
LECTURES ON MATHEMATICAL ANALYSIS
FOR ECONOMISTS

Tapan Mitra
Cornell University

WORKED OUT SOLUTIONS TO PROBLEM SETS
Christopher Handy
Cornell University

August 2011
Economics 6170



Contents

I Linear Algebra 1

1 Vectors 2
1.1 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
1.2 Linear Dependence of Vectors . . . . . . . . . . . . . . . . . . . . . . .. . . 3
1.3 Rank and Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Inner Product and Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5
1.5 Worked Out Problems on Chapter 1 . . . . . . . . . . . . . . . . . . . . . .. 7

2 Matrices 15
2.1 Matrix Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

2.1.1 Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Some Words of Caution . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Transpose of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Some Special Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Rank of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Inverse of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18
2.4 Relationship Between Invertible and Non-Singular Matrices . . . . . . . . . 18
2.5 Worked Out Problems on Chapter 2 . . . . . . . . . . . . . . . . . . . . . .. 21

3 Simultaneous Linear Equations 28
3.1 System of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . .. . . 28
3.2 Existence of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 28
3.3 Uniqueness of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 31
3.4 Calculation of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 32
3.5 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
3.6 Matrix Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34
3.7 Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.8 Appendix: System of Homogeneous Linear Equations . . . . .. . . . . . . 37

1



CONTENTS 2

3.9 Worked Out Problems on Chapter 3 . . . . . . . . . . . . . . . . . . . . . .. 40

4 Characteristic Values and Vectors 47
4.1 The Characteristic Value Problem . . . . . . . . . . . . . . . . . . . .. . . . 47
4.2 Characteristic Values, Trace and Determinant of a Matrix. . . . . . . . . . . 48
4.3 Characteristic Values and Vectors of Symmetric Matrices. . . . . . . . . . . 50
4.4 Spectral Decomposition of Symmetric Matrices . . . . . . . .. . . . . . . . 51
4.5 Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
4.6 Characterization of Quadratic Forms . . . . . . . . . . . . . . . . .. . . . . . 54
4.7 Alternative Characterization of Quadratic Forms . . . . . .. . . . . . . . . . 55
4.8 Appendix: Spectral Decomposition of Non-Symmetric Matrices . . . . . . 57
4.9 Worked Out Problems on Chapter 4 . . . . . . . . . . . . . . . . . . . . . .. 59

II Real Analysis 69

5 Basic Concepts of Real Analysis 70
5.1 Norm and Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
5.2 Open and Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Convergent Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 72
5.4 Compact Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Continuous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 73
5.6 Existence of Solutions to Constrained Optimization Problems . . . . . . . . 74
5.7 Appendix I: Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 75
5.8 Appendix II: Continuity of Functions of Several Variables . . . . . . . . . . 77
5.9 Appendix III: On a Variation of Weierstrass Theorem . . . .. . . . . . . . . 79
5.10 Worked Out Problems on Chapter 5 . . . . . . . . . . . . . . . . . . . . .. . 81

6 Differential Calculus 87
6.1 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 87
6.2 Composite Functions and the Chain Rule . . . . . . . . . . . . . . . . . .. . 88
6.3 Homogeneous Functions and Euler’s Theorem . . . . . . . . . . .. . . . . . 89
6.4 The Inverse and Implicit Function Theorems . . . . . . . . . . .. . . . . . . 92
6.5 Worked Out Problems on Chapter 6 . . . . . . . . . . . . . . . . . . . . . .. 97

7 Convex Analysis 107
7.1 Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Separating Hyperplane Theorem for Convex Sets . . . . . . . . .. . . . . . 108
7.3 Continuous and Differentiable Functions on Convex Sets . .. . . . . . . . . 110



CONTENTS 3

7.4 Concave Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
7.5 Quasi-Concave Functions . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 113
7.6 Worked Out Problems on Chapter 7 . . . . . . . . . . . . . . . . . . . . . .. 116

III Classical Optimization Theory 126

8 Unconstrained Optimization 127
8.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 127
8.2 Necessary Conditions for a Local Maximum . . . . . . . . . . . . . .. . . . 128
8.3 Sufficient Conditions for a Local Maximum . . . . . . . . . . . . . .. . . . 129
8.4 Sufficient Conditions for a Global Maximum . . . . . . . . . . . . .. . . . . 130
8.5 The Method of Least Squares . . . . . . . . . . . . . . . . . . . . . . . . .. . 131
8.6 The Envelope Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
8.7 Worked Out Problems on Chapter 8 . . . . . . . . . . . . . . . . . . . . . .. 136

9 Constrained Optimization 141
9.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 141
9.2 Necessary Conditions for a Constrained Local Maximum . . . .. . . . . . . 141
9.3 The Arithmetic Mean-Geometric Mean Inequality . . . . . . .. . . . . . . . 143
9.4 Sufficient Conditions for a Constrained Local Maximum . . . .. . . . . . . 144
9.5 Sufficient Conditions for a Global Maximum . . . . . . . . . . . . .. . . . . 145
9.6 Worked Out Problems on Chapter 9 . . . . . . . . . . . . . . . . . . . . . .. 147

IV Modern Optimization Theory 153

10 Concave Programming 154
10.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 154
10.2 Constrained Global Maxima and Saddle Points . . . . . . . . . .. . . . . . . 155
10.3 The Kuhn-Tucker Conditions and Saddle Points . . . . . . . . .. . . . . . . 158
10.4 The Kuhn-Tucker Conditions and Constrained Local Maxima. . . . . . . . 159
10.5 Constrained Local and Global Maxima . . . . . . . . . . . . . . . . .. . . . 163
10.6 Appendix: On the Kuhn-Tucker Conditions . . . . . . . . . . . . .. . . . . . 164
10.7 Worked Out Problems on Chapter 10 . . . . . . . . . . . . . . . . . . . .. . 166

11 Quasi-Concave Programming 181
11.1 Properties of Concave and Quasi-concave functions . . . .. . . . . . . . . . 181

11.1.1 Concave Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181



CONTENTS 4

11.1.2 Quasi-concave functions . . . . . . . . . . . . . . . . . . . . . . .. . 182
11.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183
11.3 The Sufficiency Theorem of Arrow-Enthoven . . . . . . . . . . .. . . . . . 184
11.4 The Necessity Theorem of Arrow-Enthoven . . . . . . . . . . . .. . . . . . 186
11.5 Worked Out Problems on Chapter 11 . . . . . . . . . . . . . . . . . . . .. . 188

12 Linear Programming 193
12.1 The Primal and Dual Problems . . . . . . . . . . . . . . . . . . . . . . .. . . 193
12.2 Optimality Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 194
12.3 The Basic Duality Theorems . . . . . . . . . . . . . . . . . . . . . . . . .. . 194
12.4 Complementary Slackness . . . . . . . . . . . . . . . . . . . . . . . . . .. . 197
12.5 Worked Out Problems on Chapter 12 . . . . . . . . . . . . . . . . . . . .. . 199



Part I

Linear Algebra

1



Chapter 1

Vectors

1.1 Vector Spaces

In defining vector spaces, we will consider thefield to be given by the set of reals, denoted
byR. [One can define this set formally, but we will not do so here.]The elements ofR are
calledscalarsor numbers.

An m-vector xis an ordered set ofm numbers(x1, ...,xm). The numberxi is called
the ith coordinateof x. We use the notationx = (xi), meaningx is the vector whoseith
coordinate isxi.

The set of allm-vectors is calledm-spaceand is denoted byRm.
Some Special Vectors:

Theith unit vectoris the vector whose ith coordinate is 1, and whose other coordinates
are zero. We denote the ith unit vector byei. Thesum vector, denoted byu, is the vector
all of whose coordinates are 1. Thenull vector, denoted by 0, is the vector all of whose
coordinates are 0.
Vector Operations:

Two m-vectors,x andy, are said to beequal(written x= y) if xi = yi for i = 1, ...,m.
We now define two algebraic operations on the vectors ofRm.

Addition:
If x= (xi) andy= (yi) arem-vectors, theirsum x+y is the vector (xi +yi).

Scalar Multiplication:
If x= (xi) is anm-vector andλ is a number, theproductλx is the vector (λxi).
Given these two definitions, a number of properties, listed below, follow immediately.

For addition, we have:
(A.1) (x+y)+z= x+(y+z) [Associative Law]
(A.2) x+y= y+x [Commutative Law]

2
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(A.3) For everyx andy, there is
zsuch thatx + z= y [Law of Subtraction]

For multiplication, we have:
(M.1) λ(x+y) = λx+λy [Vector Distributive Law]
(M.2) (λ+µ)x= λx+µx [Scalar Distributive Law]
(M.3) λ(µx) = (λµ)x [Scalar Associative Law]
(M.4) 1x= x [Identity Law]

The properties listed above may be taken as axioms for an abstract algebraic system.
Such systems are calledvector spaces.

The vector space that we will study consists of a field,R; them-space,Rm; the oper-
ations of addition and scalar multiplication. We will generally refer to this vector space
itself simply asRm, although this is clearly a shorthand.

1.2 Linear Dependence of Vectors

A set of vectorsx1
, ...,xn in Rm is linearly dependentif there exist numbersλ1, ...,λn, not

all zero, such that

n∑
i=1

λixi = 0

If the vectors are not linearly dependent, they are calledlinearly independent.
A vectory is a linear combinationof the vectorsx1

, ...,xn if

y= n∑
i=1

λixi

for some numbersλi ∈ R. A set of vectorsx1
, ...,xn spansRm if every y ∈ Rm can be

expressed as a linear combination ofx1
, ...,xn.

Theorem 1. (Fundamental Theorem on Vector Spaces): If each of the vectors y0
, y1

, ...,ym

in the vector spaceRn is a linear combination of the vectors x1
, ...,xm, then the yi are

linearly dependent.

Corollary 1. Any set of(m+1) vectors inRm is linearly dependent.
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Proof. For any vectorx in Rm,

x= m∑
i=1

xiei

Consequently, for any set of(m+1) vectors inRm, we can write each as a linear combi-
nation of the vectors(e1

, ...,em). So the set of(m+1) vectors must be linearly dependent
by Theorem 1.

Corollary 2. Any system of m homogeneous linear equations in(m+1) unknowns has a
non-zero solution.

Proof. We can write the system ofm homogeneous linear equations in(m+1) unknowns
in the following way:

a10x0+a11x1+a12x2+ ....+a1mxm= 0
.................................................................

am0x0+am1x1+am2x2+ ....+ammxm= 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(1.1)

Definea j = (a1 j , a2 j , ....,am j) for j = 0, ...,m. Then thea j are a set of(m+1) vectors
in m-space; hence by Corollary 1, they are linearly dependent. Sothere exist numbers
λ0, ....,λm, not all zero, such that

m∑
j=0

λ ja j = 0

Then(x j) = (λ j) gives the desired solution of (1.1).

1.3 Rank and Basis

Let Sbe a subset of the vector spaceRm. Therankof Sis the maximum number of linearly
independent vectors which can be chosen fromS.

If r is the rank ofS, a set ofr linearly independent vectors ofS is called abasisfor S.

Corollary 3. Rm has rank m.

Proof. By Corollary 1, the rank ofRm is at mostm. On the other hand, the unit vectors
e1
, ...,em are clearly linearly independent, so the rank ofRm is at leastm.

Theorem 2. (Basis Theorem) Suppose x1
, ...,xr are linearly independent vectors in S.

Then x1, ...,xr is a basis for S if and only if every vector y in S is a linear combination
of the vectors x1, ...,xr

.
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Proof. Suppose everyy ∈S is a linear combination of thexi. Then any set of more thanr
vectors inS is linearly dependent by Theorem 1, and soShas rankr, and thexi are a basis.

Suppose thexi form a basis ofS. Then,Shas rankr; so if y ∈S, the vectorsx1
, ...,xr

,y
are linearly dependent. Thus there existλ0,λ1, ...,λr in R, not all zero, such that

r∑
i=1

λixi +λ0y= 0

Clearly λ0 ≠ 0, otherwise thexi are linearly dependent. Hence, definingµi = −λi/λ0 for
i = 1, ...,r, we have

y= r∑
i=1

µixi

soy is a linear combination ofx1
, ...,xr .

1.4 Inner Product and Norm

We now introduce a third operation inRm. If x andy are vectors inRm, their inner product
is denoted byxyand is defined as the number:

xy= m∑
i=1

xiyi

Let x be anm-vector. The inner product ofx and the ith unit vectorei is

xei = xi f or i = 1, ...,m

The inner product ofx and the sum vectoru is

xu= m∑
i=1

xi

Some properties of the inner product are listed below:

(I.1) xy= yx (Commutative Law)
(I.2) (λx)y= λ(xy) (Mixed Associative Law)
(I.3) (x+y)z= xz+yz (Distributive Law)
(I.4) x2 ≡ xx is 0 if and only ifx= 0

If x∈Rm
, then the (Euclidean)normof x, denoted by∥x∥ , is the (non-negative) number
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∥x∥ = [ m∑
i=1

x2
i ]

1/2

Thus the norm is the (non-negative) square root of the inner product ofx with itself.
The following properties of the norm can be verified:

(N.1) ∥x∥ = 0 if and only ifx= 0
(N.2) ∥λx∥ = ∣λ∣ ∥x∥
(N.3) ∥x+y∥ ≤ ∥x∥+∥y∥
Property (N.3) is usually referred to as the “triangle inequality” for norm.

Two vectorsx andy are calledorthogonalif their inner product is zero; that is, ifxy=0.
For orthogonal vectors, we have the Pythagoras theorem:

(N.4) If xy= 0, then∥x+y∥2 = ∥x∥2+∥y∥2
If x andy are orthogonalm-vectors, they are calledorthonormalif∥x∥ = ∥y∥ = 1.
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1.5 Worked Out Problems on Chapter 1

Problem 1 (Linear Dependence and Independence).

Let S= {e1
,e2

, . . . ,en} be the set of unit vectors inRn.
(a) LetT = {x1

,x2
, . . . ,xn} be a set of vectors inRn

, defined by:

x1 = e1+e2
,x2 = e2+e3

,⋯,xn−1 = en−1+en
,xn = en+e1

.

Is T a set of linearly independent vectors inRn? Explain. [Hint: consider two cases,n
odd,n even].

(b) Let x be an arbitrary vector inRn
, with xn ≠ 0. LetU be the set of vectors defined

by U = {e1
,e2

,⋯,en−1
,x}. IsU a set of linearly independent vectors inRn? Explain.

Solution.

(a) We will show that the vectorsx1
, . . . ,xn are linearly dependent whenn is even and

linearly independent whenn is odd.

Consider a linear combination of the vectors ofT:

λ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0⋮
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+λ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
0⋮
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ ⋅ ⋅ ⋅+λn−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0⋮
0
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+λn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0⋮
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λn+λ1

λ1+λ2

λ2+λ3

λ3+λ4⋮
λn−3+λn−2

λn−2+λn−1

λn−1+λn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
If n is even, we can findλ1, . . . ,λn not all zero such that this linear combination gives
the zero vector:

λi =
⎧⎪⎪⎨⎪⎪⎩

1, if i odd

−1, if i even
for all i = 1, . . . ,n

Thus forn even, the vectors ofT are linearly dependent.

But if n is odd, theseλi do not give the zero vector, because thenλn+λ1 ≠ 0. In fact,
we can show that there are noλ1, . . . ,λn not all zero such that the linear combination
above is equal to the zero vector. Suppose there areλ1, . . . ,λn not all zero such that

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λn+λ1

λ1+λ2⋮
λn−1+λn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Then, reading from the last equation to the first, sincen is odd it must be that

λn = −λn−1 = λn−2 = ⋅ ⋅ ⋅ = −λ2 = λ1.

Since theλ1, . . . ,λn are not all zero, it must be that eachλi ≠ 0, so thatλn+λ1 = 2λ1 ≠
0. This is a contradiction, so we conclude that whenn is odd, the vectors ofT are
linearly independent.

(b) We can prove the vectors ofU are linearly independent by contradiction. Suppose
they are linearly dependent, so that there areµ1, . . . ,µn not all zero such that

µ1e1+⋅ ⋅ ⋅+µn−1en−1+µnx=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

µ1+µnx1⋮
µn−1+µnxn−1

µnxn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 0.

Sincexn≠0, from the last row we must haveµn=0. But then the equation above only
holds if µi = 0 for all i = 1, . . . ,n. This contradicts the assumption that theµ1, . . . ,µn

are not all zero, so we conclude that the vectors ofU are linearly independent.

Problem 2 (Rank).

(a) LetSbe a set of vectors inRn
, defined by:

S= {(x1, ...,xn) ∈Rn ∶ x1+x2+⋯+xn = 2}
What is the rank ofS? Explain.

(b) LetT be a set of vectors inRn
, defined by:

T = {(x1, ...,xn) ∈Rn ∶ x1+2x2+⋯+nxn = 0}
What is the rank ofT? Explain.

Solution.

(a) First, note that sinceS⊆ Rn, it must be that rank(S) ≤ n. If we can findn linearly
independent vectors inS, we will know that rank(S) ≥ n and this will allow us to
conclude that rank(S) = n.
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Define vectorsdi = 2ei for i = 1, . . . ,n, where theei are unit vectors inRn. Note that
eachdi ∈ S. It is easy to check that these vectors are linearly independent: assume
they are not, so that there are someλ1, . . . ,λn not all zero such that

λ1d1+⋅ ⋅ ⋅+λndn =
⎡⎢⎢⎢⎢⎢⎣
2λ1⋮
2λn

⎤⎥⎥⎥⎥⎥⎦
= 0.

This implies that eachλi = 0, which is a contradiction. Thus then vectorsd1
, . . . ,dn

are linearly independent, and we conclude that rank(S) = n as outlined above.

(b) Let’s try to gain some intuition from the two-dimensional case: consider the set
T2 = {(x1,x2) ∈ R2 ∶ x1+2x2 = 0}. Now, rank(T2) = 1 because every vector inT2

can be expressed asx1(1,−1
2). This suggests that in then-dimensional case, the

restrictionx1+2x2+ ⋅ ⋅ ⋅ +nxn = 0 reduces the rank ofT to n−1. [Note this does not
happen in part (a) because the restriction on the setSdoes not involve a zero on the
right hand side. Think about this distinction geometrically in R2.]

To prove thatT, which is a subset ofRn, has rankn−1, we really need to show two
things. First, we must constructn−1 linearly independent vectors fromT. Second,
we must show that anyn vectors inT are necessarily linearly dependent. By the
definition of rank(T) as the maximum number of linearly independent vectors that
can be chosen fromT, this will show that rank(T) = n−1.

We first claim that then−1 vectors
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
0
0⋮
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
0
1
0⋮
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, . . . ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−n
0
0
0⋮
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
are elements ofT and are linearly independent. These can be written more com-
pactly asxi =ei− ie1 for i =2, . . . ,n. It is clear that eachxi satisfiesxi

1+2xi
2+⋅ ⋅ ⋅+nxi

n =
0. Now, suppose thexi are linearly dependent, so that there areµ2, . . . ,µn not all zero
such that

µ2x2+⋅ ⋅ ⋅+µnxn =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2µ2−⋅ ⋅ ⋅−nµn

µ2

µ3⋮
µn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0.
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This can hold only if allµ2, . . . ,µn are equal to zero, which is a contradiction. There-
fore thexi, as defined above, constituten−1 linearly independent vectors fromT, so
rank(T) ≥ n−1.

Now, it remains only to show that anyn vectors fromT are linearly dependent.
So, considern arbitrary vectorsy1

, . . . ,yn, each an element ofT. These are linearly
dependent if there existθ1, . . . ,θn not all zero such that

θ1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−(2y1
2+⋅ ⋅ ⋅+ny1

n)
y1

2⋮
y1

n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ ⋅ ⋅ ⋅+θn

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−(2yn
2+⋅ ⋅ ⋅+nyn

n)
yn

2⋮
yn

n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 0.

The lastn−1 rows form a system ofn−1 homogeneous linear equations in the
n unknownsθ1, . . . ,θn, and Corollary 2 tells us this system must have a non-zero
solution in the thetas. Now, let’s look at the first equation in the above system:
regroup terms for

−2(θ1y1
2+⋅ ⋅ ⋅+θnyn

2)− ⋅ ⋅ ⋅−n(θ1y1
n+⋅ ⋅ ⋅+θnyn

n) = 0.

For theθ1, . . . ,θn that solve the lastn−1 equations, this equation also holds, because
the left hand side is zero term by term. Remembering that Corollary 2 ensures the
θ1, . . . ,θn are not all zero, we conclude that anyn vectors inT are linearly dependent.
This last step shows that rank(T) < n, and together with our conclusion above that
rank(T) ≥ n−1, we finally have the result: rank(T) = n−1.

Note that it is also possible to prove that any vectorz∈ T can be written as a linear
combination of the vectorsx2

, . . . ,xn. By the Basis Theorem, the vectorsx2
, . . . ,xn

are then a basis forT, which is only possible if rank(T) = n−1. But the proof above
is more fundamental in that it avoids the idea of basis altogether.

Problem 3 (Basis).

Let S= {x1
, . . . ,xm} be a set of linearly independent vectors inRn

, with m< n, and let
T = {y1

, ...,yn} be a set of basis vectors ofRn
.

Show that there are(n−m) vectors in the setT, such that them vectors inS, together
with these(n−m) vectors inT, constitute a basis ofRn

.

Solution.
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The easiest way to prove this is by induction. The idea is thatwe can first find one of
they j to replace byx1 and the resulting set ofn vectors will still be a basis forRn. We can
then do the same forx2, thenx3, and so on until we have replacedm of they j by all the
x1
, . . . ,xm and then vectors still form a basis forRn. This works because thexi are linear

combinations of they j , so whatever property of they j is making them a basis is somehow
embodied in thexi. We just have to be careful about whichy j we replace with one of thexi.

The base case in the induction proof is to show that there is somey j that can be replaced by
x1 so that the remaining vectors inT, together withx1, constitute a basis forRn. Now, note
that none of thexi may be the zero vector; otherwise,Swould not be linearly independent.
Similarly, none of they j may be the zero vector. That means that when we use the fact
thaty1

, . . . ,yn is a basis forRn to write

x1 = λ1y1+⋅ ⋅ ⋅+λnyn
, (1.2)

we know thatλ1, . . . ,λn are not all zero. Strictly speaking we do not know whichλi are
nonzero, but for notational simplicity we can assume without loss of generality thatλ1 ≠ 0.
(Alternatively, you can think of this as reordering they j to fit our notation.) This allows
us to use (1) to write

y1 =
1
λ1

x1− λ2

λ1
y2−⋅ ⋅ ⋅− λn

λ1
yn
. (1.3)

We want to conclude thatx1
,y2

, . . . ,yn are a basis forRn. Since rank(Rn) = n, we only
need to show that then vectorsx1

,y2
, . . . ,yn are linearly independent. Suppose they are

not, so that there areµ1, . . . ,µn not all zero such that

µ1x1+µ2y2+⋅ ⋅ ⋅+µnyn = 0. (1.4)

Now, µ1 ≠ 0 because ifµ1 = 0 then the vectorsy2
, . . . ,yn are linearly dependent, which

contradictsy1
, . . . ,yn being a basis forRn. Then we can use (3) to write

x1 = −µ2

µ1
y2−⋅ ⋅ ⋅− µn

µ1
yn
. (1.5)

Substituting (4) into (2), we have thaty1
, . . . ,yn are linearly dependent, which contradicts

y1
, . . . ,yn being a basis forRn. At last we conclude thatx1

,y2
, . . . ,yn are indeed linearly

independent, so they form a basis forRn.

The inductive case in the proof is, fortunately, very similar to the base case. We want
to show that ifx1

, . . . ,xk−1
,yk

,yk+1
, . . . ,yn is a basis forRn, wherek− 1 < m < n, then

x1
, . . . ,xk−1

,xk
,yk+1

, . . . ,yn is also a basis forRn, again subject to reordering theyk
, . . . ,yn
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to suit our notation. Now, since by hypothesisx1
, . . . ,xk−1

,yk
,yk+1

, . . . ,yn form a basis for
Rn, and sincexk ≠ 0, there areθ1, . . . ,θn not all zero such that

xk = θ1x1+⋅ ⋅ ⋅+θk−1xk−1+θky
k+θk+1yk+1+⋅ ⋅ ⋅+θnyn

. (1.6)

It is not possible that allθk, . . . ,θn are zero, because thenxk would be a linear combination
of x1

, . . . ,xk−1, which would be a contradiction of the linear independence of S. So, assume
without loss of generality thatθk ≠ 0. Then we can use (5) to write

yk = −θ1

θk
x1−⋅ ⋅ ⋅− θk−1

θk
xk−1+ 1

θk
xk− θk+1

θk
yk+1−⋅ ⋅ ⋅− θn

θk
yn
. (1.7)

We want to conclude thatx1
, . . . ,xk−1

,xk
,yk+1

, . . . ,yn are a basis forRn. Since rank(Rn)=n,
we only need to show that then vectorsx1

, . . . ,xk−1
,xk

,yk+1
, . . . ,yn are linearly indepen-

dent. Suppose they are not, so that there areα1, . . . ,αn not all zero such that

α1x1+⋅ ⋅ ⋅+αk−1xk−1+αkx
k+αk+1yk+1+⋅ ⋅ ⋅+αnyn = 0. (1.8)

Now, αk ≠ 0 because ifαk = 0 then the vectorsx1
, . . . ,xk−1

,yk+1
, . . . ,yn are linearly depen-

dent, which contradictsx1
, . . . ,xk−1

,yk
,yk+1

, . . . ,yn being a basis forRn. Then we can use
(7) to write

xk = −α1

αk
x1−⋅ ⋅ ⋅− αk−1

αk
xk−1− αk+1

αk
yk+1−⋅ ⋅ ⋅− αn

αk
yn
. (1.9)

Substituting (8) into (6), we have thatx1
, . . . ,xk−1

,yk
,yk+1

, . . . ,yn are linearly dependent,
which contradictsx1

, . . . ,xk−1
,yk

,yk+1
, . . . ,yn being a basis forRn. At last we conclude that

x1
, . . . ,xk−1

,xk
,yk+1

, . . . ,yn are indeed linearly independent, so they form a basis forRn.

By induction, then, we have that then vectorsx1
, . . . ,xm

,ym+1
, . . . ,yn are a basis forRn,

after suitable reordering of the originaly j .

Problem 4 (Inner Product).

SupposeS= {x1
, . . . ,xn} is a set of non-null vectors inRn, which are mutually orthog-

onal: that is,xix j = 0 wheneveri ≠ j. Show thatS is linearly independent.

Solution.

We will prove by contradiction thatSis linearly independent. Suppose thatSis linearly
dependent, so that for someλ1, . . . ,λn not all zero, we haveλ1x1+ ⋅ ⋅ ⋅ +λnxn = 0. Now,
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consider somek ∈ {1, . . . ,n} for which λk ≠ 0. We have

0= xk ⋅0= xk ⋅ (λ1x1+⋅ ⋅ ⋅+λnxn) = n∑
i=1

λi(xk ⋅xi)
= λk(xk ⋅xk) (sincexk ⋅xi = 0 for i ≠ k)

≠ 0 (sinceλk ≠ 0 andxk ≠ 0)

This contradiction establishes thatS is linearly independent.



CHAPTER 1. VECTORS 14
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Chapter 2

Matrices

2.1 Matrix Algebra

An m×n matrixis a rectangular array of numbersai j , i =1, ...,m; j =1, ...,n. Thus, we write

A= (ai j ) =
⎡⎢⎢⎢⎢⎢⎣

a11..........a1n

.............

am1.........amn

⎤⎥⎥⎥⎥⎥⎦
Then-vectorAi = (ai1, ...,ain) is called theith row vectorof A; them-vectorA j = (a1 j , ...,am j)
is called thejth column vectorof A. The matrixA hasm row vectorsA1, ...,Am and it has
n column vectorsA1

, ...,An. Thus anm×n matrix may be interpreted as an ordered set of
m row vectors, or as an ordered set ofn column vectors.

In view of this above statement, the operations on matrices follow from the operations
on vectors.

2.1.1 Matrix Operations

Two m×n matricesA andB areequal(writtenA=B) if ai j = bi j for i = 1, ...,m; j = 1, ...,n.
If A andB arem×n matrices, theirsum A+B is anm×n matrix,(ai j +bi j ).
If A is anm×n matrix, andλ is a scalar, theirproductλA is anm×n matrix (λai j ).
Let A be anm×n matrix, andB ann× r matrix. ThenB can be premultiplied byA or A

can be post-multiplied byB. Thematrix product, denoted byAB is anm× r matrix given
by

( n∑
k=1

aikbk j) i = 1, ...,m; j = 1, ...,r

15
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For both operationsABandBA to be defined, ifA is m×n, thenB must ben×m.
The following properties related to matrix addition and multiplication can be verified

[assuming the relevant matrices can be added and/or multiplied].
(MA.1) A+B=B+A [Commutative Law]
(MA.2) (A+B)+C=A+(B+C) [Associative Law]
(MM.1) (AB)C=A(BC) =ABC [Associative Law]
(MM.2) A(B+C) =AB+AC [Distributive Law](B+C)A=BA+CA [Distributive Law]

2.1.2 Some Words of Caution

Some results which are true for real numbers are not necessarily true for matrices. It
is useful to be aware of some of these.

(i) AB is not necessarily equal to BA.

Example 1. Let

A= [1 2
3 4
] , B= [0 −1

6 7
]

Then

AB= [12 13
24 25

] , BA= [−3 −4
27 40

]
(ii) AB= 0 is possible with neitherA norB being the null matrix.

Example 2. Let

A= [2 4
1 2
] , B= [−2 4

1 −2]
Then,

AB= [0 0
0 0
]

(iii) CD=CE with C not null is possible withoutD andE being equal.

Example 3. Let

C= [2 3
6 9
] , D = [1 1

1 2
] , E = [−2 1

3 2
]

Then

CD=CE= [ 5 8
15 24

] , C≠ 0 and D≠E.
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2.1.3 Transpose of a Matrix

If A is anm×n matrix, then then×mmatrix B defined by

bi j = a ji i = 1, ...,n; j = 1, ...,m

is called thetransposeof A, and is denoted byA′.
The following properties of transposes can be easily verified:
(T.1) (A′)′ =A
(T.2) (A+B)′ =A′+B′

(T.3) (AB)′ =B′A′

2.1.4 Some Special Matrices

There are some special types of matrices, which are now discussed below. Anm×n matrix
is asquare matrixif m= n. An n×n matrix issymmetricif

ai j = a ji i ≠ j

[That is, a square matrix,A, is symmetric ifA=A′.] An n×n matrix is adiagonal matrix
if

ai j = 0 i ≠ j

An n×n matrix is anidentity matrix(denoted byIn or I) if

aii = 1 i = 1, ...,n

ai j = 0 i ≠ j

An m×n matrix is anull matrix (denoted by 0) if

ai j = 0 i = 1, ...,m; j = 1, ...,n.

Note that a null matrix need not be a square matrix.
The identity and null matrices are especially useful in matrix algebra. The following

properties of identity and null matrices can be verified (assuming the relevant matrices can
be added and/or multiplied)

(I.1) AI = IA =A
(N.1) A+0= 0+A=A
(N.2) A0= 0;0A= 0
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2.2 Rank of a Matrix

Let A be anm×n matrix. The rank of the set of row vectors (column vectors) ofA is called
therow rank (column rank) of A. We note that the row and column ranks of a matrix are,
in fact, equal:

Theorem 3. (Rank Theorem)

For any m×n matrix A, the row rank and the column rank are equal.

In view of the rank theorem, we will, henceforth, simply refer to therankof A [denoted
r(A)].

If A is anm×n matrix, andB is ann× r matrix, then the following properties can be
established:

(R.1) r(A) ≤min(m,n)
(R.2) r(AB) ≤min(r(A), r(B)).
If A is anm×m matrix, thenA is callednon-singularif the rank ofA is m. A is called

singular if the rank ofA is less thanm.

2.3 Inverse of a Matrix

Let A be anm×mmatrix. If B is anm×mmatrix satisfying

AB=BA= I (2.1)

thenA is calledinvertibleandB is called theinverseof A (denoted byA−1). The following
properties can be established regarding inverses of matrices. [HereA andB arem×m
invertible matrices].

(IN.1) (A−1)−1 =A
(IN.2) (AB)−1 =B−1A−1

(IN.3) (A′)−1 = (A−1)′

2.4 Relationship Between Invertible and Non-Singular Ma-
trices

Consider anm×m non-singular matrix,A. Then them column vectors ofA are linearly
independent and is therefore a basis ofRm. By the basis theorem, given anyb ∈Rm, b can
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be expressed as a linear combination of them column vectors. That is, for eachb ∈ Rm,
there isx ∈Rm such that

Ax= b (2.2)

Applying this to each of the column unit vectorsei (i = 1, ...,m) in turn, we will get vectors
xi (i = 1, ...,m) such that

Axi = ei (2.3)

Defining a matrixX with xi representing the ith column, we get

AX = I (2.4)

Them row vectors ofA are linearly independent and is therefore a basis ofRm. By
the basis theorem, given anyc ∈Rm, c can be expressed as a linear combination of them
row vectors. That is, for eachc ∈Rm there isy ∈Rm such that

yA= c (2.5)

Applying this to each of the row unit vectorsei (i = 1, ...,m) in turn, we will get vectors
yi (i = 1, ...,m) such that

yiA= ei (2.6)

Defining a matrixY with yi representing its ith row, we get

YA= I (2.7)

Using (2.4) and (2.7), we get

Y =Y(AX) = (YA)X =X (2.8)

Thus, we have a matrixX such that

AX =XA= I

which proves thatA is invertible, andX is the inverse ofA.
Conversely, consider anm×m invertiblematrix,A. Then, there is anm×m matrix,B,

such that

AB=BA= I (2.9)
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We claim that the column vectors ofA are linearly independent. For if they are linearly
dependent, there is some non-zero vectorx such that

Ax= 0 (2.10)

Multiplying (2.10) byB we get

0=B(Ax) = (BA)x= Ix = x (2.11)

which is a contradiction. Thus, them column vectors ofA are linearly independent, and
the rank ofA is m. Thus,A is a non-singular matrix.
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2.5 Worked Out Problems on Chapter 2

Problem 5 (Matrix Multiplication).

