantive section of the paper,
beyond the specific instance of the two-sector RSS model analyzed in [15] for
turbulence, and give a rather complete treatment of both turbulence and period-three

10See [19] and earlier references for the straightforward details of the case when −1 < ξ ≤ 1.
The terminology check-map appears in [8, p. 46], but a detailed analysis goes back to [9], and
subsequently, in an optimal intertemporal context, to [11]. For a more recent numerical attempt
rooted in the RSS setting, but again without giving it an optimality underpinning, see [27]. It is
of interest that of the five figures in [31], none concern the check-map, though Figure 6.5 comes
closest to it.
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cycles. In particular, we can go beyond the parameter equality restriction in [15] to
show the existence of optimal topological chaos in an entire range of parametric
combinations. This is to say, to move from

[
1

1+ ad
− d(1− d)

a
= (1− d)3

]
to

[
1

1+ ad
− d(1− d)

a
≤ (1− d)3

]
.

On rewriting the above inequality somewhat more explicitly, we can now work with
the range given by11

(1− d)(
1

a
− ξ(1− d)) ≥ 1

1+ ad
⇐⇒

(
ξ − 1

ξ

)
(1− d) ≥ 1 ⇐⇒ a ≤ ξ2 − 1

ξ3

(T)

Technically conceived, using the same argument that the second iterate of the OPF
is turbulent, this simply generalizes the result in [15]. But knowing the OPF, we
can do more. We can show that the existence of a period-three cycle is guaranteed
by the following restrictions.

(1− d)(
1

a
− ξ(1− d)) ≥ 1 ⇐⇒ (ξ − 1)(1− d) ≥ 1 ⇐⇒ a ≤ ξ − 1

ξ2 − ξ + 1
= ξ2 − 1

ξ3 + 1
(PT)

Since we are working under the restriction that ξ is greater than unity, it is clear that
any of the inequalities in (PT ) imply the corresponding inequality in (T ). And so
in hindsight, it is clear that the particular restriction used in [15] is weaker than the
one ensuring period-three cycles; weaker in that turbulence of the second iterate of
the OPF is lower down in the Sharkovsky order than its period-three property.12

Put differently, given the continuity of the OPF, (PT ), being a sufficient condition
for the period-three cycle, ensures turbulence as well. The bottom line is that both
cases (turbulence and the period-three property) are very easy to describe once one
has the explicit form of the OPF. These results are presented in Sect. 4.

While these results provide robust parameter configurations for which the second
iterate of the OPF is turbulent, or the OPF satisfies the Li-Yorke condition, they

11The derivation of these formulae is relegated to the Appendix 8.1. The numbering (T ) and (P T )
is dictated by the words turbulence and period-three: as we shall see in the sequel, the specification
(T ), and guaranteeing turbulence actually places a weaker restriction on the parameters than the
specification (P T ), guaranteeing and optimal period-three cycle. It may also be worth pointing out
that already in 2005, the authors had shown the existence of an optimal program with period-three
cycles in another instance of the two-sector RSS model, in which the inequality is replaced by an
equality in (P T ).
12It comes after all the odd-period cycles greater than a single period, but before those of period-six
cycles; see [30] for extended discussion. It is also worth emphasizing here that (T ) is sufficient and
not a necessary condition for turbulence.
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also show that concrete restrictions on the parameters of the RSS model appear
to be involved in exhibiting such phenomena. The third substantive section of this
paper takes this as a point of departure, and turns to what, following the anything-
goes theorems of Sonnenschein-Mantel-Debreu, has come to be referred to as
the rationalizability theory.13 The basic rationale of this theory in terms of the
problematic at hand is a simple one: unlike the situation for the Arrow-Debreu-
McKenzie (ADM) model that involves the construction of an economy with a given
excess demand function, here one constructs here a single-agent, Gale-McKenzie
(GM) intertemporal optimization model with a policy function identical to a given
one; see [12, 25]. However, in the context of the GM model, one can ask sharper
questions, and furnish sharper answers. In particular, given that the discount factor
stands on its own in the GM model, one can focus on it, and ask for necessary
and sufficient conditions on its magnitude under which a given policy function
(the tent- or logistic map, for example) exhibiting period-three cycles, turbulence
of the second iterate of the policy function, or more generally positive topological
entropy, can be rationalized. In the literature, discount-factor restrictions associated
with such phenomena have been obtained in a variety of intertemporal allocation
models: these are the so-called “exact MNY discount-factor restrictions” of [28, 36]
which involve, in the context of the GM model, the golden number.14 The three
results reported in [48, Theorems 4.4–4.6] summarize the state of the art, though
substantial ongoing work continues; see [49] and his references. A key element
of the class of intertemporal allocation models studied in this context is that the
reduced form utility function exhibits (beyond the standard concavity assumption)
some form of strict concavity on its domain. The function might be required to be
strictly concave in both arguments, or at least in one of them (that is, either in the
initial stock or the terminal stock). The strict concavity requirement plays two roles.
It ensures the existence of an optimal policy function. But, in addition, it is seen to
be indispensable to the methods used to derive the discount-factor restrictions for
complicated optimal behavior.

With the OPC determined for a non-negligible range of discount factors, and
with topological chaos in the form of turbulence and period-three cycles robustly
identified, this work then prompts two sets of questions in the context of the two-
sector RSS model. First, do the existing theorems apply to the restricted setting
of the two-sector RSS model? and if not, are there reformulated counterparts of
these theorems that can be proved? The first question is easily answered. The point
is that even strict concavity of the felicity function does imply strict concavity of
the reduced-form utility function of the RSS model, and therefore discount-factor
restrictions for complicated optimal behavior in the RSS model, if any, will have
to be established by methods different from those employed in the literature. As

13For references to the Sonnenschein-Mantel-Debreu theorem, and for a recent survey of the
available theory that gives references to the pioneering papers, see [48].
14See for example [13, 22] for the fascinating career of the golden number; also the footnoted
epigraph.
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regards the second, one has to take into account the fact that the two-sector RSS
model cannot generate the maps (for example, the usual tent maps)that have been
used in the derivation of the (MNY) bound, and consider the bounds on the discount
factor that arise from the check-map.15 In particular, we show that ρ < (1/3)
implies that there exist (a, d) such that the RSS model (a, d, ρ) has an optimal
policy function which generates a period three cycle. Conversely, if the RSS model
(a, d, ρ) has an optimal policy function which generates a period three cycle, then
ρ < (1/2). Although not exact restrictions, it is quite remarkable how closely the
restriction on ρ on the sufficiency side compares with that on the necessity side.
Further, the restriction of ρ < (1/2) on the necessity side is really a very strong
discount-factor restriction for period-three optimal cycles to occur, since it involves
a discount rate of a 100%. Thus, “period three implies heavy discounting” turns out
to be a robust conclusion, valid for a broad class of intertemporal allocation models,
including the RSS model. In addition, we offer discount-factor restrictions arising
from optimal turbulence. We show that ρ being less than (

√
μ)3, where μ is the

golden-number (
√

5− 1)/2, implies that there exist (a, d) such that the RSS model
(a, d, ρ) has an optimal policy function whose second iterate exhibits turbulence.
Conversely, if the RSS model (a, d, ρ) has an optimal policy function whose second
iterate exhibits turbulence, then ρ < (1/2). These results are new, and even though
irreversible investment has been shown to bring in the role of depreciation of capital,
as in [35], we have been able to go further by exploiting the special structure of
the two-sector RSS model. These results are an important third contribution of the
paper, and constitute Sect. 6.

Indeed, given the rather specific technological structure—the toy-nature of the
two-sector RSS setting, so to speak—there is the obvious suggestion that it might be
possible to exploit this structure to make even further progress on this topic. The fact
that the model can be completely summarized by the two parameters (a, d), makes
it possible to address the problem of identifying technological restrictions involved
when the OPF generates, for instance, optimal turbulence or period-three cycles.
Because intertemporal allocation models are phrased in terms of a general convex
technology set, a similar exercise with respect to technological parameters has not
been attempted before, to the best of our knowledge. In any case, the results here are
especially satisfying. We provide an exact labor-output ratio (in the investment good
sector) restriction for period-three cycles in the two-sector RSS model of optimal
growth in the following sense. We show that if the labor-output ratio a < (1/3), then
there exist ρ ∈ (0, 1) and d ∈ (0, 1), such that the RSS model defined by (ρ, a, d)
has an optimal policy function, h, which generates a period-three cycle. Conversely,
we show that if there is an RSS model, defined by parameters (ρ, a, d),which has
an optimal policy function that generates a period-three cycle, then a < (1/3).
It is useful to note in this context that regardless of the value of the depreciation

15It is interesting that despite being sidelined by the tent-map and the logistic function in the earliest
economic applications, the check-map has been resiliently present from the very inception of the
work. Also see Footnote 8 and its references.
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factor, d, (and the value of the discount factor ρ) our result indicates that it is not
possible to have an optimal policy function generating period three cycles when
a ≥ (1/3). However, more to the point, we also supplement this result by showing
that condition (T ) above is necessary and sufficient for the optimal policy function
of the RSS model to exhibit optimal turbulence. These results are the important
fourth contribution of the paper, and constitute Sect. 5.

