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Decentralized Evolutionary Mechanisms
for Intertemporal Economies:

A Possibility Result
By

Venkatesh Bala, Mukul Majumdar, and
Tapan Mitra, Ithaca, New York, USA*

We consider  stationary, infinite horizon aggregative model with one con-
sumer and one producer living in each period. A decentralized intertemporal
mechanism, satisfying the following “evolutionary™ property, is constructed: if
the current period’s producer and consumer verify their equilibrium conditions,
then the allocation is actually executed, without further verification by future
agents. The mechanism is based on the idea of continual planning revision.
It is shown that the outcome is an intertemporally efficient allocation which
maximizes the long run average of one period utilities from consumption,

1. Introduction

From Adam Smith onwards, a long line of economists *. .. have
sought to show that a decentralized economy motivated by self-interest
and guided by price signals would be compatible with a coherent dispo-
sition of economic resources that could be regarded, in a well-defined
sense, as superior to a large class of possible alternative dispositions.”
{Arrow and Hahn, 1971, p. vii). )

In a static world with finitely many commodities and consumers,
economists have largely succeeded in establishing that a competitive

* We would like to thank L. Hurwicz, E. Malinvaud, and R. Radner for
valuable discussions, and two referees for helpful comments. Research on this
project was partially supported by a National Science Foundation Grant.
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equilibrium in a convex economy without extemnalities (that is, in a
“classical environment’”) achicves a Pareto optimal outcome. However,
once we introduce time and look at an economy over an infinite horizon,
the welfare theorems break down, even in a classical environment.
Thus, Malinvaud (1953) provides an example of an infinite horizon
economy where even though producers are maximizing intertemporal
profits in every period the (inefficient) outcome is one with zero con-
sumption in all periods! Going beyond efficiency, Samuelson’s (1958)
overlapping generations model shows that a competitive equilibrium
need not be Pareto optimal once an infinity of commaodities and agents
are admitted.

These examples suggest that a decentralized resource allocation
mechanism using a “competitive” price system to guide allocation
decisions can lead to sub-optimal ouicomes in an infinite horizon
classical economy. One is then led to ask: is it possible to design any
(not necessarily price-guided) decentralized infinite-horizon mechanism
which realizes efficient/optimal outcomes for an interesting class of
environments?

Noting Malinvaud’s tesuit that in addition to intertemporal profit
maximization, a “transversality” condition (that is, the present value of
the input sequence converges to zero) guarantees efficiency, Koopmans
(1957) conjectured that the answer to the above question is “No,” since
no finitely-lived agent can actually verify such a requirement.

Koopmans’ conjecture, strictly speaking, turns out to be untrue, as
Dasgupta and Mitra (1988a, 1988b), Brock and Majumdar (1988) and
Hurwicz and Weinberger (1990) have demonstrated in the context of al-
ternative models. For example, condition (S) in Majumdar (1988), along
with the competitive conditions for intertemporal economies, provides
a rule by which optimal plans can be attained via period-by-period
verifications by agents living in each period. As a consequence it is
possible, at least in principle, to obtain intertemporal optimality through
a decentralized system.

However, a new issue arises here. Paraphrasing from Hurwicz
(1986, p. 244), we can imagine that allocations in a static Arrow-Debreu
economy are made in the following way: the economic agents are
presented with a proposed message (prices and allocation); if all agents
accept it as an equilibrivm (that is, say “yes”) then the allocation is
carried out. If someone says “no,” a new message must be proposed
and verified by the agents, the process continuing until an equilibrium
message is found, to which everyone agrees. The difficulties in finding
an equilibrium message in this framework starting from a disequilibri-
um initial position have already been noted (see, for instance, Arrow
and Hahn, 1971). First, if no trade is allowed out of equilibrium, then
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no trade can ever take place if the tatonnement fails to converge (as
in Scarf’s example, 1960), or, if it does not converge in finite time.
Secondly, some related adjustment processes have their difficulties from
the point of view of “decentralization” or of mimicking the “invisible
hand” (see the assessments of Hahn, 1982, and Smale, 1986). However,
if the auctioneer happens to present an equilibrium message (price and
allocation) to begin with, the above verification scenario can certainly
be envisaged.

In the intertemporal framework, however, a conceptual problem
arises when we try to apply Hurwicz’s paradigm directly: at any given
time not all agents are present — many are yet to be born. But then, as
Hurwicz and Weinberger (1990} (H-W henceforth) point out, this means
that the auctioneer/planner has to wait until eternity before all agents
can verify their conditions for equilibrium, so that no allocation decision
can actually be carried out in any period. It should be emphasized that
this is a difficulty that persists even when the auctioneer chooses an
equilibrium message to begin with. Hence, a process that requires (in
the spirit of tatonnement) waiting till all the verification is complete is
really “. .. a prescription for economic paralysis rather than a realistic
model for economic behaviour.” (H-W, p. 317).

To resolve this issue, H-W define an evolutionary process. This
is a mechanism in which, if agents up to any finite time respond
positively to the verification rules for their part of a proposed plan,
then the designer actually carries out that part of the plan. This is
done irrespective of whether future agents verify or fail to verify the
rules of the mechanism for their portion of the designer’s proposal.
(This appears to be somewhat in contrast to the usual non-tatonnement
maodels, in which actual consumption or production of goods does not
take place. Typically, trading means moving to a new position in the
Edgeworth box, not a change in the size of the box.)

The main result of H-W is negative; they show the impossibility
of achieving optimal outcomes for an aggregative growth model using
evolutionary processes, when the optimality criterion is the maximiza-
tion ‘of the discounted sum of one-period utilities.

QOur approach in this paper is somewhat different. Instead of fo-
cusing on the possibility (or impossibility) of realizing an optimal
plan through a decentralized process, we actually consfruct a de-
centralized mechanism where decisions are carried out period after
period in the evolutionary manner of H-W. (The relevant concepts
are formally defined in Section 5.) It is shown that this process has
interesting normative properties: the allocation sequence generated by
it is intertemporally efficient in the sense of Malinvaud (1953), and
also maximizes the long run average utility from consumption. (See
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Section 2a for precise definitions of these concepts and Section 6 for
the stated result.)

Speaking informally, perhaps the reason why our mechanism suc-
ceeds despite the H-W impossibility result is this: the optimality criteri-
on we use leads to many (more precisely, an infinite number of) optimal
plans. In contrast, the criterion of H-W typically leads to a unique
plan which maximizes the discounted sum of utilities (for instance,
when the one-period utility function is strictly concave). Intuitively,
one expects that it is easier for an evolutionary mechanism, in which
plans are continually revised and updated as new information comes
in, to achieve one out of an infinite set of outcomes, as opposed to
attaining a unique outcome.

