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1. INTRODUCTION

In the literature on optimal intertemporal allocation theory, a
major result is that (when future utilities are discounted) optimal
programmes may be characterized by the existence of dual vari-
ables, interpreted as ‘shadow prices’, such that at these prices the
given programme satisfies the so-called ‘competitive conditions’
and the ‘transversality condition’. (See section 2b for appropriate
definitions of terms used.)

The result of Weitzman (1973) (later modified by McKenzie
(1986)) provides us with an extremely useful price characterization
theory in the context of a general intertemporal model (referred to
sometimes in the literature as the model in ‘reduced form’, and in
this paper as the ‘general model’) where the intraperiod utility
function is defined over technologically feasible pairs of initial and
terminal states.

A model in which a (period) welfare function is deﬁned on the
(period) consumption vector alone (referred to henceforward as
the ‘consumption model’) has received a considerable amount of
independent attcntlon,. (Here, the consumption vector is the dif-
ference between an output vector and an input vector: see section
3a for details.) In particular, Peleg (1970) and Peleg and Ryder
(1972) provide price characterization results for this model, using
mathematical techniques quite different from those of Weitzman.

The difference between the two sets of results referred to above
stems from the alternative definitions of a ‘competitive’ programme.
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oceasion of his 60th birthday. Research on this paper was started while the first
author was on sabbatic leave at Cornell University and Instituto Torcuato DiTella,
Buenos Aires. Research of the second author was supported by a National Science
Foundation Grant.
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In the general model, utility along with terminal state variables can
be regarded as the ‘output’ vector, and the initial state variables as
the ‘input’ vector. The competitive conditions simply say that the
present-value profits are maximized in each period along the pro-
gramme over the set of all technically feasible triplets of initial
state, terminal state and utility (see (2.1) for a formal definition).

It is, of course, clear that the consumption model can always be
reduced to an ecivalent model where the characterization result
for the general model applies. However, in the consumption model
the competitive conditions more naturally split up into two parts:
(i) the present value of outputs (of goods) minus the present value
of inputs (of goods) is maximized over technically feasible input-
output pairs; (ii) the present value of welfare net of the present
value of consumption is maximized over the consumption possibil-
ity set, which can be interpreted as maximizing welfare subject to
an appropriate budget constraint. (See (3.2) and (3.3) for formal
definitions.) This separation of the competitive conditions into two
parts, one which can be thought of as being followed by ‘producers’,
and the other as being followed by ‘consumers’, is particularly
important if we would like to interpret the competitive programme
as being attainable in a decentralized environment, where no
agent has access to the information of both the technology set and
the welfare function.

If we treat the consumption model as a special case of the
general model, then the competitive conditions (3.2) and (3.3) for
the consumption model readily yield the competitive condition
(2.1) in the format of the general model. It has not been clear from
the literature whether the converse is also true; that-is, whether
(3.2) and (3.3) can, in fact, be deduced from (2.1), by treating the
consumption model as a special case of the general model. The
main purpose of this paper is to demonstrate that this can be done.
In so doing, we believe we provide a synthesis of price character-
ization results which have been developed independently for the
two frameworks, in the existing literature.

Dual variables have been used very effectively in the literature
on optimal intertemporal allocation in obtaining another major
result, namely the existence of a ‘stationary optimal state’, sup-
ported by ‘quasi-stationary’ shadow prices. (For precise definitions,
see sections 2a and 3a.)

For the general model, Flynn (1980) and McKenzie (1982) use
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duality theory to provide us with such an existence result on non-
trivial stationary optimal states. For the consumption model, Peleg
and Ryder (1974) have also used duality theory to develop a
similar result, but their technique of proof is quite distinct from
that of Flynn-McKenzie.