This extended introduction to the problem and the results obtained has already
outlined the paper to a substantial extent. In terms of a summary, after a brief
introduction to the two-sector RSS model in Sects. 2 and 3 establishes the OPF
under the restriction ρ < a, and with this pinned down, Sect. 4 turns to optimal
topological chaos formalized in terms of both turbulence and period-three cycles.
Subsequent parts of the paper turn to the parametric restrictions: Sect. 5 to exact
restrictions on the labor-output coefficient a, for optimal period-three cycles and
to (T) for optimal turbulence; and Sect. 6 to discount-factor restrictions, again in
the context of both optimal turbulence and period-three cycles. Section 7 concludes
the paper with open questions and complementary analyses that will be reported
elsewhere. The substantial technicalities of the paper lie in the proofs of the
necessity results, and their details are relegated to an Appendix so that they may
not interfere with the reader primarily interested in the substantive contribution of
this work.

2 The Two-Sector RSS Model

A single consumption good is produced by infinitely divisible labor and machines
with the further Leontief specification that a unit of labor and a unit of a machine
produce a unit of the consumption good. In the investment-goods sector, only labor
is required to produce machines, with a > 0 units of labor producing a single
machine. Machines depreciate at the rate 0 < d < 1. A constant amount of labor,
normalized to unity, is available in each time period t ∈ N, where N is the set of
non-negative integers. Thus, in the canonical formulation surveyed in [25, 26], the
collection of production plans (x, x ′), the amount x ′ of machines in the next period
(tomorrow) from the amount x available in the current period (today), is given by
the transition possibility set. Here it takes the specific form

� = {(x, x ′) ∈ R2+ : x ′ − (1− d)x ≥ 0 and a(x ′ − (1− d)x) ≤ 1},

where z ≡ (x ′ − (1 − d)x) is the number of machines that are produced, and
z ≥ 0 and az ≤ 1 respectively formalize constraints on the irreversibility of
investment and the use of labor. Associated with � is the transition correspondence,
� : R+ → R+, given by �(x) = {x ′ ∈ R+ : (x, x ′) ∈ �}. For any (x, x ′) ∈ �,

one can also consider the amount y of the machines available for the production of
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the consumption good, leading to a correspondence

� : � −→ R+ with �(x, x ′) = {y ∈ R+ : 0 ≤ y ≤ x and y ≤ 1−a(x ′−(1−d)x)}.

Welfare is derived only from the consumption good and is represented by a linear
function, normalized so that y units of the consumption good yields a welfare level
y. A reduced form utility function

u : �→ R+ with u(x, x ′) = max{y ∈ �(x, x ′)}

indicates the maximum welfare level that can be obtained today, if one starts with
x of machines today, and ends up with x ′ of machines tomorrow, where (x, x ′) ∈
�. Intertemporal preferences are represented by the present value of the stream of
welfare levels, using a discount factor ρ ∈ (0, 1).

A 2-sector RSS model G consists of a triple (a, d, ρ), and the following concepts
apply to it. A program from xo is a sequence {x(t), y(t)} such that x(0) = xo,

and for all t ∈ N, (x(t), x(t + 1)) ∈ � and y(t) = max�((x(t), x(t + 1)). A
program {x(t), y(t)} is simply a program from x(0), and associated with it is a
gross investment sequence {z(t+1)}, defined by z(t+1) = (x(t+1)− (1−d)x(t))
for all t ∈ N. It is easy to check that every program {x(t), y(t)} is bounded by
max{x(0), 1/ad} ≡ M(x(0)), and so

∑∞
t=0 ρ

tu(x(t), x(t + 1)) < ∞. A program
{x̄(t), ȳ(t)} from xo is called optimal if

∞∑
t=0

ρtu(x(t), x(t + 1)) ≤
∞∑
t=0

ρtu(x̄(t), x̄(t + 1))

for every program {x(t), y(t)} from xo. A program {x(t), y(t)} is called stationary
if for all t ∈ N, we have (x(t), y(t)) = (x(t + 1), y(t + 1)). A stationary optimal
program is a program that is stationary and optimal.

The parameter ξ = (1/a) − (1 − d) plays an important role in the subsequent
analysis. It represents the marginal rate of transformation of capital today into that
of tomorrow, given full employment of both factors. In what follows, and without
further mention, we always assume that the parameters (a, d) of the RSS model are
such that

ξ > 1 �⇒ a ∈ (0, 1). (2)

For more details, technical and bibliographic, the reader is referred to Khan-Mitra
[14] and its further elaboration in [15, 19]. For the basic geometric representation of
the model, see Figs. 1 and 2 also detailed in [16, 17] and their references.
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2.1 Constructs from Dynamic Programming

Using standard methods of dynamic programming, one can establish that there
exists an optimal program from every x ∈ X ≡ [0,∞), and then use it to define a
value function, V : X→ R by:

V (x) =
∞∑
t=0

ρtu(x̄(t), x̄(t + 1)), (3)

where {x̄(t), ȳ(t)} is an optimal program from x. Then, it is straightforward to check
that V is concave, non-decreasing and continuous on X. Further, it can be verified
that V is, in fact, increasing on X; see [14] for the verification.

It can be shown that for each x ∈ X, the Bellman equation

V (x) = max
x ′∈�(x)

{u(x, x ′)+ ρV (x ′)} (4)

holds. For each x ∈ X, we denote by h(x) the set of x ′ ∈ �(x) which maximize
{u(x, x ′)+ δV (x ′)} among all x ′ ∈ �(x). That is, for each x ∈ X,

h(x) = arg max
x ′∈�(x)

{u(x, x ′)+ ρV (x ′)}.

Then, a program {x(t), y(t)} from x ∈ X is an optimal program from x if and only
if it satisfies the equation

V (x(t)) = u(x(t), x(t + 1))+ δV (x(t + 1) for t ≥ 0;

that is, if and only if x(t + 1) ∈ h(x(t)) for t ≥ 0. We call h the optimal policy
correspondence (OPC). When this correspondence is a function, we refer to it as
the optimal policy function (OPF).

It is easy to verify, using ρ ∈ (0, 1), that the function V, defined by (3), is
the unique continuous function on Z ≡ [0, (1/ad)] which satisfies the functional
equation of dynamic programming, given by (4).

2.2 The Modified Golden Rule

A modified golden rule is a pair (x̂, p̂) ∈ R
2+ such that (x̂, x̂) ∈ � and

u(x̂, x̂)+ (ρ − 1)p̂x̂ ≥ u(x, x ′)+ p̂(ρx ′ − x) for all (x, x ′) ∈ �. (MGR)

The existence of a modified golden-rule has already been established in [16, 19]. We
reproduce that result here (without proof) for ready reference. A distinctive feature
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of our model is that we can describe the modified golden-rule stock explicitly in
terms of the parameters of the model, and that it is independent of the discount
factor.

Proposition 1 Define (x̂, p̂) = (1/(1+ ad), 1/(1+ρξ)). Then (x̂, x̂) ∈ �, where
x̂ is independent of ρ, and satisfies (MGR).

The connection between the value function and the modified golden-rule may be
noted as follows. Given a modified golden-rule (x̂, p̂) ∈ R

2+, we know that x̂ is a
stationary optimal stock (see, for example, [25, p. 1305]. Consequently, it is easy to
verify that V (x̂) = x̂/(1− ρ) and that

V (x)− p̂x ≤ V (x̂)− p̂x̂ for all x ≥ 0. (5)

On choosing x = x̂+ε,with ε > 0, in (5), and letting ε→ 0,we obtainV ′+(x̂) ≤ p̂,

and hence from (MGR),

V ′+(x̂) ≤ p̂ = 1/(1+ ρξ) < (a/ρ). (6)

2.3 A Failure of Strict Concavity

As emphasized in the introduction, a key element of the class of intertemporal
allocation models studied in the literature in the substantive context of this work
is that the reduced form utility function u exhibits some form of strict concavity
on its domain. As has been well-understood, this assumption fails in the RSS
model that we study here. We provide a formal argument for the reader new to
the model. Consider x, x̄ with 1 < x < x̄ < k, and (x ′, x̄ ′) = (1− d)(x, x̄). Then,
(x, x ′) ∈ �, and (x̄, x̄ ′) ∈ �, and u(x, x ′) = 1 = u(x̄, x̄ ′). One can now choose
x̃ = λx + (1 − λ)x̄ and x̃ ′ = λx ′ + (1 − λ)x̄ ′ with any λ ∈ (0, 1). Then, it is easy
to check that x̃ ′ = (1 − d)x̃, and (x̃, x̃ ′) ∈ �, and u(x̃, x̃ ′) = 1. Thus, while u
is concave on �, as noted above, it is not strictly concave in either the first or the
second argument.

2.4 Basic Properties of the OPC

The basic properties of the OPC, with no additional restrictions on the parameters
of our model, have already been described in [19]. We summarize these properties
below. This helps us to present an explicit solution of the optimal policy correspon-
dence in the next section.

To this end, we describe three regions of the state space; see Fig. 1.

A = [0, x̂], B = (x̂, k), C = [k,∞)
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where k = x̂/(1− d). In addition, we define a function, g : X→ X, by:

g(x) =
⎧⎨
⎩

(1− d)x for x ∈ C
x̂ for x ∈ B

(1/a)− ξx for x ∈ A

We refer to g as the pan-map, in view of the fact that its graph resembles a pan. In
Figs. 1 and 2, it is given by VGG1D.