A few remarks on the optimality criteria explored in the context of
intertemporal economics might be useful to put our result in proper
perspective. One can argue on both philosophical grounds (Rawls,
1971) and economic ones (Pigou, 1928; Ramsey, 1928) that when
making decisions, the designer should not favor nearby generations
to the detriment of generations far in the future. If we accept these
arguments, then we must look for some “undiscounted™ optimality
criterion for making welfare judgements.

An optimality notion that has appeared in the undiscounted case is
the maximization of the “long-run average reward.” This criterion was
first explored in the operations research and statistics literature (see Ho-
ward, 1960, or Blackwell, 1962; later references include Veinott, 1966,
and Ross, 1968). There are actually several versions of this criterion (for
a discussion, see Flynn, 1976). The one we use requires a program 1o
maximize liminfp_, . [7! Zil u{cy)], where u(-) is the one period
utility function, Bhattacharya and Majumdar (1989) have shown the
existence of stationary optimal policies under such a criterion, for a
very general class of semi-Markov models. In economics, a version of
this criterion was suggested by Dasgupta (1964), and was subsequently
studied by Jeanjean (1974) and Dutta (1986, 1989). Dutta, in particular,
has analyzed it in detail, and outlines its relationships with alternative
undiscounted optimality notions. We should stress that this criterion
has its drawbacks, a major one being that there is no “weight” on the
consumption sequence for any finite length of time. Consequently, we
require an optimal program to maximize the long-run average utility
and — in addition — to be efficient.

The mechanism that we construct works via a continual planning
revision process (see Goldman, 1968). Roughly speaking this process
can be described as follows: given an initial stock x > 0, a 2-period
utility maximization problem is considered where the terminal stock is
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set equal to x. The maximal first period consumption (say c;) takes
place and the economy moves to the stock level 7 = f(x) — ¢, where
f() is the production function. Next period another 2-period utility
maximization problem is contemplated with initial stock and terminal
stock set equal to ;. Again,the maximal consumption takes place and
the process is repeated. The sequence of stocks generated in this way
is called a “rolling plan.” In Section 3, monotonicity and asymptotic
properties of such plans are studied. In Section 4, these properties are
used to establish that rolling plans are optimal,

In Section 6 we formally verify that a rolling plan can be achieved
by a decentralized evolutionary mechanism. Decentralization of deci-
sion-making is achieved by introducing some accounting prices. The
consumer is required to equate a specific marginal rate of intertemporal
substitution with a price ratio and the producer is required to verify
feasibility and a condition of intertemporal profit maximization. We
note that the above pricing scheme leads to the intertemporal profit
maximizing shadow prices that Malinvaud (1933) was concerned with.
However, one should observe that it is different from the dual prices in
“optimal growth theory,” used by Gale (1967) and Gale and Sutherland
(1968). The difference is due to the fact that even though the consumer
in any period equates his marginal rate of substitution with the account-
ing price-ratio, only the current part of his resulting 2-period plan is
carried out. This difference is perhaps the most significant economic
feature of our scheme when contrasted with the earlier duality theory.

2. The Framework

2a. Plans

We consider a one-good model, with a technology given by a
production function f from R, to’itself.

We define a plan from x > 0 as a sequence (x,) satisfying

zo =%, 02y € f(zmy) fort>1.
The consumption sequence (c;) generated by a plan (z,) is given by
¢t = flaymy)—~x¢ fort>1.

A plan (x) from x > 0 is called interior if z; > 0 and ¢;q > 0 for

t>0.
A plan (z) from x > 0 is inefficient if there is a plan (z}) from
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x > 0 satisfying ¢} > ¢ for all t > 1 and ¢, > ¢; for some ¢. It is
efficient if it is not inefficient.
The following assumptions on f are used:

(A1) f(0)=0.
(A.2) [ is contindous on R and twice continuously differentiable
on 9{4.,{..

(A.3)  f is strictly increasing on R, with f'(z) > 0 for z > 0.

(A.4)  f is strictly concave on R, with f”(z) < 0 for z > Q.

(A.5) [ satisfies the end-point conditions: f'{x) — d < 1lasz — oc;
fliz) 2 ocasz — (.

Under (A.1)-(A. 5) there exist unigue numbers k, k satisfying
0<k<k<oc, f! (k) =1, f(k) = k. We note that k satisfies the
inequality f(k) > k. We denote [ f(ky— k] by é. Thus the sequence (a:t)
defined by a; = =kfort>0isa Pplan from k. We refer to k as
the golden-rule input stock and to (k) as the golden-rule plan. The
consumption sequence associated with the golden-rule plan is (¢). We
refer to é as the golden-rule consumption. For any plan (i) from
x £ (0,k), it can be shown that (xy,c;) € (k, k) for ¢+ > 1. We
refer to k as the maximum sustainable input stock.

Preferences are represented by a utility function u, from %R, to K.

We will say that a plan (z;) from x > O maximizes the long-run
average utility if

T
lim inf [z u(cg)/T

=1

T
> 1 . 7
> I%Frglogf [ E u(ep)/T

t—1

for every plan (z}) from x. A plan (z;) from x > 0 is optimal if it
maximizes the long-run average utility and, in addition, is efficient.
The following assumptions on v will be used:

(A.6) u is continuous on R, and twice continuously differentiable
on g{++.

(A7)  u is strictly increasing on R, with u'(¢) > 0 for ¢ > 0.

(A.8) w is strictly concave on R, with u"(c) < 0 for ¢ > 0.

(A9) wu satisfies the end-point condition: u'(c) - 0 as ¢ — oc.

2b. Finite-Horizon Plans

In this sub-section, we will describe what are commonly referred
to as “finite-horizon plans.” We will focus on those finite-horizon plans
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for which the terminal (end of horizon) input stock is the same as the
initial (beginning of horizon) input stock. This provides the motivation
for the formal definition that follows.

let T be a positive integer greater than one. A T-plan from
x € (0, k) is a finite sequence (mt)t o satisfying

rr=20=X, 0< o < flzy 1) for1<t<T.

The finite consumption sequence (Ct)g;l generated by a T-plan (),
is given by

e = flryoy)—xy forl1<t<T.

If (a:t);r:@ is a T-plan from x € (0,k), it can be checked that
{x, ey kb)) for 1 <t < T i
A maximal T-plan from x € (0,k) is a T-plan (m’{)LO from x
satisfying
T

T
D ule) =Y uler)
fa=]

t=—1

for every T-plan (x;)L_; from x.
Given x € (0, k), we can define

Ci{x) = {(ct}f;lz (ct);*;} is a consumption sequence generated by
a T-plan (z,)1_, from x} .

