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1. Introduction

National Income is a normative concept. Moreover, the concept belongs to
economic dynamics and not statics, for it evaluates the potential of current production to
contribute to social welfare over time.! While this much is taken for granted, there have
been relatively few attempts to establish rigorously the precise relation between current
production and future welfare. The notable exception to this is the work of Weitzman
(1976). Using a dynamic optimization framework, Weitzman showed that when future
utilities are discounted, Net National Product at any date along an optimal path, measures
the annuity equivalent of the social welfare of the economy, starting from that date.’

The purpose of this paper is to extend the scope of Weitzman’s analysis to cover
the case of undiscounted utilities. We then demonstrate the following: discounting future
utilities is a necessary condition for growth of Net National Product, as defined by
Weitzman (1976). We establish this by showing that when future utilities are not
discounted, Net National Product is constant over time along every competitive path.’

This observation can be seen as an interpretation of the Keynes-Ramsey rule of
optimal saving (see Ramsey (1928), Koopmans (1965)), extended from the set of
“optimal paths” for which it was originally derived, to the larger set of “competitive
paths”. Equivalently, our observation is a reinterpretation of the result that the
Hamiltonian is constant along a competitive path when future utilities are not discounted

(see Samuelson (1965), Dasgupta (1969)):
H(k(t), p(t)) = u(k(t),k(t)) + p(t)k(t) = constant (1.1)
where £ is the vector of capital goods and p the vector of prices of investment goods (in

terms of current utility). The original Keynes-Ramsey rule follows from (1.1) by noting



that (a) on the “bliss” path ( “golden rule” path), we have k(t) =0, so on paths
converging to the bliss point, the Hamiltonian is constant at the bliss level of utility; and
(b) the utility price of an investment good is the current marginal disutility of that
mvestment. In what follows, by the Keynes-Ramsey rule, we shall mean the constancy
over time of the Hamiltonian.

In Weitzman (1976), Net National Product (or NNP) is defined as the value of the
Hamiltonian along a competitive path.* We accept this definition since it is our view also
that NNP seeks to capture welfare potential and competitive conditions, being necessary
conditions for optimality, are indicative of potentiality. However, Weitzman uses a
positive discount rate and so in his framework NNP is not constant. As noted in Dasgupta
and Mitra (2001), Weitzman’s result is actually a reinterpretation of the Bellman equation

of optimality in dynamic programming;:

V! (k(O)k(2) = uk(t),k(®) =V (k(1)) (1.2)
where V' 1s the value function associated with the dynamic optimization problem, and

therefore satisfies:

V(k(t)) = jfe-’“—f)u(k(s),/é(s))ds = Max j:oe_’(s_t)u(k'(s),lé'(s))ds (1.3)
and the maximization in (1.3) is understood to be over all feasible paths (k'(s),k'(s))
with &'(¢) = k(¢) . Weitzman (1976) established that for each t:

Y()= rj':o e " u(k(s), k(s))ds (1.4)

where Y (¢) is NNP at time t, defined as H (k(¢), p(¢)) . His result (1.4), which we will

refer to as Weitzman’s Rule, can be seen as following from (1.2) and (1.3), by



recognizing that along optimal paths, the derivative of the value function, V'(k(¢)),
equals the (shadow) price of investment, p(t) .

The validity of the Keynes-Ramsey Rule is demonstrated in the literature, in
closely related one-sector models of optimal growth, by Ramsey (1928) and Koopmans
(1965). The result that the Hamiltonian is constant along an optimal path, is established
by Samuelson (1965) in a one-sector model, and by Dasgupta (1969) in a two-sector
model with non-shiftable capital. On the other hand, the result of Weitzman, referred to
above, is a perfectly general one, holding for a model of capital accumulation with
heterogeneous capital goods (some of which can be non-renewable resources). Thus, it is
important to demonstrate the Keynes-Ramsey Rule (under a zero discount rate) for a
comparably general model of inter-temporal allocation. This is a fairly straightforward
task.