We further subdivide the region B into two regions as follows:

D = (x̂, 1), E = [1, k)

and define a correspondence,G : X→ X, by:

G(x) =

⎧⎪⎪⎨
⎪⎪⎩

{(1− d)x} for x ∈ C
[(1− d)x, x̂] for x ∈ E
[(1/a)− ξx, x̂] for x ∈ D
{(1/a)− ξx} for x ∈ A

(7)

Proposition 2 The optimal policy correspondence, h, satisfies:

h(x) ⊂
{ {g(x)} for all x ∈ A ∪ C
G(x) for all x ∈ B (8)

It should be clear from this result that the only part of the optimal policy
correspondence for which we do not have an explicit solution is for the middle
region of stocks, given by B = (x̂, k) = D ∪ E; see Fig. 2.

Two useful implications of Proposition 2 are that (i) one must have positive
optimal consumption levels in all programs that start from positive capital stocks,
and (ii) the slope of the value function cannot exceed unity.

Corollary 1

(i) If {x(t), y(t)} is an optimal program from xo > 0, then y(0) > 0.
(ii) If 0 < z′ < z <∞, then

V (z)− V (z′)
z− z′

≤ 1 (9)

Proof To see (i), note that for xo ∈ (0, x̂], (8) implies that y(0) = xo > 0, while
for xo ∈ [k,∞), (8) implies that y(0) = 1. For xo ∈ (x̂, k), (8) implies that if
x ′ ∈ h(xo), then x ′ ≤ x̂, and this means that x̂ ∈ �(xo, x ′). Thus y(0) ≥ x̂ > 0.

To see (ii), pick any x > 0, and let {x(t), y(t)} be an optimal program from x >

0. Since y(0) > 0 by (i), we can choose 0 < x ′ < x, so that ε ≡ [x − x ′] < y(0),
and define ỹ(0) = y(0)− ε > 0.
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Note that x(1) ≥ (1− d)x(0) ≥ (1− d)x ′, and:

ỹ(0)+ a[x(1)− (1− d)x ′] = ỹ(0)+ a[x(1)− (1− d)x(0)] + a(1− d)ε

= ỹ(0)+ 1− y(0)+ a(1− d)ε

= 1− ε[1− a(1− d)] < 1,

so that (x ′, x(1)) ∈ � and ỹ(0) ∈ �(x ′, x(1)). Since V (x ′) is at least as large as the
sum of discounted utilities generated by the program (x ′, x(1), x(2), . . .), we have:

V (x)− V (x ′) ≤ [y(0)− ỹ(0)] = ε = (x − x ′).

This yields the desired bound on the slope of the value function, namely (V (x) −
V (x ′)/(x − x ′) ≤ 1. Since V is concave on R+, (9) follows. �

3 An Explicit Solution of the OPF

In this section we present an explicit solution of the optimal policy function when
the discount factor is smaller than the labor-output ratio in the investment good
sector. Specifically, we show that in this case, the map

H(x) =
{
(1/a)− ξx for x ∈ [0, 1]
(1− d)x for x ∈ (1,∞)

(10)

is the OPF. We refer to the map H as a check-map.16

Proposition 3 Suppose the RSS model (a, d, ρ) satisfies ρ < a. Then, its optimal
policy correspondence, h, is the function given by H in (10).

Proof Using Proposition 2, it is clear that we only need to show that H, given by
(10), is the OPF for x ∈ (x̂, k). To this end, let us define c : X→ X by:

c(x) =
{
x for x ∈ (x̂, 1)
1 for x ∈ [1, k)

Note thatH(x) ≥ (1−d)x > 0 and c(x) > 0 for all x ∈ (x̂, k).Also, for x ∈ (x̂, 1),
we have c(x) = x, and so

c(x)+a[H(x)−(1−d)x] = x+a[(1/a)−ξx−(1−d)x] = x+1−a(1/a)x = 1.

16See Footnote 8, and the text it footnotes.
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Thus, (x,H(x)) ∈ � and c(x) ∈ �(x,H(x)). For x ∈ [1, k), we have c(x) = 1,
and so

c(x)+ a[H(x)− (1− d)x] = 1+ a[(1− d)x − (1− d)x] = 1.

Thus, we have again (x,H(x)) ∈ � and c(x) ∈ �(x,H(x)).

Let {x(t), y(t)} be an optimal program from x > 0. We establish that x(1) =
H(x) for x ∈ (x̂, k). We know from Proposition 2 that x(1) ≥ H(x). So, it remains
to rule out x(1) > H(x). To this end we break up the verification into two parts
corresponding to the two ranges of x, namely, (i) x ∈ (x̂, 1) and (ii) x ∈ [1, k).

We begin with case (i). Suppose x(1) = H(x) + ε, where ε > 0. Note that
y(0) + a[x(1) − (1 − d)x] ≤ 1 = x + a[g(x) − (1 − d)x] so that y(0) ≤ x +
a[g(x)− x(1)] = x − aε. Using the optimality principle, we obtain

V (x) = y(0)+ ρV (x(1)) ≤ x − aε + ρ[V (x(1))− V (H(x))] + ρV (H(x))

≤ x − aε + ρε + ρV (H(x)) < x + ρV (H(x)), (11)

the second inequality following from Corollary 1, and the last inequality following
from the fact that ρ < a and ε > 0. But, since (x,H(x)) ∈ � and c(x) = x ∈
�(x,H(x)), we must have V (x) ≥ x + ρV (H(x)), which contradicts (11).

Next we turn to case (ii). Suppose x(1) = H(x)+ ε, where ε > 0. Note that

y(0)+ a[x(1)− (1− d)x] = [y(0)− 1] + 1+ a[H(x)+ ε − (1− d)x]
= [y(0)− 1+ aε] + 1,

so that y(0) ≤ 1− aε. Using the optimality principle,

V (x) = y(0)+ ρV (x(1)) ≤ 1− aε + ρ[V (x(1))− V (H(x))] + ρV (H(x))

≤ 1− aε + ρε + ρV (H(x)) < 1+ ρV (H(x)), (12)

the second inequality following from an analogue of Corollary 1, and the last
inequality following from the fact that ρ < a and ε > 0. But, since (x,H(x)) ∈ �
and c(x) = 1 ∈ �(x,H(x)), we must have V (x) ≥ 1 + ρV (H(x)), which
contradicts (12). �
Remark Our sufficient condition (ρ < a) for an explicit solution of the OPF as
the check map (given by (10)) does not directly involve the depreciation factor, d. In
view of this, one should not expect this sufficient condition to be a sharp one, even
for the instances delineated in (T ) and (PT ) above. In particular, it has already been
established in [16, 17] that for the case ξ ≤ 1/(1− d), the optimal policy function
is the check map whenever ρ < (1/ξ). Since (1/ξ) = (a/(1− a(1− d)) > a, this
shows that when ξ ≤ 1/(1−d), theOPF is the check-map even for ρ ∈ (a, (1/ξ)).
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4 Optimal Topological Chaos

With the optimal policy function explicitly determined (albeit in the specific case
of the discount factor ρ being less than the labor-output coefficient a), we can
provide robust sets of parameter configurations for which (1) the second iterate of
the optimal policy function exhibits turbulence, and (2) the optimal policy function
satisfies the Li-Yorke condition. The set of parameter configurations for which
(1) holds (stated in (T ) above) generalizes the result obtained in [15]. The set
of parameter configurations for which (2) holds (stated in (PT ) above is clearly
stronger than (T ). Both sets of parameter configurations ensure that the optimal
policy function exhibits topological chaos.

We recall a few definitions relating to the concepts appearing in the previous
paragraph. Let X be a compact interval of the reals R, and f a continuous function
from X to itself. The pair (X, f ) is said to be a dynamical system with state space
X and law of motion f. A dynamical system (X, f ) is said to be turbulent if there
exist points a, b, c in X such that

f (b) = f (a) = a, f (c) = b, and either a < c < b or a > c > b

(see Fig. 3). It satisfies the Li-Yorke condition if there exists x∗ ∈ X such that

f 3(x∗) ≤ x∗ < f (x∗) < f 2(x∗) or f 3(x∗) ≥ x∗ > f (x∗) > f 2(x∗).

The topological entropy of a dynamical system (X, f ) is denoted by ψ(X, f ), and
the dynamical system itself is said to exhibit topological chaos if its topological
entropy is positive.

Proposition 4 Suppose the RSS model (a, d, ρ) satisfies ρ < a, and (T ) above.
Then, the optimal policy correspondence, h, is the function given by H in (10), and
h2 is turbulent.

