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 Summary. This paper describes conditions under which one investment project
 dominates a second project in terms of net present value, irrespective of the choice
 of the discount rate. The resulting partial ordering of projects has certain similarities
 to stochastic dominance. However, the structure of the net present value function
 leads to characterizations that are quite specific to this context. Our theorems use
 Bernstein's (1915) innovative results on the representation and approximation of
 polynomials, as well as other general results from the theory of equations, to char
 acterize the partial ordering. We also show how the ranking is altered when the
 range of discount rates is limited or the rate varies period by period.

 JEL Classification Numbers: D92, G31, H043, 022.

 Keywords and Phrases: Investment projects, Present value, Stochastic domi
 nance, Polynomials, Rate of return over cost, Time dominance.

 1 Introduction

 Most public or private investment projects entail a significant up-front investment
 with a stream of returns over many subsequent periods. The traditional way of
 reckoning the economic viability of such a project is to use a discount rate to
 convert future earnings into present values, which are then weighed against initial

 * We thank Robert Driskill, Andrea Maneschi, Roy Radner, and participants of seminars at NYU,
 Notre Dame, Purdue, and Washington University for helpful comments. The present version of the paper
 has benefited from comments by a referee and the editor. Foster is grateful for support from the John
 D. and Catherine T. MacArthur Foundation through its network on Inequality and Poverty in Broader
 Perspective.
 Correspondence to: T. Mitra
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 cost to obtain the discounted present value of the project. The choice of discount rate

 is crucial. If it is low enough, future earnings will essentially receive full weight,
 which entails a positive present value for the typical project. At higher discount
 rates, future earnings receive less importance, and the present value falls into the
 negative range. Clearly, the acceptability of a given project can be sensitive to the
 specific rate chosen.

 The discount rate is no less critical when comparing two competing (mutu
 ally exclusive) investment projects. If one project a entails both a smaller initial
 investment and lower returns down the road than another project b, then a higher
 discount rate will tend to favor project a due to its smaller initial investment, while
 a lower rate will favor Vs higher returns over time. In other words, the difference
 in present values of the two projects is the same as the present value of the stream
 of differences in returns; and since this stream is initially negative (as b has higher
 initial investment) and subsequently positive (as b has higher returns), the present
 value of the differences is positive or negative depending on the discount rate. The
 relative ranking of two projects can be sensitive to the chosen rate.1

 Now, how easy is it to select an appropriate discount rate? For private invest
 ment projects, this selection is in theory straightforward, since it can be based on
 an observable market rate of interest facing the firm or individual.2 On the other
 hand, public projects are evaluated using a social rate of discount, which is consid
 erably more difficult to ascertain. Indeed, there is an extensive and varied literature
 addressing the question of finding the right social discount rate.3 And while there
 may be general agreement that the social discount rate is not just a market rate,
 there is substantially less agreement on exactly how it should be determined. It
 should come as no surprise that, in the absence of a generally accepted method for
 determining the social discount rate, a wide range of rates can often be observed
 in actual use.4 This calls into question the robustness of comparisons that involve
 only a single discount rate.

 The present paper asks: When does one project unambiguously dominate an
 other in the sense that it has a higher present value at all discount rates? To be sure,

 any projects a and b for which a has uniformly lower costs and higher returns than b

 could be so ranked.5 But, in fact, the possibilities for unambiguous ranking go well
 beyond simple period-by-period dominance. Consider a comparison of Project a,
 costing $10 million and yielding $5 million after one year and $8 million after two,
 and Project b, costing $12 million with respective returns of $10 million and $3

 1 This point was emphasized by Fisher (1930) and later by Alchian (1955) in his critique of Keynes'
 marginal efficiency of capital.

 2 See Hirshleifer (1958, p.336), however, for a discussion of whether it is the borrowing rate or the
 lending rate (or something in between) that ought to be used. He also provides references, in the capital

 budgeting literature, where either the borrowing rate or the lending rate has been favored as the correct
 rate to use.

 3 See, for example, Lind (1982) and the papers cited therein.

 4 Lind (1982, p.4-6), for example, provides a relevant quote from a U.S. Government document that
 complains of discount rates effectively ranging from 0 to infinity.

 5 Mishan (1971, p. 185), for example, considers situations of this sort, and uses the terminology
 "dominates" to describe the relationship between them. Fisher (1930, p. 151) uses the term "ineligible"
 to describe an option that is "out of the question, whatever be the rate of interest."
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 million. At a discount rate of, say, 5% the present values of a and b are about $2 mil

 lion and $250,000, respectively, and so a is better than b given this rate. Moreover,
 it can be shown that the relative ranking of a and b is preserved no matter which
 discount rate is used. For this comparison, and indeed many others, the choice of
 discount rate is not an issue.

 The goal of this paper is to describe the conditions under which one investment
 project dominates another independent of the choice of the discount rate. Implicitly
 we are characterizing a binary ranking of projects that is clearly transitive (if a
 dominates af while a' dominates a", then a dominates a") and irreflexive (no project
 dominates itself), but is not complete, since certain pairs cannot be so ranked. The
 proper term for such a transitive, irreflexive, but not necessarily complete ranking
 is partial ordering. There are certain similarities to the other well-known partial
 orderings in economics, including the Lorenz ranking (see, for example Sen, 1997),
 the variable-line poverty orderings of Foster and Shorrocks (1988a,b), and the
 stochastic dominance rankings from expected utility analysis (see Bawa, 1975).
 But the techniques used here are, for the most part, different.6

 We begin in Section 2 with the various definitions and notation used in setting
 up the problem. Dominance of one project over another is restated as requiring
 the polynomial whose coefficients are the differences in cash flows of the two
 projects to be positive on the (open) unit interval. Section 3 offers several partial
 characterizations of the dominance ranking. In particular, the Bernstein form1 of
 a polynomial is introduced, made up of "Bernstein coefficients", derived from
 the original polynomial's coefficients, and transformations of the variable that are
 positive on the relevant domain. A sufficient condition for unambiguous dominance
 is obtained in terms of the signs of the Bernstein coefficients. We show that this
 condition is both necessary and sufficient in the special case where all roots of the
 original polynomial are known to be real.

 Section 4 obtains complete characterizations for "short duration" projects. We
 employ discriminant conditions to determine when all roots of the resulting poly
 nomial are real (and thus the above characterization can be applied) and when some
 roots are not real (in which case "brute force" may be used). We take advantage
 of the low dimension to offer graphical representations of the set of comparable
 projects to give a rough indication of the completeness of the related partial order
 ing.

 The next section presents a complete characterization based closely on the work
 of Bernstein (1915). The idea is that any nth degree polynomial can be interpreted
 as an mth degree polynomial (for m > n) with the last m ? n coefficients being
 zero. The mth degree polynomial has a Bernstein form representation, which is also
 equivalent to the original nth order polynomial. Hence there is an infinite number
 of Bernstein representations of a given polynomial, each with its own set of m + 1
 coefficients that yield another sufficient condition for unambiguous dominance. By
 a theorem in Bernstein (1915), this approach also produces a general necessary
 condition: if the unambiguous dominance condition holds, then there exists an

 6 We note below (in Sects. 3 and 6) an interesting relationship between two of our conditions and
 the first two degrees of stochastic dominance.

 7 See, for example, Cargo and Shisha (1966).

This content downloaded from 216.165.95.159 on Thu, 29 Aug 2019 18:45:31 UTC
All use subject to https://about.jstor.org/terms



 472  J.E. Foster and T. Mitra

 m>n, for which the m +1 Bernstein coefficients have the required signs. In sum,
 then, a dominates b exactly in the case that some Bernstein form has nonnegative
 coefficients (with at least one coefficient being strictly positive).