The difference between these two sets of results parallels the
difference between the two sets of results on the ‘price character-
ization of optimality’ which we have discussed earlier. Specificaily,
the Flynn-McKenzie theory gives us the existence of what we call a
‘discounted golden-rule equilibrium’, where a stationary state is
‘supported’ by quasi-stationary shadow prices in the sense that
among technically feasible triplets of initial state, terminal state
and utility, the present-value profits are maximized at the triplet
corresponding to the stationary state. In the Peleg-Ryder version,
the existence of a ‘modified golden-rule equilibrium’ is proved.
That is, in their framework, there is a stationary input-output pair
which is ‘supported’ by ‘quasi-stationary’ shadow prices in the
sense that (i) among technically feasible input-output pairs, the
present value of output minus the present value of input is maxi-
mized; and (ii) the value of welfare net of the value of the stationary
consumption (corresponding to the stationary input-output pair) is
a maximum among all consumption vectors in the consumption
possibility set.

We show that if the consumption model is viewed as a special
case of the general model, the above result for the consumption
model can be obtained from the corresponding result for the
general model. One remark on this translation is worth making.
The consumption model can be viewed as a special case of the
general model if the utility function (used in the general model) is
assumed to be upper semicontinuous, but it cannot be so viewed if
the utility function is continuous (on this point see, especially,
Peleg (1973), and Dutta and Mitra (1986)). Since the Flynn-
McKenzie theory assumes the continuity of the uatility function
their result cannot be directly applied to the consumption model.
One has to first prove the existence of a quasi-stationary price
supported stationary optimal state in the general model under the
assumption that the utility function is upper semicontinuous. This
is done in Dasgupta and Mitra (1987), following the approach of
Khan and Mitra (1986). (See result (R.6) in section 2c.)

The approach we have taken to obtain the results on price
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characterization of optimality and the existence of a modified
golden-rule equilibrium in the framework of the consumption model
is new. It would appear that the results themselves are not new, since
they are independently obtained (by using a different approach) by
Peleg and Ryder (1972, 1974). However, this impression is incorrect:
it turns out that the results on the consumption model that we report
here cannot be obtained from the Peleg-Ryder results. In both their

- papers, Peleg-Ryder assume that the welfare function is strictly
increasing in each component of the consumption vector. And, it
turns out that in both their papers, this assumption is quite critical
to their proofs, so that it cannot be easily relaxed, while retaining
the essence of their approach. We do not make this assumption
(see assumption (B.6) in section 3a), because itis not even satisfied
(at the boundary) by the commonly used Cobb-Douglas type of
functions. We are nevertheless able to obtain the relevant results,
because in our approach (or the approach followed in the literature
on the general model) this assumption is quite unnecessary.

2. DuaLITY THEORY IN A GENERAL INTERTEMPORAL
ALLOCATION MODEL

2a. The Model

The framework is described by a triplet (€2, u, 8), where (), a
subset of R% X R, is a transition possibility set, u: (3—>R is a
utility function defined on this set, and § is the discount factor
satisfying 0 <8 < 1. A typical element of {} is written as an
ordered pair (a, b): this means that if the current state is a, then it
is possible to be in the state b in one period.

We will need the following assumptions:

(A.1) (i) (0,0) € Q; (ii) (0,b) € Q implies b = 0.

(A.2) Qis (i) closed, and (ii) convex.

(A.3) There is ¢ such that ‘(a, b) € Q and ||a|| > ¢’ implies
1181l < llal].

(A4) If(a,b)eQanda’ = a,0 < b < b,then(i)(a’,b') €Q
and (ii) u(a’, b') = u(a, b).

(A.5) uis (i) upper semicontinuous and (ii) concave.

(A.6) There is { such that (a, b) € ) implies u (a, b) = {.

A programme from b e RY is a sequence {b(f)}¢ such that
b(0) = b, and (b(?), b(t+1) )e Q for ¢t = 0.
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A programme {b(t)}¢” from b e R is an optimal programme if

E 8u(b'(v), b'(t+1)) < § 8u(b(r), b(t+1))

for every programme {b'(t)}o from b.

An optimal programme {b()}¢" from beR7” is a Stationary
optimal programme if b(f) = b(t+1) fort = 0. A stationary opti-
mal state is an element b €RY, such that {b}¢ is a stationary
optimal programme. It is non-trivial if u(b,b) > 1(0,0).