Then it can be checked that C'(x) is a non-empty, closed and bounded
subset of R, We can define U: 9?1 — R by

T

U(Cla' v 7ct) = Zu(ct) .

t=1

Then U is continuous on R and therefore on C(x). Using the Weier-
strass theorem, there is (¢} ) .1 in C(x) which maximizes I/ among all
(ct)t 1 in C(x). That is, there exists a maximal 7-plan (:c;‘)t o from x.
Using the concavity of f, C(x) is a convex set, and using the strict
concavity of u, U/ is strictly concave on (/{x). Thus U/ is maximized
on C(x) at a unique point, (c})L.,. Given the definition of a T-plan,
this also means that there is a unique maximal 7T-plan (ac’{)T from x.

Ir (:ct)t —g 18 the maximal T-plan from x € (0,k), then using
the end-point condition on w, it can be checked that ¢ > 0 for
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t =1,...,7T. Using f(0) = 0, it then follows that z; > 0 for ¢t —=
0,...,7.For1 <t <T -1, the expression

Vi) = w(f(zi_y) — o)+ u(flx) — x} )

must be maximized at * = 2} among all = > 0 which satisfy
fxi_) — 2z > 0and f(x) ~ z7,, > 0. Since ¥ > 0, c; > 0 and
¢ty > 0, the maximum is attained at an interior point, so that

Vix!) = u'(e))(—1) + u’(cfﬂ)f’(:t::) =0.
This yields the well-known Ramsey-Euler equations:
w'(ef) = (i )@} for1<t<T —1.

In Sections 4 and 6 of this paper, we will be concerned with T-plans
for the special case of 7' = 2; we refer to these naturally as 2-plans.
A 2-plan from x € (0,k) can be described by the input sequence
(x, 1, x), with associated consumption sequence {c;, ;) > 0 givén by
c; = f(x)—a; and 3 = f(x,) — x. We note here, for ready reference,
a convenient characterization of maximal 2-plans.

Proposition 2.1 Let (x,21,x) be a 2-plan from x € (0,k), with
1 = f(x)—z > 0and o = f(x)) — x > 0. Then (x,r1,X)1is a
maximal 2-plan if and enly if

w' (f(x) — 1) = u/(fz1) — %) F(z1) .

Proof: Clearly, necessity follows from our above discussion showing
that maximal T'-plans satisfy the Ramsey-Euler equations.

For the sufficiency part, let (x,x1,x) be any 2-plan from x, with
associated consumption sequence (¢, ¢y) defined by ¢} = f(x) — 4,
¢y = flzh)—x. Then [u(c))+ulch)] - [u(cr)+ulen)] < u'(e))(c) ~e1)+
u'(ea)ey —ca) = w{c)| f (w1 )el — )+ (ch— ca)] = w'{e)[f/(xi Mz —~
)+ (f(zy) — f(2))] < u'(e)[f' @)@ —2) + feNz) —x1)] = 0.

This shows that (x, z1,x) is a maximal 2-plan from x.

2c. Rolling Plans

Rolling plans are defined in terms of “finite-horizon plans.” We
will focus on rolling plans “generated by” those finite-horizon plans
for which the terminal input stock is the same as the initial input stock;
that is by those finite horizon plans which we referred to as 7-plans in
the previous sub-section.
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Using the results of the previous sub-section, we can conclude that
there is a function 2 from (0, k) to R, such that if x € (0, k), and
(:r,t);f‘;l is the unigue maximal T-plan from x, then xy = h{xr). We
might further observe that given any x € (0, k), 0 < A(z) < f(z) < k,
so that & is a function from (0, k) to (0, k).

A rofling plan from x € (0, k) is a sequence (x;) satisfying

Iy = L, Tpgy = h{Tf) for ¢ 2 0.

Notice that the sequence (x;) is well defined, since i maps (0,k) to
(0. k). Furthermore (r;) is a plan from x, since h(xy) < f(z:) fort > 0.
Thus it has an associated consumption sequence (¢;) defined by

cr = flxy 1) — Mxpq) fort>1.

We refer to /i as the “generating function™ of rolling plans.

In view of Proposition 2.1, if 1" = 2, and A is the generating
function of rolling plans then for every = € (0, %), v'(f(z) — h(z)) =
w'(f(h(x)) — x) f/(h(x)).

3. Monotone Convergence Properties of Rolling Plans

Rolling plans can be shown to be monotone in input stocks over
time. If a rolling plan starts from an initial input stock below the
golden-rule input stock (k), then the input stocks monotonically increase
and converge (o the golden-rule input stock. (An analogous statement
can be made if the initial input stock is above the golden-rule input
stock.) Such properties were established by Goldman (1968) in the
context of a continuous-time aggregative model (with discounting of
future utilities). In discrete-time aggregative models, similar properties
can be established by focusing on the properties of what we have called
the “generating function” of rolling plans. We follow this method in
this section. Specifically, Lemima 3.1 shows that the generating function
is above (below) the 45-degree line at input stocks below (above) the
goltden-rule level; Lemma 3.2 shows that the generating function is
also increasing on its domain. These properties are then summarized in
Proposition 3.1. Proposition 3.2 establishes that these properties imply
monotone convergence of rolling plans to the golden-rule.

Lemma 3.1: If (x})1_, is the maximal T-plan from x € (0, k), then

(a)x<k1mphesx<:1:1 < k (b)xwkimphesa"l =k (c)x>k
implies x > =] > &.
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Proof: We will prove (a); the proofs of (b) and (¢) can be worked
out analogously. We first establish that =7 < k. Suppose instead

that zi > k. Then f (a:l) << 1, so by the Ramsey-Euler equation,
uw'(c) = fllatn (cz) < u'{ch). Since u”’(c) < 0 for ¢ > 0, we get
¢} = c5. Thus

fxy =21 2 fla]) — 23 > f(x) — 23,

the last inequality following from z] > k > x, and the fact that fis
increasing. Thus, z3 > z] > k. We can then repeat the steps to obtain

e > Lp > ... > T > T > X,

so that =3 > x, which contradicts the fact that z% = x by definition

of a T-plan. Thus «} < k.
Next, we establish that =7 > x. Suppose instead that z] < x.

Since =7 < k, we have f '(x}) > 1, so by the Ramsey-Euler equation,
w(cy) = flzhu'(ch) > u'(ch). Thus, ¢ < ¢, and

Fe0 —af < f@h) — x5 < fi0) — 3 .
Hence, 5 < x¥. We can then repeat the steps to obtain
2 1 P P
Tp <Tp_g<..<zy<z] <x,

so that x7. < x, which contradicts the fact that 3 = x. Thus z] > x.
Q.ED.

Lemma 3.2: If (z})L, is the maximal T-plan from z* € (0, k), and
(z1)f., is the maximal T-plan from # € (0,k), and z* > Z, then
.’ET > Iy.