 Our unambiguous criterion is in a sense too strong since it requires dominance
 at all nonnegative discount rates, including some that may be outside of anyone's
 relevant range. In Section 6 we consider an alternative dominance condition that
 only requires dominance over a restricted range. Since unanimity is now required
 for a smaller set of rates, the resulting partial ordering can make more comparisons
 or, equivalently, is "more complete". We derive the corresponding limited-range
 conditions and illustrate the extent of their additional coverage. Section 7 offers a

 second extension of our methodology to the case of discount rates, which vary over
 time. Interestingly, we find that depending on the types of time paths of discount
 rates that are allowed, the two strongest sufficient conditions obtained in the fixed
 discount rate case are actually necessary and sufficient for the variable discount
 rate case.

 Our results are quite closely related to several strands of literature, including
 work by Pratt and Hammond (1979) on the existence and number of "internal
 rates of return", papers by B0hren and Hansen (1980); Ekern (1981) on a more
 general concept of "time dominance", and certain results from mathematics (e.g.,
 Hausdorff, 1921 ; Pratt, 1979) on roots of polynomials. Section 8 offers a discussion
 of this related literature. The final section concludes with some suggestions for
 further work.

 2 The setting

 The two projects to be compared will be represented by their return (or cash flow)
 vectors a = (a0, a\,..., an) e Mn+1 and b = (b0, b\,..., bn) G Rn+1, which
 indicate the magnitude of the return for each period from 0 to n, and whether
 the return is positive (a net income) or negative (a net outflow). For simplicity of
 notation, all projects are represented as having the same finite horizon w, if the
 projects have different horizons, the shorter vector can be augmented with zero
 entries to reconcile the size difference. We will often use vector dominance to rank

 vectors, where vector a dominates vector bifak > bk for all k = 0,1,..., n, with
 ak > bk for some k. In this case we write a > b.

 Given a rate of discount r > 0, one can compare the two projects in terms of
 present value by dividing the return in period k by (1 + r)k and summing over all
 periods. We will find it convenient to work with the corresponding discount factor

 x = 1/(1 + r), where 0 < x < 1, so that xk is the coefficient on period fc's return
 in the present value expression. We use Pa (x) to denote the present value of a given
 project a at discount factor x, so that Pa (x) ? ao + a\ x +... -f- anxn. This converts
 the present value expression into a polynomial in the variable x, and allows certain
 results from the theory of equations to be applied.

 We are interested in finding necessary and sufficient conditions so that the
 present value of a is larger than the present value of b for all discount rates r > 0,
 or equivalently, for all discount factors 0 < x < 1. In symbols, the problem is to
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 find conditions on the projects a = (ao, a>\,..., an) and b= (bo, b\,..., bn) such
 that

 Pa{x) > Pb(x) for allO<x<l (1)
 or alternatively:

 n n

 Yl akXk > ]P bkxh for allO<x<l (V)
 k=0 k=0

 Define the net project c by

 c= (c0,ci,...,cn) = a - b = (ao - b0,ai - &i,...,an - bn).

 The problem can be reformulated as determining conditions on the net project c for
 which

 n

 Pc(x) = Y2 ?kxk > 0 for all 0 < x < 1 (1")
 k=0

 In other words, we are interested in conditions under which the present value of c
 is always positive. This equivalent formulation will be particularly helpful in the
 proofs of the various characterizations, and for evaluating the completeness of the
 implied ranking of projects.

 3 Some partial characterizations

 It is quite clear that two necessary conditions for Pa{x) > Pb(x) to hold indepen
 dent of x are

 a0 > b0 (2a)

 (by letting x -? 0 in (1)), and

 n n

 Y2ak>Y,bk (2b)

 (by letting x ?y 1 in (1)). In other words, the initial return and the mean (or total)
 return must be as high in project a as in project b. These conditions represent the two
 extremes for x; the first where x approaches 0 and the future is totally discounted,
 and the second where x approaches 1 and the future is given the same weight as
 today. One might expect the actual x to be bounded away from one or the other
 of these limits. If so, these conditions would no longer be necessary; see Section 6
 below.

 An obvious sufficient condition under which dominance condition (1) will hold
 independent of x is

 Q<k > bk for all k = 0,1,..., n, with strict inequality for some k (3a)
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 What this requires is that a have a higher return than b in some period, and no lower
 return in every period. Of course, this period-by-period dominance is unlikely to
 be useful for most applications. To develop a more promising sufficient condition,
 we proceed as follows.

 For k = 0,1,..., n, let Ak denote the partial sum (ao +... + a*;), and similarly
 let Bk = (bo + ... + bk). Then by Abel's partial summation formula (see Rudin
 (1976, p.70)), we obtain

 n

 Y^ Q>kXh = A0(l -x) + A1(x- x2) + .... + An-i^"1 - xn) + Anxn
 k=0

 for a and an analogous expression for b. Thus, a sufficient condition under which
 Pa(x) > Pb(%) will hold independent of x is:

 Ak > Bk for all k ? 0,1,..., n, with strict inequality for some k (3b)

 In other words, the sufficient condition is that for some k, the partial sum of the first k

 returns is higher in a than in b, and for no k is it higher in b. Note that (3b) contains the

 two necessary conditions given above since the first partial sum condition is ao > bo
 while the final partial sum condition is ao +...+an > b0 +... + bn. Moreover, (3b)
 is implied by the period-by-period sufficient condition (3a), but has much greater
 scope for application. As an example, consider the projects a = (-2,2,3,4,3)
 and b = (?6,3,4,6,2). We see from condition (3b) that unambiguous dominance
 holds - a conclusion that is hard to guess from an examination of the vectors a and
 b themselves. One can therefore recognize (3b) as a potentially powerful sufficient
 condition.

 We note that these conditions are rather closely related to the well-known cri
 teria of first and second order stochastic dominance used in the analysis of risk.8
 Indeed, if a and b were ordered vectors (from lowest to highest returns) with the
 interpretation that each entry is an equi-probable payoff, then (3a) would indicate
 that a dominates b according to first order stochastic dominance, while (3b) would
 ensure that a dominates b according to second order stochastic dominance. Sim
 ilarly, (2) would represent the twin necessary conditions for first or second order
 stochastic dominance: that the lowest payoff and (respectively) the mean payoff

 must be no lower in a than in b.

 One way to depict second order stochastic dominance is with the help of
 Shorrocks' (1983) generalized Lorenz curve, which plots (1/n) times the kth par
 tial sum against k/n and connects the points. When the vectors are ordered, this
 curve represents second order stochastic dominance in that a higher curve is as
 sociated with a dominating vector. When the vectors are not ordered, the curve is
 no longer a generalized Lorenz curve, but what might instead be called a gener
 alized concentration curve.9 Clearly the generalized concentration curve provides
 a representation of sufficient condition (3b) in that a higher curve implies domi
 nance according to our unambiguous criterion. The curves associated with projects

 8 This fact has been noted elsewhere in the literature, (see Sect. 8).

 9 For a discussion of the concentration curve and the generalized Lorenz curve, see Lambert (1993).
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 Figure 1. Generalized concentration curves

 a = (?2,2,3,4,3) and b = (?6,3,4,6,2), for example, are given in Figure 1, with
 project a clearly dominating project b. Note also that the generalized concentration
 curve also illustrates the necessary conditions (2) since the curve's slope at 0 is the
 initial period's return and the intercept at 1 is the mean return. This relationship
 with stochastic dominance will be examined further in Section 7.

 Consider once again the net project c = a ? b with its associated net returns
 (co,. ., cn) and partial sums (Co,..., Cn). The necessary conditions (2) may be
 restated as Co > 0 and Cn > 0, while the sufficient conditions (3b) are Ck > 0 for
 k = 0,..., n. There is clearly a good deal of room between these two sets of con
 ditions. We now show that the sufficient conditions can be sharpened substantially,
 while the necessary conditions can likewise be strengthened in a particular case.