SupposeA is anm×n matrix,B is ann× r matrix, andC is anr ×smatrix. Verify that:

A(BC) = (AB)C
Solution.

A=

⎡⎢⎢⎢⎢⎢⎣
a11 ⋯ a1n⋮ ⋱ ⋮
am1 ⋯ amn

⎤⎥⎥⎥⎥⎥⎦
, B=

⎡⎢⎢⎢⎢⎢⎣
b11 ⋯ b1r⋮ ⋱ ⋮
bn1 ⋯ bnr

⎤⎥⎥⎥⎥⎥⎦
, C=

⎡⎢⎢⎢⎢⎢⎣
c11 ⋯ c1s⋮ ⋱ ⋮
cr1 ⋯ crs

⎤⎥⎥⎥⎥⎥⎦

A(BC) =
⎡⎢⎢⎢⎢⎢⎣

a11 ⋯ a1n⋮ ⋱ ⋮
am1 ⋯ amn

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
(b11c11+⋅ ⋅ ⋅+b1rcr1) ⋯ (b11c1s+⋅ ⋅ ⋅+b1rcrs)⋮ ⋱ ⋮(bn1c11+⋅ ⋅ ⋅+bnrcr1) ⋯ (bn1c1s+⋅ ⋅ ⋅+bnrcrs)

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
∑n

j=1a1 j(∑r
k=1b jkck1) ⋯ ∑n

j=1a1 j(∑r
k=1b jkcks)⋮ ⋱ ⋮

∑n
j=1am j(∑r

k=1b jkck1) ⋯ ∑n
j=1am j(∑r

k=1b jkcks)
⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
∑r

k=1ck1(∑n
j=1a1 jb jk) ⋯ ∑r

k=1cks(∑n
j=1a1 jb jk)⋮ ⋱ ⋮

∑r
k=1ck1(∑n

j=1am jb jk) ⋯ ∑r
k=1cks(∑n

j=1am jb jk)
⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
(a11b11+⋅ ⋅ ⋅+a1nbn1) ⋯ (a11b1r +⋅ ⋅ ⋅+a1nbnr)⋮ ⋱ ⋮(am1b11+⋅ ⋅ ⋅+amnbn1) ⋯ (am1b1r +⋅ ⋅ ⋅+amnbnr)

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
c11 ⋯ c1s⋮ ⋱ ⋮
cr1 ⋯ crs

⎤⎥⎥⎥⎥⎥⎦
= (AB)C

Problem 6 (Transpose of a Matrix).

SupposeA is anm×n matrix,B is ann× r matrix. Verify that:

(AB)′ =B′A′

Solution.

A=

⎡⎢⎢⎢⎢⎢⎣
A1⋮
Am

⎤⎥⎥⎥⎥⎥⎦
, B=

⎡⎢⎢⎢⎢⎢⎣
B1 ⋯ Br

⎤⎥⎥⎥⎥⎥⎦
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Recall that the inner product has some nice properties: for two vectorsx andy of the same
size, we havexy= yx andx′y= xy′ = x′y′ = xy. Then we can write

(AB)′ = ⎛⎜⎝
⎡⎢⎢⎢⎢⎢⎣

A1⋮
Am

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
B1 ⋯ Br

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎠
′

=

⎡⎢⎢⎢⎢⎢⎣
A1B1 ⋯ A1Br

⋮ ⋱ ⋮
AmB1 ⋯ AmBr

⎤⎥⎥⎥⎥⎥⎦

′

=

⎡⎢⎢⎢⎢⎢⎣
A1B1 ⋯ AmB1

⋮ ⋱ ⋮
A1Br ⋯ AmBr

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
B1A1 ⋯ B1Am⋮ ⋱ ⋮
BrA1 ⋯ BrAm

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
(B1)′(A1)′ ⋯ (B1)′(Am)′⋮ ⋱ ⋮(Br)′(A1)′ ⋯ (Br)′(Am)′

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
(B1)′⋮(Br)′

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
(A1)′ ⋯ (Am)′

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
B1 ⋯ Br

⎤⎥⎥⎥⎥⎥⎦

′⎡⎢⎢⎢⎢⎢⎣
A1⋮
Am

⎤⎥⎥⎥⎥⎥⎦

′

=B′A′

Problem 7 (Rank of a Matrix).

Let A be anm×n matrix, and suppose then column vectors ofA are linearly indepen-
dent.

(a) Show thatm≥ n.
(b) Show that the row rank ofA≥ n.
[Do not use the Rank Theorem to answer any of the parts of the problem. You can, of

course, use any result, which appears in the lecture notes before the statement of the Rank
Theorem].

Solution.
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(a) We are given thatA1
, . . . ,An are linearly independent vectors inRm. If m<n we have

a violation of Corollary 1 in Chapter 1. Therefore it must be that m≥ n.

(b) We will show row rank(A) ≥ n by contradiction. Suppose row rank(A) = r < n≤m.
Then the row vectorsA1, . . . ,Ar , each of size 1×n, are a basis forA1, . . . ,Am. [If
usingA1, . . . ,Ar seems troublesome, remember that we can reorder the rows ofA
without changing the rank.]

Consider the system ofr equations

λ1a11+⋅ ⋅ ⋅+λna1n = 0

⋮
λ1ar1+⋅ ⋅ ⋅+λnarn = 0

whereai j is the jth element of theith row vectorAi. If we defineλ = [λ1⋯ λn]′ then
this can be written more compactly as

⎡⎢⎢⎢⎢⎢⎣
A1⋮
Ar

⎤⎥⎥⎥⎥⎥⎦
λ = 0.

This is a system ofr homogeneous linear equations in then> r unknownsλ1, . . . ,λn,
so by Corollary 2 in Chapter 1, the system has a solutionλ1, . . . ,λn not all zero.

Now, sinceA1, . . . ,Ar are a basis for the rows ofA, any rowAk can be expressed as
a linear combination ofA1, . . . ,Ar . That is, there areµ1, . . . ,µr such that

Ak = µ1A1+⋅ ⋅ ⋅+µrAr .

Taking the inner product of both sides withλ, we have

Akλ = µ1(A1λ)+⋅ ⋅ ⋅+µr(Arλ)
= µ1(0)+⋅ ⋅ ⋅+µr(0)
= 0

This must hold for every rowk, so the following equations hold:

A1λ = λ1a11+⋅ ⋅ ⋅+λna1n = 0

⋮
Amλ = λ1am1+⋅ ⋅ ⋅+λnamn= 0
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This is the same as writing
λ1A1+⋅ ⋅ ⋅+λnAn = 0

for λ1, . . . ,λn not all zero. That means the columns ofA are linearly dependent,
which is a contradiction. So it must be that row rank(A) ≥ n.

Problem 8 (Singular and Non-Singular Matrices).

(a) LetA be anm×1 matrix and letB be a 1×m matrix, wherem≥ 2. Let C be them×m
matrix, defined byC=AB. Show thatC must be a singular matrix.

(b) Let A be anm×n matrix and letB be ann×m matrix. LetC be them×m matrix,
defined byC=AB. If n<m, canC be non-singular ? Explain your answer carefully.

Solution.

(a) Let

A=

⎡⎢⎢⎢⎢⎢⎣
a11⋮
am1

⎤⎥⎥⎥⎥⎥⎦
, B= [b11 ⋯ b1m] , C=

⎡⎢⎢⎢⎢⎢⎣
a11b11 ⋯ a11b1m⋮ ⋱ ⋮
am1b11 ⋯ am1b1m

⎤⎥⎥⎥⎥⎥⎦
To show thatC is singular, we want to show that rank(C) < m. Suppose to the
contrary that rank(C) =m. Then the columns ofC are linearly independent. Now, if
b1k =0 for somek ∈ {1, . . . ,m} thenCk =0 and we reach a contradiction immediately.
So, supposeb1i ≠ 0 for all i = 1, . . . ,m. Consider the system of equations

λ1C1+λ2C2+⋅ ⋅ ⋅+λmCm= λ1b11

⎡⎢⎢⎢⎢⎢⎣
a11⋮
am1

⎤⎥⎥⎥⎥⎥⎦
+λ2b12

⎡⎢⎢⎢⎢⎢⎣
a11⋮
am1

⎤⎥⎥⎥⎥⎥⎦
+⋅ ⋅ ⋅+λmb1m

⎡⎢⎢⎢⎢⎢⎣
a11⋮
am1

⎤⎥⎥⎥⎥⎥⎦
= 0

Choosingλ1 =
1

b11
≠ 0,λ2 = − 1

b12
≠ 0, andλ j = 0 for j = 3, . . . ,m, the above equations

hold. This means that the columns ofC are linearly dependent, which is a contra-
diction. So we conclude that rank(C) <m, which meansC is singular.

(b) We will first prove result (R.2) from Chapter 2:

rank(AB) ≤min{rank(A),rank(B)}
This result will make it very easy to show thatC cannot be non-singular whenn<m.

We get (R.2) by showing both rank(AB) ≤ rank(A) and rank(AB) ≤ rank(B). Let’s
prove the first statement and hope the second one follows similarly. Consider any
linear combination of the columns ofAB: if y is such a linear combination, then
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there exists somem×1 vectorx such thaty= (AB)x. Since(AB)x= A(Bx), we can
say thaty is also a linear combination of the columns ofA, using the vectorBx as
the weights.

[Note that we cannot say the reverse. Ify′ is a linear combination of the columns of
A, then there is somez′ such thaty′ =Az′. How do we fitB in on the right hand side?
If m= n andB is invertible, we can writey′ = (AB)(B−1z′) = Az′, so that the vector
B−1z′ provides the weights. But for this problem we are assumingn<m.]

Seeking contradiction, suppose rank(AB) = r > q= rank(A). Now, if (AB)k denotes
thekth column ofAB, then some linearly independent vectors(AB)1, . . . ,(AB)r form
a basis for the columns ofAB. [If using (AB)1, . . . ,(AB)r seems troublesome, re-
member that we can reorder the columns ofAB without changing the rank.] Sim-
ilarly, some linearly independent column vectorsA1

, . . . ,Aq form a basis for the
columns ofA.

Since every column ofAB is trivially a linear combination of the columns ofAB, it is
also a linear combination of the columns ofA. In particular, each(AB)1, . . . ,(AB)r
is a linear combination ofA1

, . . . ,An. Moreover, since eachA1
, . . . ,An is a linear

combination ofA1
, . . . ,Aq, we have that each(AB)1, . . . ,(AB)r is a linear combina-

tion of A1
, . . . ,Aq. Now, sincer > q we have by the Fundamental Theorem on Vector

Spaces that the(AB)1, . . . ,(AB)r are linearly dependent. This is a contradiction, so
we conclude that rank(AB) ≤ rank(A).
A similar argument establishes that rank(B′A′) ≤ rank(B′). Now, note that for any
matrix D,

rank(D) = row rank(D) = col rank(D′) = rank(D′).
Therefore we have that

rank(AB) = rank((AB)′) ≤ rank(B′) = rank(B).
With our finding above that rank(AB) ≤ rank(A), we have now proved that

rank(AB) ≤min{rank(A),rank(B)},
which is result (R.2).

By result (R.1) in Chapter 2, we have rank(A) ≤ min{m,n} = n and rank(B) ≤
min{n,m} = n. Then we only have to apply result (R.2) to see that rank(C) =
rank(AB) ≤ n<m, which shows thatC must be singular.

Problem 9 (Inverse of a Matrix).
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Let A be ann×n matrix, which satisfies:

ai j = { 1 for all i, j ∈ {1, ...,n} with j ≤ i
0 otherwise

Show thatA has an inverse.[Do not use your computer to obtain the inverse matrix].

Solution.

A=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 ⋯ 0 0
1 1 0 ⋯ 0 0
1 1 1 ⋯ 0 0⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 1 1 ⋯ 1 0
1 1 1 ⋯ 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We know that

A has an inverse⇐⇒ A is non-singular

⇐⇒ rank(A) = n

⇐⇒ the columns ofA are linearly independent

Therefore, to showA has an inverse we only need to show that the columns ofA are linearly
independent. Suppose to the contrary thatA1

, . . . ,An are linearly dependent, so that there
existλ1, . . . ,λn not all zero satisfying

λ1A1+⋅ ⋅ ⋅+λnAn =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1

λ1+λ2⋮
λ1+⋅ ⋅ ⋅+λn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 0

This implies thatλi = 0 for all i = 1, . . . ,n, which is a contradiction. So we conclude that
the columns ofA are linearly independent, which shows thatA has an inverse as outlined
above.
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References:
This material on matrix algebra can be found in standard texts like F. Hohn: Elemen-

tary Matrix Algebra(Chapters 1 and 6) andG. Hadley: Linear Algebra(Chapter 3). A
good discussion on the rank of a matrix is inD. Gale: Theory of Linear Economic Models
(Chapter 2), and a proof of the “rank theorem” can be found there. You will also find a
good exposition of matrix algebra inR. Dorfman, P.A. Samuelson and R.M. Solow: Linear
Programming and Economic Analysis(Appendix B).



Chapter 3

Simultaneous Linear Equations

3.1 System of Linear Equations

Consider a system ofm linear equations inn unknowns, written as

a11x1+ ...+a1nxn = b1

−−−−−−−−− (*)

am1x1+ ...+amnxn = bm

In matrix-vector notation, we can write this as

Ax= b

whereA is anm×n matrix, b is a (column) vector inRm (or anm×1 matrix) andx is a
(column) vector inRn (or ann×1 matrix).

In analyzing a system of linear equations like (*), the following questions naturally
arise:

(i) (Existence) Does there exist a solution to (*)? [Are the equations “consistent”?]
(ii) (Uniqueness) If there exists a solution to (*), is it unique? [Are the equations

“determinate”?]
(iii) (Computation) If there exists a solution to (*), how canwe find such a solution?

3.2 Existence of Solutions

The system of equations (*) is calledhomogeneousif b= 0, andnon-homogeneousif b≠ 0.

28
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If the system is homogeneous, there is always a trivial solution, namelyx= 0. If the
system is non-homogeneous then, in general, there need not exist a solution to (*). For
instance consider the system:

(i) 2x1+4x2 = 5
(ii) x1+2x2 = 1
Notice that if we multiply equation (ii) by 2, we get

2x1+4x2 = 2

wich contradicts(is inconsistent with) the equation (i). So, there does not exist a solution
to the system of equations given by (i) and (ii): the equations (i) and (ii) are inconsistent.

In general, if we look at a system of equations like (*), we would like to tell, givenA
andb, whether there is a solution to (*).

We start our discussion of the existence of solutions to linear equations by noting a
simple consequence of the “rank theorem”.

Proposition 1. Suppose a1, ...,an are linearly independent vectors inRm, and b is inRn,
then there is a vector y inRm such that

yai = bi i = 1, ...,n

Proof. Let A be them×n matrix with columnsa1
, ...,an. By the rank theorem, the rows of

A have rankn. Let A1, ...,An be a row basis; then we haven linearly independent vectors
in Rn, and hence by the basis theorem,b is a linear combination ofA1, ...,An. That is,
there exist numbersλ1, ...,λn such that

n∑
i=1

λiAi = b

Definey in Rm to be(λ1, ...,λn,0, ...,0). Then

m∑
i=1

yiAi = b, or yA= b

Consequentlyyai = bi for i = 1, ...,n sinceai =Ai, the ith column ofA.
Using the above result, one can provide the following criterion for the solvability of

linear equations.
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Theorem 4. Let A be an m×n matrix, and let c be inRm. Then exactly one of the following
alternatives holds. Either the equation

Ax= c (3.1)

has a solution, or the equations

yA= 0, yc= 1 (3.2)

have a solution.

Proof. Suppose (3.1) has no solution. LetA1
, ...,Ar be a column basis ofA. Then

A1
, ...,Ar

,c is a linearly independent set of vectors. Otherwise,c can be expressed as a
linear combination ofA1

, ...,Ar and therefore ofA1
, ...,An. This contradicts our hypothesis

that (3.1) has no solution.
Defineb in Rr+1 by b= (0, ...,0,1). Then by Proposition 1, there isy in Rm

, such that

yAi = 0 f or i = 1, ...,r, and yc= 1 (3.3)

SinceA1
, ...,Ar is a column basis ofA, given anyAi(i = 1, ...,n),Ai can be expressed as a

linear combination ofA1
, ...,Ar . So (3.3) implies thatyAi = 0 for i = 1, ...,n. Thus,y is a

solution to (3.2).
On the other hand, if (3.1) has a solution (sayx), then (3.2) cannot have a solution.

For if it did (sayy), then multiplying (3.1) byy we get

1= yc= y(Ax) = (yA)x= 0

a contradiction.
Finally, there is the criterion for solvability stated in terms of the rank of the relevant

matrices.
Let A be anm×n matrix andc be a vector inRm. Then them×(n+1)matrix given by

Ac ≡ (A1
, ...,An

,c) is known as theaugmented matrix.

Theorem 5. Let A be an m×n matrix and c be a vector inRm. Then the system of
equations

Ax= c (3.4)

has a solution if and only if
rankA= rankAc (3.5)
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Proof. Let r be the rank ofA. We clearly haverank Ac ≥ rankA. SupposerankAc >

rankA. Then we can find(r +1) linearly independent vectors from the columns ofAc.
Clearly this set must include the vectorc, otherwiserankA> r. Thus there is a set ofr
column vectors ofA, call themA1

, ...,Ar , which, together withc, form a set of linearly
independent vectors. Thus,A1

, ...,Ar are linearly independent and so is a column basis of
A. If (3.4) has a solution, sayx, thenc is a linear combination ofA1

, ...,An and therefore
of A1

, ...,Ar . But then the set(A1
, ...,Ar

,c) is linearly dependent, a contradiction. Thus if
(3.5) does not hold, then (3.4) does not have a solution.

On the other hand, suppose (3.5) holds. Thus ifA1
, ...,Ar is a column basis ofA, then(A1

, ...,Ar
,c) is a linearly dependent set. Since(A1

, ...,Ar) is a linearly independent set,
c can be expressed as a linear combination of the vectors(A1

, ...,Ar) and therefore of the
vectors(A1

, ...,An). So (3.4) has a solution.

3.3 Uniqueness of Solutions

Theorem 6. Let A be an m×n matrix and let c be a vector inRm. Then the system of
equations

Ax= c (3.6)

has a unique solution if and only if

rankA= rankAc = n (3.7)

Proof. If (3.7) holds, then by Theorem 5, there is a solution to (3.6). Suppose, contrary to
the assertion of the Theorem, there arex1

, x2 in Rn, x1 ≠ x2 which both solve (3.6). Then

A(x1−x2) = 0

Thus, the column vectors ofA are linearly dependent [since(x1−x2) ≠ 0]. So therankA<
n, a contradiction.

Suppose, next, that (3.7) does not hold. IfrankA≠ rankAc, there is no solution to
(3.6) by Theorem 5, and we are done. IfrankA= rankAc, and (3.7) is violated, then we
haverankA= rankAc < n. It follows that (a) there is a solution,x, to (3.6); and (b) then
column vectors ofA, namelyA1

, ...,An are linearly dependent. Using (b), there isy ∈Rn,
y≠ 0 such that

Ay= 0 (3.8)

But, then, clearly(x+y) also solves (3.6), and(x+y) ≠ x (sincey≠ 0), so (3.6) does not
have a unique solution.
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3.4 Calculation of Solutions

The most important case to be considered in the actual calculation of solutions is the case
of n linear equations inn unknowns. LetA be ann×n matrix, andc be a vector inRn.
We have the system of equations given by

Ax= c (3.9)

If (3.9) has a unique solution, then we have noted thatrankA=n. Conversely ifrankA=n,
then A1

, ...,An is a basis ofRn, and soc can be expressed as a linear combination of
A1

, ...,An, yielding a solution to (3.9). Furthermore, such a solutionmust be unique since
rankA= rankAc = n.

We consider, therefore, in what follows how to calculatethe solution to (3.9) when
rankA= n. SincerankA= n, A is a non-singular matrix. It follows that it has ann×n
inverse matrix (denoted byA−1) such that

A−1A=AA−1 = I (3.10)

Pre-multiplying (3.9) byA−1 and using (3.10), we obtain

x=A−1c (3.11)

asthesolution to (3.9).
In terms of calculating this solution, then, it remains to learn how to compute the

inverse of a non-singular matrix. This leads us naturally into the study of “determinants”.

3.5 Determinants

Let A be ann×n matrix. We can associate withA a number, denoted by∣A∣, called the
determinant of A.

The determinant of then×n matrix, is defined recursively as follows.
(1) For a 1×1 matrix, which is, of course, a number, we define the determinant to

be the number itself.
(2) For anym×m(m≥ 2) matrix, thecofactor Ai j of the elementai j is (−1)i+ j

times the determinant of the submatrix obtained fromA by deleting rowi and columnj.
Thedeterminantof them×mmatrix is then given by

∣A∣ = n∑
j=1

a1 jA1 j
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Thus using (2), and knowing (1), the determinant of a 2×2 matrix is:

a11a22−a12a21

This information can then be used in (2) again to obtain the determinant of a 3×3 matrix:

a11[a22a33−a32a23]−a12[a21a33−a31a23]+a13[a21a32−a31a22]
This procedure can be continued to obtain the determinant ofanyn×n matrix.

It is implicit in the definition of∣A∣ that the “expansion” is done by the first row. How-
ever, it can be shown that for everyi ∈ [1, ...,n],

∣A∣ = n∑
j=1

ai j Ai j

so that expansion by any row will given the same result. Indeed, expansion by any column
will also give the same result. That is, for everyj ∈ [1, ...,n],

∣A∣ = n∑
i=1

ai j Ai j

The following properties of determinants can be established:

(D.1) ∣A∣ = ∣A′∣
(D.2) The interchange of any two rows will alter the sign, butnot the numerical value, of

the determinant.

(D.3) The multiplication of any one row by a scalark will change the determinantk-fold.

(D.4) The addition of a multiple of any row to another row willleave the determinant
unaltered.

(D.5) If one row is a multiple of another row, the determinantis zero.

(D.6) The expansion of a determinant by “alien” co-factors yields a value of zero. That
is,

n∑
j=1

ai j Ak j = 0 i f i ≠ k

[Here, the expansion is by theith row, using co-factors ofkth row].

(D.7) ∣AB∣ = ∣A∣ ∣B∣
The above properties (D.2) - (D.5) hold if the word “row” is replaced uniformly by

“column” in each statement.
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3.6 Matrix Inversion

Now, we get back to the problem of computing the inverse of a non-singular matrix. We
first note the following result.

Theorem 7. Let A be an n×n matrix. Then A is invertible if and only if∣A∣ ≠ 0. Further-
more, in case A is invertible,∣A−1∣ = ∣A∣−1.

Proof. SupposeA is invertible. Then

A A−1 = I

so 1= ∣I ∣ = ∣AA−1∣ = ∣A∣ ∣A−1∣ using property (D.7) of determinants, noted above. Conse-
quently∣A∣ ≠ 0, and∣A−1∣ = ∣A∣−1.

Suppose, next, thatA is not invertible. Then,A is singular and so one of its columns
(say,A1) can be expressed as a linear combination of its other columnsA2

, ...,An. That is,

A1 =
n∑

i=2
λiAi

Consider the matrix,B, whose first column is[A1− n∑
i=2

λiAi] and whose other columns are

the same as those ofA. Then, the first column ofB is zero, and so∣B∣ = 0. By property
(D.4) of determinants (noted above),∣B∣ = ∣A∣, and so∣A∣ = 0.

For ann×n matrix,A, we define theco-factor matrix of Ato be then×n matrix given
by

C=

⎡⎢⎢⎢⎢⎢⎣
A11 A12 ...... A1n⋮ ⋮ ⋮ ⋮
An1 An2 ...... Ann

⎤⎥⎥⎥⎥⎥⎦
The transpose ofC is called theadjoint of A, and denoted byad j A.

Now, by the rules of matrix multiplication,

AC′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
j=1

a1 jA1 j
n∑

j=1
a1 jA2 j ......

n∑
j=1

a1 jAn j

⋮ ⋮
n∑

j=1
an jA1 j

n∑
j=1

an jA2 j ......

n∑
j=1

an jAn j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
∣A∣ 0 ...... 0⋮
0 0 ...... ∣A∣

⎤⎥⎥⎥⎥⎥⎦
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This yields the equation

AC′ = ∣A∣ I (3.12)

If A is non-singular (that is invertible) then there isA−1 such that

AA−1 =A−1A= I (3.13)

Pre-multiplying (3.12) byA−1 and using (3.13),

C′ = ∣A∣A−1

SinceA is non-singular, we have∣A∣ ≠ 0, and

A−1 =
C′∣A∣ = ad jA∣A∣ (3.14)

Thus (3.14) gives us a formula for computing the inverse of a non-singular matrix in terms
of the determinant and cofactors ofA.

3.7 Cramer’s Rule

Recall that we wanted to calculatethe (unique) solution of a system ofn equations inn
unknowns given by

Ax= c (3.15)

whereA is ann×n matrix, andc is a vector inRn.
To obtain a unique solution, we saw that we must haveA non-singular, which now

translaltes to the condition “∣A∣ ≠ 0”. The unique solution to (3.15) is then

x=A−1c=
ad jA∣A∣ c (3.16)

Let us evaluatex1, using (3.16). This can be done by finding the inner product ofx with
the first unit vector,e1 = (1,0, ...,0). Thus,

x1 = e1x=
e1ad jA∣A∣ c

=
[A11A21 An1]c∣A∣
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= [c1A11+c2A21+ .....+cnAn1]/ ∣A∣

=

RRRRRRRRRRRRRR
c1 a12 .. a1n⋮
cn an2 .. ann

RRRRRRRRRRRRRR
∣A∣−1

This gives us an easy way to compute the solution ofx1. In general, in order to calculate
xi, replace theith column ofA by the vectorc and find the determinant of this matrix.
Dividing this number by the determinant ofA yields the solutionxi. This rule is known as
Cramer’s Rule.
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3.8 Appendix: System of Homogeneous Linear Equations

Let A be ann×n matrix. Consider the following system of homogeneous linearequations:

Ax= 0 (1)

SupposeA is singular, withrank(A) = r, where 1≤ r < n. Let S= {x ∈Rn ∶Ax= 0}.
(a) Show thatScontains some non-zero vector.
(b) Letq be the rank ofS. Show that 1≤ q< n.
(c) Let{x1

, ...,xq} be a set of vectors inS, which is linearly independent [the existence
of such a set of vectors is guaranteed by (b)]. Show that thereare vectorsyq+1

, ...,yn in
Rn, such that the set{x1

, ...,xq
,yq+1

, ...,yn} is a basis ofRn. [Use the result of problem 3
in problem set 2].

(d) LetT = {v ∈Rn ∶ v=Azfor somez∈Rn}. Show that anyv ∈ T can be expressed as a
linear combination of{zq+1

, ...,zn}, wherezj =Ayj for j = q+1, ...,n.
(e) Show that the set{zq+1

, ...,zn} is linearly independent, and therefore the rank ofT
is equal to(n−q).

(f) Show that rank ofT is also equal tor.
(g) Conclude that:

rank(S) = n− rank(A) (*)

(a) Since the rank ofA is less thann, then column vectors ofA are linearly dependent.
Consequently, there is somec ∈Rn, with c≠ 0, such thatAc= 0. This c ∈S.

(b) Sincec ∈ S, with c≠ 0, the rank ofS is ≥ 1. SinceS is a subset ofRn, and the rank
of Rn is n, the rank ofS is ≤ n. To show thatq < n, suppose on the contrary thatq = n.
Then, we can findn vectorsx1

, ..,xn in S, such that{x1
, ..,xn} is linearly independent, and

is therefore a basis ofRn.
Sincer ≥ 1, we can find at least one column vector among the column vectors of A,

which is non-zero; letAk be such a column vector ofA. The k-th unit vectorek ∈Rn can
be written as a linear combination of the vectors in{x1

, ..,xn}:
ek = λ1x1+⋯+λnxn (2)

Pre-multiplying (2) byA, we obtain:

Ak =Aek = λ1Ax1+⋯+λnAxn = 0

sincex1
, ..,xn are inS. But, this contradicts the fact thatAk is non-zero. Thus, we must

haveq< n.
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(c) Since the rank ofSis q, we can find a set of vectorsx1
, ..,xq in S, such that{x1

, ..,xq}
is linearly independent. Since the rank ofRn is n, we can find vectorsy1

, ...,yn in Rn, such
thatE = {y1

, ...,yn}, is a basis ofRn. Using the result of problem 3 of problem set 2, we
can then find(n−q) vectors fromE, such that these vectors, together with theq vectors
x1
, ..,xq constitute a basis ofRn. Denoting the(n−q) vectors (without loss of generality)

from E so chosen byyq+1
, ...,yn

, the set{x1
, ...,xq

,yq+1
, ...,yn} is a basis ofRn.

(d) Since{x1
, ...,xq

,yq+1
, ...,yn} is a basis ofRn, anyz∈Rn can be expressed as a linear

combination of the set of vectors{x1
, ...,xq

,yq+1
, ...,yn} :

z= λ1x1+⋯+λqxq+λq+1yq+1+⋯+λnyn (3)

Pre-multiplying (3) byA, we obtain:

Az= λ1Ax1+⋯+λqAxq+λq+1Ayq+1+⋯+λnAyn

= λq+1Ayq+1+⋯+λnAyn

= λq+1zq+1+⋯+λnzn

(4)

the second line of (4) following from the fact that the vectors x1
, ..,xq belong toS, and

the third line of (4) following from the definition ofzj for j = q+1, ...,n. Since anyv ∈ T
is equal toAz for somez ∈ Rn, this shows that anyv ∈ T can be expressed as a linear
combination of{zq+1

, ...,zn}.
(e) Suppose that{zq+1

, ...,zn} is linearly dependent. Then, there are numbersαq+1, ..,αn,
not all equal to zero such that:

αq+1zq+1+⋯+αnzn = 0 (5)

Using the definition ofzj for j = q+1, ...,n, we have:

A(αq+1yq+1+⋯+αnyn) = 0 (6)

Denoting(αq+1yq+1+⋯+αnyn) by w, we observe that (6) implies thatw∈S. Since the rank
of S is q, and{x1

, ..,xq} is linearly independent, we know that{x1
, ..,xq} is a basis ofS.

Consequently,w can be expressed as a linear combination of the set of vectors{x1
, ..,xq}:

w= β1x1+⋯+βqxq (7)

Using the definition ofw, and (7), we get:

αq+1yq+1+⋯+αnyn−β1x1−⋯−βqxq = 0.

But this means that{x1
, ...,xq

,yq+1
, ...,yn} is linearly dependent, a contradiction. Thus,{zq+1

, ...,zn}must be linearly independent.
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The vectors in{zq+1
, ...,zn} belong (by definition) toT. Using (d) and the linear in-

dependence of{zq+1
, ...,zn}, we infer that{zq+1

, ...,zn} is a basis ofT. Consequently, the
rank ofT is (n−q).

(f) Since the rank ofA is r, we can find a set ofr linearly independent vectors among
then column vectors ofA. Without loss of generality, we let this set be{A1

, ...,Ar}. Note
thatAi = Aei for i = 1, ...,r, so the vectors in{A1

, ...,Ar} belong toT. Since anyv ∈ T can
be expressed asAz for somez∈Rn, anyv ∈ T can be expressed as a linear combination of
the vectors inU = {A1

, ...,An}.
The rank ofU is r, and so{A1

, ...,Ar} is a basis ofU . Thus, anyA j ∈U can be expressed
as a linear combination of the set of vectors in{A1

, ...,Ar}.
It follows that anyv ∈ T can be expressed as a linear combination of the set of vectors

in {A1
, ...,Ar}. Since{A1

, ...,Ar} is linearly independent,{A1
, ...,Ar} is a basis ofT. Thus,

the rank ofT is r.
(g) Using (e) and (f), we haver = n−q. This establishes (*).
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3.9 Worked Out Problems on Chapter 3

Problem 10(System of Linear Equations: Existence and Uniqueness of Solutions).

Consider the following system of linear equations:

2x1+4x2 = 8
3x1+3x2 = 9
2x1+3x2 = 7

(1)

(a) Show, using the existence criterion discussed in class,that the system of equations
(1) has a solution.

(b) Does the system of equations (1) have a unique solution ? Explain.

Solution.

We can write the system (1) asAx= b, where

A=

⎡⎢⎢⎢⎢⎢⎣
2 4
3 3
2 3

⎤⎥⎥⎥⎥⎥⎦
, x= [ x1

x2
] , b=

⎡⎢⎢⎢⎢⎢⎣
8
9
7

⎤⎥⎥⎥⎥⎥⎦
, Ab =

⎡⎢⎢⎢⎢⎢⎣
2 4 8
3 3 9
2 3 7

⎤⎥⎥⎥⎥⎥⎦
(a) To show thatAx= b has a solution, we must show that rank(A) = rank(Ab). First,

rank(A) = 2: rank(A) ≤ 2 becauseA has only two columns, and rank(A) ≥ 2 because
A1

,A2 are linearly independent. Second, rank(Ab) = 2: rank(Ab) ≥ 2 sinceA1
b = A1

andA2
b = A2 are linearly independent, and rank(Ab) < 3 sinceA3

b = 2A1
b+A2

b, so the
three columns ofAb are linearly dependent. Because rank(Ab) = rank(A) = 2, the
systemAx= b has a solution by the Existence Theorem from Chapter 3.