Ensuring the existence of an optimal path (in the zero discount rate case) is a
well-known difficult problem. But, it does not have a direct bearing on the point we wish
to make. To emphasize this, we will find it more convenient to establish that the Keynes-
Ramsey rule holds for any “competitive path”, whether optimal or not. In this respect, our
result for the undiscounted case is actually simpler than the corresponding result for the
discounted case, since the validity of Weitzman’s Rule along a competitive path requires
that (see Dasgupta and Mitra (1999)) an investment value transversality condition holds
on the path.

The demonstration of the Keynes-Ramsey Rule for optimal paths, in more
specific models, as discussed above, relies on the (myopic) competitive properties of an

optimal path, and not on its asymptotic (transversality) behavior. Thus, our approach is an



extension of the method already employed in the literature, but it clarifies the essential
argument involved in arriving at the result. If an optimal path does exist, then it will turn
out to be competitive in our sense (see, for example, Takekuma (1982)) and so it will

satisfy the Keynes-Ramsey Rule.

2. The Framework

Consider a general framework of capital accumulation along the lines of Cass and
Shell (1976). We assume that population and technology are stationary, and individuals at
each date are identical in all respects (so one can think in terms of a representative agent

and ignore distribution considerations).
Denote by &, >0 the stock of the i th capital good, where i=1,...,n and by z, the
mvestment flow, net of depreciation, of the i th capital good. Denote the vectors

(k,,...,k,) and (z,,...,z,) by k and z respectively. The fechnology set, denoted by A, is a

set of pairs (z,k) in R" x R"; . By a typical point (z,k) of A we understand that from
capital input stock £, it is technologically feasible to obtain the flows of net investment, z.
The utility function is denoted by a function u : A—R . We will make the following
assumptions” on A and u:

(A.1) Ais closed and convex; for each k> 0, there is a z in R" such that (z,k) € A.
(A.2) Given any number & > 0, there is a number 1} > 0 such that (z,k) € A, and ||k]| < &
implies |u(z,k)| <n and ||z]| <n .

(A.3) uis continuous on A and twice continuously differentiable in the interior of A.

(A4) u(z,k)=>0 for (z,k) € A ; uis non-increasing in z .



(A.5) uis aconcave function on A ; for each k£ >> 0, u(z,k) is a strictly concave function
of z ; in the interior of A, the matrix of second-order partials of u# with respect to z,

[0%u(z,k)/dz | is negative definite.

For each k > 0, defining the set A(k) = {z: (z,k) € A }, we note that A(k) is a non-
empty, compact and convex subset of R" .
A path from initial stock K in R", is a pair of functions (z(-),k(-)), where

2(*) : [0, 0) — R™and k(") : [0, ©0) — R", , such that k(*) is absolutely continuous and®
(z(0), k(£)) € A for t> 0, a.e.; k(¢) = z(¢) for t > 0, a.e.; and, k(0) = K 2.1)

Denote by 3(K) the set of paths from initial stock K. We will assume:
(A.6) For each K in R"; , the set 3(K) is non-empty.
A path (z(¢), k(f)) from K is called optimal if for every path (z'(¢), k'(f)) from K,

we have :

lim inf | OT [u(z'(t), k' () — u(z(t), k(£))]dt < 0 (2.2)

3. Competitive Paths and the Keynes-Ramsey Rule

We will first elaborate on what we mean by a time path of quantities and prices,
which evolve along a competitive path. Then, we will show that along such a path, the
Keynes-Ramsey rule must hold.