 Toward this end, let us define an alternative representation for polynomials that
 is particularly well-suited for the problem at hand. Let s = (s0, , sn) be any
 vector in Rn+1 and consider the polynomial function:

 Bs(x) = S0{1 - X)n + S!X(1 - x)n~X + .... + Sn-ix"-1^ - x) + SnXn
 n

 = ?sfca;fc(l-*)""*
 k=0

 for x G M. Bs(x) is called a Bernstein polynomial or a Bernstein form, following
 Bernstein (1915) who showed that every polynomial Pc{x) can be expressed as
 Bs(x) for some s in Rn+1.

 This proposition is straightforward for n = 1 since co + c\x = so(l ? x) + six,
 where so ? Co and si = Co + c\. Similarly for n = 2 we have:

 C0 + C\X + c2x2 = [co(l ?x) + (cq + ci)x] + c2x2

 = [co(l -x) + (co 4- ci)x](l - x)
 +[co(l -x) + (cq + ci)x]x + c2x2

 = sq(1 ? x)2 + six(l ? x) + s2x2
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 where so = c0, s\ = 2c0 + ci, and 53 = Co + c\ + c2. Bernstein (1915) used a
 recursive argument on n to show that in general:

 PC(X) = S0(l - X)n + 51X(1 - X)^1 + ... + Sn^X71'1^ -X)+ SnXn = Bs(x)

 where s = (s0, ? sn) is defined by:

 ** = (?-*)<* + Q:?)ci + + CZthk for k = 0,1,..., n.

 The Bernstein coefficients Sk are thus weighted sums of returns from net project c,
 where the weights are found along the diagonal of Pascal's triangle. In other words,

 s = cTI, where U is the (n + 1) x (n + 1) matrix:

 (")(?-!) (?) (?)
 o di)---(V)(V)

 77 =

 (?) (j) 0 0
 whose nonzero entries form an inverted Pascal's triangle. For example, if c
 (2,-5,5,-2), then:

 s = (2, -5,5, -2)

 1331
 0121
 0011
 0001

 = (2,1,1,0)

 In addition, since the matrix 77 is nonsingular, it follows immediately that the
 Bernstein representation is unique; for any given c, there is only one vector s such
 that Pc(x) = Bs(x), and that vector is the vector of Bernstein coefficients.10 We
 can summarize these observations in the following result.

 Lemma 1 (Bernstein) Let c,s e Mn+1. Then Pc(x)
 s = cn.

 Bs (x) if and only if

 Notice that in the above example, s = (2,1,1,0) is a nonnegative vector with
 all entries positive but one. The corresponding Bernstein polynomial Bs(x) =
 2(1 - x)3 + (1 - x)2x + (1 - x)x2 + Ox3 is positive for 0 < x < 1, which then
 ensures that for the original net project c ? (2, -5,5, -2) we have Pc(x) > 0
 for 0 < x < 1, our unambiguous dominance condition (1). In general suppose
 that for net project c, the vector s of Bernstein coefficients is nonnegative with at

 least one positive entry; i.e., s = cTT > 0. Since the terms (1 ? x)n~k and xk in
 Bs(x) = EkSkXk(l ? x)n~k are always strictly positive for 0 < x < 1, it follows
 that Pc(x) is positive for 0 < x < 1, and we thus obtain:

 10 Suppose that there is a vector s' in Rn+1 such that Pc(x) ? Bs>(x) for all x. Since 77 is
 nonsingular, we can obtain a project c' ? s'U~x which has s' as its vector of Bernstein coefficients,
 and hence Pc'(x) ? Bsi(x) = Pc(x) for all x G (0,1), which holds only if c = c''. Consequently
 s = s'.
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 Theorem 1 Suppose that net project c ? a ? b satisfies cTI > 0. Then project a
 unambiguously dominates project b.

 Theorem 1 yields a remarkably simple sufficient condition for unambiguous
 dominance of a over b: check whether cTI > 0 or, equivalently, whether all
 dominates 677 according to the vector dominance relation. Moreover, this condition
 has far greater coverage than the (un-weighted) partial sum condition (3b). To see
 this, note that (3b) can be written as cT > 0, where

 1 1 ... 1 1
 0 1 ... 1 1

 r
 00... 1 1
 00 ...01

 In contrast to T, each column of U is strictly decreasing in its nonzero entries and,
 consequently, gives even more weight to returns in earlier periods. For example,
 when n = 4, the requirements "cr > 0" and "c77 > 0" become, respectively,

 co > 0 c0 > 0
 c0 + ci > 0 4c0 + ci > 0
 Co + c\ + c2 > 0 and 6c0 + 3ci + c2 > 0
 c0 + ci + c2 + c3 > 0 4c0 + 3ci + 2c2 + c3 > 0
 Co + ci + c2 + c3 + c4 > 0 c0 + C\ + c2 + c3 + c4 > 0

 (where at least one of each set of inequalities is strict). It is clear that every inequality

 on the right side can be verified by applying a combination of inequalities from the
 left, so that "cF > 0" implies "ci7 > 0"; the converse, however, is not true.

 Despite this improved applicability, the condition given in Theorem 1 is still
 not necessary in general. For example, as we shall see below, the net project c =
 (2, ?5,5) satisfies condition (1); however, s ? cTI = (2,-1,2), which clearly
 violates the requirement "c77 > 0" of Theorem 1. For a reasonably large class of
 net projects, though, we can show that "cil > 0" is indeed necessary. The key
 assumption concerns the roots of the polynomial Pc(x).

 Theorem 2 Suppose that the net project c ? a ? b is such that the polynomial
 Pc{x) = Sfe=o ckxk nas only real mots- Then project a unambiguously dominates
 project b if and only if cU > 0.

 Proof. By Theorem 1, we need only prove necessity. So suppose that Pc(x) has
 only real roots and that (1) holds. We are to show that the corresponding vector
 s ? (so? > sn) = cTI of Bernstein coefficients satisfies s > 0.

 Consider the polynomial:

 Q(z) = sn + sn-iz + sn-2z2 + ... + sizn~l + s0zn

 where the variable z is explicitly taken to be complex. Using the Binomial Theorem
 for complex numbers (see, for example, Knopp (1952, p. 25)), we obtain:

 Q{Z) = Co(l + Z)U + Ci(l + Z)71-1 + ... + Cn_i(l + Z) + Cn.
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 Now if z t? ? 1, then defining x ? 1/(1 + z) we obtain:

 Q(Z) = (C0/Xn) + (Cx/X71-1) + ... + (Cn_i/X) + Cn

 and hence:

 Q(z)xn = Pc(x)
 where Pc(x) = EkCkXk is now explicitly taken to be a polynomial of a complex
 variable x. Given any arbitrary (possibly complex) root zo ^ ? 1 of Q(z), it follows
 that xo = 1/(1 + zo) is a root of Pc(x). And since all roots of Pc(x) are real, this
 implies that zo must also be real. Consequently, all roots of Q(z) are real. Note
 further that if Q(z) were to have a positive root z0, then x0 = 1/(1 + 2n) would
 satisfy Pc(xo) ? 0 and 0 < x0 < 1, contrary to condition (1). Therefore, Q(z) can
 have no positive real roots, which by an application of Descartes' Rule of Signs
 (e.g., Dickson (1939, p. 77 and problem 15 on p. 80)) implies that the coefficients
 Sk must have no variations of sign, or equivalently, that all nonzero coefficients Sk

 of Q(z) must have the same sign. Moreover, since Pc(l/2) > 0, it follows that
 Q(l) = sn + sn-i + sn-2 + ... + si + so > 0, which yields s > 0, as desired. D

 Thus, in the very special case where the polynomial Pc(x) only has real roots,
 the sufficient conditions become necessary as well. Of course, the practical import
 of Theorem 2 is compromised by the fact that a determination of the roots of Pc (x)
 is actually very close to the original problem itself. For once we find all roots, we

 can check directly whether they all are outside of the interval (0,1), in which case
 the sign of Pc(x) will be constant on (0,1), and Pc(x) will have the same sign
 as, say, Pc(l/2), for all x G (0,1). So we turn to a slightly different approach to
 finding complete characterizations of our unambiguous ranking.