(b) We can apply the Uniqueness Theorem from Chapter 3, since we have m= 3,n= 2.
From part (a), rank(A)= rank(Ab)=2=n, so the systemAx=b has a unique solution.

Problem 11(System of Linear Equations: Existence of Solutions).

Consider the following system of linear equations:

3x1+x2+x3 = t
x1−x2+2x3 = 1− t
x1+3x2−3x3 = 1+ t

(2)

wheret is a real number. For what values oft will the system of equations (2) have a
solution ? Explain.
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Solution.

[Note: You are free to just solve the system, but the method below may help you solve
certain other existence or uniqueness problems.] We can write the system (2) asAx= b,
where

A=

⎡⎢⎢⎢⎢⎢⎣
3 1 1
1 −1 2
1 3 −3

⎤⎥⎥⎥⎥⎥⎦
, x=

⎡⎢⎢⎢⎢⎢⎣
x1

x2

x3

⎤⎥⎥⎥⎥⎥⎦
, b=

⎡⎢⎢⎢⎢⎢⎣
t

1− t
1+ t

⎤⎥⎥⎥⎥⎥⎦
, Ab =

⎡⎢⎢⎢⎢⎢⎣
3 1 1 t
1 −1 2 1− t
1 3 −3 1+ t

⎤⎥⎥⎥⎥⎥⎦
By the Existence Theorem from Chapter 3, the systemAx= b will have a solution when
rank(A) = rank(Ab). Now, rank(A) = 2 becauseA1

,A2 are linearly independent, butA1 =

2A2+A3. So we want to find the values oft for which rank(Ab) = 2. SinceA1
,A2 are

linearly independent, if rank(Ab) = 2 thenA1
,A2 will form a basis for the columns ofAb.

In particular, we can write

⎡⎢⎢⎢⎢⎢⎣
t

1− t
1+ t

⎤⎥⎥⎥⎥⎥⎦
= λ1

⎡⎢⎢⎢⎢⎢⎣
3
1
1

⎤⎥⎥⎥⎥⎥⎦
+λ2

⎡⎢⎢⎢⎢⎢⎣
1−1
3

⎤⎥⎥⎥⎥⎥⎦
This is a system of three equations. By adding the first and second equations, we have
4λ1 = 1, or λ1 =

1
4. By subtracting the second equation from the first equation, then sub-

tracting twice the third equation, we have−4λ2 =−3, orλ2 =
3
4. With these values ofλ1,λ2,

the second equation givest = 3
2. This is the only value oft for which the systemAx= b has

a solution.

Problem 12(System of Linear Equations: Uniqueness of Solution).

Let A be anm×n matrix and letb be a vector inRm
. Consider the following system of

linear equations:
Ax= b (3)

Suppose (3) has a unique solution forevery b∈Rm
. Canmbe different fromn ? Explain.

Solution.

Using the Uniqueness Theorem from Chapter 3, we are given thatfor all b ∈ Rm,
rank(A) = rank(Ab) = n. That means theA1

, . . . ,An ∈Rm are linearly independent and any
b ∈ Rm is a linear combination ofA1

, . . . ,An. By the Basis Theorem, then, theA1
, . . . ,An

are a basis forRm. Since rank(Rm) =m, it must be thatm= n.

Problem 13 (System of Homogeneous Linear Equations: Existence and Uniqueness of
Solutions).
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Let A be ann×n matrix. Consider the following system of homogeneous linearequa-
tions:

Ax= 0 (4)

(a) SupposeA is non-singular. Show that there is a unique solution to the system of
equations (4).

(b) SupposeA is singular. Show that there are an infinite number of distinct solutions
to the system of equations (4).

Solution.

(a) In class, the following result was presented for ann×n matrix A: the systemAx= b
has a unique solution if and only if rank(A) = n. Since we are given thatA is non-
singular, we know rank(A) = n and so the systemAx= 0 has a unique solution.

(b) Let rank(A) = k < n. ThenAb = [A 0] also has rankk. By the Existence Theorem in
Chapter 3, then, the systemAx= 0 has a solution, since rank(A) = rank(Ab) = k.

SinceAx= 0 has a unique solution if and only ifA is non-singular, it must be that
Ax= 0 has more than one solution. Suppose vectorsx andx′ solveAx= 0, withx≠ x′.
Considerx′′ = λx+ (1−λ)x′ for someλ ∈ (0,1). Note thatx′′ ≠ x andx′′ ≠ x′. Now
Ax′′ = λAx+(1−λ)Ax′ = 0, sox′′ solvesAx= 0. Lettingλ vary over (0, 1), we have
an infinite number of distinct solutions toAx= 0.

Problem 14(Determinant of Upper Triangular Matrix).

Let A be ann×n matrix, withai j = 0 wheneveri > j.
(a) Show that:

detA=∏n
i=1aii

(b) Use (a) to verify thatA is non-singular if and only ifaii ≠ 0 for eachi ∈ {1, ...,n}.
Solution.

A=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 ⋯ a1,n−1 a1n

0 a22 ⋯ a2,n−1 a2n⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ an−1,n−1 an−1,n

0 0 ⋯ 0 ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(a) Let’s prove this by induction.

Base case: Letn=1. If B is a 1×1 matrix, then detB=b11=∏1
i=1bii by the definition

of a determinant.

Inductive case: Letn> 1. Assume that for any(n−1)×(n−1)matrixC with ci j = 0
for all i > j, we have detC =∏n−1

i=1 cii . Now consider anyn×n matrix A with ai j = 0
for all i > j. Expanding by the last row, we have

detA= an1An1+⋅ ⋅ ⋅+annAnn

= ann(−1)n+n

RRRRRRRRRRRRRRRRRR

a11 a12 ⋯ a1,n−1

0 a22 ⋯ a2,n−1⋮ ⋮ ⋱ ⋮
0 0 ⋯ an−1,n−1

RRRRRRRRRRRRRRRRRR
= ann

n−1∏
i=1

aii

=
n∏

i=1
aii

where the third equality follows from the inductive hypothesis.

(b) As an “if and only if” statement, this requires proofs in bothdirections.

[Note: You are free to cite Theorem 7, Chapter 3, the proof of which is contained in
the answer below, in order to write a shorter proof for this problem.]

Claim: If the upper triangular matrix A is non-singular, then aii ≠ 0 for all
i = 1, . . . ,n.

Proof: LetA be non-singular. ThenA has an inverse,A−1. Since

1= detI = detA−1A= (detA−1)(detA),
we know that detA ≠ 0. If aii = 0 for any i ∈ 1, . . . ,n, then by (a) we would have
detA= 0, a contradiction. So it must be thataii ≠ 0 for all i = 1, . . . ,n.

Claim: If A is upper triangular and aii ≠ 0 for all i = 1, . . . ,n, then A is non-
singular.

Proof: Letaii ≠ 0 for all i = 1, . . . ,n. Then by (a), detA≠ 0. Seeking contradiction,



CHAPTER 3. SIMULTANEOUS LINEAR EQUATIONS 44

supposeA is singular. Without loss of generality, we can writeA1 =∑n
i=2λiAi. Let

B=

⎡⎢⎢⎢⎢⎢⎣
A1−∑n

i=2λiAi A2 ⋯ An

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
0 A2 ⋯ An

⎤⎥⎥⎥⎥⎥⎦
We know, by property (D.4) in Chapter 3, that detB= detA. But, expandingB by
the first column, we have detB= 0. This gives detA= 0, a contradiction. So we have
thatA is non-singular.

Problem 15(Test of Linear Dependence of Vectors).

Let S= {x1
,x2

, . . . ,xm} be a set of vectors inRn
, and letG be them×mmatrix defined by:

G=

⎡⎢⎢⎢⎢⎢⎣
x1x1 ⋯ x1xm

⋮ ⋯ ⋮
xmx1 ⋯ xmxm

⎤⎥⎥⎥⎥⎥⎦
wherexix j is the inner product ofxi andx j , for i = 1, . . . ,mand j = 1, . . . ,m.

Show thatS is linearly dependent if and only if:

detG= 0.

Solution.

As an “if and only if” statement, this requires proofs in bothdirections.

Claim: If S is linearly dependent, then detG= 0.

Proof: SupposeS is linearly dependent. Then, without loss of generality, wecan write
x1 = λ2x2+⋅ ⋅ ⋅+λmxm. Substituting this intoG in a clever way, we have

G=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(λ2x2+⋅ ⋅ ⋅+λmxm)x1 ⋯ (λ2x2+⋅ ⋅ ⋅+λmxm)xm

x2x1 ⋯ x2xm

⋮ ⋱ ⋮
xmx1 ⋯ xmxm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ2x2x1+⋅ ⋅ ⋅+λmxmx1 ⋯ λ2x2xm+⋅ ⋅ ⋅+λmxmxm

x2x1 ⋯ x2xm

⋮ ⋱ ⋮
xmx1 ⋯ xmxm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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That is, the rows ofG are linearly dependent:G1 = λ2G2+ ⋅ ⋅ ⋅ +λmGm. SoG is singular,
which is the same as sayingG is not invertible, which is the same as detG= 0.

Claim: If det G= 0, then S is linearly dependent.

Proof: Suppose detG= 0. This is equivalent to sayingG is not invertible, which is equiv-
alent to sayingG is singular. That is, the columns ofG are linearly dependent: there exist
λ1, . . . ,λm not all zero such that

λ1

⎡⎢⎢⎢⎢⎢⎣
x1x1

⋮
xmx1

⎤⎥⎥⎥⎥⎥⎦
+⋅ ⋅ ⋅+λm

⎡⎢⎢⎢⎢⎢⎣
x1xm

⋮
xmxm

⎤⎥⎥⎥⎥⎥⎦
= 0

We can write this as the system of equations

x1(λ1x1+⋅ ⋅ ⋅+λmxm) = 0

⋮
xm(λ1x1+⋅ ⋅ ⋅+λmxm) = 0

Now, multiply theith equation byλi and sum all the equations for

(λ1x1+⋅ ⋅ ⋅+λmxm)(λ1x1+⋅ ⋅ ⋅+λmxm) = 0

Let y = λ1x1+ ⋅ ⋅ ⋅ +λmxm. By (I.4) in Chapter 1,yy= 0 if and only if y = 0. This means
λ1x1+⋅ ⋅ ⋅+λmxm= 0 for λ1, . . . ,λm not all zero. ThusS is linearly dependent.
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Chapter 4

Characteristic Values and Vectors

4.1 The Characteristic Value Problem

Let C denote the set of complex numbers. Given ann×n real matrix, for whatnon-zero
vectorsx ∈Cn, and for what complex numbersλ is it true that

Ax= λx (4.1)

This is known as thecharacteristic value problemor theeigenvalue problem.
If x≠0 andλ satisfy equation (4.1), thenλ is called acharacteristic valueor eigenvalue

of A, andx is called acharacteristic vectoror eigenvectorof A.
Clearly (4.1) holds if and only if

(A−λI)x= 0 (4.2)

But (4.2) is a homogeneous system ofn equations inn unknowns. It has a non-zero
solution forx if and only if (A−λI) is singular; that is, if and only if

∣A−λI ∣ = 0 (4.3)

This equation is called thecharacteristic equationof A. If we look at the expression

f (λ) ≡ ∣A−λI ∣ (4.4)

we note thatf is apolynomialin λ; it is called thecharacteristic polynomialof A.

Example: Consider the 2×2 matrixA given by

A= [ 2 1
1 2

]
47
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Then equation (4.3) becomes

∣ 2−λ 1
1 2−λ ∣ (4.5)

So,(4−2λ+λ2)−1= 0, which yields

(1−λ)(3−λ) = 0

Thus, the characteristic roots areλ = 1 andλ = 3.
Puttingλ = 1 in (4.2), we get

[ 1 1
1 1

] [ x1

x2
] = [ 0

1
]

which yields
x1+x2 = 0

Thus the general solution of the characteristic vector corresponding to the characteristic
root λ = 1 is given by (x1, x2) = θ(1, −1) f orθ ≠ 0

Similarly, corresponding to the characteristic rootλ = 3, we have the characteristic vector
given by (x1, x2) = θ(1,1) f orθ ≠ 0.

In developing the basic results on the characteristic-value problem, we note that, in
general, the characteristic equation will haven roots in the complex plane (by the “Fun-
damental Theorem of Algebra”), since it is a polynomial equation (in λ) of degreen. [Of
course some of these roots might be repeated]. In general, the corresponding eigenvectors
will also have their components in the complex plane.

4.2 Characteristic Values, Trace and Determinant of a
Matrix

If A is ann×n matrix, thetraceof A, denoted bytr(A), is the number defined by

tr(A) = n∑
i=1

aii

The following properties of the trace can be verified easily [HereA, B andC aren×n
matrices, andλ ∈R].
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(TR.1) tr(A+B) = tr(A)+ tr(B)
(TR.2) tr(λA) = λ tr(A)
(TR.3) tr(AB) = tr(BA)
(TR.4) tr(ABC) = tr(BCA) = tr(CAB)

Let A be ann×n matrix. The characteristic polynomial ofA, defined in (4.4) above
can generally be written as

∣A−λI ∣ = (−λ)n+bn−1(−λ)n−1+ ....+b1(−λ)+b0 (4.6)

whereb0, ...,bn−1 are the coefficients of the polynomial which are determined by the coef-
ficients of theA-matrix.

On the other hand, ifλ1, ...,λn are the eigenvalues ofA, then the characteristic equation
(4.3) can be written as

0= (λ1−λ)(λ2−λ)....(λn−λ) (4.7)

Using (4.3), (4.6), and (4.7) and “comparing coefficients” we can conclude that

bn−1 = λ1+λ2+ ...+λn

and

b0 = λ1λ2...λn

Also, by looking at the terms in the characteristic polynomial of A which would involve(−λ)n−1, we can conclude that

bn−1 = a11+a22+ ...+ann

Finally, puttingλ = 0 in (4.6), we get

b0 = ∣A∣
Thus we might note two interesting relationships between the characteristic values, the

trace and the determinant ofA:

trA =
n∑

i=1
λi

∣A∣ = n∏
i=1

λi
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4.3 Characteristic Values and Vectors of Symmetric Ma-
trices

There is considerable simplification in the theory of characteristic values ifA is asymmet-
ric matrix. In this case, it can be shown that all the roots of (4.3) arereal.

Theorem 8. Let A be a symmetric n×n matrix. Then all the characteristic values of A are
real.

Proof. Supposeλ is a complex characteristic value, with associated complexcharacteristic
vector,x. Then we have

Ax= λx (4.8)

Definex∗ to be the complex conjugate ofx, andλ∗ to be the complex conjugate ofλ. Then

Ax∗ = λ∗x∗ (4.9)

Pre-multiply (4.8) by(x∗)′ and (4.9) byx′ to get

(x∗)′Ax= λ(x∗)′x (4.10)

x′Ax∗ = λ∗x′x∗ (4.11)

Subtracting (4.11) from (4.10)

(x∗)′Ax−x′Ax∗ = (λ−λ∗)x′x∗ (4.12)

since(x∗)′x= x′x∗. Also,

x′Ax∗ = (x′Ax∗)′ = (x∗)′A′x= (x∗)′Ax

sinceA′ =A (by symmetry). Thus (4.12) yields

(λ−λ∗)x′x∗ = 0 (4.13)

Sincex≠ 0, we know thatx′x∗ is real and positive. Hence (4.13) implies thatλ = λ∗, soλ
is real.

We will develop the theory of eigenvalues and eigenvectorsonly for symmetric matri-
ces.

Notice that once the eigenvalues are real, the system of equations

(A−λI)x= 0
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will yield a non-zero solutionx in Rn if and only if

∣A−λI ∣ = 0

So the eigenvectors corresponding to the eigenvalues ofA will also be real vectors.
If x is an eigenvector corresponding to an eigenvalueλ, then so istx, wheret is any

non-zero scalar. A normalized eigenvectoris an eigenvector with (Euclidean) norm equal
to 1.

4.4 Spectral Decomposition of Symmetric Matrices

An n×n matrixC is called anorthogonal matrixif it is invertible, and its inverse equals its
transpose; that isC′ =C−1.

Theorem 9. Suppose A is an n×n symmetric matrix with n distinct eigenvalues,λ1, ...,λn.
If x1

, ...,xn are (normalized) eigenvectors corresponding to the eigenvaluesλ1, ...,λn, then
the matrix B, such that Bi, the ith column of B, is the vector xi, is an orthogonal matrix.

Proof. Pick any two distinct indicesi and j (so i ≠ j). Then we have

Axi = λixi (4.14)

and
Axj = λ jx j (4.15)

Multiplying (4.14) by(x j)′ we get

(x j)′Axi = λi(x j)′xi (4.16)

Multiplying (4.15) by(xi)′ we get

(xi)′Axj = λ j(xi)′x j (4.17)

Now, (xi)′Axj is a number, so its transpose is the same number. Thus

(xi)′Axj = ((xi)′Axj)′ = (x j)′A′xi

But A′ =A by symmetry ofA. So

(xi)′Axj = (x j)′Axi
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Using this in (4.16) and (4.17), we get

(λi −λ j)xix j = 0

Since the eigenvalues ofA are distinct,λi ≠ λ j for i ≠ j. Thusxix j = 0, soxi is orthogonal
to x j .

It follows from this thatx1
, ...,xn are linearly independent. For if they were dependent,

there would existµ1, ...,µn, not all zero, such that

µ1x1+ ...+µnxn = 0 (4.18)

Without loss of generality considerµ1 ≠ 0. Then premultiplying (4.18) by(x1)′, we get

µ1∥x1∥2 = 0

since(x1)′x j = 0 for all j ≠ 1. Since∥x1∥2 = 1, we getµ1 = 0, a contradiction. Thus
x1
, ...,xn are linearly independent.

If B is the matrix such thatBi, the ith column ofB, is the vectorxi, thenB is invertible,
since we have shown thatB is non-singular. Also,

BB′ = I (4.19)

sincexix j = 0 for i ≠ j, andxix j = 1 for i = j. Thus premultiplying (4.19) byB−1 we get

B′ =B−1

HenceB is an orthogonal matrix.

Theorem 10. (Spectral Decomposition)
Suppose A is an n×n symmetric matrix with n distinct eigenvalues,λ1, ...,λn. If B

is the n×n matrix with Bi, the ith column of B, being a (normalized) eigenvector of A
corresponding to the eigenvalueλi of A(i = 1, ...,n), then

A=BLB′ (4.20)

where L is the diagonal matrix with the eigenvalues of A on its diagonal.

Proof. For eachi = 1, ...,n, we have

ABi = λiBi
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This can be written in compact form as

AB=BL (4.21)

where then×n matrix L is defined by

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 ... 0
0 λ2 ... 0
... ... ... ...

0 0 ... λn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
We have noted in Theorem 9 thatB is an orthogonal matrix. So, post-multiplying (4.21)
by B−1, we get

A=BLB−1

But sinceB is orthogonal, we haveB−1 =B′, and thus we arrive at (4.20).
Remark: The formula (4.20) “decomposes” the matrixA into a matrixL consisting of its
eigenvalues, and the matricesB, B′ which consist of its eigenvectors.

4.5 Quadratic Forms

Definition 1. Let A be a symmetric n×n matrix. Then

(a) A is negative semi-definiteif hAh≤ 0 for all h in Rn
.

(b) A is negative definiteif hAh< 0 for all h in Rn, h≠ 0.

(c) A is positive semi-definiteif hAh≥ 0 for all h inRn.

(d) A is positive definiteif hAh> 0 for all h in Rn, h≠ 0.

Let us concentrate on definition(d). Notice that the relevant inequality must hold
for everyvectorh≠ 0 in Rn. This means that if we already know that a symmetricn×n
matrix A is positive-definite, then we should be able to infer some useful properties ofA
quite easily. On the other hand, it also means that if we do notknow that a symmetric
n×n matrix A is positive definite, definition(d) by itself will not be very easy to check to
determine whetherA is positive definite or not.

We illustrate the first observation by noting that if a symmetric n×n matrix, A, is
positive definite then we can infer that all its diagonal elements must be positive. To see
this, note that theith diagonal element,aii , can be expressed as
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(ei)′Aei = aii

whereei is the ith unit vector ofRn. SinceA is positive definite andei ≠ 0 is in Rn,
definition (d) tells us that the left-hand side of the above equation is positive. Thus the
right-hand side is also positive.

The second observation leads one to explore convenient characterizations of quadratic
forms from which it should be easy to check whether a givenn×n symmetric matrixA is
positive definite or not. We provide two such characterizations in the next two sections.

4.6 Characterization of Quadratic Forms

Let A be ann×n symmetric matrix, with distinct eigenvaluesλ1, ...,λn. We have seen that
we can define a matrixB, such thatBi, theith column ofB, is a normalized eigenvector ofA
corresponding to the eigenvalueλi(i =1, ...,n). This matrix is orthogonal, and furthermore

B′AB= L (4.22)

whereL is a diagonal matrix with the eigenvaluesλ1, ...,λn on its diagonal.
Let x be an arbitrary non-zero vector inRn. SinceB is an orthogonal matrix we can

define the vectory∈Rn by y=B−1x=B′x, so thatBy= x, andy′B′ = x′. Then premultiplying
(4.22) byy′ and post-multiplying it byy, we get

y′B′ABy= y′Ly

which yields, by definition ofy,
x′Ax= y′Ly (4.23)

The right hand side of (4.23) is

y′Ly=
n∑

i=1
λiy2

i (4.24)

wherey= (y1, ...,yn). Suppose all the eigenvalues ofA are positive. Then sincex≠ 0, by
definition ofy, we havey≠ 0, and (4.24) is positive. So, by (4.23),x′Ax> 0 for eachx≠ 0,
andA is positive definite.

Conversely, ify is an arbitrary vector inRn, we definex=Byand soy′B′ = x′, and note
that if y≠ 0, thenx≠ 0 sinceB is orthogonal. Thus repeating the above calculations, we
get (4.23) and (4.24). Now, supposeA is positive definite. Then choosing in turny= ej ,
the jth unit vector, it follows from (4.24) thaty′Ly= λ j and from (4.23) thatλ j = x′Ax> 0.
Thus, all the eigenvalues ofA are positive.

In the same way, characterization of the other quadratic forms can be obtained in terms
of the signs of the eigenvalues of the matrix. We summarize these results as follows:
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(a) A is positive (negative) definite if and only if every eigenvalue of Ais positive (neg-
ative).

(b) A is positive (negative) semi-definite if and only if every eigenvalue of A is non-
negative (non-positive).

Examples:
Consider the following matrices:

A= [ −1 0
0 0

] ;B= [ −1 1
1 −3 ] ;C= [ 0 0

0 1
]

The eigenvalues ofA are−1 and 0. SoA is negative semi-definite. The eigenvalues of
B are(−2+√2) and(−2−√2), which are both negative. SoB is negative definite. The
eigenvalues ofC are 0 and 1. SoC is positive semidefinite.

4.7 Alternative Characterization of Quadratic Forms

There is an alternative way to characterize quadratic formsin terms of the signs of the
“principal minors” of the corresponding matrix.

If A is an n×n matrix, aprincipal minor of order r is the determinant of ther × r
submatrix that remains when(n− r) rows and(n− r) columnswith the same indicesare
deleted fromA.
Examples: If A is a 3×3 matrix, then the principal minors of order 2 are

∣ a11 a12

a21 a22
∣ ; ∣ a11 a13

a31 a33
∣ ; ∣ a22 a23

a32 a33
∣

And, the principal minors of order 1 are

a11 ; a22 ; a33

The principal minor of order 3 is the determinant of the matrix.
If A is ann×n matrix, theleading principal minor of order ris defined as

Dr =

RRRRRRRRRRRRRR
a11 ⋯ a1r⋮
ar1 ⋯ arr

RRRRRRRRRRRRRR
ThusD1 = a11; D2 = ∣ a11 a12

a21 a22
∣ ;etc.

We note below the characterization result for positive and negative definite matrices.
Let A be ann×n symmetric matrix.
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(1’) (i) A is a positive definite if and only if all the leading principal minors of A are
positive.

(ii) A is a negative definite if and only if the leading principal minors of A alternate
in sign, starting with negative[That is, therth leading principal minor,Dr , (where
r = 1, ...,n) has the same sign as(−1)r ].

Checking that a matrix is positive or negative semi-definite is somewhat more involved.
The relevant results are stated below:

(2’) (i) A is positive semi-definite if and only if every principal minor of A of every order
is non-negative.

(ii) A is negative semi-definite if and only if every principal minor of A of odd order
is non-positive and every principal minor of even order is non-negative.

Examples:
We re-examine the matrices which we studied above:

A= [ −1 0
0 0

] ;B= [ −1 1
1 −3 ] ;C= [ 0 0

0 1
]

All the principal minors ofA of odd order are non-positive[a11 < 0 anda22 = 0], and
the (only) principal minor ofA of even order is non-negative[a11a22−a21a12= 0]. SoA is
negative semidefinite.

For the matrixB, the leading principal minor of order 1 is negative[b11= −1< 0], and
the leading principal minor of order 2 is positive[b11b22−b12b21= 2> 0]. SoB is negative
definite.

The principal minors ofC of odd order are non-negative[c11 = 0 andc22 > 0]. The
principal minor ofC of even order is non-negative[c11c22−c12c21 = 0]. SoC is positive
semi-definite.



CHAPTER 4. CHARACTERISTIC VALUES AND VECTORS 57

4.8 Appendix: Spectral Decomposition of Non-Symmetric
Matrices

The characteristic roots of non-symmetric matrices need not be real numbers. However,
when they are real numbers, one can develop a theory of spectral decomposition of non-
symmetric matrices, using the methods already developed inthis course.

The following problem, split up into five parts, provides thesteps involved in such a
theory. You might wish to work through the steps; it is entirely optional.

Let A be ann×n matrix (not necessarily symmetric), whose characteristicroots are
real and distinct; denote the roots byλ1, ...,λn.

(a) Show that for eachi ∈ {1, ...,n}, there exists a vectorxi ∈Rn
, such thatxi ≠ 0, and:

(A−λiI)xi = 0

(b) The principal difference from the case in whichA is symmetric is that the char-
acteristic vectorsx1

, ...,xn need not be orthogonal. To see this, consider the following
example:

A= [ 2 4
3 1

]
(i) Show thatA has two real characteristic roots, which are distinct; callthemλ1 and

λ2.
(ii) Obtain characteristic vectorsx1 ∈ R2 andx2 ∈ R2, corresponding toλ1 andλ2 re-

spectively.
(iii) Show thatx1 is not orthogonal tox2.
(c) Continuing now with the result obtained in (a) above, showthat the set{x1

, ...,xn}
is linearly independent. Denote byX the matrix whose i-th column is given byxi for
i ∈ {1, ..,n}. Note thatX has an inverse.

(d) Show that:
AX =XΛ

whereΛ is a diagonal matrix with the characteristic rootsλ1, ...,λn on its diagonal (in that
order). Note then that:

A=XΛX−1

(e) Show that fort = 1,2,3, ..., we have:

At =XL(t)X−1
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whereL(t) is a diagonal matrix, withλt
1, ...,λt

n on its diagonal (in that order).
Remark:
The above theory also goes through when the characteristic roots are complex, but

distinct. However, the methods developed in this course will not suffice to cover this case,
because concepts such as linear independence and matrix inverse were developed in this
course starting with vectors inRn (notCn).
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4.9 Worked Out Problems on Chapter 4

Problem 16(Non-Symmetric Matrices and Real Eigenvalues).

Let A be the 2×2 matrix, given by:

A= [ a11 a12

a21 a22
]

wherea12≠ a21. Let p be the trace ofA, and letq be the determinant ofA. Assume that:

p> 0,q> 0, p2 > 4qand(p−q) < 1

Denote the characteristic roots ofA by λ1 andλ2.

(i) Show thatλ1 andλ2 are real and positive.
(ii) Show that exactly one of the following alternatives must occur: (A) λ1 < 1 and

λ2 < 1; (B) λ1 > 1 andλ2 > 1.

Solution.

(a) Note thatp= tr(A) = a11+a22 andq= detA= a11a22−a12a21. Then we want to solve

0= f (λ) = det(A−λI) = (a11−λ)(a22−λ)−a12a21

= λ2−(a11+a22)λ+(a11a22−a12a21)
= λ2− pλ+q

By the quadratic formula, the roots are

λ =
p±√p2−4q

2

We are given thatp2 > 4q, so there are two distinct real roots. Without loss of
generality, let’s call the larger rootλ1. Then we have

λ1 =
p+√p2−4q

2
, λ2 =

p−√p2−4q

2
, λ1 > λ2

Sincep> 0, we haveλ1 > 0. The smaller rootλ2 is positive if and only if

p−√p2−4q> 0

⇐⇒ p>
√

p2−4q

⇐⇒ p2 > p2−4q

⇐⇒ q> 0
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wherep>
√

p2−4q ⇐⇒ p2 > p2−4q holds sincep> 0. Because we are givenq> 0,
we haveλ2 > 0.

(b) If λ1 = 1 or λ2 = 1, thenp−q= 1, which is a contradiction of the given information
that p−q< 1. So, in the proof below we consider only strict inequalities.

(A): λ1 < 1 andλ2 < 1. (not A):λ1 > 1 or λ2 > 1.

(B): λ1 > 1 andλ2 > 1. (not B):λ1 < 1 or λ2 < 1.

We want to show that (A) implies (not B) and that (not A) implies(B). This will
establish that exactly one of (A) or (B) always occurs.

Claim: (A) implies (not B). That is, if λ1 < 1 and λ2 < 1, then λ1 < 1 or λ2 < 1.

Proof: By hypothesis,λ1 < 1. So the claim holds.

Claim: (not A) implies (B). That is, if λ1 > 1 or λ2 > 1, then λ1 > 1 and λ2 > 1.

Proof: There are two cases to consider: one in whichλ1 > 1 and one in whichλ2 > 1.
We must show that in both cases,λ1 > 1 andλ2 > 1.

Case 1: Supposeλ1 > 1. Then it follows thatp−2> −√p2−4q. Seeking contradic-
tion, assumeλ2 < 1. This impliesp−2<

√
p2−4q. So we have

∣p−2∣ <√p2−4q

⇐⇒ p2−4p+4< p2−4q

⇐⇒ p−q> 1

This is a contradiction of the given information thatp−q < 1, so it must be that
λ2 > 1.

Case 2: Supposeλ2 > 1. Thenλ1 > λ2 > 1.

Sinceλ1 > 1 andλ2 > 1 in both cases, the claim holds.

Problem 17(Eigenvalues and Eigenvectors of Symmetric Matrices).

Let A = (ai j ) be a symmetric 2×2 matrix. We know that it has only real eigenvalues;
denote these byλ1 andλ2.

(a) Show that there isb= (b1,b2) ∈R2
, with b≠ 0, such that(A−λ1I)b= 0. This shows

that there is a real eigenvector corresponding to the eigenvalueλ1.

(b) Definey= (y1,y2) as follows:y1 = b1+ ib1,y2 = b2+ ib2. Is y also an eigenvector of
A (corresponding to the eigenvalueλ1)? Explain.

Solution.
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(a) Sinceλ1 solves det(A−λ1I) = 0, we know that(A−λ1I) is singular. Then there
areb1 andb2 not both zero such thatb1(A−λ1I)1+b2(A−λ1I)2 = 0. Lettingb =(b1,b2)′, we have that(A−λ1I)b= 0, sob is an eigenvector ofA, corresponding to
the eigenvalueλ1.

(b) We can writey= b+ ib. Then

(A−λ1I)y= (A−λ1I)b+(A−λ1I)ib = 0+0i = 0.

sinceb is an eigenvector of A, corresponding to the eigenvalueλ1. Soy is an eigen-
vector of A, corresponding to the eigenvalueλ1.

Problem 18(Application of Spectral Decomposition).

Let A be the 2×2 matrix defined as follows:

A= [ 2 1
1 2

]
(a) Obtain the characteristic values and corresponding normalized characteristic vec-

tors of this matrix.
(b) Use the Spectral Decomposition Theorem to show that for any positive integern,

the matrixAn can be written as:

An = [ (3n/2)+(1/2) (3n/2)−(1/2)(3n/2)−(1/2) (3n/2)+(1/2) ]
Solution.

(a) The eigenvalues of A are the roots of the characteristic polynomial

f (λ) = det(A−λI) = (2−λ)2−1

= λ2−4λ+3

= (λ−1)(λ−3)
The roots areλ1 = 1,λ2 = 3.

A normalized eigenvectorb1 = (b1
1,b

1
2)′ corresponding toλ1 = 1 solves

⎡⎢⎢⎢⎢⎢⎣
1 1

1 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

b1
1

b1
2

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
0

0

⎤⎥⎥⎥⎥⎥⎦
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This system impliesb1
1+b1

2 = 0, so thatb1 = (b1
1,−b1

1)′. The normalization constraint
is

1= ∥b1∥ =√(b1
1)2+(−b1

1)2 =
√

2(b1
1)2

This is solved byb1
1 =

1√
2
, so a normalized eigenvector corresponding toλ1 = 1 is

b1 = ( 1√
2
,− 1√

2
)′.