Let p = (p1, ..., pn) denote the prices of the investment goods. Define a function,

H:R"% xR" by:



H(k.p) =

Max — [u(z,k)+ pZ]} 3.1)

subject to  (z,k)e A
As noted above in Section 2, for each k in R, , A(k) is non-empty and compact and,
therefore, H(k, p) is well-defined. Further, H is convex in p, and (since A is convex)
concave in k.
By (A.5), for £ >> 0, u(z, k) is strictly concave in z and, therefore, there is a
unique maximizing choice of investment, which solves (3.1). We can write this

maximizing choice of z as a function g(k, p), where g: R"; x R" — R" satisfies:

H(k ,p) = u(g(k, p), k) + p g(k, p) and (g(k, p), k) € A (3.2)

Remark 3.1: For (£, p ) such that &’ >> 0 and (g(£’, p” ), k" ) is in the interior of A,

i) p'+[oue®’, p"), k") /2] =0

(11) By (A.3), the function F(k,p,z) = p + [Ou(z,k) / 0z ] is defined in an open
neighborhood around (£, p’, g(k’, p”)), is continuously differentiable, and its derivative
matrix with respect to z is non-singular. Thus, by the implicit function theorem, g(%, p) is
continuously differentiable with respect to (k, p) in an open neighborhood N of (£’ p)
and the range of (g(k, p), k) for (k, p) in N, is an open subset of A. It follows that in this
neighborhood N of (k°, p” ), H is continuously differentiable, and by the envelope
theorem,

[0H(k, p) / dp] = g(k, p) and [0H(k, p) / Ok | = [ou(g(k, p), k) / Ok]

A competitive path is a path (z(¢), k(t)) with associated prices, denoted by
absolutely continuous functions of time (p;(?), ... , pu(?)) = (p(¢)), with p(¢) > 0 for t > 0,

a.e., satisfying the following two conditions:



u(z(f), k(6)) + p(f) 2(t) = H(k(?), p(t)) fort>0, a.c. (3.3)

p()= - [0H(K(), p(2)) / 6k] for t>0, a.e. (3.4)

Here, p(t) is the vector of (present value = current value) prices of the investment
goods, prevailing along a competitive path at date . Use the notation (z(?), k(¢), p(¢)) to
denote a competitive path with its associated prices. Along a competitive path, for > 0,
denote H(k(t), p(¢)) by Y(¢); that is:

Y(¢) = H(k(?), p(t)) fort>0 (3.5

Interpreting utility as output with present value price of unity, (3.3) says that the
maximum value of output achievable from capital stocks k() at the prices p(t), [that is,
H(k(?), p(?))] 1s realized along a competitive path:

Y(¢) = u(z(?), k(f)) + p(t) z(f) fort>0, a.e. (3.6)
Equation (3.4) says that asset markets are in equilibrium; that is, no gains can be made by
pure arbitrage [see Dorfman, Samuelson and Solow (1958), Weitzman (1976)].

We are now in a position to state and prove the principal result of the paper:
competitive paths satisfy the Keynes-Ramsey Rule in the sense that the Hamiltonian is
constant over time along the path.

If (z(), k(*)) is a path from K in R"; , we shall say that it is interior if (i) (z(¢), k(7))
is in the mterior of A for £ >0, a.e., and (i1) k() >> 0 for £ > 0.

Theorem 1: If (z(¢), k(¢), p(¢)) is an interior competitive path from K in R" , then

(1) the function Y(¥), defined in (3.5), is an absolutely continuous function of #; and,

(i) Y()=0 fort>0ae.



Proof: Before coming to the proof, note that assertion (ii) of the theorem is the Keynes-
Ramsey Rule. Assertion (i) is a technical result which is stated because it ensures that the

function ¥(¥) is differentiable for # > 0, a.e., and enables us to state assertion (ii).
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economy. For this purpose, our concept of net national product will be the same as in
Weitzman (1976), and we will be concerned about this magnitude along an optimal path,
when future utilities are not discounted.