 4 Complete characterizations for n < 3

 We now examine the special cases where n = 1,2, and 3, each of which leads to
 a tractable set of necessary and sufficient conditions. These characterizations also
 reveal the structure of the ranking and, in particular, provide an initial look into
 its completeness or ability to make comparisons. We begin with the simplest case
 of n = 1 where the relevant polynomial is Pc(x) = cq + c\x. In this case, the
 sufficient partial sum condition (3b) becomes c0 > 0 and c0 + c\ > 0 (with one of
 the inequalities being strict). Moreover, necessary conditions (2) may be expressed
 as Co > 0 and Co + ci > 0, while it is clear that strict dominance requires one of
 these inequalities to be strict (otherwise c would be the zero vector). Consequently,
 (3b) constitutes a set of necessary and sufficient conditions for dominance to hold
 in the case n ? 1.

 Figure 2 depicts the collection of net projects c = (co,ci) satisfying these
 conditions. Note that the darker gray area is the set of all net projects satisfying
 sufficient condition (3a), namely cq > 0 and c\ > 0 (with at least one strict
 inequality), while the light gray area indicates the additional net projects captured
 by (3b).

 The analysis of the case n ? 2 is somewhat more complicated. We state the
 necessary and sufficient conditions in the form of a theorem.
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 Figure 2. Dominance for n = 1

 Theorem 3 Suppose that net project c = a ? b is of length n = 2 and satisfies
 c2 t? 0. Then project a unambiguously dominates project b if and only if either (i)

 condition cTI > 0 holds or else (ii) Acqc2 ? c\ > 0 and necessary conditions (2)
 jointly hold.

 Proof. When n = 2, the net project is c = (co,ci,c2),andPc(x) = co-\-c\x-\-c2x2
 becomes the relevant polynomial. Suppose that condition (1) holds. Assuming that
 4coc2 ? c\ < 0, we know from the quadratic formula that all roots of Pc{x) are
 real. Then by Theorem 2, it follows that ci7 > 0. Alternatively, if we assume that
 4coc2 ? c\ > 0, then since conditions (2) are necessary for dominance, we are done
 with necessity.

 Now suppose that (i) or (ii) holds. If cTI > 0, then by Theorem 2, dominance
 condition (1) must follow. Alternatively, if conditions (2) and 4coc2 ? cf > 0
 together hold, then by the quadratic formula, all roots of Pc(x) are complex. Con
 sequently Pc(0) = Co must be strictly positive, as must be Pc(x) for all 0 < x < 1
 by continuity of Pc (x), and thus condition ( 1 ) holds. D

 It is easy to depict the set of projects leading to dominance for the case n = 2
 and this is done in Figure 3 for arbitrary co. The set of (ci, c2) satisfying (2) and
 4coc2 - c\ > 0 is given by the lightly shaded area above the parabola. The set
 of additional pairs satisfying cTI > 0 is found in the shaded area below and to
 the right of the parabola. The shaded region in Figure 3 is thus the set of projects
 leading to dominance. For example, the project (2, ?5,5) clearly lies within this
 region as can be seen by plotting (ci, c2) = (?5,5) in Figure 3, where co = 2. In
 the special case where Co = 0, the condition 4coc2 ? c2 > 0 cannot hold and we
 are left with a (c\, c2)-space version of Figure 2.

 The last short horizon projects we will consider have length n = 3, with relevant
 polynomial Pc(x) = Co + c\x + c2x2 + c3x3; for simplicity we assume c3 ^ 0.
 Let:

 S = [cjco - (clC2c3/3) + 2(c2/3)3]2 - 4[(c2/3)2 - (clC3/3)]3
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 Figure 3. Dominance for n = 2

 It can be shown (see, for example, Uspensky (1948, p. 87)) that ? is the appropriate
 cubic discriminant term, with ? > 0 indicating that Pc(x) has two complex roots
 and one real root, while ? < 0 ensures that all the roots of Pc(x) are real. We have
 the following result.

 Theorem 4 Suppose that net project c ? a ? b is of length n = 3 and satisfies
 c% 7^ 0. Then project a unambiguously dominates project b if and only if either
 (i) condition cTI > 0 holds or else (ii) S > 0 and necessary conditions (2) jointly
 hold.

 Proof. Let n ? 3 and suppose that dominance condition (1) holds. If ? < 0, then
 since the roots of Pc(x) are real, we know by Theorem 2 that cIJ > 0 must hold.

 Alternatively, if we assume that S > 0, then since (2) is necessary for dominance,
 we are done with the proof of necessity.

 Now suppose that (i) or (ii) holds. If cTI > 0, then by Theorem 1 dominance
 condition ( 1 ) must follow. Alternatively, suppose that ? > 0 and conditions (2) hold.

 We know from 6 > 0 that two roots of Pc(x) are complex and one is real. Since
 C3 7^ 0, we either have C3 > 0 or C3 < 0. If C3 > 0, then Pc(x) < 0 for sufficiently
 negative x. Moreover since Pc(0) = Co > 0, we know by continuity that the real
 root of Pc(x) must be non-positive. Consequently Pc(l) = Co + ci -f C2 + C3 is
 strictly positive, as must be Pc(x) for all 0 < x < 1 by continuity of Pc(x), and
 thus condition (1) holds. If C3 < 0, we have Pc(x) < 0 when x is sufficiently
 positive. Moreover since Pc(l) = Co + ci + C2 + C3 > 0, we know by continuity
 that the real root of Pc(x) lies in the interval [1, 00). Consequently Pc (0) = cq must
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 be strictly positive, as must be Pc (x) for all 0 < x < 1 by continuity of Pc (x), and
 thus condition (1) holds. D

 The approach used in this section has led to clear-cut conditions for dominance
 in the special case where n < 3. However, the discriminant condition for n = 3
 is cumbersome, and any similar attempts for n > 3 are unlikely to yield tractable
 conditions. In the next section we follow a different approach, which, rather than
 identifying a self-contained set of necessary and sufficient conditions, yields a series
 of ever-tightening sufficient conditions which in the limit become necessary.

 5 A general characterization

 Consider the net project c = (2, ?5,5) with horizon n = 2. The sufficient condition
 of Theorem 1 clearly fails, since:

 1 2 1
 01 1
 001

 = (2,-1,2)

 and yet a quick check of the necessary and sufficient conditions from Theorem 3
 confirms that c satisfies the dominance condition. Clearly cTI > 0 misses this case.

 However, suppose that we express c as the equivalent project c3 = (2, ?5,5,0)
 with horizon 3, and apply the sufficiency test of Theorem 1 for this "longer horizon"

 project. [We use the term "equivalent project" in the following sense: c and c3 have
 the same discounted present value for all discount factors in (0,1)]. It is easily
 confirmed that:

 '133 1
 0121
 001 1
 0001

 s3 = c3  = (2,1,1,2)

 and so Pcs(x) > 0 for 0 < x < 1, and since Pc(x) is identical to Pcz{x), this
 verifies that c satisfies condition (1).