A discounted golden-rule equilibrium is a pair (b,p) with
(6,b) € Q, p e R, such that for all (a,b) € O,
u(b,b) + 8pb — pb > u(a,b) + 8pb — pa
The following ‘boundedness properties’ of our model are well-
known.
(R.1) Under assumptions (A.3) and (A.4)(i),
() If (a,b) € Q, then ||b|| < max [ €, |lall]
(i) If {b(®)}5 is a programme from b € R, then
16@I| < max [¢,|[8][] for ¢ = o.

The existence of an optimal programme in this framework is
also a standard result.

(R.2) Under assumptions (A.1), (A.2)(i), (A3), (A.49)3),
(A.5)(i) and (A.6), if b e RY, there exists an optimal pro-
gramme from b.

Given (R.2), there is an optimal programme {b*(®)}¢° from each
b e R We define

V(b) = g 8u(b*(1), b*(t+1))

V'is generally known as the value function.

2b. Characterization of optimal programmes in terms of
dual variables

A sequence {b(f), p(1)}¢ is a competitive programme from b e R™
if {b(#)}¢’ is a programme from b, p(t) eR7 for t =. 0, and for all
t = 0 we have

3 'u(b(r), b(t+1) + p(t+1)b(t+1) — p(H)b(r)
= 8'u(a,b) + p(t+1)b — p(f)a for all (a,b) € O 2.1)
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A competitive programme {b(), p(f)}o from b € R7 is said to
satisfy the transversality condition if

lim p(¢) b(r) = 0

It is by now fairly well known that (roughly speaking) optimal
programmes can be characterized as competitive programmes
satisfying the transversality condition. We state this more precisely
below in terms of three results.

(R.3) Under assumptions (A.3), (A.4)(i); (A.5)(i) and (A.6), if
{b(), p(t)}¢ is a competitive programme from beRT,
which satisfies the transversality condition, then {b(f)}¢ is
an optimal programme from b.

It is worth noting that the above result does not depend on the
convexity of the transition possibility set or the concavity of the
utility function. The converse of this result, stated below, relies
heavily on the ‘convex structure’ of the model. The version we
report here can be obtained by following the approach of Weitzman
(1973): the interesting features of his technique of proof are (a) the
use of an induction argument to obtain the ‘dual variables’, and (b)
the combination of the dynamic programming approach exploiting
the value function, with the duality approach exploiting the sepa-
ration theorem. The same result can also be obtained by following
the original Malinvaud procedure of selecting an infinite dual
variable sequence as a limit point of finite dual variable sequences
obtained for every finite horizon. This latter approach is followed
in Dasgupta and Mitra (1987).

A vector a in R is sufficient if there is b in R} . such that (a,b)
is in Q. We shall need -

(A.7) There exists a sufficient vector in R} ..

(R.4) Under assumptions (A.1)~(A.7), if {b())}o is an optimal
programme from b in R, then there exists a sequence
{p(0)}& of dual variables, with p(t) €R” for t = 0, such
that

(i) {b(t), p(t)}o is a competitive programme
(ii) 8°V(b() — p(Hb() = 8'V(b) — p()b
forallbeR%,t =0 2.2)
and  (iil) lim p(£)b(f) = 0 (2.3)

-
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Conditions (2.2) and (2.3) in the above result are not ‘inde-
pendent’. For a competitive programme it can be shown that (2.2)
is equivalent to (2.3).

(R.5) Under assumptions (A.1)~(A.7), if {b(0), p()}¢ is a com-
petitive programme from b in R, then it satisfies (2.2) if
and only if it satisfies (2.3).

2c. Existence of a Stationary optimal state vig duality theory

The question of existence of a non-trivial stationary optimal state
has been discussed extensively in the literature. Two treatments of
the subject can be found in Sutherland (1970) and Khan and Mitra
(1986), who use a purely primal approach, and Flynn (1980) and
McKenzie (1982) who use the dual variable approach: an excellent
survey of this question and related issues can be found in McKenzie
(1986).