A normalized eigenvectorb2 = (b2
1,b

2
2)′ corresponding toλ2 = 3 solves

⎡⎢⎢⎢⎢⎢⎣
−1 1

1 −1
⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

b2
1

b2
2

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
0

0

⎤⎥⎥⎥⎥⎥⎦
This system impliesb2

1 = b2
2, so thatb2 = (b2

1,b
2
1)′. The normalization constraint is

1= ∥b2∥ =√(b2
1)2+(b2

1)2 =
√

2(b2
1)2

This is solved byb2
1 =

1√
2
, so a normalized eigenvector corresponding toλ2 = 3 is

b2 = ( 1√
2
,

1√
2
)′.

(b) Let

B= [ b1 b2 ] =
⎡⎢⎢⎢⎢⎢⎣

1√
2

1√
2

− 1√
2

1√
2

⎤⎥⎥⎥⎥⎥⎦
, Λ = [ 1 0

0 3
]

By the Spectral Decomposition Theorem,A=BΛB′. BecauseB′ =B−1, we have

An =BΛnB′

=

⎡⎢⎢⎢⎢⎢⎣
1√
2

1√
2

− 1√
2

1√
2

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1n 0

0 3n

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1√
2
− 1√

2
1√
2

1√
2

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
1√
2

3n 1√
2

− 1√
2

3n 1√
2

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1√
2
− 1√

2
1√
2

1√
2

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
3n

2 + 1
2

3n

2 − 1
2

3n

2 − 1
2

3n

2 + 1
2

⎤⎥⎥⎥⎥⎥⎦
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Problem 19(Symmetric Matrices with Repeated Characteristic Roots).

Let A be the 3×3 matrix, defined by:

A=

⎡⎢⎢⎢⎢⎢⎣
3 0 0
0 2 1
0 1 2

⎤⎥⎥⎥⎥⎥⎦
(a) Show that the characteristic values ofA are 3 and 1, but 3 is a repeated root. That

is, show that the characteristic polynomialf (λ) = det(A−λI) can be written as a product
of three factors as follows:

f (λ) = (1−λ)(3−λ)(3−λ)
(b) Show that(b1)′ = [0,1/√2,−1/√2] is a normalized characteristic vector corre-

sponding to the characteristic rootλ1 = 1.
(c) Show that(b2)′ = [0,1/√2,1/√2] is a normalized characteristic vector correspond-

ing to the characteristic rootλ2 = 3.
(d) Show that there is another normalized characteristic vector, b3

, corresponding to
the characteristic rootλ2 = 3, which is orthogonal to bothb1 andb2

.

(e) DefineB as the 3× 3 matrix which hasb1
,b2

,b3 as its first, second and third
columns. DefineΛ to be the diagonal matrix:

Λ =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 3 0
0 0 3

⎤⎥⎥⎥⎥⎥⎦
Show thatA=BΛB′.

Solution.

(a) The characteristic polynomial is

f (λ) =
RRRRRRRRRRRRRR

3−λ 0 0
0 2−λ 1
0 1 2−λ

RRRRRRRRRRRRRR
= (3−λ)[(2−λ)2−1]
= (3−λ)(λ2−4λ+3)
= (3−λ)(3−λ)(1−λ)
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(b) We have that∥b1∥ = 1 and

(A−λ1I)b1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0

0 1 1

0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1√
2

− 1√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1√
2
− 1√

2
1√
2
− 1√

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

Sob1 is a normalized eigenvector corresponding to the eigenvalue λ1 = 1.

(c) We have that∥b2∥ = 1 and

(A−λ2I)b2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 −1 1

0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1√
2

1√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1√
2
− 1√

2
1√
2
− 1√

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

Sob2 is a normalized eigenvector corresponding to the eigenvalue λ2 = 3.

(d) A normalized eigenvectorb3 = (b3
1,b

3
2,b

3
3)′ corresponding toλ2 = 3 solves

(A−λ2I)b3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 −1 1

0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b3
1

b3
2

b3
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
This system impliesb3

2 = b3
3.

Any eigenvectorb3 satisfyingb3
2 = b3

3 is orthogonal tob1, so this condition gives us
no information about the components ofb3.

We needb3 to be orthogonal tob2, so we require

0=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1√
2

1√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b3
1

b3
2

b3
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

1√
2

b3
2+ 1√

2
b3

2 =
2√
2

b3
2

This impliesb3
2 = 0, so any eigenvectorb3 satisfyingb3

2 = b3
3 = 0 is orthogonal tob2.

We can chooseb3 = (1,0,0)′. This is a normalized eigenvector corresponding to
λ2 = 3 that is orthogonal to bothb1 andb2.
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(e) Collecting the normalized eigenvectors above, we have

B= [ b1 b2 b3 ] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1

1√
2

1√
2

0

− 1√
2

1√
2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Then

BΛB′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1

1√
2

1√
2

0

− 1√
2

1√
2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 3 0

0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1√
2
− 1√

2

0 1√
2

1√
2

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 3

1√
2

3√
2

0

− 1√
2

3√
2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1√
2
− 1√

2

0 1√
2

1√
2

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
3 0 0
0 2 1
0 1 2

⎤⎥⎥⎥⎥⎥⎦
=A

Problem 20(Positive Definite Matrices).

Let A be ann×n symmetric matrix, which is positive definite. For eachk ∈ {1, . . . ,n},
define the submatrixA(k) by:

A(k) =
⎡⎢⎢⎢⎢⎢⎣

a11 ⋯ a1k⋮ ⋯ ⋮
ak1 ⋯ akk

⎤⎥⎥⎥⎥⎥⎦
(a) Show, using only the definition of a positive definite matrix (that is, without using

any characterization result of positive definite matrices)thataii > 0 for eachi ∈ {1, . . . ,n}.
(b) Show, using only the definition of a positive definite matrix (that is, without using

any characterization result of positive definite matrices)that A(k) is a positive definite
matrix for eachk ∈ {1, . . . ,n}.

(c) Show that the determinant ofA(k) is non-zero for eachk ∈ {1, ...,n}.
(d) Show that the determinant ofA(k) is positive for eachk ∈ {1, ...,n}.
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Solution.

(a) SinceA is positive definite,aii = (ei)′Aei > 0 for all i = 1, . . . ,n.

(b) For anyz∈Rk, we can write

z′A(k)z= [ z1 ⋯ zk ]
⎡⎢⎢⎢⎢⎢⎣

a11 ⋯ a1k⋮ ⋱ ⋮
ak1 ⋯ akk

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

z1⋮
zk

⎤⎥⎥⎥⎥⎥⎦
= [ z1 ⋯ zk ]

⎡⎢⎢⎢⎢⎢⎣
a11z1+⋅ ⋅ ⋅+a1kzk⋮
ak1z1+⋅ ⋅ ⋅+akkzk

⎤⎥⎥⎥⎥⎥⎦
= z1(a11z1+⋅ ⋅ ⋅+a1kzk)+⋅ ⋅ ⋅+zk(ak1z1+⋅ ⋅ ⋅+akkzk)
=

k∑
i=1

zi(z1ai1+⋅ ⋅ ⋅+zkaik)
=

k∑
i=1

zi
⎛⎝

k∑
j=1

zjai j
⎞⎠

=
k∑

i=1

k∑
j=1

zizjai j

Let z∈Rk be such thatz≠ 0. Define the vectorzn ∈Rn by zn
i = zi if i ∈ {1, . . . ,k} and

zn
i = 0 if i ∈ {k+1, . . . ,n}. That is,

z= (z1, . . . ,zk)′
zn = (z1, . . . ,zk,0, . . . ,0)′

Then we have

z′A(k)z= k∑
i=1

k∑
j=1

zizjai j

=
n∑

i=1

n∑
j=1

zizjai j (sincezn
k+1 =⋯ = zn

n = 0)
= (zn)′Azn

> 0 (sinceA is positive definite)
Since our non-nullz∈ Rk is arbitrary, this shows thatA(k) is positive definite for
eachk= 1, . . . ,n.
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(c) [Note: It is fine to first show the stronger result requested in(d) and then state that the
result in (c) follows. The proof below establishes the result using only the definition
of positive definiteness, together with material discussedbefore Chapter 4.]

Suppose detA(k) = 0 for somek ∈ {1, . . . ,n}. ThenA(k) is singular, so the columns
of A(k) are linearly dependent. This means that there is some non-null z= (z1, . . . ,zk)′ ∈
Rk such thatA(k)z=0. Premultiplying byz′, we have thatz′A(k)z=0 for somez≠0.
But this is a contradiction ofA(k) being positive definite, which was established in
(b). So detA(k) ≠ 0 for all k= 1, . . . ,n.

(d) It was shown in (b) thatA(k) is positive definite. From Section 4.6, we have the
result thatA(k) is positive definite if and only if every eigenvalueλ1, . . . ,λk of A(k)
is positive. Then using the relation between characteristic values (eigenvalues) and
the determinant ofA(k) from Section 4.2, we have that detA(k) =∏k

i=1λi > 0.
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Chapter 5

Basic Concepts of Real Analysis

5.1 Norm and Distance

We recall thatRn is the set of alln-vectorsx= (x1, ...,xn), where eachxi is a real number
for i = 1, ...,n. The (Euclidean)normof a vectorx ∈Rn is denoted by∥x∥ and defined by

∥x∥ = [ n∑
i=1

x2
i ]

1/2

We have already noted some properties of the norm, wherex, y ∈Rnandλ ∈R:

(N.1) ∥x∥ ≥ 0; and∥x∥ = 0 iff x= 0.

(N.2) ∥λx∥ = ∣λ∣ ∥x∥
(N.3) ∥x+y∥ ≤ ∥x∥+∥y∥

While (N.1) and (N.2) are easy to check, (N.3) is not. Start by establishing the follow-
ing property:

(N.4) ∣xy∣ ≤ ∥x∥ ∥y∥
The inequality (N.4) is known as theCauchy-Schwarz inequality. You can then use

(N.4) to prove (N.3).
Using the norm, one can define the (Euclidean)distance functionor metric. Forx, y,

∈Rn, thedistancebetweenx andy, denoted byd(x,y), is

d(x,y) = ∥x−y∥
The following properties ofd can be verified (whenx, y, z ∈Rn):

70
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(D.1) d(x,y) ≥ 0;d(x,y) = 0 if and only ifx= y

(D.2) d(x,y) = d(y,x)
(D.3) d(x,z) ≤ d(x,y)+(d(y,z)

The property (D.3) is known as the “triangle inequality”; itcan be established using
(N.3).

5.2 Open and Closed Sets

Open Ball:
If x ∈Rn, andr is a positive real number, anopen ball(with centerx andradius r) in

Rn is
B(x,r) = {x in R

n ∶ d(x,x) < r}
Open Set:

A setS⊂Rn is open(in Rn) if for every x ∈ S, there is an open ball (with centerx and
radiusr > 0) inRn which belongs toS.

It follows that an open ball is an open set. You can check that the setS= {(x1, x2) in
R2 ∶ x1 > 0, x2 > 0 andx2

1+x2
2 < 1} is an open set inR2

.

In discussing the concept of an open set, it is important to specify thespacein which
we are considering the set. For instance, the set{x ∈ R;0 < x < 1} is open inR; but the
set{(x1, x2) ∈R2 ∶ 0< x1 < 1, x2 = 0} is not open inR2, although, graphically, the two sets
“look the same”.
Complement of a Set:

If S⊂ Rn, thecomplementof S (in Rn) is denoted by∼ S, and defined by∼ S= {x in
Rn ∶ x is not inS}
Closed Set:

A setS⊂Rn is closedin Rn if the complement ofS in Rn is open inRn.
You can check that the setS= {(x1, x2) in R2 ∶ x1 ≥ 0, x2 ≥ 0, andx2

1+x2
2 ≤ 1} is a closed

set inR2.
There are many sets which areneitheropennor closed inRn. For example, the set

S= {(x1, x2) in R2 ∶ x1 ≥ 0, x2 ≥ 0, andx2
1+x2

2 < 1} is neither open nor closed inR2.
If A⊂Rn andx ∈Rn, then one of three possibilities must hold:
(1) There is an open ballB(x,r) such thatB(x,r) ⊂A.
(2) There is an open ballB(x,r) such thatB(x,r) ⊂∼A.
(3) If B(x,r) is any open ball, thenB(x,r) contains points of bothA and∼A.
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Those pointsx ∈Rn which satisfy (1) constitute theinterior of A; those satisfying (2)
theexterior of A; those satisfying (3) theboundaryof A. Points in these sets are called,
respectively, interior, exterior and boundary points (with respect to the setA).
Neighborhood:

If x ∈Rn, any set which contains an open set containingx is called aneighborhoodof
x, and is denoted byN(x).

Thus, an open ball inRn with centerx and radiusr > 0 is a neighborhood ofx.
Empty Set:

A setφ ⊂Rn which contains no elements ofRn is called theempty set.
You can show thatRn andφ are the only two sets which are both open and closed in

Rn.

5.3 Convergent Sequences

Let x1
, x2

, x3
, ..... be a sequence of vectors inRn. A vectorx in Rn is called alimit of the

sequencex1
, x2

, x3
, ....if given any real numberε > 0, there is a positive integerN such that

d(xs
, x) < ε whenevers>N. If the sequencex1

, x2
, x3

, .... has a limit, we call the sequence
convergent. If x is a limit of the sequence we say thatthe sequence convergesto x.

For example, the sequence of numbers 1,

1
2,

1
3,

1
4, .... is convergent, with limit equal to

zero.
You can check that if a sequencex1

, x2
, x3

, ...... is convergent, it has auniquelimit; so
it makes sense to speak ofthe limit of a convergent sequence.

An important result on convergent sequences is that “weak inequalities are preserved
in the limit”.

Proposition 2. Suppose{xs}∞1 is a convergent sequence of points inRn with limit x ∈Rn,
and let a∈Rn. If xs≤ a for all s, then x≤ a.

Remark: You should be able to prove, by using Proposition 1, that ifb ∈Rn, and{ys}∞1
is convergent of points inRn with limit y ∈Rn, andys≥ b for all s, theny≥ b.

Using the notion of convergent sequence, we can obtain a more“usable” characteriza-
tion of closed sets.

Theorem 11. Let S⊂Rn. Then S is closed inRn iff whenever x1, x2
, ..... is a sequence of

points of S that is convergent inRn, we have

lim
n→∞xn ∈S.
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Proposition 2 combined with Theorem 11 gives us a convenientway of checking that
the typical constraint sets which arise in optimization problems are closed. For example,
you can check that the setS= {(x1, x2) ∈R2 ∶ 0≤ x1 ≤ 1, 0≤ x2 ≤ 2} is a closed set by using
Proposition 2 and Theorem 11.

5.4 Compact Sets

Bounded Set:
A setS⊂Rn is boundedif it is contained in some open ball inRn.
For example, the setS= {(x1, x2) ∈R2+ ∶ x1 ≥ 0, x2 ≥ 0 andx1+x2 ≤ 1} is a bounded set,

because it is contained in the open ball inR2 with center 0 and radius 2.
A setS⊂Rn is compactif it is both closed and bounded.

You can use the above definition to check that

(i) the setS1 = {(x1, x2) ∈R2 ∶ 0≤ x1 ≤ 1 and 0≤ x2 ≤ 2} is a compact set;

(ii) the setS2 = {(x1, x2) ∈R2 ∶ 0≤ x1 < 1 and 0≤ x2 < 1} is not a compact set, because it
is not a closed set;

(iii) the setS3 = {(x1, x2) ∈R2 ∶ 0≤ x1 ≤ 1 and 0≤ x2) is not a compact set, because it is
not a bounded set.

5.5 Continuous Functions

Functions:
Let A⊂Rn. A function, f , fromA toRm (written f ∶A→Rm) is a rule which associates

with each point inA a unique point inRm. In this caseA is called thedomainof f . We
define f (A) = {y ∈ Rm ∶ y = f (x) for somex ∈ A}. For example, iff (x) = x2 for all x ∈ R,
thenA ≡ R, and f (A) = R+. In the special case wherem= 1, f is called areal valued
function.

If f ∶ A→ Rm is a function, we can definef 1(x) as the first component of the vector
f (x) for eachx ∈ A. Then f 1 is a function fromA to R. Similarly, f 2

, ..., f m can be
defined. These functionsf 1

, ...., f m are called thecomponent functionsof f .
Conversely, ifg1

, ...,gm aremreal valued functions onA, we can defineg(x)= (g1(x), ...,gm(x))
for eachx ∈A. Theng is a function fromA toRm.

Limit of a Function :
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If f ∶A→R, anda ∈A, then
lim
x→a

f (x) = b

means that given anyε > 0, there is a numberδ > 0, such that ifx ∈ A, and 0< d(x,a) < δ,
then∣ f (x)−b∣ < ε.

For example, iff ∶R→R is defined byf (x) = x2−3, then lim
x→2

f (x) = 1.

Continuity of a Function :
A function f ∶ A→R is calledcontinuous at a∈ A, if lim

x→a
f (x) = f (a). The functionf

is continuous(onA) if it is continuous at eachx ∈A.
For example, iff ∶ R+ → R+ is defined byf (x) = x+1, then f is continuous at 0. If

g ∶R+→R+ is defined byg(x) = x+1 for x≠ 0, andg(0) = 0, theng is not continuous at 0.

5.6 Existence of Solutions to Constrained Optimization
Problems

The most important result to decide whether or not a constrained optimization problem
has a solution is known as Weierstrass theorem, and can be stated as follows:

Theorem 12. (Weierstrass) Suppose A is a non-empty closed and bounded subset ofRn.
If f ∶ A→R is continuous on A, then there exist x1

, x2 in A such that f(x) ≤ f (x1) for all
x ∈A and f(x) ≥ f (x2) for all x ∈A.
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5.7 Appendix I: Closed Sets

Result:
Let f ∶Rm

+ →R be a continuous function onRm
+ . Then the set:

C= {x ∈Rm
+ ∶ f (x) ≥ 0} (1)

is closed inRm.

Proof:
Take an arbitrary convergent sequence{xn} of points inC, with limit z∈Rm. That is,

x1
,x2

,x3
, .... belong toC, and:

lim
n→∞xn = z (2)

We have to show thatz∈C.
Sincexn ∈C for eachn = 1,2,3, ..., we havexn ≥ 0 for eachn = 1,2,3,⋯. Since (2)

holds, and weak inequalities are preserved in the limit, we havez≥ 0; that is,z∈Rm
+ .

Sincef is continuous onRm
+ , given anyε>0, there isδ>0, such that wheneverd(x,z)<

δ, we have: ∣ f (x)− f (z)∣ < ε (3)

Using thisδ > 0, we can find a positive integerN, such that whenevern > N, we have
d(xn

,z) < δ, since (2) holds. Thus, using (3), for alln>N, we must have∣ f (xn)− f (z)∣ < ε.
This implies that the sequence{ f (xn)} is convergent with limitf (z).

Sincexn ∈C for eachn = 1,2,3, ..., we have f (xn) ≥ 0 for eachn = 1,2,3,⋯. Since{ f (xn)} is convergent with limitf (z), and weak inequalities are preserved in the limit, we
have f (z) ≥ 0.

We have now shown thatz∈Rm
+ , and f (z) ≥ 0, soz∈C.

Exercise 1:
Let p ∈Rm

++, w> 0 and consider the budget set:

C= {x ∈Rm
+ ∶ px≤w}

Show thatC is closed inRm
, by defining f (x) =w− px for all x ∈Rm

+ , checking the conti-
nuity of f onRm

+ , and then using the above result.

Exercise 2:
Let u ∶Rm

+ →R be a continuous function onRm
+ , and letv be a real number in the range

of the functionu. Consider the upper contour set:

C= {x ∈Rm
+ ∶ u(x) ≥ v}
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Show thatC is a closed set inRm, by defining f (x) = u(x)−v, checking the continuity of
f onRm

+ , and then using the above result.

Exercise 3:
Let g j be a continuous function fromRm

+ toR, for eachj ∈ {1, ...,k}. Consider the set:

D = {x ∈Rm
+ ∶ g j(x) ≥ 0 for eachj ∈ {1, ...,k}}

Show, by generalizing the argument used in establishing theabove result, thatD is a closed
set inRm.

Sets likeD represent many of the constraint sets encountered in modernoptimization
theory.
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5.8 Appendix II: Continuity of Functions of Several Vari-
ables

The sketch of continuity of the function:

f (x1,x2) = x1x2 for all (x1,x2) ∈R2

contains a more general idea, which is quite useful in checking continuity of some com-
monly encountered functions of several variables. This general idea is developed below.

(a) LetA be a subset ofRn
, and let f andg be functions fromA toR. Defineh ∶A→R

by:
h(x) = f (x)g(x) for all x ∈A

The general result is the following: Iff andg are continuous functions onA, thenh is a
continuous function onA.

To prove this result, letz be an arbitrary point inA, and letε > 0 be given. We have to
show that wheneverx ∈A andd(x,z) < δ, we have:

∣h(x)−h(z)∣ < ε

Define:

ε′ =min{1, ε
1+ ∣ f (z)∣+ ∣g(z)∣} (1)

Then 0< ε′ ≤ 1. Since f andg are continuous atz, given theε′ > 0, there existδ1 > 0 and
δ2 > 0 such that wheneverx ∈A andd(x,z) < δ1, we have:

∣ f (x)− f (z)∣ < ε′ (2)

and wheneverx ∈A andd(x,z) < δ2, we have:

∣g(x)−g(z)∣ < ε′ (3)

Define:
δ =min{δ1,δ2} (4)

Then, clearlyδ > 0.
We can write forx ∈A,

∣h(x)−h(z)∣ = ∣ f (x)g(x)− f (z)g(z)∣
= ∣ f (x)g(x)− f (x)g(z)+ f (x)g(z)− f (z)g(z)∣
≤ ∣ f (x)(g(x)−g(z))∣+ ∣( f (x)− f (z))g(z)∣
= ∣ f (x)∣∣(g(x)−g(z))∣+ ∣( f (x)− f (z))∣∣g(z)∣

(5)
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Sincex ∈ A andd(x,z) < δ =min{δ1,δ2}, we know that both (2) and (3) must hold.
Using this in (5), we obtain:

∣h(x)−h(z)∣ ≤ ∣ f (x)∣∣(g(x)−g(z))∣+ ∣( f (x)− f (z))∣∣g(z)∣
< [1+ ∣ f (z)∣]ε′+ε′∣g(z)∣ ≤ ε

(6)

the inequalities on the last line of (6) following from (1). This establishes thath is contin-
uous atz.

Remark:
Note that, givenzandε, the appropriate definitions ofε′ and ofδ are suggested by (5).

So, (5) is really the first step in the proof, although it appears later in the formal proof,
compared to the appearance ofε′ andδ.

(b) Let f ∶R2
→R be defined by:

f (x1,x2) = x1 (7)

Then f is continuous onR2
, since given anyz∈ R2, andε > 0, we can chooseδ = ε, and

note that wheneverx ∈R2 andd(x,z) < δ = ε, we must have∣x1−z1∣ < ε, and so∣ f (x1,x2)−
f (z1,z2)∣ < ε.

(c) Letg ∶R2
→R be defined by:

g(x1,x2) = x2 (8)

Theng is continuous onR2, since given anyz∈ R2, andε > 0, we can chooseδ = ε, and
note that wheneverx ∈R2 andd(x,z) < δ = ε, we must have∣x2−z2∣ < ε, and so∣g(x1,x2)−
g(z1,z2)∣ < ε.

(d) Defineh ∶R2
→R by:

h(x1,x2) = x1x2 for all (x1,x2) ∈R2

Then, we have:
h(x1,x2) = f (x1,x2)g(x1,x2) for all (x1,x2) ∈R2

where f andg are defined by (7) and (8) respectively. Then, using the results in (a),(b) and
(c), h is continuous onR2.
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5.9 Appendix III: On a Variation of Weierstrass Theorem

Theorem:
Let A be a non-empty subset ofRn

, and let f be a continuous function fromA to R.

SupposeB is a non-empty, closed and bounded set inRn
, andz is an element ofB, such

thatB is a subset ofA, and:

f (x) ≤ f (z) f or all x ∈A∼B (1)

Then there is ¯x ∈A such that:

f (x) ≤ f (x̄) f or all x ∈A (2)

Proof:
SinceB is a subset ofA and f is a continuous function fromA to R, f is continuous

on B. SinceB is a non-empty, closed and bounded set inRn
, we can apply Weierstrass

theorem to infer that there is ¯x ∈B such that:

f (x) ≤ f (x̄) f or all x ∈B (3)

Let x be an arbitrary element ofA. There are two cases to consider: (i)x ∈B, (ii) x ∉B.
In case (i), we have:

f (x) ≤ f (x̄) (4)

by (3).
In case (ii), we havex ∈A∼B, and so:

f (x) ≤ f (z) (5)

by (1). Also, sincez∈B, we have:
f (z) ≤ f (x̄) (6)

by (3). Combining (5) and (6), we obtain:

f (x) ≤ f (x̄) (7)

Thus, we have shown that in either case,f (x) ≤ f (x̄) must hold. Since ¯x ∈ B ⊂ A, we
know thatx̄ ∈A, and this establishes (2).//

Remark:
Note that in the statement of the theorem, the setA is assumed to be neither closed

nor bounded. However, the theorem ensures that there is a solution to the constrained
maximization problem:

Maximize f(x)
sub ject to x∈A

}(P)
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This variation of Weierstrass theorem is often useful in applications.
It is important to realize that the constrained maximization problem you will be given

will be in the form of(P); that is, you will be givenA and f . You arenot given B and
z∈B. Thus, in order to apply the theorem to ensure that there exists a solution to(P), you
have to define an appropriate setB and an elementz∈ B with the properties stated in the
theorem.

Example:
Let A=R+ and let f be a continuous function onR+, satisfying f (0) = 0 and f (x) ≤ 0

for all x> 1. Show that there is a solution to problem(P) by applying the above theorem.
How would you chooseB andz∈B to apply the above theorem?

Converse of “Extension of Weierstrass Theorem ”
Following example establishes the necessity of the Extension of Weierstrass Theorem.
Example:
Let A be a non-empty subset ofRn, and let f be a continuous function fromA to R.

Suppose there exists ¯x ∈A such that:

f (x̄) ≥ f (x) for all x ∈A. (8)

Then there exists a non-empty, closed and bounded set,B, in Rn, with B⊂ A, and there is
z∈B, such that

f (z) ≥ f (x) for all x ∈A satisfying x ∉B (9)

Solution.

Note, intuitively, even though a closed ball may seem to be a candiadte for setB, we
do not know much about the setA, except that it is non-empty and has a global maximum.
Thus it could be possible that the setA may not contain a closed ball at all. In the extreme
case,A could be a singleton containing ¯x. Then our only choice would be to letB≡ {x̄},z=
x̄. We will verify now that this choice is suitable in the general case also for any givenA.

Let B ≡ {x̄},z= x̄. SetB is bounded since any open ball with center ¯x and a positive
radius contains it.B is also closed since if we pick a convergent sequence fromB, all the
points in this sequence must be ¯x, and terefore convergent to ¯x. SetB⊂A and f (z) ≥ f (x)
for all x ∈A, x ∉B sincex̄ is a global maximum off onA.

Thus we have proved existence ofB andz by construction.
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5.10 Worked Out Problems on Chapter 5

Problem 21(Open Sets).

(a) LetSandT be open sets inRn
. Show thatS∩T is also an open set inRn

.

(b) LetA be the set defined by:

A= {(x1,x2) ∈R2 ∶ x1 > 0,x2 > 0,x1x2 > 1}
ExpressA as the intersection of two sets, and use (a) to show thatA is open inR2.

(c) LetB be the set defined by:

B= {(x1,x2) ∈R2 ∶ x1 ≥ 0,x2 ≥ 0,x1x2 > 1}
Is B open inR2? Explain.

Solution.

(a) Consider an arbitrary ¯x ∈ S∩T. Now, since ¯x ∈ S andS is open inRn, there exists
rS> 0 such thatB(x̄,rS) ⊂S. And since ¯x ∈ T andT is open inRn, there existsrT > 0
such thatB(x̄,rT) ⊂ T. Take r =min{rS,rT} > 0. ThenB(x̄,r) ⊂ B(x̄,rS) ⊂ S and
B(x̄,r) ⊂B(x̄,rT) ⊂ T. ThereforeB(x̄,r) ⊂S∩T, soS∩T is open inRn.

(b) We can writeA=A1∩A2 where

A1 = {(x1,x2) ∈R2 ∣ x1 > 0,x2 > 0}
A2 = {(x1,x2) ∈R2 ∣ x1x2 > 1}

Note thatA2 contains some points wherex1 < 0 andx2 < 0. We want to show that
bothA1 andA2 are open inR2, which will show by part (a) thatA is open inR2.

Claim: A1 is open inR2.

Proof: Letx̄ ∈A1 and taker =min{x̄1, x̄2} > 0. We want to showB(x̄,r) ⊂A1. This is
the same as showing that for anyx∉A1, we havex∉B(x̄,r). So, consider somex∉A1

and assume without loss of generality thatx1 ≤ 0. Then we have thatx1 ≤ 0< r ≤ x̄1,
so x̄1− x1 ≥ r. That means thatd(x, x̄) =√(x1− x̄1)2+(x2− x̄2)2 ≥ r, so we have
x ∉B(x̄,r), which is what we wanted to show. ThereforeA1 is open.

Claim: A2 is open inR2.
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To show thatA2 is open inR2, it is easiest to show that∼A2 is closed inR2. First,
define the functionf (x) = 1−x1x2 for all x ∈R2 and note thatf is continuous onR2.
Then we can write∼A2 as

∼A2 = {(x1,x2) ∈R2 ∣ x1x2 ≤ 1} = {(x1,x2) ∈R2 ∣ f (x) ≥ 0}
By Prof. Mitra’s result on closed sets, then,∼A2 is closed inR2. ThereforeA2 is
open inR2.

(c) We can write

B=A∪{(x1,x2) ∈R2 ∣ x1 = 0,x2 > 0,x1x2 > 1}
∪{(x1,x2) ∈R2 ∣ x1 > 0,x2 = 0,x1x2 > 1}
∪{(x1,x2) ∈R2 ∣ x1 = 0,x2 = 0,x1x2 > 1}

=A∪∅∪∅∪∅
=A

SinceA is open inR2 andB=A, B is open inR2.

Problem 22(Closed Sets).

(a) LetSandT be open sets inRn
. Show thatS∪T is also an open set inRn

.

(b) LetA be the set defined by:

A= {(x1,x2) ∈R2 ∶ x1 ≥ 0,x2 ≥ 0,x1+x2 ≤ 1}
and letB be the complement ofA in R2. ExpressB as the union of three sets and show that
B is open inR2.

(c) Show thatA is closed inR2.

Solution.

(a) Consider an arbitrary ¯x ∈S∪T. Without loss of generality, assume ¯x ∈S. Now, since
x̄ ∈ S andS is open inRn, there existsr > 0 such thatB(x̄,r) ⊂ S. But S⊂ S∪T, so
B(x̄,r) ⊂S∪T. ThereforeS∪T is open inRn.

(b) We can write∼A=B=B1∪B2∪B3 where

B1 = {(x1,x2) ∈R2 ∣ x1 < 0}
B2 = {(x1,x2) ∈R2 ∣ x2 < 0}
B3 = {(x1,x2) ∈R2 ∣ x1+x2 > 1}
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We want to show that each ofB1, B2, andB3 are open inR2, which will show by
part (a) thatB is open inR2.

Claim: B1 is open inR2.

Proof: Let x̄ ∈ B1 and taker = −x̄1 > 0. We want to show thatB(x̄,r) ⊂ B1. This
is the same as showing that for anyx ∉ B1, we havex ∉ B(x̄,r). So, consider some
x ∉ B1. Then we have thatx1 ≥ 0, sox1− x̄1 = x1+ r ≥ r. That means thatd(x, x̄) =√(x1− x̄1)2+(x2− x̄2)2≥ r, so we havex∉B(x̄,r), which is what we wanted to show.
ThereforeB1 is open.

Claim: B2 is open inR2.

Proof: Follow the steps from the proof above for the setB2 instead ofB1.

Claim: B3 is open inR2.

To show thatB3 is open inR2, it is easiest to show that∼B3 is closed inR2. First,
define the functionf (x) = 1−x1−x2 for all x ∈R2 and note thatf is continuous on
R2. Then we can write∼B3 as

∼B3 = {(x1,x2) ∈R2 ∣ x1+x2 ≤ 1} = {(x1,x2) ∈R2 ∣ f (x) ≥ 0}
By Prof. Mitra’s result on closed sets, then,∼B3 is closed inR2. ThereforeB3 is
open inR2.

(c) We know thatB= ∼A. SinceB is open, by the definition of closed setsA is closed in
R2.

Problem 23(Continuity of Functions).

Let f ∶Rn
→R be a continuous function onRn

, and letx̄ be a vector inRn, satisfying
f (x̄) > 0. Show that there is a positive real numberr such that:

f (x) > 0 for all x ∈B(x̄,r)
Solution.

Let ε = f (x̄) > 0. Now, since f is continuous onRn, we know that given thisε =
f (x̄) > 0 and anyx ∈ Rn, there is someδ > 0 such that wheneverd(x, x̄) < δ, we have∣ f (x)− f (x̄)∣ < f (x̄). This implies thatf (x)− f (x̄) < f (x̄) and f (x)− f (x̄) > − f (x̄), which
we can rearrange for 0< f (x) < 2 f (x̄). Now, taker = δ and note that wheneverx ∈Rn and
x ∈B(x̄,r), we haved(x, x̄) < δ and thusf (x) > 0, which is what we wanted to show.