Proof: Suppose the hypotheses of Lemma 3.2 are valid, but ] < Z,.
Then, we have cf = f(z*) — =] > f(Z) — &1 = ¢&. Thus, we must
have f'(z7) > f'(zy) and 4/(c}). < ¥/(¢y). Using the Ramsey-Euler
equations for the two maximal T-plans, we obtain

u'(e}) _ Flap(c3) . uw'(ch)

u'(el)  fr@ow(en) T ul(er)

This means u'(c}) < u'(¢2), and so ¢} > &. Thus, we obtain

flay —xs > f(&1) — T2 2 flz]) — 2

1>
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so that o > z3. The above argument can then be repeated to get
Iy > xf fort = 2,...,T. Thus, by definition of 7T-plans, we obtain
™ =z} < Tp = &, which contradicts the hypothesis that z* > Z.

QED.

Proposition 3.1: The generating function, h, has the following prop-
erues (a) for x € (0,k), 0 < h{zx) < flz) < k; (b) for z € (0, k),

h(:c) rask2 < x; () h is increasing on (0, k); (d) & is continuous
on (0 kY; (e) hmm_.g hiz) = O; () limgy—, h(z) = k.

Proof: Clearly, (a) follows from our discussion in Section 2¢c. Also
(b) foilows from Lemma 3.1 and (¢) follows from Lemma 3.2.

To establish (d), we proceed to apply the Maximum Theorem
(Berge, 1963, p. 116). Define D = (0,k), D = [0,k]; then D7 is
compact subset of R”, and I is a subset of . Note that / (c1,..-, cT)
is a continuous function from DT to R (by continuity of u). Also
C(x) is a continuous correspondence from D to DT (for definitions of
Uleq,...,cr) and C{x), see Section 2b). To see this last assertion,
note that C(z) is clearly an upper semicontinuous correspondence
from D to DY, by continuity of f. To check lower semicontinuity
of C(z), let #* € D for s = 1,2,..., with z® — ¥ € D, and let
(&1, ... cT) € C(Z). Then there is a T-plan (a:t)t o from Z, such
that (C:)t 1 is the consumption sequence genmerated by it. From our
discussion of Section 2Zb, we know that (%;,&) » 0 fort =1,...,7T.
Thus (using the continuity of f) we can pick € > 0 such that 1 —¢ > 0,
ZT(1+e) < k,and forall A € [1 —¢, 1+ €], f(AZe) ~ AZiyq > 0 for
t=20,...,7 1. Since z® — r as s — oo, there is some &, such that
for s > &, (x* /%) € [1—¢, 1+¢]. For s > 5, define \° = (z°/%), and a
sequence (z3)]_, by ©f = X, fort = 0,...,7T. Then by construction,
(«$¥L, is a T-plan for each s > 3, and its associated consumption
sequence (c)]_, satisfies ¢ = f(AEy) — AFpyq fort =1,...,T. As
8 — oo, wehave x° - Z, A* — land ¢ —» & fort =1,...,T, by
continuity of f. This establishes lower semicontinuity of C'(x) on D.
Applying the Maximum Theorem, and denoting by (ci(z), . . ., er(x))
the (unique) maximizer of I/ on C(z) for each =z € D, we note that
(e1(z), ..., cr(x)) is a continuous functien from D to D. Denoting by
(cct(;c))t g the T-plan from %, with associated consumption sequence
(Ct(iﬂ))t*]_, we note that (z1(x), . .., zr{x)) is also a continuous function
from D) to D?. In particular then, h(:r) = x,(z) is a continuous function
on D,

We can establish (e) as follows. For 0 < ¢ < I;:, we have, by (a)
and (b), x < A(z) < f(x). Thus as z — 0, f(z) — 0 by continuity
of f and f(0) =0, so that h(z) — 0.
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If (f) were violated, then there would exist a sequence (z*), s =
1,2,..., such that ©¥ — k as s — oo, and h{z*}) — k' < k (using (¢),
k' > k). Clearly, fT-1(k') < k (where f7" is the (I' — 1) iteration of
the function, f), and so we must have, for s large, fZ *(h(z®)} < z*,
which contradicts the definition of h.

Q.E.D.

Proposition 3.2: If (x) is a rolling plan from x € (0, k), then {a) x <
implies that x; monotonically increases to kEast — oo (b)) x >
implies that x; monotonically decreases to koas t — o0 (€} X =
implies that z; = k for all ¢ > 1.

Ty I I/

Proof: We will establish (a); (b) and (c) can be proved in a similar
manner. If x < k, then x < h{x) < k by Proposition 3.1 (b), so that
X <z < k. Using Proposition 3.1 (b) again, x; < h{z1) < k, so
that z; < z2 < k. Repeating this step, we see that z; monotonically
. ncreases while remaining bounded above by k. Hence, it converges (o
some k¥, satisfying 0 < k™ < k. Using the fact that z; < A{z,) < Ty4.9
for t > 2, and Proposition 3.1 (d), A(k*) = k¥, so that by Proposi-
tion 3.1 (b), k* = k.

Q.E.D.

We conclude this section by presenting an example, where the
generating function can be numerically computed.

Example 3.1: Let the production function be given by
flz) =2z forz>0.

Then | satisfies (A.1)—{A.5); the golden-rule input stock k=1, and
the maximum sustainable input stock & = 4. Let the utility function be
given by

w(c) = A% for ¢ >0.

Then w satisfies (A.6)-(A.9). Let the planning horizon be fixed at
T=2.

A 2-plan from x € (0,4) is then a vector (x, z;, ), with 0 <z <
f(x) and = < f(xy). If (z, 2, z) is a maximal 2-plan from z € (0,4),
then using the Ramsey-Euler equations, we gel

2x1/2 X1+ xxy = 2:1:1/2 .
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Denoting z'/? by (3, and :c%/2 by o, we get
20 + (1~ 38%a? -28=0, (1)

where 5 € (0, 2).

Given 3 € (0,2), equation (1) is a cubic in «. Since it is of odd
degree, with the last coefficient negative (23 < 0) and first coefficient
positive (2 > 0) it has ar least one positive real root. On the other
hand, by Descartes’ rule of signs, it has at most one positive real root
(since regardless of the sign of (1 — 3?), there is exactly one change
of sign in the equation). Thus, there is exactly one positive real root to
equation (1). If we call this root ¢ ((), then the generating function, h,
is given by

h(z) = [p(xV/D)]* . )

While our interest is naturally in the unique positive root of equa-
tion (1), we note that all the roots of the equation can be found by
the standard Cardan-Tartaglia method or the trigonometric method,
depending on the sign of the discriminant (see Birkhoff and MacLane,
1977, chs. 4, 5 for details).

The graph of the generating function defined in (2) can be numeri-
cally computed and is shown in Figure 1.