Let us call the transition possibility set Q du-productive if there
exists (4, b) in Q such that §5 >> d, and u(8b, b) > u(0, 0). The
main existence result of the above literature using the duality
approach can then be stated as follows. If Q) is du-productive there
is a discounted golden-rule equilibrium (5, p). Furthermore, it can
be seen, using (R.3), that {b})g isa stationary optimal programme
from b and b is a non-trivial stationary optimal state. We state this

continuous, while we assume that it is only upper semicontinuous,
The reason for using this weaker assumption in our theory is that it

special case of the general model. (For elaboration on this point,
see especially Peleg (1973) and Dutta and Mitra (1986).)

(R.6) UnderA(A.l)—(A.6), if Q is Su-productive, then there is a
pair (b, p) such that (b, P) is a discounted golden-rule
equilibrium. Furthermore, b is 4 non-trivial stationary
optimal state.
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3. DuaLiTy THEORY IN THE CONSUMPTION MODEL
3a. The Model

Consider a framework described by a triplet (€2, w, 8), where (), a
subset of RT X R7, is the technology set, w: R} — R is the
period welfare function, and & is the discount factor satisfying
0 < < 1. A typical element of () is written as an ordered pair
(x,y), where x represents the inputs of the m goods, and y the
outputs producible with inputs x.

We will need the following assumptions:

(B.1) (i) (0, 0) € Q; (ii) (0, y) € Q impliesy = 0

(B.2) Qs (i) closed, and (ii) convex.

(B.3) There is ¢ such that ‘(x, y) € O and [|lx|]| > & implies
Uyl < Ml

(B.4) If(x,y)eQandx' =x,0 <y < y,then (x',y') €.

(B.5) wis (i) continuous, and (ii) concave.

(B.6) Ifcic’ areinR’,then(i)c' = cimpliesw(c') = w(c),and
(ii) ¢! >> c implies w(c') > w(c).

A plan from y € R’} is a sequence {x(?), y(f)}o such that

y(0) =y; 0 < x(t) < y(¢) and (x(¢), y(t+1)) € Q for
t=0

Associated with a plan {x(f), y(#)}¢ from y is a consumption
sequence {c(f)}o defined by

c(t) = y(t) — x(¢t) fort = 0
A plan {x(7), 7(§}o from y is an optimal plan if

% s'w(é()) = % 8'w(c(?)) (3.1)

for every plan {x(¢), y(9)}o from y.

An optimal plan {x(r),y(t)}¢ from y is a stationary optimal plan
if (x(0),y(¢)) = (x(z+1), y(2+1)) for ¢t = 0. In this case we refer
to a stationary optimal plan as {x,y}¢ with obvious interpretation,
and to its associated stationary consumption sequence as {c}¢ ,
where ¢ = y — x. A stationary optimal stock is an element y € R}
such that there is a stationary optimal plan from y. It is non-trivial
if w(c) > w(0).

A modified golden-rule equilibrium is a triple (%, ¥, p) with (£, y)
€ Q, p € R, such that denoting (y—£) by ¢, we have
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ié=0
(i) w(é) — pé = w(c) — pe for all ¢ in R”
(iii) p(dy—%£) = p(dy—x) for all xy)e

A sequence {x(t), y(t), p(9)}¢ is a competitive plan from y if
{x(®), y(t)}s is a plan from Y, p(®) eR% fort = 0,and fort = 0,

8'w(c(t)) — plo) c(r) = 8'w(c) — p(t)c for all ¢ € R™ 3.2)
and

p(t+1) y(t+1) — p()x(t) = p(e+1)y — p(x

for all (x,y) € Q (3.3)

3b. Conversion to the format of the general model

Our objective is to view the consumption model as a particular
case of the general model of section 2 and to apply the results
which have been developed for that model.

To this end, we define a feasible input correspondence, g: () —
R by

g(a,b) = {x: (x,b) eQand x < a}

Note that for each (a, b) € ), a € &(a, b) so g is non-empty valued.
Also, for each (a, b) € 0, g(a, b) is, by definition, a bounded set.
And, clearly g(a, b) is a closed set for each (a, b) € Q.