In order to make our discussion precise, we will conduct our analysis entirely in
terms of a one sector neoclassical model. Briefly, the ingredients of this well-known
model are a gross production function, G: R, — R, , a constant exponential rate of
depreciation, 6 € (0, ©) and a welfare function, w: R, — R, . A net output function, f,
can be defined as f(k) = G(k) - 0 k for k € R, . Along a path (z(¢), k(¢)), we have
consumption at date ¢, denoted by c(7), and defined by c(¢) = f(k(¢)) — z(¢) for t € [0, ).
Utility is obtained from consumption, so that u(z(¢), k(¢)) = w(f(k(¢)) — z(¢)) for ¢ € [0, ).
We assume that G, w, and 0 satisfy the following standard properties:

(N.1) G(0)=0; G is continuous on R, and twice continuously differentiable on R+, ;
for k>0, G'(k) > 0 and G"(k) <0 ; there is k' > 0 such that for k£ € (0, £'], G'(k) > 0 ; there
is k" > 0 such that for k € [k", ©), G'(k) <35 .

(N.2) w(0) =0 ; wis continuous and concave on R, ; w is twice continuously
differentiable on R+ ; w'(c¢) > 0 and w"(c) <0 for all¢ >0 ; w'(c) > o asc — 0.

Under these assumptions, it can be verified easily that this one-sector neoclassical model
is a special case of the general framework described in Section 2.

In this one-sector model, it is known that an optimal path (z(¢), k(¢)) exists from
every initial stock, K > 0, and is competitive (see Koopmans (1965)). Thus, by Theorem
1 of Section 3, it must satisfy the property that the Hamiltonian is constant along the
path, as noted in (1.1). But, because we are now dealing with an optimal path, not just a

competitive one, we can say more. It is known that k(#) — k* as t — oo, so that z(¢) — 0
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and c(¢) — c* = f(k*), where k* is the golden-rule capital stock (and c* is the
corresponding golden-rule consumption). The prices p(¢) associated with the program
satisty p(¢) = w'(c(¢)), so that p(t) — w'(c*) as t — o. Using this in (1.1), we see that the
constant value of the Hamiltonian on an optimal path must be equal to the golden-rule

utility level:

H (k(2), p(1)) = u(k(0), k(£)) + p(0)k(2) = u(0,k*) = w(c*) (4.1)
This is, in fact, the original form of the Keynes-Ramsey Rule.

We now turn to a discussion of net national product along an optimal path of this
one-sector economy, and its relation to the maximum utility level that it can sustain.
Weitzman (1976, p.159) observes that “a standard welfare interpretation of NNP is that it
is the largest permanently maintainable value of consumption”. [Note that Weitzman’s
“consumption” is “utility” in our terminology; see endnote 4]. He explains that this
conventional wisdom is, in general, flawed and provides a diagram (due to Samuelson
(1961)) to illustrate why this is so.

In the context of the one-sector model discussed above, we would like to point out
that for a class of initial capital stocks (namely, those at or above the golden-rule capital
stock), NNP along an optimal path (in the undiscounted case) measures precisely the
maximum sustainable utility of the economy. This is because NNP along any optimal
path equals golden-rule utility [by (4.1) above]. And, from every initial stock at or above
the golden-rule stock, the maximum sustainable utility level is also the golden-rule utility
level. This last statement can be verified by checking two elementary facts: (a) any higher
utility level than the golden-rule utility level cannot be maintained forever, and (b) the

constant golden-rule utility level can be maintained forever.



12

Our observation should not be taken as defending conventional wisdom, which is
clearly incorrect in general, but as a clarification of its relation to Weitzman’s
contribution. To see the flaw in conventional wisdom in terms of our one-sector model,
note that NNP along an optimal path, starting from an initial stock, K, (strictly) below the
golden-rule stock, equals golden-rule utility, by (4.1) above. But, the maximum
sustainable utility level starting from such an initial stock, K, is precisely w(f(K)) , which
is (strictly) less than the golden-rule utility level of u(0, £*) = w(f(k*)) = w(c*).