— — [ir} Fontion

45 Deg, Line

—— e [ (o} Function

. Enitiwd S10vk
Lttty fumction: o (o) = 3

Production lanction: f () = 277

Fig. I. Rolling plan generating function
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4. Welfare Properties of Rolling Plans

The purpose of this section is to show that rolling plans are optimal
according to the criterion given in Section 2a. To this end, we establish
that rolling plans are efficient (Theorem 4.1), and “good” in the sense of
Gale (1967) (Theorem 4.2). Both results are crucially dependent on the
fact that the sequence of input stocks of a rolling plan converges to the
golden-rule input stock at a geometric rate (Lemma 4.2). This result, in
turn, is derived from the property of the generating function, that it has
a derivative at the golden-rule input stock with a value strictly between
zero and one (Lemma 4.1). Since good plans always maximize the
long-run average utility, the above results can be combined to establish
the optimality of rolling plans (Theorem 4.3).

In what follows, we fix the time horizon of T-plans at 7' = 2. In
the more general case (1" > 2), the result can be obtained by using
monotone properties of maximal T'-plans with respect to the initial
stock and the length of the horizon.

We first introduce some notation which will ease the writing of our

results and proofs. Recall that ¢ = f(fc) — k> 0. We write

6 = min [{a/4f’(é/2)}, (i;-/z)] ,

. . (3)
O =(k-0 k+0).

It follows from (3) that & — 8 > 0, and 0 < & — 0 = f(k) ~ (k +6) <
k — (k + 0); thus, k + 6 < k. Consequenily the set © is an open
sub-interval of (0,k). Note that if (z,2) € ©?, then f(x) — z >
fh—0) — f) + fB) - R+ 0) = fik—0(-0)+e—-8 >
(3¢/4) — 0f'(k/2) > (¢/2) > 0.

Lemma 4.1 There is § € (0,8) (where 8 is given by (3)) such that the
generating function k is continuously differentiable on the set

A=lk—6 k+9] 4
and 0 < R'(z) < 1 forall x € A
Proof: Consider the function : 0% = R defined by
Wz, 2) = W (fz) — 2) + v (flz) — ) f(2) .

Then « is continuously differentiable on ©2. Furthermore, fy(fc, k=0
and v,(k, k) < 0. So, by the implicit function theorem, there are open
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neighborhoods Ny and N of 2 {where both Ny and N; are subsets

of ©), and a unique function I: Ny — Ny, such that k= I(E),
and ~v(x, L{x)) = 0 for all x € N;. Furthermore L is continuously
differentiable on NVg.

Since Ny and N; are open, we can find 8 > & > 0 such that

(fc & k+ 6 ) is a subset of Ny and N;. Since h(fc) = fc and
h is continuous on (0, k) by Proposition 3.1, we can find 0 < & < &,

such that for z € N = (k — 8, k + &), h(z) € N
Now, we observe that by the definition of h, +v(z, h(x)) = O for

all z € N (see Section 2¢). By the implicit function theorem (above),
this is possible iff i{zx) = L(z) for all = € N. This proves that in the
neighborhood N of IAc h is continuously differentiable.

Evaluating the derivative of A on N,

w'(f(z) — 2)f'(@) + u"(f(z) ~ 2)f'(2)
W f(z) = 2) +u"(f(2) — ) (22 + ' (f(2) — D f"(=)

h{z)=

where z = h{z). Thus, evaluating the derivative of & at k we get
W (k) = 2u"(&)/[2u" @) + w' (@ F (k)] .

Using the facts that v'(¢) > 0, f" (k) < 0 and w”(&) < 0, we obtain
0 < K(k) <1 A
Since k' is continuous on N and 0 < h'(k) < 1, we can find
0 < & < & such that on A = [k — &, k + 6], we have 0 < h'(z) < L.
Clearly, § € (0, 8).
Q.E.D.

Lemma 4.2: Suppose {z;) is a rolling plan from z € (0, k). Then there
is A > 0, a positive integer S, and p € (0, 1), such that z; € A for
t > S (where A is given by Lemma 4.1}, and

1a:twl’§:[§Apt fort> 5.

Proof: Consider the interval A obtained in Lemma 4.1, We know that
h' is continuous on A, and 0 < h'(x) < 1 for all z € A. Let p be the
maximum value of b’ on A; then 0 < p < 1.

By Proposition 3.2, there is a positive integer S, such that z, € A
for all t > 5. Since h is continuously differentiable on A, we can use
the Mean Value theorem for each ¢ > § to obtain

|Zii1 — k| = [ Rz — R(EY| = | R (20) | |20 — R,
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where z; is between x; and k. Since z € A, we obtain 0 < h'(z;) <
p < 1. Thus, for each t > 5,

|z~ k| < plz— k]|
Tterating this inequality we obtain for ¢ > S
o= k| < o' ms k| <05

where 6 is given by Lemma 4.1. Defining 4 = (§/ %), we have
|z — k| < Ap' for t > S, which proves the Lemma.
Q.ED.

Theorem 4.1 Suppose (x;) is a rolling plan from x € (0, k). Then (z;)
is efficient.
Proof: If z < k, then by Proposition 3.2, z < x; < k for all t > 0.
Thus, using the characterization of efficiency given in Cass (1972), (x)
is efficient. . .

If z > k, we proceed as follows. Consider the set A = [k~ &, k+6]
obtained in Lemma 4.1. Using Lemma 4.2, we can find A > 0, a
positive integer S, and p € (0, 1), such that z; € A for ¢ = 5, and

ka:t—fci < Apt fort> S,
Let m be the maximum value of [— f"(z)] on A. Choose s > S, such
that [mAp*/(1 ~ p)] < (1/2). Now, for t > s, we have x; € A,
and so by the Mean Value theorem, f'(z¢) — f'(k) = f"(z)(x; — k),
where z; > z > k. Since z, € A, we have [~ f"(z,)] < m. Thus, for

t> s fllag) > 1—mla — k) 2 1 —mAp' =1~ (mApHp'™* =
1 —[(1 —~ p)p*~*/2]. Using this information, we obtain for ¢ = s,

¢ ¢
T4l = H f’(gj,n) > My H{] - {(} —_ p)pf:,—5/2]}
=0

n=s

> 1= [ = p)p™ /2]

=8
o0

> 1= (L~ p)p"/2}

n=0

=m {1 — (1/2)} = (1/2)7, .

Thus, Z;;G w41 18 divergent. Since x; = k for ¢ > (), we can again
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use the characterization of efficiency in Cass (1972) to conclude that
{x;) is efficient.
Q.E.D.

Following Gale (1967), we define a plan () to be good if there is a
real number B such that .
> futen) ~w@] > B forall v >1.

=1

Theorem 4.2: Suppose (z;) is a rolling plan from z € (0, £). Then (x;)
is good.
Proof: Using Lemma 4.2, there is A > 0, a positive integer 5 and
p € {0, 1), such that x; € A (where A is given by Lemma 4.1) and
Loy — fc\ < Ap' for t > S. Let b be the maximum value of f' on A.
Fort > S, (z;, xi41) is in A? and so in ©2, where © is given by (3).
Thus f(xs) — 3347 = (¢/2) for t > 5.