Proof The proof naturally splits up into three parts. The first part involves verifying
that

H 2(1) ≥ k ⇐⇒
[
ξ − 1

ξ

]
(1− d) ≥ 1

where H is the check map, given by (10), and the right hand side of the implication
is (T ). The second part involves showing that, when (T ) is satisfied, f is turbulent,
where f (x) = H 2(x) for all x ∈ R+. The third part is to observe that when we
combine these two parts with Proposition 3 we can conclude that when ρ < a,

and (T ) holds, then the optimal policy correspondence h is a function, given by the
check map H, and h2 is turbulent.
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Fig. 3 Turbulence of f(.)
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f(a) = a = f(b), f(c) = b, xt+1 = f(xt)

For the first part, let us define the closed intervals (see Fig. 1),

J1 = [1− d, x̂]; J2 = [x̂, 1]; J3 = [1, k],

and denote H 2(1) by k′. Denote the length of the interval J2 by θ. Notice that H
maps J2 onto J1, and the relevant slope for this domain is (−ξ), so that the length
of J1 is ξθ. Further, H maps J3 onto J1, and the relevant slope for this domain is
(1− d), so that the length of J3 = ξθ/(1− d). Thus, the length of J2 ∪ J3 = [x̂, k]
is {θ + [ξθ/(1− d)]}. On the other hand, H maps J1 onto [x̂, k′], and the relevant
slope for this domain is (−ξ), so that k′ > x̂, and [k′ − x̂] = ξ2θ. Thus, we obtain

k′ ≥ k ⇐⇒ ξ2 ≥ 1+ ξ

(1− d)
. (13)

One can rewrite the right-hand inequality in (13) as

1 ≥ 1

ξ2 +
1

ξ(1− d)
= 1

ξ

[
1

ξ
+ 1

(1− d)

]
,
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which is equivalent to

ξ ≥
[

1

ξ
+ 1

(1− d)

]
⇐⇒

(
ξ − 1

ξ

)
(1− d) ≥ 1 ⇐⇒ (T ),

thereby completing the first part of the demonstration.
For the second part, note that when (T ) holds, we have H 2(1) ≥ k, while

H 2(x̂) = x̂ < k. Thus, by continuity of H, there is z ∈ (x̂, 1] such that H 2(z) = k.

Defining F(x) = H 2(x) for all x ∈ R+, we obtain F(z) = k, F (k) = x̂ = F(x̂)

and x̂ < z < k. This implies that the function F is turbulent (see [4, p. 25]).
For the third part, assume that ρ < a. Then, by Proposition 3, the optimal policy

correspondence h is a function, given by the check map H. If in addition (T ) holds,
then h2 = H 2 is turbulent. �
Remark When h2 is turbulent h2 has periodic points of all periods (see [4, Lemma 3,
p. 26]). In particular, h2 has a period three point, and so h has a period six point. The
fact that h2 is turbulent implies that the topological entropy of h2 , ψ(h2) ≥ ln 2.
This in turn implies that the topological entropy of h,ψ(h) = (1/2)ψ(h2) ≥ ln

√
2

> 0, so that h exhibits topological chaos.

Proposition 5 Suppose the RSS model (a, d, ρ) satisfies ρ < a, and (PT ) above.
Then, the optimal policy correspondence, h, is the function given by H in (10), and
h satisfies the Li-Yorke condition.

Proof The proof again naturally splits up into three parts. The first part involves
verifying that

H 2(1) ≥ 1

1− d
⇐⇒ [ξ − 1] (1− d) ≥ 1,

where H is the check map, given by (10), and the right hand side of the implication
is (PT ). The second part involves showing that, when (PT) is satisfied, H satisfies
the Li-Yorke condition. The third part is to observe that when we combine these two
parts with Proposition 3 we can conclude that when ρ < a, and (PT ) holds, then
the optimal policy correspondence h is a function, given by the check map H, and
h satisfies the Li-Yorke condition.

For the first part, let us define the closed intervals (mark on Fig. 2),

I1 = [1− d, x̂]; I2 = [x̂, 1]; I3 = [1, k̃],

where k̃ = [1/(1 − d)] > k,and denote H 2(1) by k′′. Denote the length of the
interval I2 by θ. Notice that H maps I2 onto I1, and the relevant slope for this
domain is (−ξ), so that the length of I1 is ξθ. Further,H maps I3 onto [1− d, 1] =
I1 ∪ I2, and the relevant slope for this domain is (1 − d), so that the length of
I3 = (ξ + 1)θ/(1− d).On the other hand, H maps I1 onto [x̂, k′′], and the relevant
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slope for this domain is (−ξ), so that k′′ > x̂, and [k′′ − x̂] = ξ2θ. Thus, we obtain

k′′ ≥ k̃ ⇐⇒ ξ2 ≥ 1+ ξ + 1

(1− d)
(14)

One can rewrite the right-hand inequality in (14) as

ξ2 − 1 ≥ ξ + 1

(1− d)
⇐⇒ (ξ − 1)(1− d) ≥ 1 ⇐⇒ (PT ),

thereby completing the first part of our demonstration.
For the second part, note that we have H(k̃) = (1− d)k̃ = 1 < k̃, and H 2(k̃) =

H(1) = (1−d) < H(k̃). Thus, when (PT) holds,H 3(k̃) = H 2(1) ≥ [1/(1−d)] =
k̃, and Thus, we obtain

H 3(k̃) ≥ k̃ > H(k̃) > H 2(k̃),

which clearly means that the Li-Yorke condition is satisfied.
For the third part, assume that ρ < a.Then, by Proposition 3, the optimal policy

correspondence h is a function, given by the check mapH. If in addition (PT) holds,
then h = H satisfies the Li-Yorke condition. �
Remark When h satisfies the Li-Yorke condition, h has periodic points of all
periods; see [21]. In particular, h has a period three point. The fact that h has
a period three point implies by a result of [5] that the topological entropy of h ,
ψ(h) ≥ ln[(√5 +1)/2] > 0, so that h exhibits topological chaos.

5 Technological Restrictions for Optimal Topological Chaos

We present “necessary and sufficient” conditions on technology, the so-called
technological restrictions, for optimal topological chaos conceived as optimal
period-three cycles and as optimal turbulence.

5.1 Technological Restrictions for Optimal Period-Three
Cycles

We begin with the sufficiency result.

Proposition 6 Let 0 < a < (1/3). Then, there exist ρ ∈ (0, 1) and d ∈ (0, 1)
such that the two-sector RSS model with parameters (ρ, a, d) has an optimal policy
function, h, which generates a period-three cycle.
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Proof Given 0 < a < (1/3), choose any ρ ∈ (0, a). Then, since ρ < a, the
analysis presented in Sect. 3 implies that for every d ∈ (0, 1), the two-sector RSS
model with parameters (ρ, a, d) has an optimal policy function, h, given by the
check map, H.

We now proceed to choose d ∈ (0, 1) such that the optimal policy function h

exhibits a period-three cycle. Towards this end, define a function f : [0, 1] → R by

f (z) = (1− z)3 + [z(1− z)/a],

and observe the following:

f (0) = 1, f (1) = 0 and f ′(z) = −3(1− z)2 + (1/a)(1− 2z).

Since a ∈ (0, (1/3)) guarantees that f ′(0) = −3 + (1/a) > 0, we have, for
z positive and close enough to 0, f (z) > 1. Since f (1) < 1, we can appeal
to the intermediate value theorem, to assert the existence of d ∈ (0, 1) for which
f (d) = 1. This means that the RSS model with parameters (ρ, a, d) satisfies:

(1− d)3 + [d(1− d)/a] = 1. (15)

Since the RSS model (ρ, a, d) has the optimal policy function h = H, (15) implies

h2(1) = H 2(1) ≡ (1− d)2 + (d/a) = [1/(1− d)].

Since H [1/(1 − d)] = 1, we have h3(1) = h(h2(1)) = 1, and we obtain the
period-three cycle

h(1) = 1− d, h2(1) = [1/(1− d)], h3(1) = 1. �

Next, we turn to the necessity result

Proposition 7 Let (ρ, a, d) be the parameters of a two-sector RSS model such that
there is an optimal policy function h which generates a period-three cycle from some
initial stock. Then a < (1/3).

Proof Denote the optimal policy function by h, and the period-three cycle stocks
by α, β, γ . Without loss of generality we may suppose that α < β < γ. There are
then two possibilities to consider: (1) β = h(α), (2) γ = h(α).

In case (i), we must have α ∈ A, and α = x̂ since β > α. Consequently,
β = (1/a)− ξα, and γ = h(α). Thus, we must have γ = h(β), and since γ > β,

we must have β ∈ A. But, since β = (1/a)− ξα with α ∈ A, α = x̂, we must have
β ∈ B ∪ C, a contradiction. Thus, case (i) cannot occur.

Thus case (ii) must occur. In this case, since γ > α, we must have α ∈ A,

and α = x̂. Consequently, γ = (1/a) − ξα, and β = h(α). Thus, we must have
β = h(γ ); it also follows that we must have α = h(β). Since β < γ, we must have
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γ ∈ B ∪ C; similarly, since α < β, we must have β ∈ B ∪ C. Also, note that β
cannot be x̂ or k, and similarly γ cannot be x̂ or k.

We claim now that γ > k. For if γ ≤ k, then, we must have x̂ < β < γ < k.

But, then, γ ∈ (x̂, k), and so β = h(γ ) implies by (8) that β ≤ x̂. Since β = x̂, we
must have β ∈ A, a contradiction. Thus, the claim that γ > k is established. But,
then, by (8), we can infer that β = (1− d)γ .

We claim, next, that β ∈ (x̂, k). Since β ∈ B ∪ C, and β cannot be x̂ or k,
we must have β > k if the claim is false. But, then, by (8), we can infer that α =
(1 − d)β > x̂, a contradiction, since α ∈ A. Thus, our claim that β ∈ (x̂, k) is
established.

Since β ∈ (x̂, k) and α = h(β), we can infer from (8) that α ≥ (1 − d). To
summarize our findings so far, we have:

(i) γ > k > β > x̂ > α ≥ (1− d) and (ii) γ = (1/a)− ξα, β = (1− d)γ,

(16)

from which we can infer that

γ = (1/a)− ξα ≤ (1/a)− ξ(1− d) and β = (1− d)γ ≤ [(1− d)/a] − ξ(1− d)2.