Next, we define a utility function, u:Q) — R by

u(a,b)=Max w(a—x)
subject to x € g(a, b)

Note that for each (a, b) € Q, &(a, b) is non-empty, compact, and w
is continuous. Thus, defining h(a,b) = {x: % eg(a, b), and w(a—x)
= w(a—x) forall x € g(a, b)}, we note that & is a non-empty
valued correspondence on ), and u(a, b) [=w(a—x) for ¥ e
h(a, b)] is well-defined on Q.

We now show that, given (B.1)~(B.6), (Q, u) satisfies (A.1)-
(A.6) of section 2a. Clearly (B.1), (B.2), (B.3) and (B.4) imply
respectively (A.1), (A.2), (A.3) and (A.4)(i). Toestablish (A.5)(),
let (a°,6°) € Q. Suppose (a",b") € Q for n = 23] 214 Jpand
@,b") - @b asn —» . Letx" e g(a",b") forn = 123, . . ..
Since a" — a°, there is $° > 0, such that lla”|] < ||a%| + B° for
all n = 1. Thus, ||x"| < ||a"|| < ||a%| + £° for all n > 1, and
there is a convergent subsequence (™) of (x7) converging to x,
say. Then since (x™, b™) — (%, b% asn’ — =, and Qs closed, so
(£, b% € Q. Also, x™ < @ for all n' implies £ < a°. Thus % ¢
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8(a°, 5%). So g is an upper hemicontinuous correspondence. Define
G: Q — R7% by G(a, b) = {a} — g(a, b). Then G is an upper
hemicontinuous correspondence from Q) to R7, and w is upper
semicontinuous on R, so u is upper semicontinuous on ) (Berge
(1963), p. 116). To establish (A.5)(ii), simply note that since Q is
convex, and w is concave so u is concave on (.

To verify (A.4)(ii), let (@ab)eQanda’ = 4,0 < b’ < b. Let
xe€h(a, b). Then (x, b) e O, x < a, and w(a—x) = u(a, b). Define
x' =x+ (a’—a). Then x’ = a’ + (x—a) < a',s0 (x', b') € Q.
Also x' =a' + (x—a) < @', so x'€ g(a',b’). Thus, u(a',b’) =
w(a'—x') = wla—x) = u(a,b).

Finally, to verify (A.6), let (a, b) € Q. Then since a € g(a, b), so
u(a, b) = w(a—a) = w(0), for all (a, b)e Q. &

We have now established that the model described by (Q, u, 8)
satisfies (A.1)—(A.6).

Next, we want to consider plans in terms of the general frame-
work of section 2. Note that {x(#), y(t)}¢ is a plan from y if and
only if {y(¢#)}¢’ is a programme from ¥, and x(2) € g(y(r), y(t+1))
for ¢ = 0. Furthermore, if {0, y(1)}¢’ is an optimal plan from y,
then clearly %(¢) € h(y(t), j(t+1)) and so u(y(9), y(t+1)) = w(é(e))
for t = 0. Also, if {x(?),y(®)}¢" is a plan from ¥, then w(c(?)) =
w(y(t) — x(1)) < u(y(#),y(t+1)). Using these facts, the inequality
in (3.1) can be rewritten as

o

2 SuG@, ye+)) = 3 su(y), y(r+1))

for every plan {x(f), y(1)}¢& from Y- In other words, {y(¢)}¢ is an
optimal programme from y. Conversely, if {y(£)}¢ is an optimal
programme from y, then defining #(¢) e h(y(t), y(t+1)) for t = 0,
{2(@0), y(O}¢ is clearly an optimal plan from y

3c. Characterization of optimal. plans in terms of dual variables

An optimal plan can be characterized as a competitive plan satisfy-
ing a transversality condition. The standard references of this
result are Peleg (1970) and Peleg and Ryder (1972). The (common)
technique of proof of these two papers differs from both the
approach of Weitzman (1973) and that of Dasgupta and Mitra
(1987), that we have referred to in section 2; it consists of applying
a separation theorem in the space of all bounded infinite sequences
(of vectors in R™). Our main objective in presenting this result
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again is to draw attention to the fact that it can readily be derived

has been overlooked in the literature.