Problem 24(Extension of Weierstrass theorem).



CHAPTER 5. BASIC CONCEPTS OF REAL ANALYSIS 84

Let a andb be positive real numbers, and letf be a function fromR+ to R+, defined
by:

f (x) = ax+b[x/(1+x)] for all x≥ 0

Consider the following constrained maximization problem:

Maximize f(x)−x
sub ject to x≥ 0

}(P)
(a) If a< 1, show that there exists a solution to problem(P).
(b) If a≥ 1, show that there is no solution to problem(P).

Solution.

Defineg ∶R+→R by

g(x) = f (x)−x= (a−1)x+ bx
1+x

for all x≥ 0

Then problem(P) is to maximizeg(x) subject tox≥0. The functiong is continuous on the
nonempty and closed constraint setC= [0,∞), but we cannot use the Weierstrass Theorem
because the constraint set is not bounded.

(a) Note thatg is continuously differentiable onx≥ 0. The first order condition is

a−1+ b(1+x)2 = 0 Ô⇒ (1+x)2 = b
1−a

This suggests using the Extension of Weierstrass Theorem onthe bounded setB =[0, b
1−a]. We need to show that wheneverc> 1, we haveg( b

1−a) ≥ g(c b
1−a).

g( b
1−a
) = −b+ b2

1−a

1+ b
1−a

= −b+ b2

1−a+b
=

ab−b
1−a+b

g(c b
1−a
) = −bc+ b2c

1−a

1+ bc
1−a

= −bc+ b2c
1−a+bc

=
abc−bc−b2c2+b2c

1−a+bc

=
(ab−b)(c+1−1)−b2c(c−1)

1−a+bc
=
(ab−b)+(c−1)(ab−b−b2c)

1−a+bc

=
ab−b−(c−1)b(bc+1−a)

1−a+bc

Wheneverc> 1, the numerator ing(c b
1−a) is smaller and its denominator is larger,

so we haveg( b
1−a) ≥ g(c b

1−a). Therefore we can apply the Extension of Weierstrass
Theorem on the nonempty, closed, and bounded setB = [0, b

1−a] to conclude that
problem(P) has a solution.
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(b) For allx≥ 0, we have that

g′(x) = a−1+ b(1+x)2 > 0

sincea ≥ 1 andb > 0. Thereforeg is strictly increasing onx ≥ 0, so problem(P)
cannot have a solution. Formally, we can suppose for the sakeof contradiction that
some ¯x ≥ 0 is a solution to(P). Then definex′ = x̄+1 and note that becauseg is
strictly increasing onx≥ 0, we haveg(x′) > g(x̄). But this contradicts ¯x solving(P),
so it must be that problem(P) has no solution.

Problem 25(Extension of Weierstrass Theorem).

Let p andq be arbitrary positive numbers, and letf ∶ R2+ → R be a continuous func-
tion on R2+. Suppose there is(x̄1, x̄2) ∈ R2+ which satisfiesf (x̄1, x̄2) = 1. Consider the
constrained minimization problem:

Minimize px1+qx2

sub ject to f(x1,x2) ≥ 1
and (x1,x2) ∈R2+

⎫⎪⎪⎪⎬⎪⎪⎪⎭(Q)
Show that there is a solution to problem(Q).
Solution.

First, defineg ∶R2+ →R by g(x1,x2) = f (x1,x2)−1 for all x ∈R2+. Since f is continu-
ous onR2+, g is also continuous onR2+. Then by Prof. Mitra’s result on closed sets, the
constraint set

C= {(x1,x2) ∈R2 ∣ x1 ≥ 0,x2 ≥ 0,g(x1,x2) ≥ 0}
is closed inR2. The objective function is continuous onC andC is nonempty because(x̄1, x̄2) ∈C. But, depending onf , C is not necessarily bounded. To use the Extension of
Weierstrass Theorem, define the set

B= {(x1,x2) ∈R2 ∣ x1 ≥ 0,x2 ≥ 0, f (x1,x2) ≥ 1, px1+qx2 ≤ px̄1+qx̄2}
We could show thatB is closed by showing thatB is the intersection of two closed sets.
Also, B is nonempty since(x̄1, x̄2) ∈B andB is bounded because it is contained in the open

ball B(0,r) wherer =max{ px̄1+qx̄2
p ,

px̄1+qx̄2
q }+1. Finally, for anyx′ ∈C,x′ ∉ B, we have

px′1+qx′2 > px̄1+qx̄2. Since(Q) is a minimization problem, it cannot be solved by any
x′ ∈C,x′ ∉ B. UsingB, then, the Extension of Weierstrass Theorem guarantees a solution
to (Q).
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References:
This material is standard in many texts on Real Analysis. You might consultPrinciples

of Mathematical Analysisby W. Rudin(Chapters 2, 3, 4) orIntroduction to Analysisby M.
Rosenlicht(Chapters 3, 4). Some of the material is also covered inCalculus on Manifolds
by M. Spivak(Chapter 1).



Chapter 6

Differential Calculus

6.1 Partial Derivatives

Let A be an open set inRn, and letx ∈A. If f ∶A→R, the limit

lim
h→0

f (x1, ...,xi +h, ...,xn)− f (x1, ...,xn)
h

if it exists, is called theith (first-order)partial derivativeof f at x, and is denoted by
Di f (x), wherei = 1, ...,n. This means, of course, that we can compute partial derivatives
just like ordinary derivatives of a function ofonevariable. That is, iff (x1, ...,xn) is given
by some formula involving(x1, ...,xn), then we findDi f (x) by differentiating the function
whose value atxi is given by the formula when allx j (for j ≠ i) are thought of as constants.

For example, if f ∶ R2
→ R is given by f (x1, x2) = x3

1+3x3
2+2x1x2, then D1 f (x) =

3x2
1+2x2, D2 f (x) = 9x2

2+2x1.
The ith partial derivative off at x is also, alternatively, denoted byfi(x). When the

ith partial derivative off at x exists for alli = 1, ...,n, we can define then-vector of these
partial derivatives ∇ f (x) ≡ [D1 f (x), ...,Dn f (x)]
This vector is called thegradient vectorof f at x. In the example described above, the
gradient vector is

∇ f (x) ≡ [3x2
1+2x2, 9x2

2+2x1] for all x ∈R2

When f ∶ A→ R has (first-order) partial derivatives at eachx ∈ A, we say thatf has
(first-order)partial derivatives on A.

Second-Order Partial Derivatives and the Hessian Matrix

87
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When f ∶A→R has (first-order) partial derivatives onA, these first-order partial deriva-
tives are themselves functions fromA to R. If these (first-order) partial derivatives are
continuous onA, then we say thatf is continuously differentiableonA. If these functions
have (first-order) partial derivatives onA, thesepartial derivatives are called thesecond-
order partial derivativesof f onA.

To elaborate, ifDi f (x) exists for allx ∈ A, we can define the functionDi f ∶ A→ R.
If this function has (first-order) partial derivatives onA, then the jth (first-order) partial
derivative ofDi f at x [that is,D j(Di f (x))] is a second-order partial derivative off at x,
and is denoted byDi j f (x). [Herei = 1, ...,n and j = 1, ...,n].

In the example described above,D11 f (x) = 6x1; D12 f (x) = 2 = D21 f (x); D22 f (x) =
18x2. We note in this example that the “cross partials”D12 f (x) andD21 f (x) are equal.
This is not a coincidence; it is a more general phenomenon as noted in the following result,
known as “Young’s theorem”.

Theorem 13. (Young) Suppose A is an open set inRn, and f has first and second-order
partial derivatives on A. If Di j f and Dji f are continuous on A, then Di j f (x) =D ji f (x)
for all x ∈A

When all of the hypotheses of Theorem 1 hold, we will say thatf is twice continuously
differentiableonA; this will be the typical situation in many applications.

When the first and second-order partial derivatives off ∶ A→ R exist onA, then×n
matrix of second-order partial derivatives off described below:

H f (x) =
⎡⎢⎢⎢⎢⎢⎣

D11 f (x) D12 f (x)...D1n f (x)
- - - - - - - - - - - - - - - - -
Dn1 f (x) Dn2 f (x)...Dnn f (x)

⎤⎥⎥⎥⎥⎥⎦
is called theHessian matrixof f at x ∈ A, and is denoted byH f (x). When f is twice
continuously differentible onA, the Hessian matrix off is symmetricat allx ∈A.

In the example described above

H f (x) = [ 6x1 2
2 18x2

]
is the Hessian matrix off for all (x1, x2) ∈R2.

6.2 Composite Functions and the Chain Rule

Let g ∶ A→Rm be a function with component functionsgi ∶ A→R(i = 1, ...,m) which are
defined on an open set A⊂ Rn. Let f ∶ B→ R be a function defined on an open set
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B⊂Rm which contains the setg(A). Then, we can defineF ∶ A→R by F(x) ≡ f [g(x)] ≡
f [g1(x), ...,gm(x)] for eachx ∈ A. This function is known as acomposite function[of f
andg].

The “Chain Rule” of differentiation provides us with a formulafor finding the partial
derivatives of a composite function,F , in terms of the partial derivatives of the individual
functions, f andg.

Theorem 14. (Chain Rule) Let g∶A→Rm be a function with component functions gi ∶A→
R(i = 1, ...,m) which are continuously differentiable on an open set A⊂Rn. Let f ∶B→R

be a continuously differentiable function on an open set B⊂ Rm which contains the set
g(A). If F ∶A→R is defined by F(x) = f [g(x)] on A, and a∈A, then F is differentiable at
a and we have for i= 1, ...,n,

DiF(a) = m∑
j=1

D j f (g1(a), ...,gm(a))Dig j(a)
Examples:
(i) Herem= 2, n= 1. Letg1(x) = x2 onR, andg2(x) = 1+x onR; let f (y1,y2) = y1+y2

2 on
R2. ThenF(x)= f [g(x)]= f [g1(x), g2(x)]=g1(x)+[g2(x)]2= x2+(1+x)2 is a composite
function onR. If a ∈R,

F ′(a) = D1F(a) =D1 f (g1(a), g2(a)) ⋅D1g1(a)+D2 f (g1(a), g2(a)) ⋅D1g2(a)
= 2a+2g2(a) = 2a+2(1+a)

(ii) Here m= 1, n = 2. Let g1(x) = g1(x1, x2) = x2
1+ x2 on R2; f (y) = 4y on R. Then

F(x) = F(x1, x2) = f [g1(x1, x2)] = 4[x2
1+x2]. Then ifa ∈R2,

D1F(a) = D1 f [g1(a1, a2)]D1g1(a1, a2)
D2F(a) = D1 f [g1(a1, a2)]D2g1(a1, a2)

Thus,D1F(a) = 4(2a1); D2F(a) = 4(1).
6.3 Homogeneous Functions and Euler’s Theorem

A functionF ∶Rn
+→R is homogeneous of degree ronRn

+ if for all x in Rn
+, and allt > 0,

f (tx) = tr f (x)
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Considerf ∶ R2+ → R given by f (x1, x2) = xa
1xb

2 wherea > 0 andb > 0. Then if t > 0, we
havef (tx1, tx2)= (tx1)a(tx2)b= ta+bxa

1xb
2= ta+b f (x1, x2). So, f is homogeneous of degree(a+b).

We can calculate the partial derivatives off on R2++. Thus,D1 f (x1,x2) = axa−1
1 xb

2;
D2 f (x1,x2)=bxa

1,x
b−1
2 . Now, if t >0, thenD1 f (tx1,tx2)=a(tx1)a−1(tx2)b = ta+b−1axa−1

1 xb
2=

ta+b−1D1 f (x1,x2). SoD1 f is homogeneous of degree(a+b−1). Similarly, one can check
thatD2 f is homogeneous of degree(a+b−1). More generally, whenever a function,f , is
homogeneous of degreer, its partial derivatives are homogeneous of degree(r −1) (under
suitable differentiability assumptions), and this is demonstrated in Theorem 15 below.

We can verify thatx1D1 f (x1, x2)+x2D2(x1, x2) = axa
1xb

2+bxa
1xb

2 = (a+b)xa
1xb

2 = (a+
b) f (x1, x2). More generally, when a function,f , is homogeneous of degreer, then (under
suitable differentiability assumptions)x∇ f (x) = r f (x), a result known as Euler’s theorem,
which we prove below in Theorem 16.

Theorem 15. Suppose f∶ Rn
+ → R is homogeneous of degree r onRn

+, and continuously
differentiable onRn

++. Then for each i= 1, ...,n,Di f is homogeneous of degree (r−1) on
Rn
++.

To prove this lett > 0 be given and define the functiong1
, ...,gn fromRn

++ toR by

gi(x) = txi i = 1, ...,n

and the composite functionF from Rn
++ to R by

F(x) = f [g1(x), ...,gn(x)] = f (tx1, ....,txn)
Then applying the Chain Rule, we have for eachi = 1, ...,n

DiF(x) =Di f (tx1, ...,txn) ⋅ t (6.1)

But sincef is homogeneous of degreer, we have

F(x) = tr f (x1, ...,xn)
So,

DiF(x) = trDi f (x1, ...,xn) (6.2)

Using (6.1) and (6.2), we get

Di f (tx1, ...,txn) = tr−1Di f (x1, ...,xn) (6.3)

sincet > 0.
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Theorem 16. (Euler’s Theorem) Suppose f∶Rn
+→R is homogeneous of degree r onRn

+
and continuously differentiable onRn

++. Then

x∇ f (x) = r f (x) f orall x ∈Rn
++

To prove this, let(x1, ...,xn) be given inRn
++, and define the functionsg1

, ...,gn from
R++ toR+ by

gi(t) = txi , i = 1, ...,n

and the composite functionF from R++ to R by

F(t) = f [g1(t), ...,gn(t)] = f (tx1, ...,txn)
Then, applying the Chain Rule, we have

F ′(t) ≡D1F(t) = n∑
i=1

Di f [g1(t), ...,gn(t)]xi (6.4)

But sincef is homogeneous of degreer, we have

F(t) = tr f (x1, ...,xn)
and,

F ′(t) ≡D1F(t) = rt r−1 f (x1, ...,xn) (6.5)

Also, for i = 1, ....,n we have

Di f [g1(t), ...,gn(t)] =Di f [tx1, ...,txn] = tr−1Di f (x1, ...,xn) (6.6)

by using Theorem 15. Thus, combining (6.4), (6.5) and (6.6),

rt r−1 f (x1, ...,xn) = n∑
i=1

tr−1Di f (x1, ...,xn)xi (6.7)

Cancelling the common termtr−1 > 0 on both sides of (6.7), we get

r f (x1, ...,xn) = n∑
i=1

Di f (x1, ...,xn)xi

which is the desired result.
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6.4 The Inverse and Implicit Function Theorems

Jacobians:
SupposeA is an open set inRn, and f is a function fromA to Rn, with component

functions f 1
, ..., f n. If a ∈ A, and the partial derivatives off 1

, ...., f n exist ata, then the
n×n matrix

D f (a) ≡ (D j f i(a))
is defined as theJacobian matrixof f at a. The determinant of this matrix, denoted by
Jf (a), is defined as theJacobianof f ata.

For example, if f 1(x1, x2) = x2
1+2x1x2 on R2, and f 2(x1, x2) = x1+3x3

2 on R2, and
a= (a1, a2) is in R2, then

D f (a) = [ 2a1+2a2 2a1

1 9a2
2
]

is the Jacobian matrix ata, and the Jacobian ata is Jf (a) ≡ [18a3
2+18a1a2

2−2a1]. Note
that, typically, the Jacobian matrix isnot a symmetric matrix (unlike a Hessian matrix).

Inverse Functions:
Let A be a set inRm

, and let f be a function fromA to Rn
. Then f is one-to-oneon

A if wheneverx1
, x2 ∈ A andx1 ≠ x2, we havef (x1) ≠ f (x2). If there is a functiong, from

f (A) to A, such thatg[ f (x)] = x for eachx∈A, theng is called theinverse functionof f on
f (A).

If f ∶R→R is defined byf (x)=2x, then we note thatf is one-to-one onR; also we can
define the functiong ∶R→R by g(y)= (1/2)y, and note that it has the propertyg[ f (x)]= x;
g is then theinverse functionof f onR. Furthermoreg′[ f (x)] = 1/ f ′(x) for all x ∈R.

More generally, letA be an open set inR, and f ∶A→R be continuously differentiable
onA. Let a ∈A, and suppose thatf ′(a) ≠ 0. If f ′(a) > 0, then there is an open ballB(a,r)
such thatf ′(x) > 0 for all x in B(a,r), and f is increasing onB(a,r). Thus, for every
y ∈ f [B(a,r)], there is aunique xin B(a,r) such thatf (x) = y. That is, there is a unique
function g ∶ f [B(a,r)]→ B(a,r) such thatg[ f (x)] = x for all x ∈ B(a,r). Thus,g is an
inverse function off on f[B(a,r)}; we say thatg is the inverse off “locally” around the
point f (a). [Notice that there is no guarantee that the inverse functionis defined on the
entire setf (A)]. Similarly, if f ′(a) < 0, an inverse function could be defined “locally”
around f (a). The important restriction to carry out the kind of analysis noted above is
that f ′(a) ≠ 0.

To illustrate this, considerf ∶ R→ R+ given by f (x) = x2
. Consider the pointa = 0.

Clearly f is continuously differentiable onR, but f ′(a) = f ′(0) = 0. Now, we cannot
define a unique inverse function off even “locally” aroundf (a). That is, choose any
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open ballB(0,r), and consider any pointy ≠ 0 in the setf [B(0,r)]. There will betwo
valuesx1, x2 in B(0,r), x1 ≠ x2, such thatf (x1) = y and f(x2) = y.

Of course,f ′(a) ≠ 0 is not a necessary condition to get a unique inverse function of
f . For example iff ∶ R→ R is defined byf (x) = x3, then we havef to be continuously
differentible onR, with f ′(0) = 0. However f is an increasing function, and clearly has a
unique inverse functiong(y) = y1/3 onR, and hence locally aroundf (0).
Theorem 17. (Inverse Function Theorem) Let A be an open set ofRn, and f ∶ A→Rn be
continuously differentiable on A. Suppose a∈ A and the Jacobian of f at a is non-zero.
Then there is an open set X⊂A containing a, and an open set Y⊂Rn containing f(a), and
a unique function g∶Y→X, such that:

(i) f (X) =Y;
(ii) f is one-to-one on X;
(iii) g(Y) =X, and g[ f (x)] = x for all x ∈X.

Further, g is continuously differentiable on Y.

Note that (i) and (iii) of Theorem 17 imply thatg is an inverse function off on f (X).
There are two preliminary implications of the theorem that are worth noting.

First, g is one-to-one onY. To see this, lety1
,y2 ∈Y, and suppose thatg(y1) = g(y2).

Denote the common vector byx; by (iii) of Theorem 17,x ∈ X. Using (i) of Theorem 17,
we can findx1

,x2 ∈X such thatf (x1) = y1 and f (x2) = y2
. By (iii) of Theorem 17,

x = g(y1) = g( f (x1)) = x1

x = g(y2) = g( f (x2)) = x2

Thus, we must havex1 = x2 = x, and consequentlyy1 = y2
. This establishes thatg is one-to-

one onY.
Second, we must have:

f (g(y)) = y f or all y ∈Y (1)

To see this, lety be an arbitrary vector inY. By (iii) of Theorem 17,g(y) ∈X, and by (i) of
Theorem 17,f (g(y)) ∈Y. Denoteg(y) by x and f (g(y)) by z. Then, by (iii) of Theorem
17, we haveg( f (x)) = x. But, g( f (x)) = g( f (g(y))) = g(z), by definition ofx andz. Thus,
g(z) = x. But, by definition ofx, we haveg(y) = x. Thus, using the fact thatg is one-to-one
onY, we must havey= z. This establishes (1).

The advantage of noting both the identity in (iii) of Theorem17 and the identity in
display (1) is that, depending on the application, one mightuse either form to obtain the
partial derivatives of the inverse function,g, at f (a).

We illustrate how these partial derivatives can be obtainedby using the identity in (iii)
of Theorem 17. We can define forx ∈ X, F1(x) = g1[ f (x)] as a composite function off
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andg1
. Using the Chain Rule we get:

DiF1(x) = n∑
j=1

D jg1[ f (x)]Di f j(x) f or i = 1, ...,n

But sinceF1(x) = x1, we haveDiF1(x) = 1 for i = 1, while DiF1(x) = 0 for i ≠ 1. We
can repeat these calculations withF2(x) = g2[ f (x)], and getDiF2(x) = 1 for i = 2, while
DiF2(x) = 0 for i ≠ 2. The results forF3(x), ...,Fn(x) should now be obvious. This
information can then be written in familiar matrix multiplication form:

I =

⎡⎢⎢⎢⎢⎢⎣
D1g1[ f (x)]....Dng1[ f (x)]−−−−−−−−−−−−
D1gn[ f (x)]....Dngn[ f (x)]

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

D1 f 1(x)....Dn f 1(x)
D1 f 2(x)....Dn f 2(x)
- - - - - - - - - - - -
D1 f n(x)....Dn f n(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
That is,I =Dg[ f (x)]D f (x). Thus,D f (a) is invertible, and we haveDg[ f (a)]= [D f (a)]−1.
This yields, in turn,Jg[ f (a)] = 1/Jf (a), sinceJf (a) ≠ 0.
Example:

Let f ∶R2
→R2 given by f (x,y) = (y, x+y2) for (x,y) ∈R2. Let us consider the point(a,b) = (1,1). The Jacobian matrix off at (1,1) is

D f (1,1) = [ 0 1
1 2

]
The Jacobian off at (1,1) is

Jf (1,1) = −1
You can check thatf is continuously differentiable onR2. Thus, we can invoke the
inverse function theorem and get an open setA containing(1,1), an open setB containing
f (A), and a unique functiong ∶B→A, such thatg is continuously differentiable onB, and
g[ f (x,y)] = (x,y) for all (x,y) in A. Sog1(y, x+y2) = x, andg2(y, x+y2) = y for all (x,y)
in A.

Let (Z1, Z2) ∈ B. Then we can definey= Z1, x= Z2−Z2
1. Theng1(Z1, Z2) = g1(y, x+

y2) = x = Z2 −Z2
1. Thus g1(Z1, Z2) = Z2 −Z2

1 for (Z1, Z2) in B. Similarly we have
g2(Z1, Z2) = g2(y, x+ y2) = y = Z1 for (x1, x2) in B. Thus, in this case we can actually
computethe inverse function. We can calculate the Jacobian matrix of g at f (1,1)= (1,2) ∶

Dg[ f (1,1)] = [ −2 1
1 0

]
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It can be checked easily that

Dg[ f (1,1)]D f (1,1) = I

by simply multiplying the two matrices.

Implicit Functions :
Consider the functionf ∶ R2

→ R given by f (x,y) = x2+y2−1. If we choose(a,b)
with f (a,b) = 0, anda≠ 1, a≠ −1, there are open intervalsX ⊂R containinga, andY ⊂R
containingb, such that ifx∈X, there is aunique y∈Y with f (x,y) =0. Thus, we can define
a unique functiong ∶ X→Y such thatf (x,g(x)) = 0 for all x ∈ X. [If a> 0 andb> 0, then
g(x) = (1−x2)1/2 on X.] Such a function is said to be definedimplicitly by the equation
f (x,y) = 0. Note that ifa= 1, andb= 0, so thatf (a,b) = 0, wecannotfind such a unique
function,g.

The above example can be generalized considerably to obtaina very important result,
which is known as the Implicit Function Theorem.

Theorem 18. (Implicit Function Theorem) Let A be an open set ofRn+m, and let f1, ..., f m

be continuously differentiable functions from A toR. Let(a;b) ∈A, with a∈Rn and b∈Rm,
such that fi(a;b) = 0 for i = 1, ...,m. Suppose the m×m matrix Dn+ j f i(a;b)[i = 1, ...,m
and j= 1, ...,m] has a non-zero determinant. Then there exists an open set X containing
a and an open set Y containing b, and a unique function g∶X→Y, such that

(i) f (x,g(x)) = 0 for all x ∈X
(ii) g(a) = b

Further, g is continuously differentiable on X.
Example:

Consider the function,f ∶R2++→R, defined byf (x,y) = xαyβ−1 for x> 0, y> 0, where
α,β are positive constants. Note that at(a,b) = (1,1), we havef (a,b) = f (1,1) = 0. We
can calculate the (one by one) matrixD2 f (a,b) =D2 f (1,1) = β, and this has a determinant
equal toβ≠0. Sincef is continuously differentiable onR2++, so we can invoke the implicit
function theorem, to obtain an open setA containinga, and an open setB containingb,
and a unique functiong ∶A→B, such thatg(a) =b, and f (x,g(x)) =0 for all x∈A. Further,
g is continuously differentiable onA. Thus, definingF ∶ A→R by F(x) = f (x,g(x)), we
have by the chain-rule

F ′(x) =D1 f (x,g(x))+D2 f (x,g(x))g′(x)
But sinceF(x) = 0 for all x ∈A, we get

0=D1 f (x,g(x))+D2 f (x,g(x))g′(x)
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Transposing terms, and evaluating the derivatives atx= a,

−g′(a) = D1 f (a,b)
D2 f (a,b) sinceD2 f (a,b) ≠ 0

Thus, −g′(1) = [D1 f (1,1)/D2 f (1,1)] = (α/β).
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6.5 Worked Out Problems on Chapter 6

Problem 26(Converse of Euler’s Theorem).

(a) Let f ∶Rn
++ →R++ be a continuously differentiable function on its domain, which

satisfies
x∇ f (x) = f (x)

for all x ∈Rn
++. Show thatf is homogeneous of degree one on its domain.

(b) Generalize the result in (a) to provide an appropriate converse of Euler’s theorem.

Solution.

The proofs of parts (a) and (b) are very similar, so let’s construct and prove the more
general result requested in part (b). Then part (a) will follow for the special case where the
degree of homogeneity is one.

Claim: Let f ∶ Rn
++ → R++ be a continuously differentiable function onRn

++, and sup-
pose thatx∇ f (x) = r f (x) for all x ∈Rn

++. Then f is homogeneous of degreer onRn
++.

Proof: Let x̄ be an arbitrary vector inRn
++. We want to show that for allt > 0, we have

f (tx̄) = tr f (x̄). Given this ¯x ∈Rn
++, define the functiong ∶R++→R++ by

g(t) = f (tx̄1, . . . ,tx̄n) for all t > 0

Using the Chain Rule and the hypothesisx∇ f (x) = r f (x), we have that for allt > 0,

g′(t) = n∑
i=1

Di f (tx̄1, . . . ,tx̄n)x̄i = x̄∇ f (tx̄) = r
t

f (tx̄) = r
t
g(t)

Rearranging, we have that
tg′(t) = rg(t) for all t > 0

Now, considerg(t)tr . Differentiating with respect tot, we have that for allt > 0,

∂
∂t
(g(t)

tr ) = g′(t)tr −g(t)rt r−1

t2r =
tr−1

t2r (tg′(t)− rg(t)) = 0

This implies that for allt > 0, g(t)
tr = c for somec ∈ R. Evaluating att = 1, we have that

c= g(1) = f (x̄), so g(t)
tr = f (x̄). Sinceg(t) = f (tx̄), we have thatf (tx̄) = tr f (x̄) for all t > 0,

which is what we wanted to show.



CHAPTER 6. DIFFERENTIAL CALCULUS 98

Problem 27(Homothetic Functions).

A functionF ∶Rn
+→R+ is called ahomothetic functiononRn

+ if there exists a function
f ∶ Rn

+ → R+ which is homogeneous of degree one onRn
+, and there exists a function

g ∶R+→R+ which is an increasing function onR+, such thatF(x) = g( f (x)) for all x∈Rn
+.

(a) LetF ∶Rn
+→R+ be a function which is homogeneous of degreer > 0 onRn

+. Show
thatF is a homothetic function onRn

+.
(b) LetF ∶R2+→R+ be defined by:

F(x1,x2) = xα
1x1−α

2

1+xα
1x1−α

2

for all (x1,x2) ∈R2
+

whereα ∈ (0,1) is a parameter. Verify thatF is a homothetic function onR2+.
(c) Supposef ∶R2++ →R++ is a continuously differentiable function onR2++, which is

homogeneous of degree one, and which satisfiesD1 f (x) > 0 andD2 f (x) > 0 for all x in
R2++. Supposeg ∶R++→R++ is a continuously differentiable function satisfyingg′(y) > 0
for all y in R++. Let F ∶ R2++ → R++ be defined byF(x) = g( f (x)). If t is an arbitrary
positive real number, show that

[D1F(tx)/D2F(tx)] = [D1F(x)/D2F(x)]
for all x in R2++.

Solution.

Note that part (a) shows that all homogeneous functions are also homothetic functions,
while part (b) shows that a homothetic function is not necessarily homogeneous.

(a) Homogeneity of degreer of F requiresF(tx)= trF(x), which is equivalent tog(t f (x))=
trg( f (x)) since f must be homogeneous of degree one. This suggests choosing
g(x) = xr . That choice impliesF(x) = ( f (x))r , which suggests choosingf (x) =(F(x)) 1

r . Now we must formally use these choices to show thatF is homothetic.

Define f ∶Rn
+→R+ andg ∶R+→R+ by

f (x) = (F(x)) 1
r for all x ∈Rn

+, g(x) = xr for all x ∈R+

Note thatg is increasing onR+ because we are given thatr > 0. Also, f is homoge-
neous of degree one onRn

+ because for anyx ∈Rn
+ and anyt > 0, we have

f (tx) = (F(tx)) 1
r = (trF(x)) 1

r = t(F(x)) 1
r = t f (x)
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Finally, verify that for allx ∈Rn
+,

g( f (x)) = g((F(x)) 1
r ) = ((F(x)) 1

r )r = F(x)
By the given definition, then,F is homothetic onRn

+.

(b) Let f ∶R2+→R+ be defined by

f (x1,x2) = xα
1x1−α

2 for all (x1,x2) ∈R2
+

Now, f is homogeneous of degree one onR2+ because for any(x1,x2) ∈R2+ and any
t > 0, we have

f (tx1,tx2) = tαt1−αxα
1x1−α

2 = t f (x1,x2)
Now, letg ∶R+→R+ be defined by

g(x) = x
1+x

for all x≥ 0

Note thatg is increasing onR+ because for allx≥ 0, we have

g′(x) = 1+x−x(1+x)2 = 1(1+x)2 > 0

Finally, verify that for all(x1,x2) ∈R2+,

g( f (x1,x2)) = g(xα
1x1−α

2 ) = xα
1x1−α

2

1+xα
1x1−α

2

= F(x1,x2)
By the given definition, then,F is homothetic onR2+.

(c) Since f is homogeneous of degree one onR2++, we have by Theorem 15, that the
first-order partial derivatives off are homogeneous of degree zero onR2++. That is,
for anyx ∈R2++ and anyt > 0, we have

D1 f (tx) =D1 f (x), D2 f (tx) =D2 f (x)
Now, using this result after applying the Chain Rule toF , we have that for any
x ∈R2++ and anyt > 0,

D1F(tx) = g′( f (tx))D1 f (tx) = g′( f (tx))D1 f (x) (2.1)

D2F(tx) = g′( f (tx))D2 f (tx) = g′( f (tx))D2 f (x) (2.2)
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Because we are given that the first order partial derivatives of F are positive, we can
divide (2.1) by (2.2) to see that for anyx ∈R2++ and anyt > 0,

D1F(tx)
D2F(tx) = g′( f (tx))D1 f (x)

g′( f (tx))D2 f (x) = D1 f (x)
D2 f (x) (2.3)

Evaluating att = 1, we have that for anyx ∈R2++,

D1F(x)
D2F(x) = D1 f (x)

D2 f (x) (2.4)

Combining (2.3) and (2.4), we have that for anyx ∈R2++ and anyt > 0,

D1F(tx)
D2F(tx) = D1F(x)

D2F(x)
Problem 28(Inverse Function Theorem).

Supposegi (for i = 1,2) are continuously differentiable functions fromR2++ to R++,
satisfying for all(x1,x2) ∈ R2++ , D jgi(x1,x2) > 0 for i = 1,2 ; j = 1,2 . Define functions
ai j (x1,x2) =D jgi(x1,x2) for (x1,x2) ∈R2++ . Let x0 = (x0

1,x
0
2) ∈R2++ ; denotegi(x0) by y0

i
for i = 1,2 . Assume that

a11(x0)a22(x0) > a12(x0)a21(x0)
Define the functionsf 1 and f 2 from R4++ to R++ as follows:

f 1(x1,x2,y1,y2) = y1−g1(x1,x2)
f 2(x1,x2,y1,y2) = y2−g2(x1,x2)

(a) Use the implicit function theorem to show that there exists an open setU containing
y0 = (y0

1,y
0
2), and an open setV containingx0, and a unique functionh ∶U →V such that

for all y= (y1,y2) ∈U , g(h(y)) = y, andh(y0) = x0.
(b) Note thath is continuously differentiable onU , and show thatD1h1(y0) > 0 , and

D1h2(y0) < 0.

Solution.