Consider first the case where z < k. In this case, by Proposition 3.2,
0 < (& —x) < Apf for t > S. Then, for ¢ > S, we obtain é — ¢y41 =
{f(k-) - k] - [f(x-r) - $t+1] = [f(k) - f(It)] < ff(ﬂft)[k . JCr] < bAPt-
This information yields for ¢t > S, u(&)—ulci41) € w' (e é—cp1) <
w'(&/2)bAp'. Summing this inequality from S to oo, we get

D (@) — wlers )] < u'(E/20Ap° /(1 — p) .
t=5

It follows immediately that (z,) is good,

Consider next the case where r > k. By Proposition 3.2, 0 <
(y — &) < Ap' for t > S.Then for t > S, we obtain & — ¢,y =

(fik) — k] = [f(zs) — 2e31] < (@eq1 — k) < Ap'¥!. This yields for
t>9
w(@) — uerrr) € W (e )€ — crpr) <@/ DA

Then, following the above procedure, (x;) is good.
’ Q.ED.

Theorem 4.3: Suppose (z,) is a rolling plan from x € (0, &). Then (x;)
is optimal.

Proof: Recall that ¢ = f(fc) — k is the golden-rule consumption.
Denote u'(¢) by p. Let (z}) be any plan from z. Then, for ¢ > 1,

[u(c) — w@] < ple, — & = pl{f@i_) =z} — {fk) — k}] =
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Blf(x}_y) — fb)) — pley — k] < plri_y — K] = pla] ~ k), using the
concavity of f and f'(k) = 1. Thus, summing this inequality from
t=1tot=7 we gel

-

> fu(ch) — w(@)] < pe

ta=1

This yields for all 7 > 1

(/1) > uld) < u@ + (/7).

t=1

Thus, taking the inferior limit of both sides,
liminf (1/7) ) uld}) < u(@ . (5)
T i—1 .

Using Theorem 4.2 above, we know that () is good. Thus, there
is some real number B such that forall 7 > 1,

P

> fule) — @i 2 B .

[ 231

This vields for all 7 > 1
A/7r Y uler) > u(@ + (Bf7) .
t=1
Again, taking the inferior limit of both sides,

liminf (1/7) ) ulee) > u(@ - ©)

t=1

Inequalities (5) and (6) clearly imply that the rolling plan (x;) maxi-
mizes long-run average utility. Using Theorem 4.1 above, (z;) is also
efficient. Hence, (x;) is optimal. ’

Q.E.D.

Remarks:

(i) The fact that a good plan maximizes long-run average utility among
all plans has already been noted in the literature (see, for example,
Jeanjean, 1974). We have given the proof here for the sake of
completeness.
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(i1) A plan which maximizes long-run average utliity need not be good.
Consider 0 < z < k satisfying f(zx) > k, and a sequence (z;)
defined by z; = = for t = 2" (n = 0,1,2,...) and 7, = k
for t # 2™. It can be checked that (x;) is a plan from z which
maximizes long-run average utility and is also efficient but is not
good. Thus, Theorems 4.1 and 4.2 actually establish a stronger
welfare result about rolling plans than is reflected in Theorem 4.3.

(i) The properties of efficiency and “goodness™ of a plan are inde-
pendent of each other. An efficient plan need not be good (see
the example in remark (ii) above). Similarly, a good plan need not
be efficient. Consider k& < z < k, and a sequence (z;) defined by
To = T, Tee1 = f(xy)—¢ for ¢ > 0. It can be checked that (z,) is a
plan. It is clearly good, since ¢, = ¢ for all ¢ > 1. It is also clearly
inefficient since the sequence (z;) defined by zf), = =, z} = k for
t > 0is aplan from z with ¢; > ¢ and ¢; = & for all ¢ > 2.

5. Decentralized Evolutionary Mechanisms

Sa. Evolutionary Mechanisms

In the rest of the paper, we are primarily concerned with the problem
of realizing optimal allocations in our intertemporal economy with the
help of a suitably constructed “decentralized evolutionary mechanism.”
The notion of a mechanism is by now a familiar one (see, for instance,
Mount and Reiter, 1974, and Hurwicz, 1986, for discussions), but we
will have to be careful in defining an intertemporal version of it, if we
want {o capture the special structure of sequential decision-making that
is involved. This section is entirely devoted to this task.

We first define formally what we mean by an “evolutionary mech-
anism.” This is followed by an informal discussion of how this mech-
anism is supposed to operate.

We consider the following objects to be given: a set of environments
EC Ht 1 B+, a space of allocations A = Ht 1 As, and a state space
S = [];=, St. We consider A to be a subset of a finite dimensional real
space R . and S; to be a subset of a finite dimensional real space RY,
for alt ¢t > 1.

An evolutionary mechanism is a sequence (M;, G, H,) where:

{a) M;, the message space in period ¢, is a subset of a finite dimen-
sional real space, denoted by R™;

(b) Gy, the verification function in period ¢, is a mapping from
Ey x S;_1 x M, to a finite dimensional real space, denoted
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by R™. It is required to satisfy the following condition for each
(e¢,8:-1) € By x S

There is a unique message m; € M; such that Gile, s:-1, M)
= {};

(c) Hy = (H}, H}), the outcome function in period ¢, is a mapping
from M; to RI xRE. It is required to satisfy the following condition
for each (es, 5 1) € Fy x 51 ¢
if my & Mﬁ and Gt(et,st_l,mt) = () then Ht(mt) & St X At.
Given an evolutionary mechanism (M,, Gy, Hy), we define the

equilibrium message function in period ¢ as

peler, 5i1) = {my € My Gileq, 5¢.1,m4) = 0}

for each (e:, sy—1) € Ey x Si—1. The equilibrium outcome function in
period ¢t is defined as

viles, se—1) = {Hi(my): my € peler, se-1)}

for each (e¢,5:.1) € Er x S¢_1. We refer to v} [= H}(my)] as the

equilibrium state in period t, and to v [= HZ(m;)] as the equilibrium

allocation in period t (where m; is the equilibrium message in period ¢).
Several observations about the above definitions are worth making
at this point:

(i) First, our definition of an evolutionary mechanism is in the same
spirit as the notion of an “evolutionary process” introduced by
Hurwicz and Weinberger (1990, p. 317) (see particularly the dis-
cussion of this concept on pp. 317-318 of their paper). Both the
definitions require that the outcome H; in period ¢ be independent
of verifications in the future (that is, verifications for {+1 onwards).
However, the exact equivalence of the two notions is not a subject
we wish to pursue here.

{ii) From the point of view of applications, we have found it important
to bring in explicitly the notion of a state space, and to include the
“state variable” as an argument in the verification functions, (.

(iii) The dimensionality consiraints on the message space [M; C R
and on the range of the verification functions [Gy(et, 5;—1,M4) €
R™ for each (e, g1, ms) € Ep-x Sp; % M) reflect the notion
that transmission and usage of information is costly and hence
that agents can communicate or process only a finite amount of
information in each period.