On simplifying the right-hand side of the inequality for β, we obtain the important
inequality

β ≤ [d(1− d)/a] + (1− d)3. (17)

Now suppose that contrary to the assertion of the Proposition, we have a ≥ (1/3).
Then we can appeal to Lemma 1 in the Appendix to conclude that

β ≤ [d(1− d)/a] + (1− d)3 < 1. (18)

Clearly, (18) implies that β ∈ (x̂, 1). Thus, by (8), α = h(β) ≥ (1/a)− ξβ, while
x̂ = (1/a)− ξ x̂, so that

(x̂ − α) ≤ ξ(β − x̂). (19)

Using (16)(ii), we have (β − x̂) = (1 − d)(γ − k) ≤ (1 − d)(γ − x̂). Also, using
(16)(i), we have (γ − x̂) = ξ(x̂ − α), so that

(β − x̂) ≤ ξ(1− d)(x̂ − α). (20)

Combining (19) and (20) yields

ξ2(1− d) ≥ 1. (21)
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We now use (18) in conjunction with (21) to complete the argument. Since β ∈
(x̂, 1), (8) yields α = h(β) ≥ [(1/a)− ξβ] and

γ = (1/a)− ξα �⇒ γ ≤ (1− ξ)(1/a)+ ξ2β.

Finally, since β = (1− d)γ, the above inequality for γ implies

β ≤ (1−d)(1−ξ)(1/a)+(1−d)ξ2β �⇒ (ξ2(1−d)−1)β ≥ (ξ−1)(1−d)(1/a).

By (1) and the specification of the two-sector RSS model, the left hand side cannot
be zero. And so by (21), it is positive. On appealing to the identities presented as
Lemmas 2 and 3, we conclude that β ≥ 1, and contradict (18), establishing the
Proposition. �

5.2 Technological Restrictions for Optimal Turbulence

We look at technological restrictions on the RSS model when complicated behavior
takes the form of the second iterate of the optimal policy function exhibiting
turbulence.

Proposition 8 (i) Let (a, d) be such that (T ) holds. Then, there exist ρ ∈ (0, 1)
such that the two-sector RSS model with parameters (ρ, a, d) has an optimal
policy function, h, whose second iterate exhibits turbulence. (ii) Let (ρ, a, d) be the
parameters of a two-sector RSS model such that there is an optimal policy function
h whose second iterate exhibits turbulence. Then (T ) holds.

Proof We provide a proof of part (i) of the proposition and relegate the proof of
part (ii) to the Appendix. Towards this end, given (a, d) satisfying (T ), choose any
ρ ∈ (0, a). Then, since ρ < a, the analysis presented in Sect. 3 implies that the
two-sector RSS model with parameters (ρ, a, d) has an optimal policy function, h,
given by the check map, H. Then, by Proposition 4, h2 exhibits turbulence. �

6 Discount-Factor Restrictions for Optimal Topological
Chaos

We present “necessary and sufficient” conditions on the discount factor, the so-
called discount-factor restrictions, for optimal topological chaos conceived as
optimal period-three cycles and as optimal turbulence. These conditions are not
exact in the sense that they are for the technological restrictions presented in Sect. 5.
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6.1 Discount-Factor Restrictions for Optimal Period-Three
Cycles

As in Sect. 5, we begin with period-three cycles and then turn to turbulence.

Proposition 9 (i) Let 0 < ρ < (1/3). Then, there exist a ∈ (0, 1) and d ∈ (0, 1)
such that the two-sector RSS model with parameters (ρ, a, d) has an optimal
policy function, h, which generates a period-three cycle. (ii) Let (ρ, a, d) be the
parameters of a two-sector RSS model such that there is an optimal policy function
h which generates a period-three cycle from some initial stock. Then ρ < (1/2).

Proof We begin with the proof of (i). Given ρ ∈ (0, 1/3), pick a ∈ (ρ, 1/3), and
choose d ∈ (0, 1) such that condition (PT ) is satisfied. Towards this end, define a
function f : [0, 1] → R by:

f (z) = (1− z)3 + [z(1− z)/a],

and observe the following

f (0) = 1, f (1) = 0 and f ′(z) = −3(1− z)2 + (1/a)(1− 2z).

Since a ∈ (0, (1/3)) guarantees that f ′(0) = −3 + (1/a) > 0, we have, for
z positive and close enough to 0, f (z) > 1. Since f (1) < 1, we can appeal
to the intermediate value theorem, to assert the existence of d ∈ (0, 1) for which
f (d) = 1. This means that the RSS model with parameters (a, d) satisfies

(1− d)3 + [d(1− d)/a] = 1 (22)

Using (22), we obtain:

(d/a)+ (1− d)2 = H 2(1) = [1/(1− d)]

so that by the equivalence in the proof of Proposition 5, we obtain (ξ−1)(1−d) = 1,
and ensure that (PT ) is satisfied. Since ρ < a, the analysis presented in Sect. 3
implies that the two-sector RSS model with parameters (ρ, a, d) has an optimal
policy function, h, given by the check map, H. Then, by Proposition 5, h satisfies
the Li-Yorke Condition, and therefore h has a period-three cycle.

Next we turn to the proof of (ii). Towards this end, we claim that ρξ ≤ 1. Suppose
to the contrary, we have ρξ > 1. Then, the RSS model (a, d, ρ) has an optimal
policy function, h, given by the pan map. Since the OPF generates a period-three
cycle, let us denote the cycle by α, β, γ, and without loss of generality suppose that
α < β < γ. Clearly, none of these values can be equal to x̂.

We have either (a) h(α) = β, or (b) h(α) = γ. In case (a), noting that β > α,

we must have α ∈ A. In this case, since α = x̂, β ∈ B ∪ C. Since h(α) = β, we
must have h(β) = γ ; and, since γ > β, we must have β ∈ A, a contradiction.
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Thus, (a) cannot occur. In case (b), we must have h(γ ) = β and so h(β) = α. Since
h(α) = γ and γ > α, we must have α ∈ A, and since α = x̂, γ ∈ B ∪ C. But
since h is a pan map, we must have h(γ ) ≥ x̂; that is β ≥ x̂. Thus, since β = x̂,

β ∈ B ∪ C as well, and h(β) ≥ x̂; that is, α ≥ x̂. Since α ∈ A, we must then have
α = x̂, a contradiction. Thus, case (b) cannot occur, and this establishes our claim.

Proposition 7 guarantees that (PT ) holds, thereby implying

(ξ − 1)(1− d) ≥ 1 ⇐⇒ ξ ≥ 1+ 1

(1− d)
> 2,

and furnishing the required conclusion that ρ < (1/2). �

6.2 Discount-Factor Restrictions for Optimal Turbulence

We show that if ρ < μ3/2, then there exist (a, d), such that the RSS model (a, d, ρ)
has an optimal policy function whose second iterate exhibits turbulence. Conversely,
if the RSS model (a, d, ρ) has an optimal policy function whose second iterate
exhibits turbulence, then ρ < μ. Here μ is given by:

μ =
√

5− 1

2

Proposition 10 (i) Let 0 < ρ < μ3/2. Then, there exist a ∈ (0, 1) and d ∈ (0, 1)
such that the two-sector RSS model with parameters (ρ, a, d) has an optimal
policy function, h, whose second iterate exhibits turbulence. (ii) Let (ρ, a, d) be the
parameters of a two-sector RSS model such that there is an optimal policy function
h whose second iterate exhibits turbulence. Then, ρ < μ.

Proof We begin with the proof of (i). Towards this end, consider the quadratic
equation

g(x) ≡ x2 − x − 1 = 0,

with its two roots given by x = (1 ± √5)/2, and the positive root denoted by R.
Since g(0) = −1, g(R) = 0, we obtain for all x > R, x2 − 1 > x which implies
(x−(1/x)) > 1.Hence for any ξ > R, we can find d(ξ) ∈ (0, 1), and subsequently
a(ξ) ∈ (0, 1) such that

(ξ − 1

ξ
)(1− d(ξ)) = 1 and

1

a(ξ)
= ξ + (1− d(ξ)). (23)
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We now simplify the notation by setting (a(ξ), d(ξ)) ≡ (a, d), and obtain

(i) ξ = (1/a)− (1− d) and (ii) (ξ − 1

ξ
)(1− d) = 1.

and, furthermore, ξ > R.

Since g(R) = 0, we obtain R(R2 − R − 1) = 0, and hence R3 = R2 + R =
R(R + 1). Since μR = [(√5− 1)/2][(√5+ 1)/2] = 1, we obtain

μ3/2 =
√
μ3 =

√
1

R3 =
√

1

R(R + 1)
.

Now for ξ > R, as ξ → R, we have by (23) that d(ξ)→ 0, and a(ξ)→ 1/(1+R).
Thus, given 0 < ρ < μ3/2, we can choose ξ > R with ξ sufficiently close to R, so
that

ρ <

√
a(ξ)

ξ

Then, for the economy (a, d, ρ) ≡ (a(ξ), d(ξ), ρ), we have by the above
construction and Lemma 1 in the Appendix that the optimal policy function, h,
coincides with the check map H. Further, by the Proposition in Sect. 5, h2 exhibits
turbulence.

Next, we turn to the proof of (ii). Towards this end, we claim that ρξ ≤ 1.
Suppose to the contrary that ρξ > 1. Then, the RSS model (a, d, ρ) has an optimal
policy function, h, given by the pan map. Since the second iterate of the OPF

exhibits turbulence, there exist a, b, c ∈ X such that

h2(b) = h2(a) = a, h2(c) = b, and either (I) a < c < b or (II) a > c > b.