Note that in this problem,x1 andx2 are treated as variables andy1 andy2 are treated
as parameters. This is reversed from the presentation of theImplicit Function Theorem in
class.
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(a) Note thaty0 ∈ R2++ becauseg1 andg2 are functions intoR++. We want to apply
the Implicit Function Theorem tof 1 and f 2 at the point(x0

,y0) ∈R4++. We need to
check some conditions before applying the theorem:

● Both f 1 and f 2 are defined on the open setR4++. We would like to use the fact
that each off 1 and f 2 is the sum of two continuously differentiable functions
onR4++ to establish thatf 1 and f 2 are continuously differentiable onR4++, but
g1 andg2 are defined onR2++. Therefore, define the following functions, each
from R4++ to R++:

g̃1(x1,x2,y1,y2) = g1(x1,x2) for all (x1,x2,y1,y2) ∈R4
++

g̃2(x1,x2,y1,y2) = g2(x1,x2) for all (x1,x2,y1,y2) ∈R4
++

g̃3(x1,x2,y1,y2) = y1 for all (x1,x2,y1,y2) ∈R4
++

g̃4(x1,x2,y1,y2) = y2 for all (x1,x2,y1,y2) ∈R4
++

Each ofg̃1
, g̃2

, g̃3, andg̃4 is continuously differentiable onR4++. We can express
each off 1 and f 2 as sums of these functions:

f 1(x1,x2,y1,y2) = g̃3(x1,x2,y1,y2)− g̃1(x1,x2,y1,y2)
f 2(x1,x2,y1,y2) = g̃4(x1,x2,y1,y2)− g̃2(x1,x2,y1,y2)

Thereforef 1 and f 2 are continuously differentiable onR4++.

● We are given that at(x0
,y0) ∈R4++,

f 1(x0
,y0) = y0

1−g1(x0) = y0
1−y0

1 = 0

f 2(x0
,y0) = y0

2−g2(x0) = y0
2−y0

2 = 0

● By the definition off 1 and f 2 we have that

(D j f i(x0
,y0)) = [ D1 f 1(x0

,y0) D2 f 1(x0
,y0)

D1 f 2(x0
,y0) D2 f 2(x0

,y0) ]
= [ −D1g1(x0) −D2g1(x0)−D1g2(x0) −D2g2(x0) ]
= [ −a11(x0) −a12(x0)−a21(x0) −a22(x0) ]

Then det(D j f i(x0
,y0)) = a11(x0)a22(x0)−a12(x0)a21(x0) ≠ 0 by the given in-

formation.
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By the Implicit Function Theorem, then, there is an open setU ⊂R2++ containingy0,
an open setV ⊂R2++ containingx0, and a unique functionh ∶U →V such that:

(1) f (h(y),y) = 0 for all y ∈U

(2) h(y0) = x0

Now, result (1) implies that for eachi = 1,2, we havef i(h(y),y) = yi −gi(h(y)) = 0
for all y ∈U . This implies that for ally ∈U , we have

g1(h1(y),h2(y)) = y1 (3.1)

g2(h1(y),h2(y)) = y2 (3.2)

This is equivalent tog(h(y)) = y for all y ∈U , which we were asked to show.

(b) Given the conditions that were checked in part (a), we also have from the Implicit
Function Theorem thath is continuously differentiable onU .

Using the Chain Rule to differentiate (3.1) with respect to each of y1 andy2, we have
that for ally ∈U ,

D1g1(h1(y),h2(y))D1h1(y)+D2g1(h1(y),h2(y))D1h2(y) = 1 (3.3)

D1g1(h1(y),h2(y))D2h1(y)+D2g1(h1(y),h2(y))D2h2(y) = 0 (3.4)

Using the Chain Rule to differentiate (3.2) with respect to each of y1 andy2, we have
that for ally ∈U ,

D1g2(h1(y),h2(y))D1h1(y)+D2g2(h1(y),h2(y))D1h2(y) = 0 (3.5)

D1g2(h1(y),h2(y))D2h1(y)+D2g2(h1(y),h2(y))D2h2(y) = 1 (3.6)

Evaluating (3.3), (3.4), (3.5), and (3.6) aty0 and using the result from part (a) that
h(y0) = x0, we have the four equations

D1g1(x0)D1h1(y0)+D2g1(x0)D1h2(y0) = 1

D1g1(x0)D2h1(y0)+D2g1(x0)D2h2(y0) = 0

D1g2(x0)D1h1(y0)+D2g2(x0)D1h2(y0) = 0

D1g2(x0)D2h1(y0)+D2g2(x0)D2h2(y0) = 1

This is a system of linear equations that we can express as

[ a11(x0) a12(x0)
a21(x0) a22(x0) ][ D1h1(y0) D2h1(y0)

D1h2(y0) D2h2(y0) ] = [ 1 0
0 1

]
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In particular, we are interested in the system

[ a11(x0) a12(x0)
a21(x0) a22(x0) ][ D1h1(y0)

D1h2(y0) ] = [ 1
0
]

Because we are given thata11(x0)a22(x0)>a12(x0)a21(x0), a21(x0)>0, anda22(x0)>
0, we can use Cramer’s Rule to solve this system forD1h1(y0) andD1h2(y0), which
gives the desired inequalities:

D1h1(y0) = ∣ 1 a12(x0)
0 a22(x0) ∣

∣ a11(x0) a12(x0)
a21(x0) a22(x0) ∣

=
a22(x0)

a11(x0)a22(x0)−a12(x0)a21(x0) > 0

D1h2(y0) = ∣ a11(x0) 1
a21(x0) 0

∣
∣ a11(x0) a12(x0)

a21(x0) a22(x0) ∣
=

−a21(x0)
a11(x0)a22(x0)−a12(x0)a21(x0) < 0

Problem 29(Implicit Function Theorem).

Let X be an open set inR3
, and letf be a continuously differentiable function fromX toR.

Let (x̄1, x̄2, x̄3) be a point inX, such that (i)f (x̄1, x̄2, x̄3) = 0, and (ii) for eachi ∈ {1,2,3},
Di f (x̄1, x̄2, x̄3) ≠ 0.

(a) Use the implicit function theorem to obtain three open sets A1
,A2

,A3, each in
R2

, containing(x̄2, x̄3),(x̄1, x̄3), and(x̄1, x̄2) respectively, and three open setsB1
,B2

,B3,
each inR, containing ¯x1, x̄2, and x̄3 respectively, and unique functionsgi ∶ Ai

→ Bi (for
i ∈ {1,2,3}), such that:

(i) f (g1(x2,x3),x2,x3) = 0 for all (x2,x3) ∈A1(ii) f (x1,g2(x1,x3),x3) = 0 for all (x1,x3) ∈A2(iii ) f (x1,x2,g3(x1,x2)) = 0 for all (x1,x2) ∈A3

and:
x̄1 = g1(x̄2, x̄3), x̄2 = g2(x̄1, x̄3), x̄3 = g3(x̄1, x̄2)

Further,gi is continuously differentiable onAi for i ∈ {1,2,3}.
(b) Using (a), show that:

D1g1(x̄2, x̄3)D2g2(x̄1, x̄3)D1g3(x̄1, x̄2) = −1
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Solution.

(a) To solve this problem, we need to apply the Implicit FunctionTheorem three times.
It is enough to work through only one of these three cases and note that the other
two are very similar.

Claim: There is an open setA1 ⊂R2 containing(x̄2, x̄3), an open setB1 ⊂R contain-
ing x̄1, and a unique functiong1 ∶A1

→B1 such that:

(1) f (g1(x2,x3),x2,x3) = 0 for all (x2,x3) ∈A1

(2) x̄1 = g1(x̄2, x̄3)
Further,g1 is continuously differentiable onA1.

Proof: To establish the claim, we want to apply the Implicit Function Theorem to
f at the point(x̄1,(x̄2, x̄3)) ∈ X. Note thatx1 is treated as a variable andx2 andx3

are treated as parameters. We need to check some conditions before applying the
theorem:

● The functionf is defined on the setX ⊂R3. We are told thatX is open and that
f is continuously differentiable onX.

● We are given thatf (x̄1,(x̄2, x̄3)) = 0.

● We are given thatD1 f (x̄1,(x̄2, x̄3)) ≠ 0.

By the Implicit Function Theorem, then, the claim above holds.

(b) From part (a) we have thatf (g1(x2,x3),x2,x3) = 0 for all (x2,x3) ∈ A1. Using the
Chain Rule to differentiate this with respect tox2, we have

D1 f (g1(x2,x3),x2,x3)D1g1(x2,x3)+D2 f (g1(x2,x3),x2,x3)(1)
+D3 f (g1(x2,x3),x2,x3)(0) = 0

Evaluating at(x̄1, x̄2, x̄3) and using the fact that ¯x1 = g1(x̄2, x̄3), this becomes

D1 f (x̄1, x̄2, x̄3)D1g1(x̄2, x̄3)+D2 f (x̄1, x̄2, x̄3) = 0

Because we are given thatD1 f (x̄1, x̄2, x̄3) ≠ 0, we can rearrange this for

D1g1(x̄2, x̄3) = −D2 f (x̄1, x̄2, x̄3)
D1 f (x̄1, x̄2, x̄3) (4.1)
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From part (a) we have thatf (x1,g2(x1,x3),x3) = 0 for all (x1,x3) ∈ A2. Using the
Chain Rule to differentiate this with respect tox3, we have

D1 f (x1,g2(x1,x3),x3)(0)+D2 f (x1,g2(x1,x3),x3)D2g2(x1,x3)
+D3 f (x1,g2(x1,x3),x3)(1) = 0

Evaluating at(x̄1, x̄2, x̄3) and using the fact that ¯x2 = g2(x̄1, x̄3), this becomes

D2 f (x̄1, x̄2, x̄3)D2g2(x̄1, x̄3)+D3 f (x̄1, x̄2, x̄3) = 0

Because we are given thatD2 f (x̄1, x̄2, x̄3) ≠ 0, we can rearrange this for

D2g2(x̄1, x̄3) = −D3 f (x̄1, x̄2, x̄3)
D2 f (x̄1, x̄2, x̄3) (4.2)

From part (a) we have thatf (x1,x2,g3(x1,x2)) = 0 for all (x1,x2) ∈ A3. Using the
Chain Rule to differentiate this with respect tox1, we have

D1 f (x1,x2,g3(x1,x2))(1)+D2 f (x1,x2,g3(x1,x2))(0)
+D3 f (x1,x2,g3(x1,x2))D1g3(x1,x2) = 0

Evaluating at(x̄1, x̄2, x̄3) and using the fact that ¯x3 = g3(x̄1, x̄2), this becomes

D1 f (x̄1, x̄2, x̄3)+D3 f (x̄1, x̄2, x̄3)D1g3(x̄1, x̄2) = 0

Because we are given thatD3 f (x̄1, x̄2, x̄3) ≠ 0, we can rearrange this for

D1g3(x̄1, x̄2) = −D1 f (x̄1, x̄2, x̄3)
D3 f (x̄1, x̄2, x̄3) (4.3)

Combining equations (4.1), (4.2), and (4.3), we have the desired result:

D1g1(x̄2, x̄3)D2g2(x̄1, x̄3)D1g3(x̄1, x̄2) = −1
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Chapter 7

Convex Analysis

7.1 Convex Sets

Line Segment
If x,y ∈Rn, the line segmentjoining x andy is given by the set of points{z ∈Rn ∶ z=

θx+(1−θ)y for some 0≤ θ ≤ 1}.
Convex Set

A set S⊂ Rn is a convex setif for every x,y ∈ S, the line segment joiningx andy is
contained inS.

For example, the set of points{(x1,x2) ∈R2 ∶ x2
1+x2

2 ≤ 1} is a convex set. The set of
points{(x1, x2) ∈R2 ∶ x2

1+x2
2 = 1} is not a convex set.

It can be checked that if two setsS1 andS2 are convex sets inRn, then
(i) the intersection ofS1 andS2 [that is, the set{z∈ Rn ∶ z ∈ S1 andz∈ S2}] is a

convex set inRn.
(ii) the sum ofS1 andS2 [that is, the set{z∈Rn ∶ z= x+y,wherex∈S1and y∈S2}]

is a convex set inRn.
(iii) the (Cartesian) product ofS1 andS2 [that is the set{z∈R2n ∶ z= (x,y), where

x ∈S1 andy ∈S2}] is a convex set inR2n.
However, ifS1 andS2 are convex sets inRn, it doesnot follow that the union ofS1 and

S2 [that is, the set{z∈Rn ∶ z∈S1 or z∈S2}] is a convex set inRn. For example, the interval
S1 ≡ [0,1] is a convex set inR, and so is the interval,S2 ≡ [3,4]. The point 2 is on the line
segment joining 1 and 3, but 2 is not in the union of the setsS1 andS2. So the union ofS1

andS2 is not a convex set inR.
A vectory ∈Rn is said to be aconvex combinationof the vectorsx1

, ...,xm ∈Rn if there
existm non-negative real numbersθ1, ...,θm such that

107
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(i) m∑
i=1

θi = 1; and (ii) y=
m∑

i=1
θixi

A convex setA⊂Rn can be redefined as a set such that for everytwo vectors in the setA,
all convex combinations of thesetwovectors are also in the setA. It can be shown that in
the above statement “two” can be replaced by “m” wherem is any integer exceeding one.

Proposition 3. A set A⊂Rn is convex if and only if for every integer m> 1, and every m
vectors in A, every convex combination of the m vectors is in A.

7.2 Separating Hyperplane Theorem for Convex Sets

Hyperplane:
Let p∈Rn with p≠0, and letα ∈R. The setH = {x∈Rn ∶ px=α} is called ahyperplane

in Rn with normal p.
A hyperplaneH in Rn dividesRn into the two sets:
S1 ≡ {x ∈Rn ∶ px≥ α} andS2 ≡ {x ∈Rn ∶ px≤ α}
The setsS1 andS2 are called theclosed half-spacesassociated with the hyperplaneH.
A very important resu1t on convex sets can now be stated.

Theorem 19. (Minkowski Separation Theorem)
Let X and Y be non-empty convex sets inRn, such that X is disjoint from Y. Then there

exists p∈Rn
, ∥p∥ = 1, andα ∈R, such that

px ≥ α f orall x ∈X

py ≤ α f orall y ∈Y

The Minkowski separation theorem can be used to establish a criterion for the existence
of non-negativesolutions to a system of linear equations.

Theorem 20. (Farkas Lemma)
Exactly one of the following alternatives holds. Either the equation

A
(m×n)

x
(n×1)

= b
(m×1)

(7.1)

has a non-negative solution; or the inequalities

y
(1×m)

A
(m×n)

≥ 0; y
(1×m)

b
(m×1)

< 0 (7.2)

has a solution.
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Proof. First, suppose that (7.1) doesnot have a non-negative solution. Define

Q= {q ∈Rn ∶ q= n∑
i=1

λiAi f or some(λ1, ...,λn) ≥ 0}
It can be checked thatQ is a closed convex set. By our hypothesisb is not in Q. Since
Q is closed, there is an open ballB(b,r) ⊂∼Q. That is,Q andB(b,r) are disjoint. Since
B(b,r) is clearly convex, we can use Theorem 19 to obtainp∈Rn, ∥p∥ = 1, andα ∈R such
that

pq≤ α f orall q ∈B(b,r) (7.3)

and
pq≥ α f orall q ∈Q (7.4)

Note that ifq ∈Q, thentq ∈Q for everyt > 0. Using this in (7.4), forq ∈Q,

pq≥ (α/t) f orevery t> 0 (7.5)

Clearly (7.5) implies that
pq≥ 0 f orall q ∈Q (7.6)

SinceAi ∈Q for i = 1, ...,n, so (7.6) implies

pA≥ 0 (7.7)

Using (7.4) again, we note that since 0∈Q, we haveα ≤ 0. Using this in (7.3), we
have

pq≤ 0 f orall q ∈B(b,r) (7.8)

Defineq∗ = b+(r/2)p. Then∥q∗−b∥ = ∥(r/2)p∥ = (r/2)∥p∥ = (r/2). Soq∗ ∈B(b,r), and
by (7.8),

pb+(r/2) = pb+(r/2)∥p∥2 = pq∗ ≤ 0

This implies that
pb< 0 (7.9)

Now, (7.7) and (7.9) show that we have demonstrated a solution to the inequalities given
in (7.2).

To complete the proof of Theorem 20, consider, next, that (7.1) has a non-negative
solution, sayx ∈Rn

+. We have to show that (7.2) does not have a solution. Suppose (7.2)
did have a solution, sayy ∈Rn, then

0≤ (yA)x= y(Ax) = yb< 0

which is clearly a contradiction.
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7.3 Continuous and Differentiable Functions on Convex
Sets

We now provide three very useful theorems on continuous and differentiable functions on
convex sets. They are known as the Intermediate Value theorem, the Mean Value theorem
and Taylor’s theorem.

Theorem 21. (Intermediate Value Theorem):
Suppose A is a convex subset ofRn, and f ∶ A→ R is a continuous function on A.

Suppose x1 and x2 are in A, and f(x1) > f (x2). Then given any c∈R such that f(x1) > c>
f (x2), there is0< θ < 1 such that f[θx1+(1−θ)x2] = c.

Example:
SupposeX ≡ [a,b] is a closed interval inR (with a < b). Supposef is a continuous

function onX.
We know, by Weierstrass theorem, that there will existx1 andx2 in X such thatf (x1) ≥

f (x) ≥ f (x2) for all x ∈X. If f (x1) = f (x2) [this is the trivial case], thenf (x) = f (x1) for
all x ∈X, and sof (X) is the single point,f (x1).

If f (x1) > f (x2), then using the fact thatX is aconvex set, we can conclude from the
Intermediate Value Theorem that every value betweenf (x1) and f (x2) is attained by the
function f at some point inX. In other words,f (X) is itself a closed interval.

Theorem 22. (Mean Value Theorem)
Suppose A is an open convex subset ofRn, and f ∶A→R is continuously differentiable

on A. Suppose x1 and x2 are in A. Then there is0≤ θ ≤ 1 such that

f (x2)− f (x1) = (x2−x1)∇ f (θx1+(1−θ)x2)
Example:

Let f ∶R→R be a continuously differentiable function with the property that f ′(x) > 0
for all x∈R. Then given anyx1

, x2 in R, with x2 > x1 we have by the Mean-Value Theorem
(sinceR is open and convex), the existence of 0≤ θ ≤ 1, such that

f (x2)− f (x1) = (x2−x1) f ′(θx1+(1−θ)x2)
Now f ′(θx1+(1−θ)x2) > 0 by assumption, andx2 > x1 by hypothesis. Sof (x2) > f (x1).
This shows thatf is anincreasing functiononR.

A word of caution: a functionf ∶R→R can be increasing without satisfyingf ′(x) > 0
at allx ∈R. For example,f (x) = x3 is increasing onR, but f ′(0) = 0.
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Theorem 23. (Taylor’s Expansion up to Second-Order)
Suppose A is an open, convex subset ofRn, and f ∶A→R is twice continuously differ-

entiable on A. Suppose x1 and x2 are in A. Then there exists0≤ θ ≤ 1, such that

f (x2)− f (x1) = (x2−x1)∇ f (x1)+ 1
2
(x2−x1)H f (θx1+(1−θ)x2)(x2−x1)

7.4 Concave Functions

Let A be a convex set inRn. Then f ∶ A→ R is a concave function(on A) if for all x1,
x2 ∈A, and for all 0≤ θ ≤ 1,

f [θx1+(1−θ)x2] ≥ θ f (x1)+(1−θ) f (x2)
The functionf is strictly concaveonA if f [θx1+(1−θ)x2] > θ f (x1)+(1−θ) f (x2) when-
everx1, x2 ∈A, x1 ≠ x2 and 0< θ < 1.

The relation between concave functions and convex sets is given by the following
result, which can be proved easily from the definitions of a convex set and a concave
function.

Theorem 24. Suppose A is a convex subset ofRn and f is a real-valued function on A.
Then f is a concave function if and only if the set{(x,α) ∈A×R ∶ f (x) ≥ α} is a convex set
in Rn+1.

The following result on concave functions is also useful, although it does not provide
a characterization of concave functions.

Theorem 25. Suppose A is a convex subset ofRn, and f ∶ A→ R is a concave function.
Then, for everyα ∈R, the set

S(α) = {x ∈A ∶ f (x) ≥ a}
is a convex set inRn.

A result on concave functions which parallels Proposition 3on convex sets can now be
noted. It is known as Jensen’s inequality, and is a very useful tool in convex analysis.

Proposition 4. (Jensen’s Inequality)
Let A be a convex subset ofRn

,and f a real-valued function on A. Then a necessary
and sufficient condition for f to be concave is that for each integer m> 1,

f ( m∑
i=1

θixi) ≥ m∑
i=1

θi f (xi)
whenever x1, ...,xm ∈A, (θ1, ...,θm) ∈Rm

+ and
m∑

i=1
θi = 1.
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In general, ifA is a convex set inRn, and f ∶A→R is concave onA, then f need not be
continuous onA. For example, supposeA=R+, and f ∶R+→R is defined by:f (x) = 1+x
for x> 0; f (x) = 0 for x= 0. Then f is a concave function onA, but f is not continuous at
x= 0.

If A is anopenconvex set inRn, and f ∶A→R is concave onA, then one can show that
f is continuous onA.

Theorem 26. Suppose A is an open convex subset ofRn, and f ∶ A→ R is a concave
function on A. Then f is a continuous function on A.

Differentiable Concave Functions:
If A ⊂ Rn is an open, convex set, andf ∶ A→ R is continuously differentiable onA,

then we can find a convenient characterization forf to be concave onA in terms of a
condition which involves the gradient vector off . (This is particularly useful in concave
programming).

Theorem 27. Suppose A⊂Rn is an open set, and f∶A→R is continuously differentiable
on A. Then f is concave on A if and only if

f (x2)− f (x1) ≤∇ f (x1)(x2−x1)
whenever x1 and x2 are in A.

Corollary 4. Suppose A⊂Rn is an open, convex set, and f∶A→R is continuously differ-
entiable on A. Then f is concave on A if and only if

[∇ f (x2)−∇ f (x1)][x2−x1] ≤ 0

whenever x1 and x2 are in A.

It is interesting to note that a characterization ofstrictly concave functions can be given
by replacing the weak inequalities in Theorem 27 and Corollary 4 with strict inequalities
(for x1

, x2 in A with x1 ≠ x2).

Theorem 28. Suppose A⊂Rn is an open, convex set, and f∶A→R is continuously differ-
entiable on A. Then f is strictly concave on A if and only if

f (x2)− f (x1) <∇ f (x1)(x2−x1)
whenever x1, x2 ∈A and x1 ≠ x2.
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Corollary 5. Suppose A⊂Rn is an open convex set, and f∶ A→R is continuously differ-
entiable on A. Then f is strictly concave on A if and only if

[∇ f (x2)−∇ f (x1)][x2−x1] < 0

whenever x1, x2 ∈A and x1 ≠ x2.

Twice-Differentiable Concave Functions
If A⊂Rn is an open set, andf ∶ A→R is twice continuously differentiable onA, then

we can find a convenient characterization forf to be a concave function in terms of the
negative semi-definiteness of the Hessian matrix off .

Theorem 29. Suppose A⊂Rn is an open, convex set, and f∶A→R is twice continuously
differentiable on A. Then f is concave on A if and only if Hf (x) is negative semi-definite
whenever x∈A.

If the Hessian off is actually negative definite for allx ∈ A, then f is strictly concave
onA; but the converse is not true.

Theorem 30. Suppose A⊂Rn is an open, convex set, and f∶A→R is twice continuously
differentiable on A. If Hf (x) is negative definite for every x∈A, then f is strictly concave
on A.

Example: Let f ∶ R→ R be definied byf (x) = −x4 for all x ∈ R. This is a twice con-
tinuously differentiable function on the open, convex setR. It can be checked thatf is
strictly concave onR, but sincef ′′(x) = −12x2, f ′′(0) = 0. This shows that the converse
of Theorem 29 is not valid.

7.5 Quasi-Concave Functions

Let A⊂Rn be a convex set, andf a real-valued function onA. Then f is quasi-concave
onA if

f (x2) ≥ f (x1) implies f[θx1+(1−θ)x2] ≥ f (x1)
wheneverx1, x2 ∈ A, and 0≤ θ ≤ 1. The function f is strictly quasi-concaveon A if
f (x2) ≥ f (x1) implies f [θx1+ (1−θ)x2] > f (x1) wheneverx1, x2 ∈ A, with x1 ≠ x2, and
0< θ < 1.

While the condition stated in Theorem 25 did not characerize concave functions, it
doescharacterize quasi-concave functions.
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Theorem 31. Suppose A is a convex subset ofRn, and f is a real-valued function on A.
Then f is quasi-concave on A if and only if for everyα ∈R, the set

S(α) = {x ∈A ∶ f (x) ≥ α}
is a convex set inRn.

Using the concept of strict quasi-concavity, one can provide the following result on the
uniqueness of solutions to constrained maximization problems.

Theorem 32. (Uniqueness of Solutions)
Suppose A is a non-empty, compact and convex set inRn. Suppose f∶ A→ R is a

continuous, strictly quasi-concave function on A. Then, there exists x1 ∈ A such that for
all x ∈A which are not equal to x1, we have f(x) < f (x1).
Proof. By Weierstrass theorem, there isx1 ∈A such that

f (x) ≤ f (x1) f orall x ∈A (7.10)

If the claim of the Theorem were not true, there would exist somex2 ∈A, x2 ≠ x1, such that
f (x2) = f (x1). But thenx3 ≡ [(1/2)x1+(1/2)x2] would belong toA (sinceA is a convex
set), and by strict quasi-concavity off onA, we would havef (x3)= f [(1/2)x1+(1/2)x2]>
f (x1), which contradicts (7.10).

Differentiable Quasi-Concave Functions:
A characterization of differentiable quasi-concave functions can be given which paral-

lels the characterization of differentiable concave functions stated in Theorem 27. (This
is particularly useful in Quasi-Concave Programming).

Theorem 33. Suppose A⊂Rn is an open, convex set, and f∶A→R a continuously differ-
entiable function. Then f is a quasi-concave if and only if

f (x2) ≥ f (x1) implies(x2−x1)∇ f (x1) ≥ 0

whenever x1, x2 ∈A.

Twice Differentiable Quasi-Concave Functions
An interesting characterization of twice continuously differentiable quasi-concave func-

tions can be given in terms of the “bordered” Hessian matrix associated with the functions.
Let A be an open subset ofRn, and f ∶ A→ R be a twice continuously differentiable

function onA. Thebordered Hessian matrix of fat x ∈ A is denoted byGf (x) and is
defined as the following(n+1)×(n+1)matrix

Gf (x) = [ 0 ∇ f (x)∇ f (x) H f (x) ]
We denote the(k+1)th leading principal minor ofGf (x) by ∣Gf (x;k)∣, wherek= 1, ...,n.
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Theorem 34. Let A be an open convex set inRn, and f ∶ A→R be a twice continuously
differentiable function on A.

(i) If f is quasi-concave on A, then(−1)k ∣Gf (x;k)∣ ≥ 0 for x ∈A, and k= 1, ...,n.
(ii) If (−1)k ∣Gf (x;k)∣ > 0 for x ∈A, and k= 1, ...,n, then f is strictly quasi-concave

on A.
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7.6 Worked Out Problems on Chapter 7

Problem 30(Intermediate Value Theorem).

Here is a statement of the Intermediate Value Theorem for continuous real valued
functions of a real variable.

Theorem:
Let f be a continuous real valued function on the closed intervalA = [a,b]. Suppose

x,y∈A satisfy f (x) > f (y). Then for everyc, satisfying f (x) > c> f (y), there isz∈A, such
that f (z) = c.

We want to use this theorem to prove the following version of the Intermediate Value
Theorem for continuous real valued functions of several real variables.

Corollary:
Let B be a convex subset ofRn

, and letF be a continuous real valued function onB.
Supposex1

,x2 ∈ B satisfyF(x1) > F(x2). Then for everyc, satisfyingF(x1) > c> F(x2),
there isv ∈B, such thatF(v) = c.

Proceed with the following steps.
(a) DefineA= [0,1], and for eacht ∈A, define f (t) = F(tx1+(1− t)x2). This function

is well defined sinceB is a convex set, andF is defined onB. Verify that f is a continuous
function onA.

(b) Note thatf (1) = F(x1) > F(x2) = f (0). Use the Theorem (stated above) to obtain
z∈A such thatf (z) = c. This meansF(zx1+(1−z)x2) = c.

(c) Definev= zx1+(1−z)x2
, and verify that this proves the Corollary.

Solution.

(a) Note that an arbitraryx1 ∈ B andx2 ∈ B are given in the hypothesis of the Corollary.
Now, letA= [0,1]. Define f ∶A→R by

f (t) = F(tx1+(1− t)x2) for all t ∈A

Note that f is well-defined: sincex1 ∈ B andx2 ∈ B, by convexity ofB we have that
tx1+(1− t)x2 ∈B for all t ∈A.

To show thatf is continuous onA, fix some t̄ ∈ A and someε > 0. We want to
show that there is someδ > 0 such that whenevert ∈ A and d(t, t̄) < δ, we have∣ f (t)− f (t̄)∣ < ε. Note that sinceA⊂R, we can writed(t, t̄) = ∣t − t̄ ∣. Also, note that

∣ f (t)− f (t̄)∣ = ∣F(tx1+(1− t)x2)−F(t̄x1+(1− t̄)x2)∣
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To show thatf is continuous at our arbitrarȳt ∈ A, we can use the fact thatF is
continuous at the point̄tx1+ (1− t̄)x2 ∈ B. That is, givenε > 0 (note that this is the
sameε as above), by continuity ofF there is someδ′ > 0 such that wheneverx ∈ B
andd(x, t̄x1+(1− t̄)x2) < δ′, we have∣F(x)−F(t̄x1+(1− t̄)x2)∣ < ε.

This is looking similar to the inequality we want to establish. Now, recall that for
anyy,z,w ∈Rn and anyλ ∈R, we have thatd(y+w,z+w) = d(y,z) andd(λy,λz) =∣λ∣ d(y,z). With the goal of picking an appropriateδ, consider the following dis-
tance:

d(tx1+(1− t)x2
, t̄x1+(1− t̄)x2) = d(tx1− t̄x1

,(1− t̄)x2−(1− t)x2)
= d((t − t̄)x1

,(t − t̄)x2)
= ∣t − t̄ ∣ d(x1

,x2)
Now, letδ = δ′

d(x1
,x2) > 0. Whenevert ∈A and∣t− t̄ ∣ < δ, we have thattx1+(1−t)x2 ∈B

and

d(tx1+(1− t)x2
, t̄x1+(1− t̄)x2) = ∣t − t̄ ∣ d(x1

,x2)
< δ d(x1

,x2)
= δ′

Then by continuity ofF we have that∣F(tx1+(1− t)x2)−F(t̄x1+(1− t̄)x2)∣ < ε,
which is equivalent to∣ f (t)− f (t̄)∣ < ε. Sincet̄ was chosen arbitrarily, this shows
that f is continuous onA.

(b) By the definition off , f (1) = F(x1) and f (0) = F(x2). By hypothesis in the Corol-
lary, F(x1) > F(x2), which is equivalent tof (1) > f (0). Let some scalarc satisfy
f (1) > c> f (0). Then sincef is continuous on the closed intervalA, we have by the
stated Theorem that there is somez∈A such thatc= f (z) = F(zx1+(1−z)x2).

(c) Definev = zx1+ (1−z)x2. SinceB is convex andz∈ A = [0,1], we have thatv ∈ B.
Using part (b), we have that for anyc satisfyingF(x1) > c > F(x2), there is some
v ∈B such thatF(v) = c. This proves the Corollary.

Problem 31(Mean Value Theorem).

Here is a statement of the Mean Value Theorem for real valued functions of a real variable.
Theorem:
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Let f be a continuous real valued function on the closed intervalA= [a,b]. Supposef
is differentiable for allx ∈ (a,b). Then there isc ∈ (a,b) such that:

f (b)− f (a) = (b−a) f ′(c)
Use this theorem to prove the following version of the Mean Value Theorem for real

valued functions of several real variables.
Corollary:
Let B be an open convex subset ofRn

, and letF be a continuously differentiable real
valued function onB. Supposex1

,x2 ∈B. Then there isθ ∈ (0,1), satisfying:

F(x2)−F(x1) = (x2−x1)∇F(θx1+(1−θ)x2)
Solution.

We can use the same functionf that we used in Problem 1 to help us establish this
result. Note that an arbitraryx1 ∈B andx2 ∈B are given in the hypothesis of the Corollary.
Now, letA= [0,1]. Define f ∶A→R by

f (t) = F(tx1+(1− t)x2) for all t ∈A

We showed in part (a) of problem 1 thatf is well-defined and continuous onA. Now,
because we have made the additional assumptions in this problem thatB is open andF
is continuously differentiable onB, we can use the Chain Rule to differentiatef on the
open interval(0,1). Remember thatx1

i denotes theith component of the vectorx1, andx2
i

denotes theith component of the vectorx2. For all t ∈ (0,1), we have

f ′(t) = n∑
i=1
[DiF(tx1+(1− t)x2) ∂

∂t
(tx1

i +(1− t)x2
i )]

=
n∑

i=1
[(x1

i −x2
i ) DiF(tx1+(1− t)x2)]

= (x1−x2) ∇F(tx1+(1− t)x2)
SinceF is continuously differentiable onB andtx1+(1− t)x2 ∈ B whenevert ∈ (0,1), we
have thatf ′(t) is continuous on(0,1). By the stated Theorem, there isθ ∈ (0,1) such that
f (1)− f (0) = (1−0) f ′(θ). And by the definition off , we have thatf (1) = F(x1) and
f (0) = F(x2). Using the above expression forf ′, then, we have that for someθ ∈ (0,1),

F(x1)−F(x2) = (x1−x2) ∇F(θx1+(1−θ)x2)
Multiplying each side of this equation by−1 gives the desired result.
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Problem 32(Jensen’s Inequality for Concave Functions).