(iv) The condition which G, is required to satisfy ensures that p
and 1, are well-defined functions. The condition that there is
a unique equilibrium message for each (eq,s;,-1) € By X S
is surely restrictive. The more general case of an “equilibrium
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message correspondence” can, of course, be (reated, but at the
expense of considerable complication which would add little to
the applications we have in mind. Thus, we have deliberately
kept the strong restriction on the verification function. Since our
main interest is in demonstrating a “possibility result,” the more
demanding are our requirements for an evolutionary mechanism,
the stronger is our possibility result.

To see how this mechanism operates, consider that an environment
for period 1, ey, is given. This would typically describe the preferences
of consumers and technological possibilities of producers in period 1.

Consider, also, that an initial state, sq, is given. The initial state
would typically be described by the various capital and resource stocks
available at the end of period zero.

In period I, the mechanism designer proposes a message m; to
agents. The agents (knowing e; and sp) would then verify whether
G1{e1, 59, m1) = 0. Notice that agents in period 1 are being required
to be informed about the environment in period 1, e;, as well as
the previous period’s state, sq; these appear to be plausible require-
ments. If Gy(eq, sq,m:) = 0, then m; is the equilibritm message.
(If Gi(e1, sp,mq) 3 0, another message has to be proposed and the
process has 1o be repeated until the equilibrium message is found.
How the equilibrium message is found is itself a topic of considerable
interest; but we will not be concerned with it here.)

If m, is the equilibrium message in period 1, the outcome func-
tion F| specifies a state s; in S, consisting typically of capital
and resource stocks available at the end of period 1 and the outcome
function H? specifies an allocation a; in A), consisting typically of
consumption and investment decisions in period 1. This state, allocation
pair is the “equilibrium outcome” of period 1. E is to be understood
that the allocation corresponding to this equilibrium outcome is actu-
ally carried out; similarly the state corresponding to this equilibrium
outcome is actually attained.

In period 2, knowing the state that was actually attained in peri-
od1 (s;) and the environment in period 2 (e2), the same procedure
yields the equilibrium outcome of period 2, and hence the state at the
end of period 2. This step is repeated indefinitely.

The above description of the operation of a mechanism (M,, G, H;)
implies that if an environment e € E is given, and an initial state
s € S is specified, the mechanism then defines uniquely the state and
allocation sequence for all t > 1. Specifically, the state sequence (s;),
generated by the mechanism (M,, Gy, H) is defined by

&p = 8, stxvtl(et,st__l) fort2 1.
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The allocation sequence (a;) generated by the mechanism (M, Gy, Hy)
is defined by

ay = utz(et, §i—1) fort>1.

5b. Decentralization

The evolutionary mechanism defined in the previous subsection
need not be decentralized. This is because in verifying whether a
message is an equilibrium message in some period ¢, we did not rule out
the possibility of a single agent having the full information, ey, about
the environment. We do so now by formally introducing the notion of
decentralization of information.

Assume that for each ¢, the set of environments at that date, Ey, is
defined by two independent pieces of information, which are held by
two separate agents. Specifically, assume that

E, =Us x Fy,

where U, is to be interpreted as a set of utility functions (with typ-
ical element w,;), and F, a set of production functions (with typical
element f).

The evolutionary mechanism (M, Gy, Hy) is said to be decentral-
ized if there exist sequences (A;, By) such that
(i) A; and B; map F; x S;—1 X M; into R”,
(i) Gelug, fi, s0-1,m2) = Apus, se—1, M) + Be(fi, 5p-1, M)
This defimition follows Hurwicz and Weinberger (1990) closely. Their
paper also contains alternative but equivalent ways of defining the
concept of decentralization. The definition basically conveys the idea
that a consumer’s “response” (A4;) to a message (m,) can utilize only
the information which consumers have, namely his utility function and
the previous period’s state (which is treated as “common knowledge™);
a similar remark applies to a producer’s “response” (5;) to a mes-
sage (my).

Se. Evaluation of the Performance of a Mechanism

The performance of a mechanism is evaluated by setting up a goal
correspondence which, loosely speaking, specifies a set of allocations
judged to be “socially desirable.” Formally, a goal correspondence is
a mapping  from FE x S to subsets of A.
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For each specification of an environment ¢ £ F, and an initial state
5 € Sp, () specifies a set of allocation sequences (a,), the attainment
of which should be the aim of a constructed mechanism.

The mechanism (M}, G, H:) is said to realize the goal correspon-
dence (J if for each (e;s) & £ x Sy, the sequence of allocations, {a4),
generated by the mechanism belongs to (e, 5).

6. Decentralized Evolutionary Realization of Optimality

In this final section, we show that a rolling plan can be obtained
through a suitably designed decentralized evolutionary mechanism.
This establishes, in particular, the following possibility result: there
is a decentralized evolutionary mechanism which realizes optimality as
defined in section 2a.

We begin by specifying the set of environments. Let £ > 0 be
a fixed real number, and k be another fixed real number satisfying
0 < k < £ Define

F o= {f: Ry — R | f satisfies (A.1)—-(A.5) and
Fk) 2k, F©) <€, fith) <1,
U = {u: Ry >R |usatisfies (A.6)(A.9)} .

We now specify I, = U x Fforallt > 1 and E = {(u, /Y™:(u, f) €
U x F}. Thus, our intertemporal framework is interpreted as one with
one consumer (with time-stationary utility function v € V) and one
producer (with time-stationary production function f € F).

Notice that given any [ € F), there is a golden-rule stock, %, and
a maximum sustainable stock, k. (This follows, as in Section 2a, from
assumptions (A.1)-(A.5).) Furthermore, our definition of F ensures that
E<k<k<t

We specify the space of allocations by A; = R, forall¢ > 1, and
the state space by 5; == (0, %) for all ¢t > 0. Thus, a typical allocation
in period ¢ should be interpreted as the consumption in that period; a
typical state in period ¢ will be the input stock at the end of that period.

Proposition 6.1 There is a decentralized evolutionary mechanism, such
that if the initial state is x € (0,k), then the state sequence (z})
generated by the mechanism is the rolling plan from x.

Progf: We specify the required mechanism, and simply check that it
satisfies the property stated in the Proposition.
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Define the message space in period ¢, M, = %i 4 forallt > 1; we
write (suggestively) the typical element of M; as

my = (Zy, ¢, digr, o) -

The verification function in period ¢, G, is specified by defining
A; and B; as follows for £ > 1:

[/ (e /v (degr )] — 72
A, zi1,my) = 8 >
L 0
r 0

T+ — f(wi—1)
Tyo1+ deys — flTe)
L filxe) — 7

Now, Gy(u, f, w1, my) is defined as Ay(u, zy—1, me)+ By(f, xe—1, M)
for t > 1. Note that, given (u, f) and x, 1 € (0, k), there is a unigue
maximal 2-plan from x,;_y, given by (:rtvl,:cf, mt,l) with associated
consumption sequence (cj,df, ) satisfying ¢; = f(x¢-1) — z; and
di,, = f(x}) — x;_1. Furthermore, by the Ramsey-Euler equations,
we have [u'(¢))/u'(df, )} = f' (azf) Thus, if we define v = f'(z]),
and consider the message m; = (xf,¢/,df.,,7{) we note that
A, T, my) = By(f,zo1,my) = 0, s0 Glu, fze1,m) = 0;
that is, m; is an equilibrium message in period .