 In general, for any net project c of length n, one can construct an equivalent
 project cm of length m > n by appending m ? n zeroes to c, and thus obtaining
 an alternative Bernstein representation of Pc(x) and a new vector of coefficients
 sm ? (sq\ s -, > Sm)t0 use witn Theorem 1. Actually, there is a somewhat more
 direct way of constructing sm from c. Let nm be the (n -f 1) x (ra + 1) truncated
 Pascal matrix formed from the (ra + 1) x (ra + 1) Pascal matrix by removing the
 last m ? n rows. Since the final m ? n entries in the vector cm are 0, we know that

 sm = cllm. In the above example, for instance,

 n* =
 1331
 012 1
 001 1

 and clearly s3 = (2,1,1,2) = (2, -5,5)i73 = ci73. Given these observations,
 then, we would expect "ci7m > 0 for some ra > n" to be a sufficient condition for
 unambiguous dominance.
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 What is not so obvious is that that this is a necessary condition as well. To see
 this we will need an additional lemma, also due to Bernstein (1915).

 Lemma 2 (Bernstein) For any given project c G Rn+1 and every m > n, define

 em EE max* l^/L-Jl - ft(?)l- Then, Yirn^e = 0.

 The proof is given in the appendix.
 Lemma 2 shows that the Bernstein coefficients, s , are quite closely linked to

 the m + 1 values Pc(^), for 0 < k < m. Indeed, for large enough m, the true
 value Pc(^) is approximated by [s '/'(mr^A,)]. Consequently, whenever Pc(??) is
 positive and the approximation is good enough, the associated Bernstein coeffi
 cient, s , must be positive as well. This is the basis for the following complete
 characterization.

 Theorem 5 Suppose that net project c = a?bis of arbitrary length n. Then project
 a unambiguously dominates project b if and only ifcllm > Ofor some m> n.

 Proof. Suppose that cTIm > 0 for some m>n. Then we know that sm = c/7m is
 the associated vector of Bernstein coefficients for cm, where cm is the m-horizon

 project found by appending m ? n zeroes to c. Consequently, from Theorem 1,
 condition (1) holds for cm and since Pc(x) = Pc (x) for all x, it holds for c as
 well.

 Conversely, suppose that dominance condition ( 1 ) holds for c, so that Pc (x) > 0
 for 0 < x < 1. Pc(x) can be expressed as Pc(x) = f(x)g(x) where f(x) =
 xl ( 1 ? x)J (for i,j > 0) is a polynomial whose only roots (if any) are 0 and 1, while
 g(x) is a polynomial for which 0 and 1 are not roots. In addition, g(x) can be written
 as g(x) = Co H-h ?nxn, where N = n ? i?j and c ? (co,..., cn) G R^1,
 and consequently we may denote Pc(x) = g(x). Clearly Pc(x) > 0 for 0 < x < 1.
 By continuity, Pc(0) > 0 and Pg(l) > 0, and since 0 and 1 are not roots for Pc(x),
 we must have Pc(x) > 0 for 0 < x < 1.

 The minimum value of the continuous function Pc(x) on the unit interval must
 be strictly positive, and hence we can finde > 0 suchthat P?(x) > eforO < x < 1.
 By Lemma 2, and the definition of convergence, there exists M > N such that

 the Bernstein coefficients c UM = sM = (sff, ...,$$) satisfy |[sf /(MMJ]~
 Pg(fc/M)| < e/2 for fc = 0,..., M. Thus [sf /(MM J] > 0, and since (MM J > 0
 for every k, we obtain s^ > 0. Hence sM = (??f,..., sjjj) is a strictly positive
 vector. Moreover, by Lemma 1 we know that P^m (x) ? B^m (x) and so:

 M

 P-c(x) = ^2s*?xk(l-x)M-k
 k=0

 Consequently,

 M m

 Pc{x) = x?(l - zyPg(z) = ^ sf zi+fc(l - x)i+M~k = Y^ tf?xk{\ - x)m~k
 fc=0 fc=0
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 where ra = M + i + j and tm = (?ft1, ij",..., ? ) is defined by:

 {s  otherwise

 But then Pcm (x) = Btm (x), which by Lemma 1 implies that tm = sm, the vector
 of Bernstein coefficients associated with cm. Thus, c77m = sm = tm > 0, as
 desired. D

 Theorem 5 shows how the partial characterization provided in Theorem 1 can
 be extended to a complete characterization. Theorem 1 was based on an n + 1
 dimensional vector s of Bernstein coefficients that ensures dominance condition

 (1) whenever s > 0. From Theorem 5 we see that s = sn is but one of a collection

 {sm Rm+1|ra > n} of vectors that may be used to indicate dominance; and
 whenever dominance holds, we must have s > 0 for all ra large enough. In
 addition, each vector sm is easily constructed from the net project c with the help
 of the truncated Pascal matrix 77m and this, in turn, allows us to restate the result

 in terms of the original projects a and b as follows: a dominates b if and only if
 there exists ra > n for which ai7m > W7m. So, for example, a = (?10,1,9,4)
 dominates b = (?12,8,1,5), since:

 aI75 = (-5, -24, -37, -13,14,9) > W74 = (-7, -27, -37, -14,10, 7).

 We should also mention that there is a simple recursive method of deriving
 the vector sm+1 from sm for ra > n. First, it is clear that s = s +1 = Co

 and s = s +{ = Co + ... + cn. Second, the recursive property of Pascal's
 triangle ensures that s +1 = s'jl_1 + sj1 for j = 1,..., ra. Thus sm+1 is found
 from sm using an adjacent sum algorithm that is analogous to the way the Pascal

 triangle is constructed. For example, if we begin withe = (2, ?7,8, ?l),we obtain
 s = s3 = (2,-1,0,2). Then s4 = (2,1, -1,2,2), s5 = (2,3,0,1,4,2), and
 s6 ? (2,5,3,1,5,6,2), and so forth. A clear implication is that once sm > 0 for
 some ra > n, we know that sm > 0 for all m! > ra.

 The above recursive definition leads to an interesting geometrical interpretation
 of the procedure underlying Lemma 2 and Theorem 5. As noted above, the value

 [5/T/(m J] *s a Proxy f?r tne true value of the function Pc(x) dXx ? (k/m). For
 any given ra > n, consider the piecewise linear function /m(#) found by plotting

 the ra + 1 points (k/m, [SfcV(m"!fc)]) an<^ connecting adjacent pairs with linear
 segments. It is clear from Lemma 2 that as ra goes to infinity, fm(x) tends to the
 original polynomial Pc(x) at each x e [0,1]. However, we can provide an even
 more concrete description of the process by which these piecewise linear functions
 come about. It is clear that /m+1(x) = fm(x) = Pc(x) at x = 0 and x ? 1;
 all approximating functions take on the same value - the true functional value - at

 each of the two limiting points. It turns out that /m+1(x) = fm(x) at all points
 of the form x = k/(m + 1), where k ? 0,..., ra + 1. To see this, note that for
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 Figure 4. Successive approximation and dominance

 k = 1, ...,m we have:

 rm+l( k \ _ r m+1// m+1 \i > lm+l/~i?fe /Vm-fc+1/J

 = [-?-i/(m ?i)] + W/(m'^i1)]
 = (??J+?it^-l/imJfc+l)] + (mm+l )[S?fc7(m fc)]

 Consequently, each /m+1 (with m > n) can be constructed from the previ
 ous approximating function /m by an intuitive algorithm: Plot the m + 2 points
 (k/(m -f 1), fm(k/(m + 1))) for fc = 0, ...,m and connect the adjacent pairs

 with line segments. Figure 4 shows how this process evolves for the project c =
 (2, ?7,8, ?1). Although the true function is positive on the interval (0,1), the
 initial approximation functions dip into negative values. Eventually, though, the
 approximating functions draw near enough to Pc(x) and the defining values, s ,
 become nonnegative (with some positive), as required by Theorem 5. The precise
 value of m where this takes place is not specified by the theorem; it could be rela
 tively small, as in this example, or large. We will return to this question in Section
 9.