SupposeA is a convex subset ofRn
, and f a concave function onA. Let x1

,x2
,x3 ∈ A,

and letθ1,θ2,θ3 be real numbers satisfyingθi ≥ 0 for i = 1,2,3, and(θ1+θ2+θ3) = 1.
(a) Using the definition of a convex set, verify that:

(θ1x1+θ2x2+θ3x3) ∈A

(b) Using the definition of a concave function, show that:

f (θ1x1+θ2x2+θ3x3) ≥ θ1 f (x1)+θ2 f (x2)+θ3 f (x3)
Solution.

(a) If θ1 = 0, θ2 = 0, orθ3 = 0 the problem is trivial, becauseθ1x1+θ2x2+θ3x3 becomes
a convex combination of just two vectors inA, and we know thatA is convex. So,
assume thatθ1 ≠ 0, θ2 ≠ 0, andθ3 ≠ 0. Then we can write

θ1x1+θ2x2+θ3x3 = (θ1+θ2) θ1

θ1+θ2
x1+(θ1+θ2) θ2

θ1+θ2
x2+θ3x3

We know that θ1
θ1+θ2

≥ 0, θ2
θ1+θ2

≥ 0, and θ1
θ1+θ2

+ θ2
θ1+θ2

= 1. Then sinceA is convex,

x̃=
θ1

θ1+θ2
x1+ θ2

θ1+θ2
x2 ∈A

Again, sinceθ1+θ2 ≥ 0, θ3 ≥ 0, andθ1+θ2+θ3 = 1, convexity of A implies that

(θ1+θ2)x̃+θ3x3 ∈A

This is equivalent toθ1x1+θ2x2+θ3x3 ∈A, which is what we wanted to show.

(b) As in part (a), ifθ1 = 0, θ2 = 0, or θ3 = 0 the result will follow directly from the
concavity of f onA. So, assume thatθ1 ≠ 0, θ2 ≠ 0, andθ3 ≠ 0. We can get the result
by twice applying the concavity off on A. Note that the exact conditions we need
to verify before applying concavity have been shown in part (a) to be satisfied.

f ((θ1+θ2)x̃+θ3x3) ≥ (θ1+θ2) f (x̃)+θ3 f (x3)
= (θ1+θ2) f ( θ1

θ1+θ2
x1+ θ2

θ1+θ2
x2)+θ3 f (x3)

≥ (θ1+θ2)[ θ1

θ1+θ2
f (x1)+ θ2

θ1+θ2
f (x2)]+θ3 f (x3)

= θ1 f (x1)+θ2 f (x2)+θ3 f (x3)
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Problem 33(Test for Concavity).

Let f ∶R2+→R be defined by:

f (x,y) =Axayb for all (x,y) ∈R2
+

whereA, a andb are positive parameters. [It is known thatf is continuous onR2+ and
twice continuously differentiable onR2++. ]

(a) Show thatf is concave onR2+ if (a+b) ≤ 1.
(b) Show thatf is not concave onR2+ if (a+b) > 1.

Solution.

(a) Testing for concavity by testing for negative semi-definiteness of the Hessian off
only works on open sets, but we want to show thatf is concave onR2+, which is not
open. Showing thatf is concave on some open set that includesR2+ will not work,
as we will see from the calculations below. So, consider two cases.

Case 1: Sincef is twice continuously differentiable on the open and convexsetR2++,
we can show thatf is concave onR2++ by showing that the Hessian off is negative
semi-definite onR2++. The Hessian off at any(x,y) ∈R2++ is

H f (x,y) = [ a(a−1)Axa−2yb abAxa−1yb−1

abAxa−1yb−1 b(b−1)Axayb−2 ]
Now, a(a−1)Axa−2yb < 0 andb(b−1)Axayb−2 < 0 for all (x,y) ∈ R2++ becausea ∈(0,1), b ∈ (0,1), andA> 0. The determinant of the Hessian off at any(x,y) ∈R2++
is

detH f (x,y) = ab(a−1)(b−1)A2x2a−2y2b−2−a2b2A2x2a−2y2b−2

=A2x2a−2y2b−2ab((a−1)(b−1)−ab)
=A2x2a−2y2b−2ab(1−a−b)
≥ 0

sincea ∈ (0,1), b ∈ (0,1), anda+b≤ 1. This shows that the Hessian off is negative
semi-definite onR2++, which shows thatf is concave onR2++.

Case 2: Consider(x1,y1) ∈R2+, (x2,y2) ∈R2+, andθ ∈ [0,1]. BecauseR2+ is convex,
we know thatθ(x1,y1)+(1−θ)(x2,y2) ∈R2+. Assume that eitherx1 = 0 or y1 = 0, so
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that(x1,y1) is on the boundary of the setR2+. Given the specificf we are consider-
ing, this means thatf (x1,y1) = 0. Now,

f (θ(x1,y1)+(1−θ)(x2,y2))
= f (θx1+(1−θ)x2,θy1+(1−θ)y2)
=A(θx1+(1−θ)x2)a(θy1+(1−θ)y2)b
≥A((1−θ)x2)a((1−θ)y2)b (sincea> 0 andb> 0)
=A(1−θ)a+bxa

2yb
2

= (1−θ)a+b f (x2,y2)
≥ (1−θ) f (x2,y2) (since 1−θ ∈ [0,1] anda+b≤ 1)
= θ f (x1,y1)+(1−θ) f (x2,y2) (since f (x1,y1) = 0)

Combining the two cases, we have thatf is concave onR2+.

(b) Recall from part (a) that the determinant of the Hessian off at any(x,y) ∈R2++ is

detH f (x,y) =A2x2a−2y2b−2ab(1−a−b) < 0

sincea> 0, b> 0, anda+b> 1. This shows that the Hessian off cannot be negative
semi-definite at any point(x,y) ∈R2++. Thereforef is not concave onR2++, so f is
not concave onR2+.

Problem 34(Characterization of Quasi-Concave Functions).

Let f ∶Rn
+→R+ be a real valued function.

(a) Show that iff is quasi-concave onRn
+, then for everyα ∈R, the set:

U(α) = {x ∈Rn
+ ∶ f (x) ≥ α}

is a convex set.
(b) Show that if for everyα ∈R, the set:

U(α) = {x ∈Rn
+ ∶ f (x) ≥ α}

is a convex set, thenf is quasi-concave onRn
+.

Solution.
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(a) For all α such thatU(α) is the empty set or has only one element, the result holds
trivially. So, pick someα ∈R such thatU(α) has at least two distinct elements. Let
x1
,x2 ∈U(α) andθ ∈ [0,1]. We have by the definition ofU(α) that f (x1) ≥ α and

f (x2) ≥ α. Suppose without loss of generality thatf (x1) ≥ f (x2). Since f is quasi-
concave onRn

+, we have thatf (θx1+(1−θ)x2)≥ f (x2)≥α, soθx1+(1−θ)x2 ∈U(α).
ThusU(α) is a convex set.

(b) Let x1
,x2 ∈Rn

+, θ ∈ [0,1], and assume without loss of generality thatf (x1) ≥ f (x2).
Since f (x2) ∈R andU(α) is convex for allα ∈R, the set

U( f (x2)) = {x ∈Rn
+ ∣ f (x) ≥ f (x2)}

is convex. Now, sincex1 ∈U( f (x2)), x2 ∈U( f (x2)), andU( f (x2)) is convex, we
have thatθx1+(1−θ)x2 ∈U( f (x2)). By the definition ofU( f (x2)), this is equivalent
to f (θx1+(1−θ)x2) ≥ f (x2), which shows thatf is quasi-concave onRn

+.

Problem 35(Testing for Quasi-Concavity).

(a) Let f ∶R2+→R be defined by:

f (x,y) =Axayb for all (x,y) ∈R2
+

whereA, a andb are positive parameters. [It is known thatf is continuous onR2+ and
twice continuously differentiable onR2++.] Show thatf is quasi-concave onR2+.

(b) Letg ∶R2+→R be defined by:

g(x,y) = xa+yb for all (x,y) ∈R2
+

wherea andb are parameters, witha> 1 andb> 1. Show thatg is increasing onR2+ but it
is not quasi-concave onR2+.

Solution.

(a) As in Problem 4, part (a), we must consider two cases, sinceR2+ is not open and we
will not be able to show thatf is quasi-concave on some open set that containsR2+.

Case 1: Sincef is twice continuously differentiable on the open and convexsetR2++,
we can show thatf is quasi-concave onR2++ by showing that for all(x,y) ∈ R2++,
the second leading principal minor of the bordered Hessian of f at (x,y) is strictly
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negative and the determinant of the bordered Hessian off at(x,y) is strictly positive.
The bordered Hessian off at any(x,y) ∈R2++ is

Bf (x,y) =
⎡⎢⎢⎢⎢⎢⎣

0 aAxa−1yb bAxayb−1

aAxa−1yb a(a−1)Axa−2yb abAxa−1yb−1

bAxayb−1 abAxa−1yb−1 b(b−1)Axayb−2

⎤⎥⎥⎥⎥⎥⎦
Now, for all (x,y) ∈R2++ the second leading principal minor of this matrix is

∣ 0 aAxa−1yb

aAxa−1yb a(a−1)Axa−2yb ∣ = −a2A2x2a−2y2b < 0

sincea> 0 andA> 0. The determinant of the bordered Hessian off at any(x,y) ∈
R2++ is

detBf (x,y) = −aAxa−1yb[ab(b−1)A2x2a−1y2b−2−ab2A2x2a−1y2b−2]
+bAxayb−1[a2bA2x2a−2y2b−1−ab(a−1)A2x2a−2y2b−1]
= −a2bA3x3a−2y3b−2(b−1−b)+ab2A3x3a−2y3b−2(a−a+1)
= a2bA3x3a−2y3b−2+ab2A3x3a−2y3b−2

= abA3x3a−2y3b−2(a+b)
> 0

sincea> 0, b> 0, andA> 0. This shows thatf is quasi-concave onR2++.

Case 2: Consider(x1,y1) ∈R2+, (x2,y2) ∈R2+, andθ ∈ [0,1]. BecauseR2+ is convex,
we know thatθ(x1,y1)+(1−θ)(x2,y2) ∈R2+. Assume that eitherx1 = 0 or y1 = 0, so
that(x1,y1) is on the boundary of the setR2+. Given the specificf we are consider-
ing, this means thatf (x2,y2) ≥ f (x1,y1) = 0. Now,

f (θ(x1,y1)+(1−θ)(x2,y2)) ≥ 0= f (x1,y1)
Combining the two cases, we have thatf is quasi-concave onR2+.

(b) Note that sinceg is defined onR2+, which is not open, we can only consider deriva-
tives on the open setR2++. For all (x,y) ∈ R2++, we have thatD1g(x,y) = axa−1 > 0
sincea> 1 andD2g(x,y) = byb−1 > 0 sinceb> 1. This shows thatg is increasing on
R2++. We can check directly thatg is increasing on the boundary. For allx > 0 and
ȳ ≥ 0, we have thatg(x, ȳ)−g(0, ȳ) = xa > 0. For all x̄ ≥ 0 andy > 0, we have that
g(x̄,y)−g(x̄,0) = yb > 0. Combined with the result thatg is increasing onR2++, we
have thatg is increasing onR2+.
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Sinceg is twice continuously differentiable on the open and convexsetR2++, quasi-
concavity ofg onR2++ would imply that the determinant of the bordered Hessian of
g at any(x,y) ∈R2++ is non-negative. But we have that at any(x,y) ∈R2++,

detBg(x,y) =
RRRRRRRRRRRRRR

0 axa−1 byb−1

axa−1 a(a−1)xa−2 0
byb−1 0 b(b−1)yb−2

RRRRRRRRRRRRRR
= −axa−1[ab(b−1)xa−1yb−2]+byb−1[−ab(a−1)xa−2yb−1]
= −a2b(b−1)x2a−2yb−2−ab2(a−1)xa−2y2b−2

< 0

sincea > 1 andb > 1. Thereforeg is not quasi-concave onR2++, sog is not quasi-
concave onR2+.
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Chapter 8

Unconstrained Optimization

8.1 Preliminaries

We will present below the elements of “classical optimization theory”. We will concen-
trate on characterizing points ofmaximumof a function of several variables; the theory
which characterizes points ofminimum of such a function can be inferred without too
much difficulty.

Our first task will be to look at the theory ofunconstrainedmaximization, and discuss
the relevant necessary and sufficient conditions for such anunconstrained maximum to
occur. This is the subject matter of this chapter. Our secondtask will be to present the
theory ofconstrainedmaximization, where the only constraints areequalityconstraints.
This is the theory involving the well-known “Lagrange multiplier method”, and is taken
up in Chapter 9.
Unconstrained Maximization Theory

Our framework is the following. There is a setA⊂Rn; there is a functionf ∶ A→R.
We are interested in identifying points inA at which the function attains a (local or global)
maximum.
Local and Global Maximum

Let A⊂Rn, and let f be a function fromA to R. A point c ∈A is said to be apoint of
local maximumof f if there existsδ > 0, such thatf (c) ≥ f (x) for all x ∈ A which satisfy∥x−c∥ < δ. It is said to be apoint of global maximumof f if f (c) ≥ f (x) for all x ∈A.

127
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8.2 Necessary Conditions for a Local Maximum

We will present two necessary conditions for a local maximum. One is a condition on the
first-order partial derivatives of the relevant function (called “first-order conditions”); the
other is a condition on the second-order partial derivatives of the relevant function (called
“second-order necessary conditions”).

Theorem 35.Let A be an open set inRn, and let f∶A→R be a continuously differentiable
function on A. If c∈A is a point of local maximum of f , then

∇ f (c) = 0 (8.1)

Remark: The n equations given by (8.1) are called the first-order conditions for a local
maximum.

Theorem 36. Let A be an open set inRn, and let f ∶ A→ R be a twice continuously
differentiable function on A. If c∈A is a point of local maximum of f , then

H f (c) is negative semi-definite (8.2)

Remark: The condition (8.2) is called the second-order necessary condition for a local
maximum.

Necessary conditions like (8.1) and (8.2) stated above are useful because they help us
to rule out points where a local maximum cannot occur, thereby narrowing our search for
points where a local maximum does occur. The following two examples illustrate this
point.
Examples:

(i) Let f ∶ R→ R be given byf (x) = 1−x2 for all x ∈ R. ThenR is an open set,
and f a continuously differentiable function onR. Consider the pointc= 1. We calculate
f ′(c) = f ′(1) = −2(1) = −2. By Theorem 35, we can therefore conclude thatc= 1 is not a
point of local maximum off .

(ii) Let f ∶ R → R be given by f (x) = 1−2x+ x2 for all x ∈ R. ThenR is an
open set, andf a twice continuously differentiable function onR. Consider the point
c= 1. We can calculatef ′(c) = f ′(1) = −2+2(1) = 0, so condition (8.1) of Theorem 35 is
satisfied.Notice that Theorem 35, by itself, fails to be of any help at this point. We cannot
conclude from Theorem 35 thatc = 1 is a point of local maximum; we cannot conclude
from Theorem 35 thatc = 1 is not a point of local maximum. Theorem 36, however, is
useful at this point. We can calculatef ′′(c) = f ′′(1) = 2 > 0, and so condition (8.2) of
Theorem 36 is violated. Consequently, by Theorem 36, we can conclude thatc= 1 is not
a point of local maximum off .
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8.3 Sufficient Conditions for a Local Maximum

We present below a set of sufficient conditions for a local maximum.

Theorem 37. Let A be an open set inRn, and let f ∶ A→ R be a twice continuously
differentiable function on A. If c∈A, satisfies

∇ f (c) = 0 (8.3)

and
H f (c) is negative definite (8.4)

then c is a point of local maximum of f .

Remark: Condition (8.3) of Theorem 37 is called the second-order sufficient condition
for a local maximum.

It should be noted that condition (8.4) cannot be weakened tocondition (8.2) in the
statement of Theorem 37. The following example illustratesthis point.
Example:

Let f ∶ R → R be given by f (x) = x3 for all x ∈ R. ThenR is an open set, andf
is a twice continuously differentiable function onR. At c = 0, f ′(c) = f ′(0) = 0, and
f ′′(c) = f ′′(0) = 0, so condition (8.3) and condition (8.2) are satisfied. Butc is clearly not
a point of local maximum off since f is an increasing function onR.

It may also be observed that condition (8.2) cannot be strengthened to condition (8.4)
in the statement of Theorem 36. The following example illustrates this point.
Example:

Let f ∶R→R be given byf (x) = −x4 for all x ∈R. ThenR is an open set, andf is a
twice continuously differentiable function onR. Clearly,c=0 is a point of local maximum
of f [since f (0) = 0, while f (x) < 0 for all x≠ 0]. One can calculate thatf ′(c) = f ′(0) = 0,
and f ′′(c) = f ′′(0) = 0. Thus conditions (8.1) and (8.2) are satisfied, but (8.4) isviolated.

The outcome of this discussion is the following: the second-order necessary condi-
tions for a local maximum are different from (weaker than) the second-order sufficient
conditions for a local maximum. This simply reflects the factthat, in general, the first
and second derivatives of a function at a point do not captureall aspects relevant to the
occurrence of a local maximum of the function at that point.

The sufficient conditions of Theorem 37 enable us to find points of local maximum of
a function, as the following example shows.
Example:

Let f ∶R2
→R be given byf (x1, x2) = 2x1x2−2x2

1−x2
2 for all (x1, x2) ∈R2. ThenR2

is an open set, andf is a twice continuously differentiable function. If we write down the
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condition (8.1) [or (8.3)] at a point(c1, c2) ∈R2, we get

D1 f (c1, c2) = 2c2−4c1 = 0

D2 f (c1, c2) = 2c1−2c2 = 0

Thus condition (8.3) is satisfied if and only ifc1 = c2 = 0.
Next, we can find the Hessian off at (c1, c2) ∈R2:

H f (c1, c2) = [ −4 2
2 −2 ]

Now,−4< 0, and(−4)(−2)−(2)(2) = 8−4> 0. SoH f (c1, c2) is negative definite for each(c1, c2) ∈R2. Thus, condition (8.4) is clearly satisfied. It follows fromTheorem 37 that(c1, c2) = (0,0) is a point of local maximum off .

8.4 Sufficient Conditions for a Global Maximum

While several sets of sufficient conditioins for a global maximum can be developed, the
following two are among the most useful.

Theorem 38. Let A be an open convex set inRn, and let f ∶ A→ R be a continuously
differentiable function on A. If c∈A satisfies

∇ f (c) = 0 (8.5)

and f is a concave function on A, then c is a point of global maximum of f .

To see this note that for allx ∈A,

f (x)− f (c) ≤ (x−c)∇ f (c) (8.6)

since f is concave and continuously differentiable onA [See Theorem 9 of Chapter 7 on
“Convex Analysis”]. Using (8.5) in (8.6), we getf (x) ≤ f (c) for all x ∈ A, soc is a point
of global maximum off .

Theorem 39. Let A be an open convex set inRn, and let f ∶A→R be a twice continuously
differentiable function on A. If c∈A satisfies

∇ f (c) = 0 (8.7)

and
H f (x) is negative semi-definite for all x∈A (8.8)

then c is a point of global maximum of f .
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To see this, note that (8.8) ensures thatf is concave onA; so the result follows readily
from Theorem 38.

It is worth noting that Theorem 38 (or 39) might be applicablein cases where Theorem
37 is not applicable. Letf ∶R→R be given byf (x) = −x4. Here, one notes thatf ′(0) = 0
and f ′′(x) = −12x2 ≤ 0 for all x. Thus applying Theorem 38 (or 39), we can conclude that
x= 0 is a point of global maximum, and hence of local maximum. But the conclusion that
x= 0 is a point of local maximum cannot be derived from Theorem 37, since f ′′(0) = 0.

8.5 The Method of Least Squares

Suppose we are givenn points(xi , yi), i = 1, ...,n in R2. Let f ∶R→R be given byf (x) =
ax+b for all x ∈ R. We wish to find a functionf (that is, we want to choosea ∈ R and
b ∈R) such that the quantity

n∑
i=1
[ f (xi)−yi]2

is minimized.
We can set up the problem as anunconstrained maximization problemas follows.

DefineF ∶R2
→R by

F(a,b) = − n∑
i=1
[axi +b−yi]2

The maximization problem then is

Max
(a,b)

F(a,b)
F is twice continuously differentible onR2, and we can calculate

D1F = −2 n∑
i=1
[axi +b−yi]xi = −2 n∑

i=1
[ax2

i +bxi −xiyi]
D2F = −2 n∑

i=1
[axi +b−yi]

D11F = −2 n∑
i=1

x2
i ; D12F = −2 n∑

i=1
xi

D21F = −2 n∑
i=1

xi; D22F = −2n

Thus, the determinant of the Hessian ofF is

det(HF(a,b)) = 4n
n∑

i=1
x2

i −4[ n∑
i=1

xi]2
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Now, by the Cauchy-Schwarz inequality,

∣ n∑
i=1

xi∣ ≤ [∑x2
i ]1/2n1/2

so

[ n∑
i=1

xi]2 ≤ n∑x2
i

and consequently, det(HF(a,b))≥0. SinceD11F(a,b)≤0,D22F(a,b)≤0, and det(HF(a,b))≥
0,HF(a,b) is negative semi-definite. Consequently, if(a∗, b∗) satisfies the first-order
conditions, then(a∗, b∗) is a point of global maximum off by Theorem 39. The first-
order conditions are

a
n∑

i=1
x2

i +b
n∑

i=1
xi =

n∑
i=1

xiyi (8.9)

a
n∑

i=1
xi +bn=

n∑
i=1

yi (8.10)

Denoting(1/n) n∑
i=1

xi by x and(1/n) n∑
i=1

yi by y [the means ofx andy respectively], we get

from (8.10) that
ax+b= y (8.11)

Using this in (8.9) leads to

a
n∑

i=1
x2

i +(y−ax)nx=
n∑

i=1
xiyi (8.12)

Thus,

(1/n) n∑
i=1

xiyi −xy

(1/n) n∑
i=1

x2
i −x2

= a

y−ax = b

solves the problem, provided not all thexi are the same.
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8.6 The Envelope Theorem

Let X be an open convex set ofRn, andA be an open subset ofRm. Let f be a twice
continuously differentiable function onX ×A which is quasi-concave onX, givena ∈ A.
We interpret(x1, ...,xn) as the “variables” and(a1, ...,am) as the “parameters”.

Givena ∈A, we can formulate the following maximization problem:

Max
x∈X

f (x;a) (P)

Let a∗ ∈A. Supposex ∈X is a point such that

∇ f (x;a∗) = 0

H f (x;a∗)is negative definite

Using Theorem 37, we then know thatx is a point of local maximum off , givena∗. Given
a∗ ∈A, f is quasi-concave onX, sox can be shown to be a solution of problem(P), given
a∗. (Can you show this?) In fact, ˆx can be shown to be the unique solution to(P), given
a∗.

Notice that by the implict function theorem, there is an opensetB containinga∗, and
an open setC containingx, and a unique functiong ∶B→C, such that

(i) x= g(a∗)
(ii) ∇ f [g(a);a] = 0 f ora ∈B

Also, g is continuously differentiable onB. Furthermore, one can choose the open setB
so as to ensure

(iii) H f [g(a;a] is negative definite fora ∈B
For â ∈ B, [â not necessarily equal toa∗], we then note by (ii) and (iii), thatg(â) is a

point of local maximum off , given â. And sincef is quasi-concave onX [given â ∈ B],
g(â) is the unique solution to problem (P), givenâ.

We, can now define for problem (P), thevalue, V ∶B→R by

V(a) =Max
x∈X

f (x;a)
Furthermore, we can define themaximizer h∶B→X by

h(a) = {z∈X ∶ f (z;a) ≥ f (x;a) f orall x ∈X}
What we have just established in the previous paragraph is that

V(a) = f [g(a);a] f ora ∈B (8.13)



CHAPTER 8. UNCONSTRAINED OPTIMIZATION 134

h(a) = g(a) f ora ∈B (8.14)

Two questions which now arise quite naturally are:
(1) If a changes a little froma∗, how will the maximized value off change?
(2) If a changes a little froma∗, how will the maximizer change?

Suppose, for concreteness, we want to answer these questions for a parameter change,
where onlya1 changes. Then question (1) can be answered by finding outD1V(a∗); and
question (2) can be answered by finding out the vector[D1g1(a∗),D1g2(a∗), ....,D1gn(a∗)].

Using (8.13), and the chain-rule,

D1V(a∗) = n∑
i=1

Di f [g(a∗); a∗]D1gi(a∗)+Dn+1 f [g(a∗); a∗]
Using (ii), we haveDi f [g(a∗); a∗] = 0for i = 1, ...,n. Hence,

D1V(a∗) =Dn+1 f [x; a∗] (8.15)

This result is known as the “envelope theorem”, and it answers question (1) above.
To answer question (2), use (ii) to obtain (employing again the chain-rule),

n∑
i=1

D1i f [g(a∗);a∗]D1gi(a∗)+D1n+1 f [g(a∗);a∗] = 0

−−−−−−−−−−−−−−−−−−−−−−−−−
n∑

i=1
Dni f [g(a∗);a∗]D1gi(a∗)+Dnn+1 f [g(a∗);a∗] = 0

Then using (iii), we can employ Cramer’s Rule to obtain the vector [D1g1(a∗), ...,D1gn(a∗)].
This answers question (2).

As an application, considerX ≡R++, andA=R2++, with f ∶X×A→R given by

f (x; p,w) = pφ(x)−wx

We interpretφ ∶R+→R as the production function [withx as the input level andφ(x) the
corresponding output level],p as the output price andw as the input price. Thus,f (x; p,w)
is the profit ifx of input is employed when the output price isp, and input price isw.

Assumingφ(x) = 2x1/2 for x≥ 0, we observe thatf is twice continuously differentiable
onX×A, and given(p,w) ∈A, f is quasi-concave onX, sinceφ is concave onX.

Let (p∗,w∗) ∈A. Then, we note that

0=D1 f (x; p∗,w∗) = (p∗/x1/2)−w∗
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whenx= (p∗/w∗)2. Furthermore,

D11 f (x; p∗,w∗) = −[p∗/2x3/2] < 0

Then applying the implicit function theorem, we can obtain an open setB containing(p∗,w∗) and an open setC containingx, and a unique functiong ∶B→C, such that
(i) x= g(p∗,w∗)
(ii) D1 f [g(p,w); p,w] = 0 f or(p,w) ∈B

Further,g is continuously differentiable onB.
Thevaluefor this problem is known as the “profit function”, and by (8.13), it is given

by
π(p,w) = f [g(p,w); p,w]

The maximizer is known as the (input)demand function, and by (8.14), it is given by

x(p,w) = g(p,w)
If we answer question (1) in this framework, we get, from (8.15),

D1π(p∗,w∗) = φ(g(p∗,w∗)) = φ(x(p∗,w∗))
D2π(p∗,w∗) = −g(p∗,w∗) = −x(p∗,w∗)

This is generally known as “Hotelling result” in the theory of the firm.
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8.7 Worked Out Problems on Chapter 8

Problem 36(Unconstrained Optimization: First-Order Conditions).

Here is a statement of the first-order condition for a maximumof real valued functions
of a real variable.

Theorem:
Let f be a continuously differentiable real valued function on the intervalA= (a,b). If

c ∈A satisfiesf (c) ≥ f (t) for all t ∈A, then f ′(c) = 0.
We want to use this theorem to prove the following version of the first-order condition

for a local maximum of real valued functions of several real variables.
Corollary:
Let C be an open subset ofRn, and letF be a continuously differentiable real valued

function onC. If x̄ ∈C is a point of local maximum ofF , then∇F(x̄) = 0.
Proceed with the following steps.
(a) Since ¯x ∈C is a point of local maximum ofF , we can findr > 0 such thatB ≡

B(x̄,2r) ⊂C, andF(x̄) ≥ F(x) for all x ∈B.
(b) Pick anyk ∈ {1,⋯,n}, and definea(k) = x̄− rek

,b(k) = x̄+ rek, whereek is thek-th
unit vector inRn. Then, by definition ofB, we havea(k) ∈ B andb(k) ∈ B. And, since
B is a convex set, we have[tb(k)+ (1− t)a(k)] ∈ B for all t ∈ I ≡ [0,1]. For t ∈ I , define
f (t) =F(tb(k)+(1−t)a(k)), and note that this function is well defined, sinceF is defined
on C (which contains the setB). Define A = (0,1), and verify that f is continuously
differentiable onA.

(c) Show thatf (1/2) = F(x̄), and f (1/2) ≥ f (t) for all t ∈A.
(d) Use the Theorem (stated above) to obtainf ′(1/2) = (2r)DkF(x̄) = 0. Verify that

this proves the Corollary.

Solution.

(a) Sincex̄ ∈C is a point of local maximum ofF , there is someβ > 0 such that for all
x ∈C satisfyingd(x, x̄) < β, we haveF(x) ≤ F(x̄). And sinceC is open, there is
someγ > 0 such that for allx ∈ Rn satisfyingd(x, x̄) < γ, we havex ∈C. Now, let
r = 1

2 min{β,γ}, so thatB≡ B(x̄,2r) = {x ∈Rn ∣ d(x, x̄) < 2r } ⊂C. Then for allx ∈ B,
we have thatF(x̄) ≥ F(x).

(b) For anyk ∈ {1, . . . ,n}, define

a(k) = x̄− rek
, b(k) = x̄+ rek
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Now,a(k) ∈B andb(k) ∈B becaused(a(k), x̄) =d(b(k), x̄) =d(rek
,0) = r <2r. Since

the open ballB is convex, we have thattb(k)+ (1− t)a(k) ∈ B for all t ∈ I = [0,1].
Define f ∶ I →R by

f (t) = F(tb(k)+(1− t)a(k)) for all t ∈ I

Sincetb(k)+ (1− t)a(k) ∈ B ⊂C for all t ∈ I andF is defined onC, the function f
is well-defined. LetA= (0,1). We showed in problem 1 of Problem Set 8 thatf is
continuous on[0,1], so it follows thatf is continuous onA. SinceF is continuously
differentiable on the open setC, we can use the Chain Rule to differentiatef on A.
For all t ∈A, we have

f ′(t) = n∑
i=1
[DiF(tb(k)+(1− t)a(k)) ∂

∂t
(tbi(k)+(1− t)ai(k))]

=
n∑

i=1
[(bi(k)−ai(k)) DiF(tb(k)+(1− t)a(k))]

= (b(k)−a(k)) ∇F(tb(k)+(1− t)a(k))
= (2rek) ∇F(x̄+(2t −1)rek)
= 2rDkF(x̄+(2t −1)rek)

SinceF is continuously differentiable onC andtb(k)+(1− t)a(k) = x̄+(2t −1)rek ∈

C whenevert ∈ A, we have thatf ′(t) is continuous onA. So f is continuously
differentiable onA.

(c) Sincetb(k)+(1− t)a(k) = x̄+(2t −1)rek, we havef (1
2) = F(x̄). And sincetb(k)+(1− t)a(k) ∈B for all t ∈ I andF(x̄) ≥ F(x) for all x ∈B, we have by the definition of

f that f (1
2) ≥ f (t) for all t ∈ I , and thus for allt ∈A.

(d) Using the result in part (c), we have by the stated Theorem that f ′(1
2) = 0. And from

part (b), we have thatf ′(1
2) = 2rDkF(x̄). Sincer > 0, these two equations imply that

DkF(x̄) = 0. Becausek ∈ {1, . . . ,n} was chosen arbitrarily, we have∇F(x̄) = 0. This
proves the Corollary.

Problem 37(Unconstrained Optimization: Sufficient Conditions for a Global Maximum).

SupposeA is an open convex set inRn, and f ∶A→R is twice continuously differentiable
and quasi-concave onA. Suppose there is ¯x in A satisfying:

(i) ∇ f (x̄) = 0, and (ii)H f (x̄) is negative definite.
Show that ¯x is the unique point of global maximum off onA.
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Solution.

We will prove this by verifying a series of claims. First, we will show that the Hessian
of f is negative definite in some neighborhood around ¯x. Second, we will use Taylor’s
Theorem to show that ¯x is a point of strict local maximum off . Finally, we will use the
quasi-concavity off onA to show that ¯x is the unique point of global maximum off onA.
Claim 1: There is someδ > 0 such that for allx ∈ B(x̄,δ) = {x ∈Rn ∣ d(x, x̄) < δ}, we have
thatx ∈A andH f (x) is negative definite.
Proof: For eachr = 1, . . . ,n, let F r ∶A→ R denote therth leading principal minor of the
Hessian off . SinceF r is constructed by summing products of second derivatives off ,
which are continuous onA, it follows that eachF r is continuous onA.

SinceH f (x̄) is negative definite, we know thatF1(x̄) =D11 f (x̄) < 0. By the continuity
of F1, for ε1 = −F1(x̄) > 0 there is someδ1 > 0 such that wheneverx ∈ A andd(x, x̄) < δ1,
we have∣F1(x)−F1(x̄)∣ < ε1, which implies thatF1(x) < 0.

We can constructδ2
, . . . ,δn similarly. Then for eachr =1, . . . ,n we have that for allx∈A

satisfyingd(x, x̄) < δr , it follows thatF r(x) takes the appropriate sign (strictly negative for
oddr and strictly positive for evenr).

SinceA is open, there is someγ > 0 such that for allx ∈ Rn satisfyingd(x, x̄) < γ, we
havex ∈A.