Consider, next, any equilibrium message m = (I¢, r, degq, Tt
Then Gelu, foxe_1,7) = 0, and so Ag(u,x;-1,M) = 0 =
By(f,xy_1,70). This means that we have

Bi(f,zi—1,me) =

W@ v (derr) = T,
Tyt o = floe1),
2o+ deyr = fE
f1(@) = Ty
Thus (x:_1, Te, ;ctil) is a 2-plan from x;_; with~associatcd consump-
tion sequence (¢, dyr1), which satisfies & > 0, diry > 0 and

W' (@) /u'(dyy1) = f1(E -

Then by Proposition 2.1, {x;—1, &, 2;—1) is a maximal 2-plan from
Ty_1. Since (x¢..1, 2}, Ty—1) is the unique maximal 2-plan from z;_;



176 BALA, MAJUMDAR, MITRA

we have &y = xy, ¢ = ¢, dyq = dj,; and 7, = rf. That is, m{ is the
unique equilibrium message. We have now checked that ¢4, as defined
above, is a verification function.

Finally, define the outcome function, H;, as the map

Hi(xs, co,degr, me) = (@, 04) -

For the equilibrium -message m, we have by Lemma 3.1, z¥ < £, so
ry € 5 as required; also ¢f > 0, so ¢f € A; as required. We have
now demonstrated that (M;, G, H,) as defined above is a decentralized,
evolutionary mechanism.

Consider period 1, with x € (0,k) the state in period 0. Our
above demonstration has shown that if the unique maximal 2-plan
from x i1s (x,z7,x), then z] is the equilibrium state (generated by
the mechanism) in period 1. This means that x] = h(x), where h is
defined in Section 2c. Repeating this step fort = 2, 3, . .. shows that the
state sequence (x}) generated by the mechanism (M, G;, H,;) satisfies
zg = x, and ri,, = h(z}) for £ > 0. That is, it is the rolling plan
from x.

Q.ED.

Define the optimality goal correspondence, (), as follows. For each
(u, f,x) € 7 x F x (0, k), let

Qu, f,x) = {(¢:): there is an optimal plan (x;) from x,

whose associated consumption sequence is (¢q)} .

That is, the goal is to attain a plan which is optimal as defined in
Section 2.1. We can now state our “possibility result” as follows.

Theorem 6.1: There is a decentralized evolutionary mechanism which
realizes the optimality goal correspondence.

Proof: Consider the decentralized evolutionary mechanism (M, Gy, Hy)
constructed in the proof of Proposition 6.1. Then, given any (u, f) €
U x F, and any x € (0, %), the sequence of states (z}) generated
by the mechanism is the rolling plan from x. Thus, the sequence
of allocations {cj) generated by the mechanism is the consumption
sequence associated with the rolling plan from x. By Theorem 4.3, the
rolling plan from x is an optimal plan from x. Hence, the sequence
of allocations (c}) generated by the mechanism belongs to Q{u, f,x).
That is, (My, Gy, Hy) realizes the optimality goal correspondence.,
Q.ED.
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Remarks:

(i) We make the following somewhat informal observation about
the verification functions, G;, which appear in our constructed mecha-
nism.

Notice that in period £; given the message m; = (T, Ct, dyyr1,7+)
the consumer is asked to verify

u(e) fu'(deyr) = 71

The consumer, knowing u, can surely do this. The condition to be
verified is simply the equality of the marginal rate of intertemporal
substitution on the consumption side with an appropriate “shadow”
price ratio, 7.

The producer is asked to verify

z+c = flze1),
T+ der = flz),
f’(ﬁft) = T¢.

The producer, knowing f and the previous period’s input stock z;..1,
can do this. The first two conditions are to be interpreted as verification
of feasibility. The third condition is simply the equality of the marginal
rate of transformation on the production side with an appropriate
“shadow” price ratio, r;.

The above verifications imply that the following conditions hold:

zr+e = flzi-1),
Tpo1 +dery = flz),
w'(c)/u(des1) = [z

But these conditions constitute a complete characterization of the
maximal 2-plan from z,_;, according to Proposition 2.1. Thus, the
equilibrium state of the mechanism in period ¢ is precisely the same
as h(x;_1), the rolling plan input in period ¢.

(ii) If (my) is the sequence of equilibrium messages of our con-
structed mechanism (given », f and x), then

Ty = f,(xt) 3

where (z;) is the sequence of equilibrium states generated by the
mechanism, and therefore also the rolling plan from x. If we define

po=1and py1 = (py/re) fort >0,
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then we have fort > 0

Prp1f(x) —przy 2 pror f(@) —ppx forallz > 0 .

That is, (p;) is a sequence of intertemporal profit maximizing prices,
the shadow prices that Malinvaud (1953) was concerned with.

The shadow prices that Gale and Sutherland (1968) are concerned
with would, in addition, have to satisfy for ¢ > 1

wlce) —mer > wle) —ppe foralle>0.
This in our framework would require
[ (ce}/u' (e )] = @) fort>1,

a condition which is not satisfied by the rolling plan (x;) unless x = I:c,
the golden-rule input stock. That is, while for the maximal 2-plan
formulated in period ¢, we have

[UI(Ct)/Ul(dwl}] = f’(fl?t) s

the “second-period consumption™ of the maximal 2-plan formulated in
period ¢, dy 1, is not carried out in period (¢ + 1); instead the “first-pe-
riod consumption” of the maximal 2-plan formulated in period (t + 1),
41, 18 carried out in period (¢ -+ 1).

(i) An “undiscounted” optimality notion which has figured prom-
inently in the literature is the “overtaking” criterion of Atsumi (1965)
and von Weizsicker (1965); this was subsequently refined by Gale
(1967) in terms of the “catching up” criterion. If a plan is “catching-up
optimal,” it is both efficient and good, and hence maximizes tong-run
average utility of consumption. That is, it is optimal in the sense of
our definition in Section 2a. The converse is not true; the rolling plan
from any x € (0,%) with x # k is optimal in our sense, but is not
“catching-up optimal.”

We conjecture, but do not attempt to prove, that an analogue of the
Hurwicz-Weinberger result can be shown. for the undiscounted case;
that is, it is impossible for a decentralized evolutionary mechanism to
realize the “catching-up optimality” criterion.
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