The above comments prompt us to examine a bit more closely Weitzman’s (1976,
p.160) observation that conventional wisdom is valid only if the transformation between z
and u(z, k) is linear. Clearly, there is no such linearity in our one-sector model, and yet
conventional wisdom does give the right answer for a class of optimal paths. The mystery
disappears when one recognizes that Weitzman identifies paths of maximum sustainable
utility with paths having stationary capital stocks (z = 0). While this is correct for initial
stocks below the golden-rule stock, it is not so for initial stocks strictly above the golden-
rule stock. In the latter case, paths of maximum sustainable utility will necessarily
disinvest (z(¢) < 0) and approach (or reach) the golden-rule capital stock over time.

It appears, then, that for a complete analysis of the difference between NNP and
maximum sustainable utility in our one-sector model, one needs to extend the
Samuelson-Weitzman diagram appropriately. We provide this extension in Figure 1.
Following Samuelson-Weitzman, the diagram depicts transformation curves between
mvestment (z) and utility (u(z, k)), given k.

First consider the transformation curve when the capital stock equals the golden-

rule capital stock, £*. Then, corresponding to z* = 0, we have golden-rule utility, u(0, £*),
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depicted by OA. The (negative of the) slope of the tangent to the transformation curve at
A denotes the price, p*, of the investment good (in terms of utility), which equals w'(c*),
where ¢* is golden-rule consumption. Note that NNP = u(0,k*) + p*z* = u(0,k*), so
Weitzman’s measure of NNP coincides with the maximum sustainable utility.
Now, consider a transformation curve corresponding to k > k*. Note that f{(k) <

f(k*), recalling that f'is the net output function. Thus, the new transformation curve lies
wholly below the old one. Along an optimal path, one chooses z < 0 and ¢ > ¢*; so B
represents a typical optimal point. By the Keynes-Ramsey Rule, we have u(z, k) + p z=
u(0, k*), so the tangent to the new transformation curve must pass through the point A.
Once again, NNP measures maximum sustainable utility, namely #(0,k*). Along the

optimal path, as k falls, the transformation curve rises (while always remaining below the

k
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Endnotes

Since the focus is on potentials, it is appropriate to consider social welfare on the
optimal path.

In this framework, social welfare is seen as the present discounted value of the
stream of current utilities over time.

Optimality requires satisfying both the competitive (myopic) and the
transversality (asymptotic) conditions. Our result relies on the former only and is
valid for all competitive paths, whether optimal or not.

In Weitzman’s set up, the consumption level can be represented by a single
number, which “might be calculated as an index number with given price weights,
or as a multiple of some fixed basket of goods, or more generally as any cardinal
utility function” [see Weitzman(1976), pp.156-157]. Thus, the consumption level
1s measured at date ¢ by u(z(?), k(¢)). Adding this to the total valuation of
mvestment at date ¢, p(l)k(l) , including possible dis-investments (using up) of
non-renewable natural resources, we get Weitzman’s notion of Net National
Product.

For x, y in R", x >y means x; >y, for i=1,...,n; x > ymeans x > yand x #y ; x >>y

means x; > y; for i=1,...,n. For x in R", the sum norm of x, denoted by ||x|| is

defined by ||| =>"" | x,|.

i=1
The notation “a.e.” stands for “almost everywhere”’; more precisely, if A is a
subset of R, then by the expression “for ¢ € A, a.e.” we mean “for ¢ € B, where B
is a subset of A, such that the complement of B in A is a set of Lebesgue measure
zero”; if the set A is an interval [a, «0), we often use the expression “for > a, a.e.”
instead of “for ¢ € [a, »), a.e.”.
Our concept of optimality 1s due to Brock (1970), who calls it “weak maximality”
in his paper. Gale (1967) calls the path (z(z), k(¢)) “optimal” if (2.2) holds with
“lim inf” replaced by “lim sup”. Since we are concerned with only one concept of
optimality, our departure from historical practice is not likely to be a source of
confusion. With this notion of optimality, the existence of optimal paths can be

shown for the widest class of growth models.
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FIGURE 1