There is a secondary objective in presenting this result, and this
has to do with the difference in the assumptions used by us from
those used in the literature. Specifically, Peleg (1970) and Peleg-
Ryder (1972) assume that the welfare function, w, is strictly
increasing in each component; that is, if ¢, ¢' are in R”, and
¢’ = ¢, ¢ #c, then w(c') > w(c). We do not make this assump-

having this strong property, so the characterization result we report
in Dasgupta-Mitra (1987) and also below cannot be readily obtained
from their result.

We now formally state and Prove our characterization results,
by using the corresponding results for the general model.

Proposition I: If {x(v), y(0), P} is a competitive plan from y,
and

imp@yy=0 (3.4)

then {x(1), y(0)}& is an optimat plan from y.

Proof: If {x(p), Y0, p(®}¢ is a competitive plan from y, then
using (3.2), (3:3), and ¥t = Y — ¢, one gets

BWe®) + p(+1) y(t+1) — plop(y = 8'(e) + p(r+1)y
=p(?) (c+x) for all (x,¥)eQand ce R7% (3.5)

Note that x(r) €g(y(t+1), y(r)), since (x(®), y(+1)) €}, and
x(®) < y(). For any x eg(y(n), y(t+1)), (x, y(t+1)) € Q and
X < y(1), so defining ¢ = y(f) — x > 0, and using (3.5), w(c(2))
= w(c). Thus, x(?) € h(y(r), ¥(t+1)), and w(c(®)) = u(y(r),
y(t+1)). '

Let (a, b) € Q. Then defining x € h(q, b),andc = g - x, we
have (x, b) € Qand ¢ > 0, so by (3.5),

Su(y(®), y(e+1)) + p(t+1)y(r+1) — p()y(1)
= 8'u(a, b) + p(t+1)b — p(da for all (a, b) € Q.
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Thus, {y(?), p(9)}¢ is a competitive programme from y, satisfying
the transversality condition. Hence, by (R.3), {y(?)}¢ is an optimal
programme from y. Since we have already checked that x(¢) €
h(y (1), y(t+1)), so {x(f), y(©)}o is an optimai plan from y.

Proposition 2: Suppose {x(t), y(f)}o is an optimal plan from y € R"; ..
Suppose, also, that there is some sufficient vector in R". Then,
there is a sequence {p(t)}q" with p(t) e R" for t = 0, such that
(1) {x(@), y(®©), p(t)}o is a competitive plan;
(ii) 8V(y(9) — p(Oy(r) =8'V(y) — p(O)y

forally eR%, and ¢t = 0; (3.6)
and (iii) lim p(¢?) y(¢t) = 0. . 3.7

Y

Proof: Since {x(t), y(f)}o is an optimal plan from y, so x(¢) € h(y(?),
y(t+1)), and {y(¢)}¢ is an optimal programme from y. Hence, by
(R.4), there is a sequence (p(#)}¢ such that p(t) € R” fort = 0,
{y(®), p()}¢ is a competitive programme from y, and (3.6), (3.7)
hold. It remains to verify (i).
Given any ¢, define 0,(c) = &'w(c) — p(t)c for all ¢ e R, and
7lx, y) = p(t+1)y — p()x for all (x, y) e
Next, given ¢, we define the following two sets:
A(?) = {a: there exists ¢ = 0, satisfying
8c) — 0/(c(r)) > a}
B(t) = {a : there exists (x, y) € (Q satisfying
7, (%, y) — mlx(i), y(t+1)) > — @}

We claim that (for each 1),
A(#) and B(¢) are disjoint (3.8)

If (3.8) does not hold (for some ¢), there is some a which belongs
to both A(#) and B(f). Then, there is (x, y) € Q and ¢ = 0, such
that 6(c) — 0/(c(f)) > a, and 7w (x, v) — 7x(?), y(t+1)) >
—a. Thus, 8&(w(c) + p(t+1l)y — p()(x + ¢) > &'w(c(?)) +
p(t+1) y(t+1) — p(1)y(t). Defining a = (x+c), we have (a, y) €.
and u(a, y) = w(a—x) = w(c). Thus, 8'u(a, y) + p(t+1)y — p(t)a
= 8'w(c) + p(t+1)y — p(H)(x+c). Also, since x(¢) € h(y(?), y(t+1)),
so w(c(?)) = w(y(?) — x(¢)) = u(y(t), y(t+1)). Hence,