Consider the possibility (I). Either we have (a) a ≤ x̂, or (b) a > x̂. If (a)
holds, then h(a) ≥ x̂, and since h is the pan map, h2(a) ≥ x̂. But this means
a = h2(a) ≥ x̂. Thus a = x̂, and h2(b) = a = x̂. Since b > a = x̂, we have
h(b) ≥ x̂. Since h(h(b)) = x̂, we must have x̂ ≤ h(b) ≤ k. Since x̂ = a < c < b,

and h is the pan map, x̂ ≤ h(c) ≤ h(b). Thus h2(c) = h(h(c)) = x̂ also. But this
contradicts the fact that h2(c) = b > a = x̂. In case (b), we have b > c > a > x̂.

Then, since h is the pan map, and b > c, we have a = h2(b) ≥ h2(c) = b, a
contradiction.

A similar argument establishes a contradiction when possibility (II) occurs, and
thereby establishes the claim.

Proposition 8(ii) ensures that (T ) is satisfied. Define F : R → R by F(x) =
x2 − mx − 1, where m = [1/(1 − d)]. Clearly F(0) = −1, and F(x) → ∞
as x → ±∞. Thus, F(x) = 0 has a negative root and a positive root. The unique
positive root of F(x) = 0 is given by x ′ = (

√
m2 + 4+m)/2, and thus by continuity
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of F, we have F(x) ≥ 0 ⇔ x ≥ x ′. But (T ) implies that F(ξ) ≥ 0, and so, using
the fact that x ≥ x ′, we obtain ξ ≥ x ′ > (

√
5+ 1)/2. Given the claim ρξ ≤ 1, this

yields,

ρ ≤ (1/ξ) <

√
5− 1

2
= μ. �

7 Concluding Remarks

We end the paper with two concluding remarks. First, in focusing on the magnitude
of the labor-output ratio, a, in the investment good sector (a key technological
parameter), our exercise might be seen as neglecting the role of other technological
parameters of the two-sector RSS model: the marginal rate of transformation ξ,

and the rate of depreciation d. This is certainly the case, and a similar exercise
focusing on complementary restrictions in force for the other two parameters, and
especially on the depreciation factor, would be extremely valuable. We hope to turn
to it in future work. Second, our focus has been exclusively on topological chaos
represented by period-three cycles and turbulence, and it would be interesting to
consider other representations such as potential necessary and sufficient conditions
for optimal period-six cycles, for example, and then to go beyond them to the
consideration of ergodic chaos. The point is that these parametric restrictions are
important in that they give precise quantitative magnitudes when turnpike theorems
and those relating to asymptotic convergence do not hold; see [1, 26] for such
theorems in both the deterministic and stochastic settings. More generally, as argued
in [42, 43], and earlier in [8, 9], these questions have relevance for macroeconomic
dynamics, and we hope to turn to them in future work.

Appendix

This appendix collects a medley of results with the principal motivation that they
do not interrupt and hinder a substantive reading of the results reported in the text
above. The technical difficulty of the results resides principally in what could be
referred to as the “necessity theory,” which is to say, the proofs of Propositions 7
and 8(ii). The argument for the former can be furnished in a fairly straightforward
way if some basic identities, routine but important, are taken out of the way. These
identities are gathered here as Lemmas 1–3. The proof of Proposition 8(ii) is long
and involved, with a determined verification of a variety of cases. This verification
draws on results on the OPF that have not been reported before: (1) a monotone
property, and (2) a straight-down-the-turnpike property. These are presented as
Lemmas 4–8. The proof also draws on an unpublished result on the OPF that we
reproduce for the reader’s convenience: this reported as Lemma 9.
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Lemmata for the Proof of Proposition 7

We state with their proofs the three lemmata utilized in the proof of Proposition 7.

Lemma 1 If a ≥ 1/3, then [d(1− d)/a] + (1− d)3 < 1.

Proof Define f : [0, 1] → R, f (z) = [z(1 − z)/a] + (1 − z)3, and note that
Taylor’s expansion for f around z ∈ (0, 1), for some z̄ ∈ [0, z], is given by

f (z) = f (0)+ f ′(0)z+ (1/2)f ′′(0)z2 + (1/6)f ′′′(z̄)z3.

Observe that f (0) = 1, f (1) = 0, and that f ′(z) = −3(1 − z)2 + (1/a)(1 −
2z), f ′′(z) = 6(1 − z) − (2/a), f ′′′(z) = −6. On factoring the information
f ′(0) = −3+ (1/a) and f ′′(0) = 6− (2/a), into Taylor’s expansion yields

f (z) = 1+ [−3+ (1/a)]z+ (1/2)[6− (2/a)]z2 + (1/6)(−6)z3, (24)

and furnishes for all z ∈ (0, 1),

[−3+(1/a)]z+(1/2)[6−(2/a)]z2 = [−3+(1/a)](z−z2) = [−3+(1/a)]z(1−z) ≤ 0.

Using this information in (24), we obtain

f (z) ≤ 1− z3 < 1 for all z ∈ (0, 1),

which completes the proof. �
Next we turn to two useful identities.

Lemma 2 [d(1− d)/a] + (1− d)3 = (1− d)[ξ − (ξ − 1)(1− d)].
Proof The right hand side equals

(1− d)[ξ − (ξ − 1)+ d(ξ − 1)] = (1− d)[1+ d(ξ − 1)] = (1− d)[1+ d(
1

a
− (1− d)− 1]

= (1− d)[d
a
+ 1− d(1− d)− d]

= (1− d)[d
a
+ (1− d)2] = [d(1− d)/a] + (1− d)3 �

Lemma 3 (ξ − 1)(1− d)/a = (ξ2(1− d)− 1)+ 1− ([d(1− d)/a] + (1− d)3.

Proof The left hand side equals

(ξ − 1)(1− d)(ξ + (1− d)) = (ξ − 1)(1− d)2 + ξ(ξ − 1)(1− d)

= (ξ − 1)(1− d)2 + ξ2(1− d)− ξ(1− d)
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= [ξ2(1− d)− 1] + 1− (1− d)[ξ − (ξ − 1)(1− d)]
= [ξ2(1− d)− 1] + 1− ([d(1− d)/a] + (1− d)3),

the last equality following from Lemma 2. �

Lemmata for the Proof of Proposition 8(ii)

A Monotone Property

We present a monotone property of the OPF as a consequence of argumentation in
[10], and first appealed to in the context of the two-sector RSS model in [18].

Lemma 4 For x ∈ E, the optimal policy function is monotone non-decreasing.

Proof Let x(0) and x ′(0) belong to E, with x ′(0) > x(0). Let {x(t)} be the optimal
program from x(0) and let {x ′(t)} be the optimal program from x ′(0). Denote
h(x(0)) by x(1) and h(x ′(0)) by x ′(1).We want to show that x ′(1) ≥ x(1). Suppose,
on the contrary,

x ′(1) < x(1) (25)

Following [10], we now construct two alternative programs. The first goes from
x(0) to x ′(1) and then follows the optimal program from x ′(1); the second goes from
x ′(0) to x(1) and then follows the optimal program from x(1). A crucial aspect of
this technique in the current context (given the various production constraints) is
that one be able to go from x(0) to x ′(1), and from x ′(0) to x(1). That is, one needs
to show that (x(0), x ′(1)) ∈ � and (x ′(0), x(1)) ∈ �.

We first check that (x(0), x ′(1)) ∈ �. Note that the irreversibility constraint is
satisfied, since x ′(1) ≥ (1− d)x ′(0) > (1− d)x(0). Further, using (25), we have

a[x ′(1)− (1− d)x(0)] < a[x(1)− (1− d)x(0)] ≤ 1

so that the labor constraint is satisfied if

ȳ = 1− a[x ′(1)− (1− d)x(0)] > 1− a[x(1)− (1− d)x(0)] = y(0) ≥ 0

is the amount of labor devoted to the production of the consumption good. Finally,
the capital constraint is satisfied, since ȳ ≤ 1 ≤ x(0), since x(0) ∈ E, the set E as
in Fig. 2.

Next, we check that (x ′(0), x(1)) ∈ �. Note that the irreversibility constraint is
satisfied, since (by using (25)), we have x(1) > x ′(1) ≥ (1−d)x ′(0). Further, since
x ′(0) > x(0),

a[x(1)− (1− d)x ′(0)] < a[x(1)− (1− d)x(0)] ≤ 1



akhan@jhu.edu

Complicated RSS Dynamics 137

so that the labor constraint is satisfied if

ỹ = 1− a[x(1)− (1− d)x ′(0)] > 1− a[x(1)− (1− d)x(0)] = y ′(0) ≥ 0

is the amount of labor devoted to the production of the consumption good. Finally,
the capital constraint is satisfied, since

ỹ = 1− ax(1)+ a(1− d)x ′(0) < 1− ax ′(1)+ a(1− d)x ′(0) = y ′(0) ≤ x ′(0),

the strict inequality following from (25).
We can now present a self-contained exposition utilizing the techniques of [10].

First, from the definition of the OPF, we obtain

V (x(0)) = y(0)+ ρV (x(1)) and V (x ′(0)) = y ′(0)+ ρV (x ′(1)). (26)

Second, by the principle of optimality, we have

V (x(0)) ≥ ȳ + ρV (x ′(1)) and V (x ′(0)) ≥ ỹ + ρV (x(1)).