 6 Limited range results

 The motivation for this study is that there is often disagreement on the precise
 discount rate to be used in evaluating investment projects; in such a situation, it is
 useful to develop criteria under which a project is unambiguously better at all rates
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 of discount. But even when complete agreement on the precise rate is impossible,
 there may be a reasonable range over which there is general agreement. For example,

 while one may argue whether r ? 5% or r = 8% is appropriate, there may be
 strong agreement that r should not fall short of 1% nor exceed 25%. This leads
 to a change in our dominance condition, and a concomitant reexamination of our
 characterization results thus far.

 Suppose that the limited range of discount rates translates into a range (u, v)
 in discount factor space, where 0 < u < v < 1. For example, the restriction that
 r falls between 1% and 25% translates (approximately) to the requirement that
 x G (i?, v) ? (0.80,0.99). With such a restricted range we can expect to obtain
 conditions in terms of c, uy and v that have much greater applicability than the
 unrestricted conditions derived above. In fact, we can show that by a simple affine
 transformation of variables, this new problem can be converted into the form of the

 original problem, and that greater applicability arises when the unrestricted range
 solution is converted back.

 Consider the transformation y = ^5^ from x G (i?, v) to y G (0,1). Substitut
 ing u -f (v ? u)y for x in Pc(x) yields:

 Pc(x) = c0 + ci(u + (v - u)y) +... + cn(u + (v - u)y)n

 = coQ+c1((l)u+(\)(v-u)y) + ...
 +<*[(SK + (?K-H? - u)y + ... + (l)(v - u)kyk] + ...
 +cn[?)u? + O"-1^ - u)y + ... + (nn)(v - uryn]

 = [Q,0+ciQu + caQti2 + ... + cri(SK]
 + [ci({) + c2(l)u + ... + cn(X)un-l](v - u)y + ...

 +[cfc(*) + cfc+1(*+> + ... + cn(l)un-k](v - u)kyk + ...

 +Cn(nn)(v-uryn
 = qo + qiy + - + qnyn

 where:

 qk = [ck(t)+ck+1(k+1)u + ... + ^^ (4)

 Viewing q = (?o, <Zi, > Qn) as a net project in its own right, we can express the
 unambiguous dominance condition for c on the restricted range (it, v) in terms of
 the usual dominance condition for q on (0,1). This formal relationship between
 the two is summarized in the next theorem.

 Theorem 6 Let c ? a ? bbe any net project and let q be the project defined in (4).
 Then:

 Pc(x) > 0 for all x G (u, v)

 is equivalent to:

 Pq(y) > 0 for all y G (0,1).
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 Consequently, any of the previous results characterizing dominance condition
 (1) can be applied to the derived project q in order to capture the limited range
 dominance condition for c.

 To see the extent of additional coverage for limited range results, consider
 projects a and b defined by a = (?6,8), and b = (?2,3), so that the net project
 c = a - b = (-4,5). Then, it is easy to see that Pc(x) < 0 for x G (0,0.8)
 and Pc(x) > 0 for x G (0.8,1). Thus, neither project is unambiguously better
 than the other at all discount factors x G (0,1). However, suppose, to follow up
 on the discussion given above, there is agreement that the discount rate certainly
 falls between 1% and 25%, so that the discount factor falls between 0.80 and 0.99.
 Then, clearly, project a dominates project 6, for the agreed upon range of discount

 factors (0.80,0.99). It can be easily checked for this example that q = (0,0.95),
 so that Pq(y) > 0 for all y G (0,1), in accordance with Theorem 6, where y =
 [(x - 0.8)/0.19] for x G (0.8,0.99).

 7 Variable rates of discount

 A key assumption of the above analysis is that the discount rate, though unknown,
 is fixed throughout the life of the investment. We now consider a generalization to
 the case where the rate may vary from period to period. There are two main ways of

 characterizing a variable rate environment. The first approach allows the per-period
 discount factor to vary over time, and uses the product of the per-period factors to
 discount future returns. This approach ensures that greater weight is given to cash
 flows received in earlier periods. The second directly assigns every future period
 a separate discount factor within the unit interval, which is then used to evaluate
 that period's returns. This admits additional possibilities, including a preference
 for future returns over current returns. We now turn to the characterizations of the

 implied unambiguous rankings.
 Let us begin by assuming that there is a discount vector X = (x0, x\,..., xn),

 where Xi G (0,1) denotes the discount factor applicable between period ?and period
 i ? 1, for i = 1,..., n, and xq is set equal to 1. Let D = {X G En+1 : xQ = 1 and
 0 < Xi < 1 for i = 1,..., n} denote the set of all discount vectors. We can calculate
 overall discount factor, yk , applicable to returns in period i by multiplying the

 period-by-period discount factors as follows: yk ? nk=Q Xi for k = 0,1,..., n. It
 is clear that Y = (yo, y\,..., yn) is a strictly decreasing, strictly positive vector.

 We are interested in finding necessary and sufficient conditions so that the
 present value of a is larger than the present value of b for all discount vectors X.
 In symbols, we wish to find conditions on c = a ? b such that:

 n

 ^ykck >0forallXeD (5)
 k=0

 Clearly this condition includes the previously studied case where yk = xh for all
 k. Consequently, we know that necessary conditions (2) must apply, which require
 the first inequality cq > 0 and the last inequality en +... 4- cn > 0 of the partial sum
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 condition (3b) to hold. It turns out that when discount rates can vary each period,
 condition (3b) is both necessary and sufficient for dominance.

 Theorem 7 Unambiguous dominance condition (5) holds if and only if:

 Ck = (co + ... + cfc) >0
 for all k = 0,1,..., n, with strict inequality for some k.

 Proof. (Sufficiency) Suppose that the partial sum condition holds. Then by Abel's
 partial summation formula (Rudin, 1976, p. 70) we obtain:

 n

 Y^VkCk = C0(yo - 2/1 ) + Ci(yi - y2) + .... + Cn-i(?/n-i - yn) + Cnyn
 k=0

 Since Y is strictly decreasing and strictly positive, all of the terms (yo ? yi),
 ...,(yn-i ? yn) and yn are strictly positive. Therefore, dominance condition (5)
 holds.

 (Necessity) Now, suppose that (5) is true. As before, Co > 0 and Cn > 0
 follow from the necessary conditions (2). Pick any k' = 1, ...,n - I, and consider
 any sequence Xh G D of discount vectors converging to Xo, where x? ? 1 for

 n

 i < fc'and x? = 0 for i > k! + 1. Then by (5), we have J2 Vkck > 0> so mat in me
 n

 limit J2 y?Ck > 0. However, it is clear from the definition of Xo that y? = 1 for
 k=0

 i < k' and y9 = 0 for i > k' + 1, so that by Abel's formula, ? y?a = Ck> > 0. i=0

 Consequently Ck > 0 for A: = 0,1,..., n. Moreover, if we have Ck = 0 for all k,
 then c is the zero vector and dominance condition (5) clearly cannot hold. Therefore,

 strict inequality Ck > 0 holds for some k. D

 In our previous discussion of the case where the discount rate is fixed, condition
 (3b) was found to be a sufficient, but not a necessary, condition for dominance.
 Theorem 7 shows that when we allow per-period discount rates to vary, the partial
 sum condition becomes necessary as well. Another way of viewing the result is
 that if dominance holds for all discount vectors, then it surely must hold for cases
 where the discount factor in a given period k' is close to zero. In these cases all
 subsequent period returns will have little weight in a calculation of present value.
 Consequently, it is as though we began with a net project with a horizon of k'.
 And we know that the necessary conditions for a kf horizon project include the
 partial sum condition up to period k'. Since this holds for all periods, we know that
 condition (3b) is necessary as well as sufficient.