8'u(a, y) + p(t+1)y — p(t)a
> 8u(y(r), y(t+1)) + p(t+1)y(t+1)—p(2)y(?)
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which contradicts the fact that {y(¢), p(f)}¢ is a competitive pro-
gramme from y. This establishes our claim (3.8).
Next, we note that, by definition of the sets A(f) and B(¢),

(a) if a < 0, thenaeA(?); (b) if a > 0, then aeB(r) 3.9

Now suppose there is some ceR”, such that 6(c) > 6/(c(t)).
Then by defining a= 1 [ 8,(c) — 6(c(s))], we have a > 0,
and a € A(?). By (3.9), a € B(f), which contradicts (3.8). Hence
0{c) < 0/{c(?)) for all c € R7, which is (3.2).

Suppose there is some (x, y) € Q such that #(x, y) > m{x(¢),
y (1+1)). Then by defining @ = — ¥ [m(x, y) — a/x(?), y(t+1))],
we note that (— a) = 14 [, (x(f), y(t+1))], so aeB(t), and a < 0.
By (3.9), a € A(r), which contradicts (3.8). Thus 7(x, y) < m(x(f),
y(t+1)) for all (x, y) € Q, which is (3.3).

We have now shown that {x(t), y(f), p(¢)}¢ is a competitive plan
from y so that (i) holds. This completes the proof of the proposi-
tion.

3d. Existence of a stationary optimal stock

The existence of a non-trivial stationary optimal stock has been
obtained in the literature by Peleg and Ryder (1974) by using
duality theory. Our main purpose in presenting this result again is
to point out that it can be obtained as a special case of the result
(R.6) which we have noted for the general model. We believe this
observation is new. As in section 3c, we note again that the result
of Peleg-Ryder (1974) is obtained when the welfare function, w, is
strictly increasing in each component. This assumption turns out,
again, to be essential to their method of proof. Thus, our existence
result, noted below aqd in Dasgupta-Mitra (1987), cannot be
readily obtained from their result.

Call the technology set 0 8-productive if there exists (%, y) in Q
such'that 8y >> . Note thatif Qis 8-productive, then with the
definition of u given in section 3b, and assumptions (B.4) and
(B.6), Q is du-productive. For ( 8y, y) is clearly in Q by (B.4),
and % is in g( 8y, ¥). So u( 8y, y) = w(8y—x) > w(0). Noting
that (0,0) = w(0), we obtain u( 8y, y) > u(0,0).

Proposition 3: If Q is 8-productive, there is a triple (£, J, p) such
that (£, ¥, p) is a modified golden-rule equilibrium. Furthermore, y
is @ non-trivial stationary optimal stock.

Proof: Since () is 8-productive, so it is also Su-productive. So,
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using (R.6), there is a pair (§, p) such that (J, p) is a discounted
golden-rule equilibrium and ¥ is a non-trivial stationary optimal
state. That is, (J, §) € Q, p € R, and for all (g, b) € Q,

u(y, 9) + 8p9 — py = u(a, b) + 8pb — pa (3.10)

Let £ be an element of 4(§, §). Then, (£, §) € 2, and denoting
(y—%) by ¢, we have é = 0 and w(é) = u(y, 7).

Define 6(c) = w(c) — pc for all c R}, and 7 (x, y)=8py — px
for all (x, y) € 2. Now, following the method of proof in Proposi-
tion 2, one can establish that 0 (c) < 8 (¢) for all c ¢ R}, and n(x,
y) < m(, y) for all (x, y) € Q. Hence, (£, §, p) is a modified
golden-rule equilibrium.

Using Proposition 1, {£, §}¢ is a stationary optimal programme
from y. Since y is a non-trivial stationary optimal state itis also a

non-trivial stationary optimal stock. Y
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