In fact, if V (x(0)) = ȳ + ρV (x ′(1)), then (x(0), x ′(1), x ′(2), . . .) would be an
optimal program from x(0). Since (25) holds, and (x(0), x(1), x(2), . . .) is an
optimal program from x(0), this would contradict the fact that an optimal policy
function exists. Thus, we must have V (x(0)) > ȳ+ρV (x ′(1)). For similar reasons,
V (x ′(0)) > ỹ + ρV (x(1)). This is to say

V (x(0)) > ȳ + ρV (x ′(1)) and V (x ′(0)) > ỹ + ρV (x(1)). (27)

Clearly, (26) and (27) yield the inequality y(0)+ y ′(0) > ȳ+ ỹ. However, note that

ȳ + ỹ = 1− a[x ′(1)− (1− d)x(0)] + 1− a[x(1)− (1− d)x ′(0)] > y(0)+ y ′(0),

which furnishes a contradiction, and establishes the claim. �
It will be noted that the only place we make use of the fact that x(0) ∈ E is in

checking that ȳ ≤ x(0).Thus, if one can verify that this inequality holds, the optimal
policy function can be shown to be monotone non-decreasing on an extended
domain. The next result exploits this idea, and establishes a “local” monotonicity
property of the OPF.

Lemma 5 Suppose x∗ ∈ B, and h(x∗) > (1/a)− ξx∗, then there is ε > 0, such
that N(ε) ≡ (x∗ − ε, x∗ + ε) ⊂ B, and the optimal policy function is monotone
non-decreasing on N(ε).
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Proof Denote {1− a[h(x∗)− (1− d)x∗]} by y∗. Then, we have

y∗ = 1− ah(x∗)+ a(1− d)x∗ < 1− a[(1/a)− ξx∗] + a(1− d)x∗

= aξx∗ + a(1− d)x∗ = a[(1/a)− (1− d)]x∗ + a(1− d)x∗ = x∗

Denote (x∗ − y∗) by μ. Then, μ > 0, and by continuity of h, we can find ε > 0,
such that N(ε) ≡ (x∗ − ε, x∗ + ε) ⊂ B, and [1 + a(1 − d)]ε ≤ (μ/2), and
|h(x)− h(x∗)| < (μ/2a) for all x ∈ N(ε).

Now, let x(0) and x ′(0) belong to N(ε), with x ′(0) > x(0).We have to show that
x ′(1) ≡ h(x ′(0)) ≥ h(x(0)) ≡ x(1). Suppose, on the contrary, that x ′(1) < x(1).
Define ȳ and ỹ as in the proof of Lemma 4. Then, one can arrive at a contradiction
by following exactly the proof of Lemma 4 if one can show that ȳ ≤ x(0). Towards
this end, note that

ȳ = 1− ax ′(1)+ a(1− d)x(0) ≤ 1− ah(x∗)+ (μ/2)+ a(1− d)x∗ + a(1− d)ε

= y∗ + (μ/2)+ a(1− d)ε = x∗ − (μ/2)+ a(1− d)ε

= x∗ − ε + [1+ a(1− d)]ε − (μ/2) ≤ x∗ − ε < x(0).

This completes the proof of the Lemma. �
As an application of the monotonicity property, we can say a bit more about the

nature of the optimal policy function on the domain (x̂, 1].
Lemma 6 Suppose there is some x̃ ∈ (x̂, 1] such that h(x̃) = H(x̃). Then, h(x) =
H(x) for all x ∈ [x̂, x̃].
Proof If not, there is some x ′ ∈ [x̂, x̃] such that h(x ′) > H(x ′). Let x ′′ = inf{x ∈
[x ′, x̃] : h(x) = H(x)}. Since h(x̃) = H(x̃), this is well defined, and by continuity
of h andH,we have x ′′ > x ′, h(x ′′) = H(x ′′) and h(x) > H(x) for all x ∈ (x ′, x ′′).
Then by Proposition 2, we have D+h(x) ≥ 0 for all x ∈ (x ′, x ′′). Thus, using the
continuity of h, we have h(x ′′) ≥ h(x ′), see [44, Proposition 2, page 99]. But since
H(x ′′) = h(x ′′) and h(x ′) > H(x ′), this implies that H(x ′′) > H(x ′), which
contradicts the fact that H is decreasing on [x̂, 1]. �

We can collect together the above findings as the following result.

Lemma 7 Let x̃ ∈ (x̂, 1). Then, exactly one of the following alternatives holds: (1)
h(x̃) = H(x̃), (2) h(x) ≥ h(x̃) for all x ∈ [x̃, k]
Proof If (i) does not hold, then h(x̃) > H(x̃). We claim first that h(x) > H(x) for
all x ∈ [x̃, 1]. If not, there is some x ′ ∈ (x̃, 1] such that h(x ′) = H(x ′). But, then
by Lemma 6, we must have h(x̃) = H(x̃), since x̃ ∈ (x̂, x ′), a contradiction.

Next, we turn to (ii). Using Lemma 5, we have D+h(x) ≥ 0 for all x ∈ (x̃, 1).
Using the continuity of h, we have h(x) ≥ h(x̃) for all x ∈ [x̃, 1]. For x ∈ E =
[1, k), using Lemma 4, we have h(x) ≥ h(1), and since h(1) ≥ h(x̃), we must have
h(x) ≥ h(x̃). This establishes (ii) by continuity of h. �
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A Straight-Down-the-Turnpike Property

Lemma 8 If x̂ ∈ h(x) for some x ∈ (x̂, k), then x̂ ∈ h(x) for all x ∈ (x̂, k).
Proof Let x ′ ∈ (x̂, k) be given such that x̂ ∈ h(x ′). Then, there is ε > 0, such that
for all z ∈ I ≡ (x̂− ε, x̂+ ε), we have (x ′, z) ∈ � and {1−a[z− (1−d)x ′]} < x ′,
so that

u(x ′, z) = 1− a[z− (1− d)x ′].

Define F(x ′) = {z : (x ′, z) ∈ �}, and for z ∈ F(x ′), define:

W(z) = u(x ′, z)+ ρV (z)

For z ∈ I, we have

W(z) = 1− az+ a(1− d)x ′ + ρV (z).

Since x̂ ∈ I, we obtain

W ′−(x̂) = −a + ρV ′−(x̂) (28)

For z ∈ I, with z < x̂, we must have:

W(z) = u(x ′, z)+ ρV (z) ≤ V (x ′) = W(x̂)

the second equality following from the fact that x̂ ∈ h(x ′). Thus, we have the first-
order necessary condition W ′−(x̂) ≥ 0. Using this in (28), we obtain

V ′−(x̂) ≥ (a/ρ). (29)

Next, let x ∈ (x̂, k) be given. Then we have x̂ = (1− d)[x̂/(1− d)] > (1− d)x,

and a[x̂ − (1 − d)x] < a[x̂ − (1 − d)x̂] = adx̂ = ad/(1+ ad) < 1. Further, we
have

1− a[x̂ − (1− d)x] = 1− a[x̂ − (1− d)x̂] + a(1− d)(x − x̂)

= x̂ + a(1− d)(x − x̂) < x̂ + (x − x̂) = x

Thus, there is ε > 0, such that for all z ∈ I ≡ (x̂ − ε, x̂ + ε), we have (x, z) ∈ �

and {1− a[z− (1− d)x]} < x, so that

u(x, z) = 1− a[z− (1− d)x]
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Define F(x) = {z : (x, z) ∈ �}, and for z ∈ F(x), define

W(z) = u(x, z)+ ρV (z).

Clearly, W is concave on its domain. For z ∈ I, we have

W(z) = 1− az+ a(1− d)x + ρV (z).

Since x̂ ∈ I, we obtain from (6) that

W ′+(x̂) = −a + ρV ′+(x̂) ≤ 0. (30)

And, we can obtain from (29)

W ′−(x̂) = −a + ρV ′−(x̂) ≥ 0. (31)

Now for all z ∈ F(x) with z > x̂, we obtain by (30) and the concavity of W,

W(z) −W(x̂) ≤ W ′+(x̂)(z− x̂) ≤ 0.

Similarly, for z ∈ F(x) with z < x̂, we obtain by (31) and the concavity of W,

W(z) −W(x̂) ≤ W ′−(x̂)(z− x̂) ≤ 0.

Thus, we have W(z) ≤ W(x̂) for all z ∈ F(x). This means

max
(x,z)∈�

[u(x, z)+ ρV (z)] = u(x, x̂)+ ρV (x̂).

Since the expression on the left hand side is V (x), we obtain, by the optimality
principle, V (x) = u(x, x̂)+ρV (x̂), which means that x̂ ∈ h(x), and completes the
proof. �

An OPF for a Special Case

We now reproduce for the convenience of the reader a result from [20].

Lemma 9 If (a, d) satisfies the restriction for the so-called borderline case, (ξ −
(1/ξ))(1 − d) = 1, then for all values of ρ <

√
(a/ξ), the OPF h is given by the

check-map, H.
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Proof of Proposition 8(ii)

We now turn to a complete proof of Proposition 8(ii).
Since h2 is turbulent, then there exist a, b, c ∈ X such that

h2(b) = h2(a) = a, h2(c) = b, and either (I) a < c < b or (II) a > c > b.

We consider specifically that (I) holds in (1), and analyze this case first. Suppose,
contrary to the assertion of Proposition 8(ii), (ξ − (1/ξ))(1− d) < 1. Then, by (13)
of Proposition 4, we have H 2(1) < k.