 Recall from our previous discussion that condition (3b) may be represented by
 the generalized concentration curves for projects a and b, where the curve for a is
 somewhere above, and nowhere below, the curve of b. Theorem 7 gives additional
 weight to the generalized concentration curve as a tool for evaluating projects: when
 the relationship between the curves holds, a must have a higher present value for
 any possible configuration of per-period discount factors.
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 The above approach rules out the possibility of equal preference across all peri
 ods or, indeed, a marked preference for future returns over current. The inequality
 yi > yi+i is a key requirement of the above way of modeling a variable discount
 rate. As an alternative to constructing yi as a product of all previous per-period
 factors, we now simply posit yi > 0 to be the overall factor at which period i
 returns will be discounted (for i = 0,1,..., n). Let D' = {Y G Rn+1 : 0 < y? <
 1 for i = 1,..., n} denote the set of all vectors of overall discount factors y^. The
 dominance condition then becomes:

 n

 J2ykCk>0forallYeD' (6)
 fc=0

 Condition (6) is clearly stronger than requirement (5), so a more restrictive condition
 on net project c is likely to arise. Indeed, we now find that our most restrictive
 sufficient condition (3a) has become both necessary and sufficient.

 Theorem 8 Unambiguous dominance condition (6) holds if and only if:

 Cfc > 0 for all k = 0,1,..., n, with strict inequality for some k.

 Proof. (Sufficiency) Suppose that ck are all non-negative and at least one is positive.
 Then since each yk is strictly positive, dominance condition (6) holds.

 (Necessity) Now, suppose that (6) is true. Pick any kf = 0,..., n, and consider

 any sequence Yh G D' converging to Y?, where y? = 1 for i ? k' and y\ ? 0 for
 n n

 i ^ A:'. Then by (6), we have J2 y\ck > 0, so that in the limit J2 Ukck ? ck' > 0. k=0 k=0
 Consequently ck > 0 for A: = 0,1,..., n. Moreover, if c is the zero vector, then
 dominance condition (6) clearly cannot hold. Therefore, strict inequality ck > 0
 holds for some k. D

 Theorem 8 reprises our most stringent sufficient condition and observes that
 it is also necessary for dominance when the weight on each period's returns is an
 arbitrary positive number less than one. This allows any single period to receive
 almost all the weight, which explains why nonnegative net returns in each period
 become necessary. The period-wise dominance of a over b is not particularly likely
 to hold. But when it does, Theorem 8 indicates the robustness of the dominance of

 a over b in present value terms.

 8 Related literature

 Our results have drawn from several strands of literature in mathematics, economics
 and finance. We now discuss this related work.

 The mathematical result underlying Theorem 5 has been known for some time.
 To the best of our knowledge, it made its first appearance in a note by Bernstein
 (1913), and was then restated in Bernstein (1915) in order to present a more precise
 form of a result of Laguerre. In 1952, this paper was translated from French into
 Russian and published as part of the collected works of Bernstein (see Academy
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 of Sciences USSR, 1952). Hausdorff (1921, pp. 74-109) independently established
 that if a polynomial P(x) ? c0 + c\x + ... + cnxn is positive on [0,1], then there
 exists an integer m>n and positive coefficients so,Si,...,sm such that P(x) can
 be represented as:

 m

 Yjskxk{l-x)m~k (7)
 k=0

 Note that this is an existence result, which says nothing about uniqueness and
 provides no definition of the coefficients (sn> ? sm) in terms of the underlying
 coefficients (c0,..., cn). Hardy, Littlewood and Polya (1952) in their classic book
 provided a generalization of Hausdorff's existence result, and referred to his 1921
 paper, but not to Bernstein's earlier contribution. Hausdorff's result is also stated

 as problem 49 in G. Polya and G. Szego (1976, p. 78), and his solution is given on
 pp. 260-261.

 Lorentz presented a systematic study of polynomials, which could be repre
 sented by (7), in a paper (1963) and subsequent book (1966). The representation,
 (7), of a polynomial, with Sk unrestricted in sign, is referred to as a Lorentz repre
 sentation of a polynomial by Milovanovic, Mitrinovic and Rassias (1994). Erdelyi
 and Szabados (1988) refer to polynomials, which have a representation (7) with all
 Sk non-negative or all Sk non-positive, as Lorentz polynomials.

 Cargo and Shisha (1966) state and prove Lemma 1, and call it (rightly) the
 Bernstein form of a polynomial. They attribute the result of Lemma 1 and its
 proof to Bernstein's paper, "On the best approximation of continuous functions by
 polynomials of a given degree", Communications of the Khar' kov Mathematical
 Society, Series 2, 13, (1912), 49-194.

 Pratt (1979) provides a constructive proof to Lemma 2 that is almost identical to
 Bernstein's note in 1915. He refers to the non-constructive approach of Hausdorff
 (1921) and its generalization by Hardy, Littlewood and Polya (1952), but was ap
 parently unaware of Bernstein's contributions to this subject. Pratt's results, dealing

 with the number of roots in (0,1), are in fact more general than Bernstein's. He
 constructs an interesting tableau (similar to Pascal's triangle) as a practical device
 for detecting roots of a polynomial in (0,1). A similar observation (although more
 restricted in scope than Pratt's tableau) also appears in Cargo and Shisha (1966).

 Erdelyi and Szabados (1988, Theorem 1), reprove representation result (7)
 with Sk > 0 for all k as a corollary of their main approximation result. In a
 note added in proof, the authors state that they discovered, after preparing their
 manuscript, that this result is not new, and refer to Polya and Szego (1976, problem
 49). Erdelyi (1991), provides refinements to the earlier approximation results of
 Erdelyi-Szabados, and attributes the representation result (7) with Sk > 0 for all k
 (this time correctly) to Bernstein's 1915 paper.

 The possibility that one investment project might dominate another at all dis
 count rates - the idea behind our dominance condition (1) - has been part of the
 pedagogy surrounding the present value criterion for a long time. Recent exam
 ples of this include Mishan (1971) and Aronson (1985), both of whom provide
 numerical examples of projects that have this relationship. Fisher (1930) was also
 clearly aware of the possibility of dominance, and in fact took pains to convince
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 his readers it was not the norm, i.e., that the ranking of alternatives according to
 present value generally depends on the rate of interest. Even though many authors
 were aware of the possibility of dominance, it appears that no one up to now has
 explored the extent to which dominance occurs, nor attempted to find a complete
 characterization of the induced partial ordering of projects.

 B0hren and Hansen (1980) and Ekern (1981) have studied the criterion of "time

 dominance" - which uses an approach that is analogous to stochastic dominance
 in the analysis of risk (see, for example, Bawa (1975)). Recall that stochastic dom
 inance unambiguously ranks lotteries in terms of higher expected utility for all
 utility functions in a given class (usually defined by restrictions on the derivatives
 of utility). Time dominance unambiguously ranks projects in terms of higher present

 value for all discounting functions (of time) drawn from a particular class (defined
 by restrictions on the derivatives of the discounting function with respect to time).

 The resulting rankings are then characterized using techniques analogous to those
 employed in the stochastic dominance literature. In particular, B0hren and Hansen
 (1980, Proposition 1) show that when the discounting function has a negative first
 derivative and hence exhibits a positive time preference, one obtains a result anal
 ogous to Theorem 7 above. They also note (in Proposition 3) that since each of the
 classes includes the discounting functions associated with fixed discount rates, each
 is a sub-relation of the partial ordering defined in (1). However, the characterization
 of unambiguous ranking (1) is not the aim of the "time dominance" literature.