Let us denote h(c) by c′, h(b) by b′ and h(a) by a′. Note that all the elements
of the set S = {a, b, c, a′, b′, c′} are in the range of h on X. Thus the minimum
element of the set must be greater than or equal to (1 − d). And the maximum
element of the set must be less than or equal to H(1− d) = H 2(1) < k. Thus, the
set S ⊂ [1− d, k). We define A′ = [1− d, x̂), and first claim that

a = x̂ (32)

For if a = x̂, then since h(b′) = a = x̂, we cannot have b′ in A′. Thus, b′ ∈ [x̂, k).
Since k > b > a = x̂, and h(b) = b′, we must have b′ ≤ x̂. Thus, b′ = x̂, and
so h(b) = x̂, with b ∈ (x̂, k). Since x̂ = a < c < b < k, we must have h(c) = x̂

by Lemma 8. Thus, h2(c) = h(x̂) = x̂. But h2(c) = b > x̂, a contradiction. This
establishes the claim (32). It also follows from (32) that b = x̂, otherwise we get
a = h2(b) = x̂, contradicting (4). Further, c = x̂, otherwise we get b = h2(c) = x̂,

a contradiction.
Since h2(a) = a, and (32) holds, we must have a′ = h(a) = a. Thus, we need

to consider the two cases: (a) a′ > a, and (b) a > a′.
Consider case (a) [a′ > a]. Here h(a) = a′ > a, and so a ∈ A′ and a′ ∈ B.

Then since h(b′) = h2(b) = a and a ∈ A′, b′ /∈ A and so b′ ∈ B. Since b′ = h(b),

b /∈ B, and so b ∈ A′. Finally, since h(c′) = h2(c) = b, and b ∈ A′, c′ /∈ A and so
c′ ∈ B. Since c′ = h(c), c /∈ B, and so c ∈ A′. To summarize, we have

a, b, c ∈ A′ and a′, b′, c′ ∈ B. (33)

And since b > c > a, (33) implies that

b′ = h(b) = H(b) < H(c) = h(c) = c′ and c′ = h(c) = H(c) < H(a) = h(a) = a′
(34)

We show next that c′ < 1. If not, then since a′ > c′ by (34), we have h(a′) ≥ h(c′)
by Lemma 4. But this yields:

a = h2(a) = h(a′) ≥ h(c′) = h2(c) = b
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which contradicts the fact that b > a. This establishes the claim. Also, given (34),
we have b′ < c′ < 1. Thus H(b′) > H(c′). Note now that h(c′) = h2(c) = b >

a = h2(b) = h(b′) ≥ H(b′) > H(c′), so that h(c′) > H(c′). Since k > a′ > c′ by
(34), we can use Lemma 7 to obtain h(a′) ≥ h(c′). But this implies:

a = h2(a) = h(a′) ≥ h(c′) = h2(c) = b

which contradicts the fact that b > a. Thus, case (a) cannot arise.
Next, we turn to case (b) [a > a′]. Here h(a) = a′ < a, and so a ∈ B and

a′ ∈ A. If a′ = x̂, then a = h2(a) = h(a′) = h(x̂) = x̂, contradicting (32). Thus
a′ ∈ A′.Then since h(b′) = h2(b) = a and a ∈ B, b′ /∈ B ∪ {x̂}, and so b′ ∈ A′.
Since b′ = h(b), b /∈ A, and so b ∈ B. Finally, since h(c′) = h2(c) = b, and
b ∈ B, c′ /∈ B ∪ {x̂} and so c′ ∈ A′. Since c′ = h(c), c /∈ A, and so c ∈ B. To
summarize, we have:

a, b, c ∈ B and a′, b′, c′ ∈ A′

And since b > c > a, (33) also implies that

H(c′) = h(c′) = h2(c) = b > a = h2(a) = h(a′) = H(a′).

Clearly, this implies that c′ < a′ since a′, c′ ∈ A′. We now claim that a < 1. If not,
then since c > a, Lemma 4 implies that c′ = h(c) ≥ h(a) = a′, which contradicts
c′ < a′, and establishes the claim.

If h(a) = H(a), then we get [x̂ − a′] = H(x̂) − H(a) = (−ξ)(x̂ − a) =
(−ξ)(h(x̂) − h(a′)) = (−ξ)(H(x̂) − H(a′)) = ξ2(x̂ − a′), so that ξ = 1, a
contradiction. Thus, we must have h(a) > H(a). Then, using the fact that a < 1,
and Lemma 7, we obtain c′ = h(c) ≥ h(a) = a′ by virtue of the fact that k > c >

a > x̂. But this again contradicts c′ < a′, and establishes that case (b) cannot arise.
Since cases (a) and (b) were the only possible cases, we can conclude that

our initial hypothesis was false, and thereby establish Proposition 8(ii) under the
possibility (I) in (1).

Next we turn to the consideration of possibility (II) holds in (1). Suppose,
contrary to the assertion of part (ii) of the Proposition 8(ii), (ξ − (1/ξ))(1−d) < 1.
Then, by (13) of Proposition 4, we have H 2(1) < k.

Let us denote h(c) by c′, h(b) by b′ and h(a) by a′. Note that all the elements
of the set S = {a, b, c, a′, b′, c′} are in the range of h on X. Thus the minimum
element of the set must be greater than or equal to (1 − d). And the maximum
element of the set must be less than or equal to H(1− d) = H 2(1) < k. Thus, the
set S ⊂ [1− d, k). We define A′ = [1− d, x̂). Denote, as before, h(b) by b′, h(a)
by a′ and h(c) by c′. We first establish that

a = x̂ (35)
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Suppose, contrary to (35) that a = x̂. Since h(b′) = h2(b) = a = x̂, we can infer
that b′ /∈ A′. Thus, b′ ∈ B ∪ {x̂}. We consider the two cases: (a) b′ = x̂, (b) b′ ∈ B.

Under case (a), b′ = x̂, then h(b) = b′ = x̂. But, b < a = x̂, and so h(b) > x̂,

furnishing a contradiction.
Under case (b), b′ ∈ B, then h(b′) = a = x̂. Thus, h(x) = x̂ for all x ∈ B by

Lemma 8. Since c < a = x̂,we have c′ = h(c) > x̂. Thus c′ ∈ B, and so h(c′) = x̂.

But h(c′) = h2(c) = b < a = x̂, a contradiction. Thus (35) is established. It follows
that b = x̂, otherwise a = h2(b) = x̂, a contradiction. Further, c = x̂, otherwise
b = h2(c) = x̂, a contradiction. Furthermore, since (35) holds, and h2(a) = a, we
must have a′ = a, and h(a) = a′ and h(a′) = a. Thus, we need to consider the
following two subcases: (A) a′ > a, (B) a > a′.

We begin with the subcase (A) where a′ = h(a) > a. Thus, a ∈ A′, and a′ ∈ B.
Since h(b′) = a and a ∈ A′, we must have b′ ∈ B. Further, since b′ = h(b), we
must have b ∈ A′. Finally, since h(c′) = b and b ∈ A′, we must have c′ ∈ B;
further since c′ = h(c), we must have c ∈ A′. To summarize, we have

a, b, c ∈ A′ and a′, b′, c′ ∈ B.

Note that h2(b′) = h(h2(b)) = h(a) = a′; h2(a′) = h(h2(a)) = h(a) = a′, and
h2(c′) = h(h2(c)) = h(b) = b′. Further, since a, b, c ∈ A′, and a > c > b, we
have a′ = h(a) < h(c) = c′ < h(b) = b′. Thus, the analysis of Case (I) can be
applied to arrive at a contradiction. Consequently subcase (A) cannot occur.

Next, we turn to subcase (B) where a > a′ = h(a). Thus, a ∈ B, and a′ ∈ A.

Since a′ = a = h(a′), we cannot have a′ = x̂. Thus, a′ ∈ A′. Since h(b′) = a

and a ∈ B, we must have b′ ∈ A′. Further, since b′ = h(b), we must have b ∈ B.

Finally, since h(c′) = b and b ∈ B, we must have c′ ∈ A′; further since c′ = h(c),

we must have c ∈ B. To summarize, we have

a, b, c ∈ B and a′, b′, c′ ∈ A′. (36)

We now claim that c < 1. If not, we must have a > c ≥ 1. Then by Lemma 4,
a′ = h(a) ≥ h(c) = c′. But then by (36), a = h(a′) ≤ h(c′) = b, a contradiction
to the given condition in (II). This establishes the claim.

If h(c) = H(c), then we get (x̂ − b) = H(x̂) − H(c′) = (−ξ)(x̂ − c′) =
(−ξ)(h(x̂)− h(c)) = (−ξ)(H(x̂)−H(c)) = ξ2(x̂ − c), so that, using ξ > 1, and
c ∈ (x̂, k),

(b − x̂) = ξ2(c − x̂) > (c − x̂) �⇒ b > c,

a contradiction. Thus h(c) > H(c). Then, using a > c and Lemma 7, we obtain

a′ = h(a) ≥ h(c) = c′.
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On using this and (36), we get a = h(a′) ≤ h(c′) = b. But this again contradicts
the given condition (II). Thus, subcase (B) cannot arise.

Since subcases (A) and (B) were the only possible cases, we can conclude that
our initial hypothesis must be false, and thereby establish Proposition 8(ii) under the
possibility (II) in (1).
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