 There are clear links between our results and the literature on internal rates of

 return. Fisher (1930) introduced the notion of the "rate of return over cost" as the

 rate of discount at which two projects have the same present value or, equivalently,
 the rate at which the net project has zero present value (hence the net project's
 internal rate of return). This rate was then used as a cutoff between the range of

 discount rates that select one project and the range of rates that select the other. Our
 dominance criterion (1) is thus equivalent to requiring that there is no positive rate
 of return over cost.] l

 As emphasized by both Fisher (1930) and Alchian (1955), the internal rates of
 return of the individual projects themselves are not particularly relevant to project
 selection. Alchian in particular provides a simple example in which one project
 has a higher internal rate of return than another, and yet there is a wide range of
 discount rates at which the opposite ranking holds in terms of present value (namely,
 all those lower than the rate of return over cost). In fact, it is not difficult to construct

 examples for which one project dominates a second project at all discount rates
 and yet the second has a higher internal rate of return.12 This provides even more

 11 Our criterion is also related to the "reswitching" debate in capital theory (see, for example, Bruno,
 Burmeister and Sheshinski (1966)), wherein projects switch orders twice as the prevailing rate changes.
 Dominance rules out any re-ranking of the two projects as the interest rate changes.

 12 Consider a = (9,4, ?17) and b = (5,8, ?17). It can be verified that the present value of a
 exceeds the present value of b for all discount factors x G (0,1). However, the internal rate of return
 of a is 17%, while the internal rate of return of b is 21%. The key characteristic of these projects is, in

 the words of Fisher (1930), that "the advantages (returns) precede the disadvantages (costs)." See also
 Bierman and Smidt (1980) who call such projects "loan-type" investments. For such projects, there has
 been some discussion in the literature about whether they can be truncated at a date prior to the terminal

 date to avoid the negative returns. Sen (1975) has argued, using the application of DDT as an example,
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 reason for present value maximizers to ignore a project's internal rate of return, if
 indeed one exists.

 Pratt and Hammond (1979) construct a procedure for finding an upper bound on
 the number of internal rates of return for a given project. They consider differences

 in projects and, like Fisher (1930), concentrate on the resulting "break-even" rate
 at which the present values of the two projects are the same. They note that when
 no break-even rate exists, "one project dominates the other, being preferable at all
 interest rates," and offer sufficient conditions (3b) as partial characterization of this

 dominance (Rule 3a, p. 1234). Their general procedure is analogous to that used in
 Pratt (1979) and hence is closely related to Bernstein (1915) and Lemma 2 above.

 9 Concluding remarks

 In this paper we have proposed a criterion that ranks projects independent of the
 discount rate. The criterion leads to a partial ordering of projects that is intuitive and

 reasonably applicable. We presented several characterizations of the basic ranking,
 including complete characterizations based on the approach of Bernstein (1915).

 We also showed how the ranking is altered when the overall range of discount rates
 is restricted or the rate varies period by period.

 One important lesson to be drawn from this paper is that unambiguous dom
 inance is by no means impossible, and that limited range comparisons are more
 likely still. Consequently, we would argue that any project evaluation based on a
 specific discount rate should include information on whether, and to what extent,
 the initial judgment is robust to changes in the discount rate. If unambiguous dom
 inance holds, then for purposes of comparing projects, the discussion is ended.
 If there is dominance for a range of rates, then the discussion should center on

 whether the range includes all "reasonable" rates. In any case, it would not be diffi

 cult to write a program to check whether the above conditions hold. Alternatively,
 one could obtain an approximate answer to the question of robustness by simply
 plotting the present value polynomial on the unit interval for a reasonably fine grid
 level. Irrespective of how the approach is eventually implemented, we feel that it
 could be an important part of the standard toolkit for evaluating projects.13

 We would also like to mention a number of potential directions for future work.
 One possible criticism of the conditions underlying Theorem 5 is that even if one
 project unambiguously dominates another, there is no assurance that the condition
 would be able to detect this fact for ra reasonably small. For example, the net
 project c = (1, -6,10,1) satisfies criterion (1) for unambiguous dominance, but
 it takes ra > 18 to detect this fact using the test from Theorem 5. It turns out that
 the polynomial generated by c brushes very close to 0, causing the approximating

 that the "disadvantage" (pollution) is causally linked to the use of DDT, and (costless) truncation of the
 project, after the "advantage" (increased crop production) has been reaped, may not make such sense.

 13 A referee notes that it is common to graph "present value profiles" for the purpose of finding
 internal rates of return over costs (e.g., see Ross, Westerfield and Jordan (2001, p. 224)). Checking for
 "present value profile dominance" is indeed a straightforward extension of this practice. Similar ground
 is covered in the literature on variable line "poverty orderings" developed by Foster and Shorrocks
 (1988a,b).
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 function fm to dip below the axis for the initial levels of m. While the likelihood
 of this occurring in practice may be low, it would still be an interesting theoretical
 question to see whether m of Theorem 5 might be derivable as well.14

 We have assumed throughout that time is discrete and finite, which has allowed
 us to make use of the theory of polynomials in our characterization results. It would
 be interesting to see what form necessary and sufficient conditions would take if
 time were modeled as a continuous or an unbounded variable. The extension to un

 certain cash flows would likewise be valuable, as would the case where the discount

 rate (or the range of possible discount rates) varies over time. Finally, in defining the
 dominance criterion we intentionally ignored the feasibility of the projects under
 consideration. Yet we can imagine that considerations of this type might actually
 broaden the possibility for comparisons. For suppose that two projects are deemed
 non-comparable, in that one dominates the other for one range of discount rates
 with the opposite occurring over another range. Consider a case in which the only
 discount rates for which the second project dominated the first occurred where both
 projects had a negative present value. Then, there might be grounds for conclud
 ing that the first dominates the second. It would be interesting to characterize the
 resulting hybrid partial ordering.

 Appendix

 Proof of Lemma 2. Pick any e > 0. Select a G M satisfying a > max{|co|, |ci|,
 ..., |cn|,e} and define ? = e/(2na). Note that since n > 1 and 0 < e < a, we

 have 0 < ? < 1/2, and hence 0 < 1 - (1 - 2?)1/2 < 1. Now define m(s) so that:

 m(e)>[l-(l-2?)1^]-l(n/?) (Al)

 and let m be any integer satisfying m > m(e). We will now show that:

 \KI{Zk)]-pc{Jk)\<z for all k = 0,1,..., m.

 Consider any k = 0,1,..., m. By definition,

 Pc(?) = C0 + (?)c1 + ... + &Cn

 and

 [-?/(?-*)] = co + lCil)/Lm-k)}ci +... + [( -?)/(m J]<*

 where k' = min{k, n}. Note that for j = 1,..., n, we have:

 Um-3\,( m \i = (m~j)\k\ = fc(fc-l)---(fc-,y + l)
 \\m-k)l\m-k)\ (k _ jym\ m(m _ 1) . . . (m _ j + 1)

 14 In fact, there is a body of literature in mathematics - on the "Lorentz number" - that may be directly

 applicable to this question.
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 We divide our analysis into two cases. First, suppose that k < ?m. Note that

 \cj\ < <*, Cn)/L-J ^ (k/m) and W )j ^ (fc/m) iorJ = !? --n- Th^

 ll*?/L-Jl - pc^)\ < lltf/L-J] - col + |Pc(?) - col
 k' n

 <YJ(k/m)\cj\^Y^(k/m)\cj\
 3=1 j=l

 < (fc' + n)(k/m)a < 2n?a = ?

 where use has been made of the restriction on k.

 Alternatively, suppose that k > ?m. Then according to (Al) we have k >
 ?m(e) > n and consequently k' ? n. It follows that:

 IK7L-*)] - pc(B < ?? iKn?/L-Jl - (*M)Jl

 " ?(?/myin^-n j=l ?=0 v / y

 However, for j = 1,..., n, we have:

 2=0 v ' y i = 0

 > [1 - (n/(/3m(?)))]" > 1 - 2?

 where use has been made of (Al). Therefore,

 \K/Lm-k))-Pc(?)\<c*n2? = e

 which completes the proof.
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