Now, defineδ =min{δ1
, . . . ,δn

,γ} > 0. Then for allx ∈ Rn satisfyingd(x, x̄) < δ, we
have thatx ∈A andH f (x) is negative definite. This proves the claim.
Claim 2: x̄ is a point of strict local maximum off .
Proof: Note that by Theorem 37, the conditions in the problemimply that x̄ is a point of
local maximum off . We want to use Claim 1 to argue that we can strengthen this result
to show that ¯x is a point of strict local maximum off .

Consider somex′ such thatx′ ≠ x̄ andd(x′, x̄) < δ. By Claim 1, we have thatx′ ∈A, so f
is well-defined atx′. We want to show thatf (x̄) > f (x′). SinceA is open and convex and
f ∶A→R is twice continuously differentiable onA, we can apply Taylor’s Theorem, which
says that there isθ ∈ (0,1) such that

f (x′)− f (x̄) = (x′− x̄)∇ f (x̄)+ 1
2
[(x′− x̄)′H f (θx′+(1−θ)x̄)(x′− x̄)]

We are given that∇ f (x̄) = 0. Also, sinceB(x̄,δ) is a convex set andx′, x̄∈B(x̄,δ), we have
that θx′ + (1−θ)x̄ ∈ B(x̄,δ), so it follows by Claim 1 thatH f (θx′ + (1−θ)x̄) is negative
definite. Becausex′− x̄≠ 0, this negative definiteness means we can use the above equation
to write

f (x′)− f (x̄) = 1
2
[(x′− x̄)′H f (θx′+(1−θ)x̄)(x′− x̄)] < 0

This implies f (x′) < f (x̄), which shows that ¯x is a point of strict local maximum off .
Claim 3: x̄ is the unique point of global maximum off onA.
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Proof: Seeking contradiction, suppose the claim does not hold. Then there is some ˜x ∈ A
such that ˜x≠ x̄ and f (x̃) ≥ f (x̄). Now, we can take someλ ∈ (0,1) sufficiently close to zero
such thatx′′ = λx̃+ (1−λ)x̄ ∈ B(x̄,δ). It follows by Claim 2 thatf (x̄) > f (x′′). But since
f (x̃) ≥ f (x̄) and f is quasi-concave onA, we have thatf (x′′) = f (λx̃+ (1−λ)x̄) ≥ f (x̄).
This is a contradiction, so the claim holds.
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Chapter 9

Constrained Optimization

9.1 Preliminaries

Let A be a subset ofRn, and f , g be real-valued functions onA. Define theconstraint
set, C ≡ {x ∈ A ∶ g(x) = 0}. A point x∗ ∈C is a point of local maximum of f subject to the
constraint g(x) =0, if there isδ >0, such thatx∈C∩B(x∗,δ) implies f (x) ≤ f (x∗). A point
x∗ ∈C is a point of global maximum of f subject to the constraint g(x)=0, if x∗ solves the
problem:

Max f(x)
sub ject tox∈C

9.2 Necessary Conditions for a Constrained Local Maxi-
mum

The basic necessary condition for a constrained local maximum is provided by Lagrange’s
theorem.

Theorem 40. (Lagrange)
Let A⊂ Rnbe open, and f∶ A→ R, g ∶ A→ R be continuously differentiable functions

on A. Suppose x∗ is a point of local maximum of f subject to the constraint g(x) = 0.
Suppose, further, that∇g(x∗) ≠ 0. Then there isλ∗ ∈R such that

[First-Order Condition] ∇ f (x∗) = λ∗∇g(x∗)
Remark: There is an easy way of remembering the conclusion of the theorem. We write

L(x;λ) = f (x)−λg(x)
141
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whereL ∶A×R→R. L is known as the “Lagrangian”, andλ as the “Lagrange multiplier”.
Consider now the problem of finding the local maximum in anunconstrained maximiza-
tion problemin whichL is the function to be maximized. The first-order conditions are

DiL(x,λ) = 0 f or i = 1, ...,n+1

This yields
Di f (x) = λDig(x) i = 1, ...,n

and
g(x) = 0

The firstn equations can be written as

∇ f (x) = λ∇g(x)
The method described above is known as the “Lagrange multiplier method”.
The Constraint Qualification

It is particularly important to check the condition∇g(x∗) ≠ 0, before applying the con-
clusion of Lagrange’s theorem. This condition is known as the constraint qualification.
Without this condition, the conclusion of Lagrange’s theorem would not be valid, as the
following example shows.
Example

Let f ∶R2
→R be given byf (x1, x2) = 2x1+3x2 for all (x1, x2) ∈R2; let g ∶R2

→R be
given byg(x1, x2) = x2

1+x2
2. Consider the constraint setC = {(x1, x2) ∈R2 ∶ g(x1,x2) = 0}.

The only element of this set is (0,0), so(x∗1, x∗2) = (0,0) is a point of local maximum off
subject to the constraintg(x) = 0.

The conclusion of Lagrange’s theorem does not hold here. For, if it did, there would
existλ∗ ∈R such that ∇ f (0,0) = λ∗∇g(0,0)
But this means that (2,3) = (0,0)
which is clearly a contradiction. The problem here is that∇g(x∗1, x∗2) =∇g(0,0) = (0,0),
so the constraint qualification is violated.

Theorem 41. Let A ⊂ Rn be open, and f∶ A→ R, g ∶ A→ R be twice continuously dif-
ferentiable functions on A. Suppose x∗ is a point of local maximum of f subject to the
constraint g(x) = 0. Suppose, further, that∇g(x∗) ≠ 0. Then there isλ∗ ∈R such that
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[First-Order Condition} ∇ f (x∗) = λ∗∇g(x∗)
[Second-Order Necessary Condition]yHL(x∗, λ∗)y≤ 0 for all y satisfying

y∇g(x∗) = 0

where L(x;λ∗) = f (x)−λ∗g(x) for all x ∈ A, and HL is the n×n Hessian matrix of L with
respect to(x1, ...,xn).
9.3 The Arithmetic Mean-Geometric Mean Inequality

Consider the constrained maximization problem

Max
n
Π
i=1

xi

sub ject to
n∑

i=1
xi = n

and xi ≥ 0 i = 1, ...,n

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(P)

DefineC = {x ∈ Rn
+ ∶ n∑

i=1
xi = 1). ThenC is a non-empty, closed and bounded set inRn.

DefineF ∶ Rn
→R by F(x1, ....,xn) = n

Π
i=1

xi. ThenF is a continuous function onRn. By

Weierstrass’ Theorem, there isx∗ ∈C, such thatF(x) ≤ F(x∗) for all x ∈C. That is,x∗

solves (P). Clearly,x∗i > 0 for all i. We can therefore conclude thatx∗ also solves the
following problem:

Max
n
Π
i=1

xi

sub ject to
n∑

i=1
xi = n

and xi > 0 i = 1, ...,n

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(Q)

DefineA = Rn
++; thenA is an open subset ofRn. Defineg ∶ Rn

++ → R by g(x1, ...,xn) =
n∑

i=1
xi −n, and f ∶Rn

++ →R by f (x1, ...,xn) = n
Π
i=1

xi. Thenx∗ solves(Q), sox∗ is a point of

local maximum of f subject to the constraintg(x) = 0. Also,∇g(x∗) = (1,1, ...,1) ≠ 0.
So, by the Lagrange theorem, there isλ ∈R, such that

∇ f (x∗) = λ∇g(x∗)
Definingy∗ ≡

n
Π
i=1

x∗i , we obtain

[(y∗/x∗1), ...,(y∗/x∗n)] = [λ, ....,λ]
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Thusλ > 0, andx∗i = (y∗/λ) for all i, so thatx∗1 = x∗2 = ... = x∗n. Since
n∑

i=1
x∗i = n, we getx∗i = 1

for all i. Thus
n
Π
i=1

x∗i =1. To summarize, we have now demonstrated that if(x1, ...,xn) ∈Rn
+,

and
n∑

i=1
xi = n, then

n
Π
i=1

xi ≤ 1.

Let a1, ...,an ben positive numbers. Defineα =
n∑

i=1
ai , andxi = [nai/α] for i = 1, ...,n.

Then(x1, ...,xn) ∈Rn
+ and

n∑
i=1

xi = n. So by our conclusion in the preceding paragraph, we

have
n
Π
i=1

xi ≤ 1. This means
n
Π
i=1
(nai/α) ≤ 1

so,

(n
a
)n n

Π
i=1

ai ≤ 1

and,

n
Π
i=1

ai ≤ (α
n
)n

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i=1

ai

n

⎤⎥⎥⎥⎥⎥⎥⎥⎦

n

This yields finally

( n
Π
i=1

ai)1/n ≤
n∑

i=1
ai

n
which is the Arithmetic Mean - Geometric Mean inequality.

9.4 Sufficient Conditions for a Constrained Local Maxi-
mum

Theorem 42. Let A⊂Rn be open, and f∶A→R, g ∶A→R be twice continuously differen-
tiable functions on A. Suppose(x∗,λ∗) ∈C×R and

[First-Order Condition] ∇ f (x∗) = λ∗∇g(x∗)
[Second-Order Sufficient Condition] yHL(x∗,λ∗)y<0 for all y≠0satisfying y∇g(x∗)=
0
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where L(x,λ∗) = f (x)−λ∗g(x) for all x ∈ A and HL is the n×n Hessian matrix of L with
respect to(x1, ....,xn). Then, x∗ is a point of local maximum of f subject to the constraint
g(x) = 0.

There is a convenient method of checking thesecond-order sufficient conditionstated
in the above theorem, by checking the signs of the leading principal minors of the relevant
“bordered” matrix. This method is stated in the following Proposition.

Proposition 5. Let B be an n×n symmetric matrix, and a be an n-vector with a1 ≠ 0.
Define the(n+1)×(n+1)matrix S by

S= [ 0 a
a B

]
and let∣S(k)∣ be the(k+1)th leading principal minor of S for k= 1, ...,n. Then the follow-
ing two statements are equivalent∶

(i) yBy< 0 for all y ≠ 0 such that ya= 0
(ii) (−1)k ∣S(k)∣ > 0 for k= 1, ...,n.

9.5 Sufficient Conditions for a Global Maximum

Theorem 43. Let A⊂Rn be an open convex set, and f∶A→R, g ∶A→R be continuously
differentiable functions on A. Suppose(x∗,λ∗) ∈C×R satisfies
[First-Order Condition] ∇ f (x∗) = λ∗∇g(x∗)
If L(x,λ∗) ≡ f (x)−λ∗g(x) is concave in x on A, then x∗ is a point of global maximum of
f subject to the constraint g(x) = 0.

To see this, letx ∈C. Then,

L(x,λ∗)−L(x∗,λ∗) ≤ (x−x∗)[∇ f (x∗)−λ∗∇g(x∗)]
by concavity ofL in x onA. Using the first-order condition, we get

f (x)−λ∗g(x) = L(x,λ∗) ≤ L(x∗,λ∗) = f (x∗)−λ∗g(x∗).
Sincex ∈C, andx∗ ∈C, we haveg(x) = g(x∗) = 0. Thus,f (x) ≤ f (x∗), and sox∗ is a point
of global maximum off subject to the constraintg(x) = 0.
Example: Let f ∶ R2

→ R be given by f (x,y) = (1− x2− y2); g ∶ R2
→ R be given by

g(x,y) = x+4y−2.
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To apply the sufficient conditions, set up the Lagrangian

L(x,y,λ) = (1−x2−y2)−λ[x+4y−2]
The first-order conditions yield

−(2x∗, 2y∗) = λ∗[1,4] (9.1)

Also, to satisfy the constraint,
x∗+4y∗ = 2 (9.2)

Thus, from (9.1),x∗ = −(λ∗/2), y∗ = −2λ∗. Using this in (9.2),

−(λ∗/2)−8λ∗ = 2 (9.3)

which yieldsλ∗ = −(4/17), x∗ = (2/17), y∗ = (8/17).
To check the second-order sufficient condition, we write therelevant bordered matrix

S= [ 0 ∇g(x∗,y∗)∇g(x∗,y∗) HL(x∗,y∗,λ∗) ] =
⎡⎢⎢⎢⎢⎢⎣

0 1 4
1 −2 0
4 0 −2

⎤⎥⎥⎥⎥⎥⎦
∣S(1)∣ = ∣ 0 1

1 −2 ∣ = −1< 0

∣S(2)∣ = (−1)∣ 1 0
4 −2 ∣+4∣ 1 −2

4 0
∣

= 2+32= 34> 0

Thus(−1)k ∣S(k)∣ > 0 fork = 1,2; by Proposition 5,zHL(x∗,y∗;λ∗)z< 0 for all z≠ 0 such
that z∇g(x∗,y∗) = 0. Thus, the second-order condition of Theorem 42 is satisfied, and
so (x∗,y∗) = (2/17,8/17) is a point of local maximum off subject to the constraints
g(x,y) = 0.

Notice that the Hessian ofL with respect to(x,y) is

HL = [ −2 0
0 −2 ]

which is negative definite. SinceA=R2 is a convex set,L(x,y,λ∗) is concave in(x,y) on
A. Hence, using Theorem 43,(x∗,y∗) = (2/17,8/17) is a point of global maximum off
subject to the constraintg(x,y) = 0.
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9.6 Worked Out Problems on Chapter 9

Problem 38 (Constrained Optimization: Proof of the Lagrange Theorem, using the Im-
plicit Function Theorem).

Let A be an open subset ofRn, and letf andg be continuously differentiable functions
from A to R. DefineC= {x ∈A ∶ g(x) = 0}. Assume that there is ¯x ∈C such that:

f (x) ≤ f (x̄) for all x ∈C
and Dng(x̄) ≠ 0

} (1)

(a) Use the implicit function theorem to show that there is anopen setX ⊂Rn−1 which
contains(x̄1,⋯, x̄n−1) and an open setY ⊂ R which contains ¯xn, and a unique function
h ∶X→Y such that(x1,⋯,xn−1,h(x1,⋯,xn−1)) ∈A for all (x1,⋯,xn−1) ∈X, and:

(i) g(x1, ...,xn−1,h(x1, ...,xn−1)) = 0 for all (x1, ...,xn−1) ∈X(ii) h(x̄1, ..., x̄n−1) = x̄n
} (2)

Further,h is continuously differentiable onX.

(b) Using (2), we have(x1, ...,xn−1,h(x1, ...,xn−1)) ∈C for all (x1, ...,xn−1) ∈ X, and so
by (1) we have, for all(x1, ...,xn−1) ∈X ∶

f (x1, ...,xn−1,h(x1, ...,xn−1)) ≤ f (x̄1, ..., x̄n−1, h(x̄1, ..., x̄n−1)) (3)

Use (2) and (3), and the Corollary in problem 1 above, to prove that if we defineλ =
Dn f (x̄)/Dng(x̄), then: ∇ f (x̄) = λ∇g(x̄) (4)

Solution.

(a) We want to show the existence of a Lagrange multiplier, giventhe knowledge that
x̄ ∈C solves the constrained optimization problem. We are told that

f (x) ≤ f (x̄) for all x ∈C andDng(x̄) ≠ 0 (1)

Treatingxn as the variable andx1, . . . ,xn−1 as parameters, we want to apply the Im-
plicit Function Theorem tog at the point ¯x= (x̄1, . . . , x̄n−1, x̄n) ∈A. We need to check
the following conditions:

● The functiong is defined and continuously differentiable on the open setA ⊂
Rn.
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● We are told that ¯x ∈C, which impliesg(x̄) = 0.

● We are given thatDng(x̄) ≠ 0. Sincexn is the only variable, this is the only
derivative condition we need to check.

By the Implicit Function Theorem, then, there is an open setX ⊂ Rn−1 containing(x̄1, . . . , x̄n−1), an open setY ⊂R containing ¯xn, and a unique functionh∶X→Y such
that(x1, . . . ,xn−1,h(x1, . . . ,xn−1)) ∈A for all (x1, . . . ,xn−1) ∈X and

(i) g(x1, . . . ,xn−1,h(x1, . . . ,xn−1)) = 0 for all (x1, . . . ,xn−1) ∈X
(ii) x̄n = h(x̄1, . . . , x̄n−1) } (2)

Further,h is continuously differentiable onX.

(b) By result (2)(i) above, we have that(x1, . . . ,xn−1,h(x1, . . . ,xn−1)) ∈C whenever(x1, . . . ,xn−1) ∈
X. Then sincef (x) ≤ f (x̄) for all x ∈C, we have that for all(x1, . . . ,xn−1) ∈X,

f (x1, . . . ,xn−1,h(x1, . . . ,xn−1)) ≤ f (x̄1, . . . , x̄n−1,h(x̄1, . . . , x̄n−1)) (3)

SinceDng(x̄) ≠ 0 we can defineλ = Dn f (x̄)
Dng(x̄) . We want to show that

∇ f (x̄) = λ∇g(x̄) (4)

That is, we want to show thatDi f (x̄) = λDig(x̄) for all i = 1, . . . ,n−1,n. Note that
the last of thesen equations,Dn f (x̄) = λDng(x̄), holds by the definition ofλ. Now,
define the functionF ∶X→R by

F(x1, . . . ,xn−1) = f (x1, . . . ,xn−1,h(x1, . . . ,xn−1)) for all (x1, . . . ,xn−1) ∈X

Since(x1, . . . ,xn−1,h(x1, . . . ,xn−1)) ∈C ⊂ A whenever(x1, . . . ,xn−1) ∈ X and sincef
is defined onA, the functionF is well-defined. We know thath is continuously dif-
ferentiable onX. Also, we found in part (a) that whenever(x1, . . . ,xn−1) ∈X we have(x1, . . . ,xn−1,h(x1, . . . ,xn−1)) ∈A, and we know thatf is continuously differentiable
onA. So we can use the Chain Rule to find the derivative ofF on the open setX. We
can also use the Chain Rule to differentiate result (2)(i) above. For alli = 1, . . . ,n−1
and all(x1, . . . ,xn−1) ∈X, we have

DiF(x1, . . . ,xn−1) =Di f (x1, . . . ,xn−1,h(x1, . . . ,xn−1))
+Dn f (x1, . . . ,xn−1,h(x1, . . . ,xn−1))Dih(x1, . . . ,xn−1) (5)

0=Dig(x1, . . . ,xn−1,h(x1, . . . ,xn−1))
+Dng(x1, . . . ,xn−1,h(x1, . . . ,xn−1))Dih(x1, . . . ,xn−1) (6)
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We have by (3) that(x̄1, . . . , x̄n−1) is a point of local maximum ofF . Now, because(x̄1, . . . , x̄n−1) ∈X, X is open, andF is continuously differentiable onX, we have by
the Corollary in problem 1 that∇F(x̄1, . . . , x̄n−1) = 0. That is,DiF(x̄1, . . . , x̄n−1) = 0
for all i = 1, . . . ,n−1. We also know from (2)(ii) that ¯xn = h(x̄1, . . . , x̄n−1). Evaluating
(5) and (6) at(x̄1, . . . , x̄n−1), then, for alli = 1, . . . ,n−1 we have

Di f (x̄1, . . . , x̄n−1, x̄n)+Dn f (x̄1, . . . , x̄n−1, x̄n)Dih(x̄1, . . . , x̄n−1) = 0 (7)

Dig(x̄1, . . . , x̄n−1, x̄n)+Dng(x̄1, . . . , x̄n−1, x̄n)Dih(x̄1, . . . , x̄n−1) = 0 (8)

Now, sinceDng(x̄) ≠ 0 we can solve (8) forDih(x̄1, . . . , x̄n−1) and plug this expres-
sion into (7) to obtain that for alli = 1, . . . ,n−1,

Di f (x̄)−Dn f (x̄)Dig(x̄)
Dng(x̄) = 0 (9)

Using the fact thatλ = Dn f (x̄)
Dng(x̄) , we have from (9) that for alli = 1, . . . ,n−1,

Di f (x̄) = λDig(x̄) (10)

SinceDn f (x̄) = λDng(x̄) holds by the definition ofλ, we have by (10) that (4) holds,
which is what we wanted to show.

Problem 39(Constrained Optimization: Sufficient Conditions for a Global Maximum).

SupposeA is an open convex set inRn
, f ∶A→R is continuously differentiable and concave

onA, andg ∶A→R is a linear function onA.
Suppose there is ¯x in A andλ ∈R which satisfy the following conditions:

(i) g(x̄) = 0(ii)∇ f (x̄) = λ∇g(x̄) }(FOC)
Show that ¯x solves the problem:

Max f(x)
sub ject to g(x) = 0
and x∈A

⎫⎪⎪⎪⎬⎪⎪⎪⎭(P)
Solution.
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Given theλ in the hypothesis of the theorem, define the functionL∶A→R by

L(x) = f (x)−λg(x) for all x ∈A

Becausef is concave onA, g is linear onA, andλ is fixed, we have thatL is concave
on A. Moreover,L is continuously differentiable onA becausef andg are continuously
differentiable onA. In addition, we are given thatA is open and convex. So we can apply
Theorem 27 to see that for allx ∈A satisfying the constraintg(x) = 0, we have

L(x)−L(x̄) ≤ (x− x̄)∇L(x̄)
f (x)− f (x̄)−λ(g(x)−g(x̄)) ≤ (x− x̄)(∇ f (x̄)−λ∇g(x̄))

f (x)− f (x̄) ≤ 0

This shows that ¯x solves the problem(P).
Problem 40(Sufficient Conditions for Constrained Maximization: Application).

We want to solve the problem:

Max ∏n
i=1 xi

sub ject to ∑n
i=1xi = n

and x∈Rn
+

⎫⎪⎪⎪⎬⎪⎪⎪⎭(Q)
by using the sufficient conditions for constrained maximization, developed in problem 4
above.

Instead of solving(Q) directly, we look at the following problem:

Max ∑n
i=1 ln xi

sub ject to ∑n
i=1xi −n= 0

and x∈Rn
++

⎫⎪⎪⎪⎬⎪⎪⎪⎭(R)
(a) DefineA=Rn

++, f ∶A→R by f (x) =∑n
i=1 ln xi for all x ∈A, andg ∶A→R by g(x) =

∑n
i=1xi −n for all x ∈ A. Verify thatA, f andg satisfy all the hypotheses stated in problem

4.
(b) Show that ¯x= (1,1, ...,1) andλ = 1 satisfy the(FOC) of problem 4. Use the result

of problem 4 to infer that ¯x= (1,1, ...,1) solves problem(R).
(c) Verify, using (b), that ¯x= (1,1, ...,1) solves:

Max ∏n
i=1 xi

sub ject to ∑n
i=1xi −n= 0

and x∈Rn
++

⎫⎪⎪⎪⎬⎪⎪⎪⎭(R
′)

(d) Conclude, using (c), that ¯x= (1,1, ...,1) solves(Q).
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Solution.

(a) DefineA=Rn
++ and note thatA is an open and convex set inRn. Now, definef ∶A→R

andg∶A→R by

f (x) = n∑
i=1

lnxi for all x ∈A, g(x) = n∑
i=1

xi −n for all x ∈A

The function f can be expressed as the sum of functions that are continuously dif-
ferentiable and concave onA, so f is also continuously differentiable and concave
on A. Also, g is linear onA. ThereforeA, f , andg satisfy all the hypotheses stated
in problem 4.

(b) It is straightforward to check that when ¯x= (1, . . . ,1) ∈A andλ = 1, we haveg(x̄) = 0
and∇ f (x̄) = λ∇g(x̄). Therefore by the sufficiency result in problem 4, ¯x solves the
problem(R).

(c) Define the functionh∶A→R by

h(x) = n∏
i=1

xi for all x ∈A

Then for allx∈A, we have lnh(x)= f (x), which is equivalent toh(x)=ef (x). Seeking
contradiction, suppose that ¯x solves(R) but does not solve(R′). Then there isx′ ∈A,
x′ ≠ x̄ satisfyingg(x′)=0 andh(x′)>h(x̄), which is equivalent toef (x′) >ef (x̄). Since
the exponential function is strictly increasing onR, this implies thatf (x′) > f (x̄).
But that contradicts ¯x solving(R), so it must be that ¯x solves both(R) and(R′).

(d) We have from part (c) thath(x̄) ≥ h(x) for all x ∈ A=Rn
++ satisfyingg(x) = 0. Con-

sider the set

S=Rn
+∖Rn

++ = {x ∈Rn
+ ∣ xi = 0 for somei ∈ {1, . . . ,n}}

For allx ∈S, we have thath(x) = 0< 1= h(x̄). Therefore ¯x solves(Q).
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Chapter 10

Concave Programming

10.1 Preliminaries

We will present below the elements of “modern optimization theory” as formulated by
Kuhn and Tucker, and a number of authors who have followed their general approach. As
in our exposition of “classical optimization theory”, we will concentrate on characterizing
points ofmaximumof a function of several variables (subject to certain constraints). The
theory which characterizes points ofminimumof a function of several variables (subject
to certain constraints) can be obtained analogously.

Modern constrained maximization theory is concerned with the following problem:

Max f(x)
Sub ject to gj(x) ≥ 0 f or j = 1, ...,m

and x∈X

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (P)

whereX is a non-empty subset ofRn, and f , g j( j = 1, ...,m) are functions fromX to R.
We define theconstraint set, C as follows:

C= {x ∈X ∶ g(x) ≥ 0}
where, as usual,g(x) = [g1(x), ...,gm(x)].

An element ˆx ∈ X is a point of constrained global maximumif x̂ solves the problem
(P). A pair (x̂, λ̂) ∈ (X×Rm

+) is asaddle pointif

φ(x, λ̂) ≤ φ(x̂, λ̂) ≤ φ(x̂,λ)
for all x ∈X and allλ ∈Rm

+ , whereφ(x,λ) = f (x)+λg(x) for (x,λ) ∈ X×Rm
+ .

154



CHAPTER 10. CONCAVE PROGRAMMING 155

10.2 Constrained Global Maxima and Saddle Points

A major part of modern optimization theory is concerned withestablishing (under suitable
conditions) an equivalence result between a point of constrained global maximum and a
saddle point. We explore this theory in what follows.

Theorem 44. If (x̂, λ̂) ∈ (X ×Rm
+) is a saddle point, then (i)̂λg(x̂) = 0, (ii) g(x̂) ≥ 0, and

(iii) x̂ is a point of constrained global maximum.

Proof. Since(x̂, λ̂) is a saddle point, we have for allλ ∈Rm
+ ,

f (x̂)+ λ̂g(x̂) ≤ f (x̂)+λg(x̂)
That is, we have

λ̂g(x̂) ≤ λg(x̂) f or all λ ∈Rm
+ (10.1)

Choosingλ = 0 in (10.1), we get̂λg(x̂) ≤ 0. Choosingλ = 2λ̂ in (10.1), we get̂λg(x̂) ≥ 0.
Thusλ̂g(x̂) = 0, which proves (i).

Using (i) in (10.1), we get

0≤ λg(x̂) f orall λ ∈Rm
+ (10.2)

Choosingλ in turn to be themunit vectors inRm in (10.2), we get

0≤ g(x̂) (10.3)

which proves (ii). Thus ˆx is in the constraint set,C. Now, letx be an arbitrary element of
C. Since(x̂, λ̂) is a saddle point, we have

f (x̂)+ λ̂g(x̂) ≥ f (x)+ λ̂g(x) (10.4)

Using (i), and the fact that̂λ ∈Rm
+ in (10.4), we obtain

f (x̂) ≥ f (x)
Thus,x̂ solves (P), proving (iii).//

A converse of Theorem 44 can be proved ifX is a convex set,f , g j( j = 1, ...,m) are
concave functions onX, and a condition on the constraints generally known as “Slater’s
condition” is satisfied. [Notice that none of these conditions are needed for the validity of
Theorem 44].

Given the problem (P), we will say thatSlater’s conditionholds if there is ¯x ∈ X, such
thatg j(x) > 0 for j = 1, ...,m.
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Theorem 45. (Kuhn-Tucker) Supposêx ∈ X is a point of constrained global maximum.
If X is a convex set, f,g j( j = 1, ...,m) are concave functions on X, and Slater’s condition
holds, then there iŝλ ∈Rm

+ such that (i)̂λg(x̂) = 0, and (ii) (x̂, λ̂) is a saddle point.

Proof. Define the setsA andB as follows:
A= {(α,β) ∈Rm+1 ∶ f (x)− f (x̂) ≥ α andg(x) ≥ β for somex ∈X}
B= {(α,β) ∈Rm+1 ∶ α > 0 andβ >> 0}

ThenB is clearly a non-empty, convex set. AndA is a non-empty, convex set, sinceX
is convex, andf , g j( j = 1, ...,m) are concave functions. Sincex solves(P), A andB are
disjoint. Using the Minkowski Separation theorem, we have(µ,ν) ∈Rm+1

, (µ,ν) ≠ 0, and
θ ∈R, such that

µα+νβ ≤ θ f orall (α,β) ∈A (10.5)

µα+νβ ≥ θ f orall (α,β) ∈B (10.6)

Using (10.5),θ ≥ 0, while using (10.6),θ ≤ 0. Thusθ = 0. Also, using (10.6),µ≥ 0 and
ν ≥ 0. Summarizing, we have(µ,ν) ∈Rm+1

+ ,(µ,ν) ≠ 0, such that

µ[ f (x)− f (x̂)]+νg(x) ≤ 0 (10.7)

for all x ∈X.
We claim, now, thatµ≠ 0. For if µ= 0, thenν ≠ 0, and (10.7) yields

νg(x) ≤ 0 f orall x ∈X (10.8)

By Slater’s Condition, there isx ∈ X with g(x) >> 0. Sinceν ≥ 0 andν ≠ 0, soνg(x) > 0,
which contradicts (10.8). Thus,µ≠ 0; that is,µ> 0. Defineλ̂ = (ν/µ). Thenλ̂ ∈Rm

+ and
(10.7) yields

f (x)+ λ̂g(x) ≤ f (x̂) f orall x ∈X (10.9)

Puttingx= x̂ in (10.9), we get
λ̂g(x̂) ≤ 0 (10.10)

Also g(x̂) ≥ 0, andλ̂ ∈Rm
+ implies

λ̂g(x̂) ≥ 0 (10.11)

Clearly (10.10) and (10.11) implŷλg(x̂) = 0, which proves (i).
Using (i) in (10.9), we get

f (x)+ λ̂g(x) ≤ f (x̂)+ λ̂g(x̂) f orall x ∈X (10.12)

If λ ∈Rm
+ , thenλg(x̂) ≥ 0, sinceg(x̂) ≥ 0. Thus, using (i) again, we have

f (x̂)+ λ̂g(x̂) ≤ f (x̂)+λg(x̂) f orall λ ∈Rm
+ (10.13)
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Combining (10.12) and (10.13), one can conclude that(x̂, λ̂) is a saddle point, which
establishes (ii).

The following examples demonstrate why the assumptions of Theorem 45 are needed
for the conclusion to be valid.
Example: Let X = R+; let f ∶ X → R be given by f (x) = x, andg ∶ X → R be given by
g(x) = −x2. ThenX is convex, f andg are concave. But Slater’s Condition is clearly
violated. It is easily checked that ˆx = 0 is a point of constrained global maximum. But
there is nôλ ∈R+ such that(x̂, λ̂) is a saddle point. For if there were such aλ̂, then

x− λ̂x2 ≤ x̂2− λ̂x̂2 = 0

for all x∈X. But by choosingx>0 andx sufficiently close to zero, this inequality is clearly
violated.
Example: Let X = R+; let f ∶ X → R be given byf (x) = x2, andg ∶ X → R be given by
g(x) = 1−x. Here,X is convex,g is concave, and Slater’s condition is satisfied with (for
instance)x= (1/2). Buf f is not concave onX. It is easily checked that ˆx= 1 is a point
of constrained global maximum. But there is noλ̂ ∈R+ such that(x̂, λ̂) is a saddle point.
For if there were such âλ, then

x2+ λ̂(1−x) ≤ x̂2+ λ̂(1− x̂) = 1

for all x ∈ X. But by choosingx > 0 andx sufficiently large, this inequality is clearly
violated.
Example: Let X = R+; let f ∶ X → R be given by f (x) = x, andg ∶ X → R be given by
g(x) = 1−x1/2. ThenX is convex, f is concave, and Slater’s condition is satisfied with
(for instance)x = (1/4). But g is not concave onX. It can be checked that ˆx= 1 is a point
of constrained global maximum. But there is noλ̂ ∈R+, such that(x̂, λ̂) is a saddle point.
For, if there were such âλ, then

x+ λ̂(1−x1/2) ≤ x̂+ λ̂(1− x̂1/2) = 1

for all x ∈ X. But, by choosingx > 0 andx sufficiently large, this inequality is clearly
violated.
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10.3 The Kuhn-Tucker Conditions and Saddle Points

Let X be an open set inRn, and f , g j( j = 1, ...,m) be continuously differentiable onX. A
pair (x̂, λ̂) in X×Rm

+ satisfies theKuhn-Tucker conditionsif

(i) Di f (x̂)+ m∑
j=1

λ̂ jDig j(x̂) = 0 i = 1, ...,n

(ii) g(x̂) ≥ 0 and λ̂g(x̂) = 0

A part of modern optimization theory is concerned with establishing the equivalence (un-
der some suitable conditions) between a saddle point and a point where the Kuhn-Tucker
conditions are satisfied. We examine this theory in what follows.

Theorem 46. Let X be an open set inRn, and f, g j( j = 1, ...,m) be continuously differen-
tiable on X. Suppose a pair(x̂, λ̂) ∈ X×Rm

+ satisfies the Kuhn-Tucker conditions. If X is
convex and f , gj[ j = 1, ...,m] are concave on X, then (i)(x̂, λ̂) is a saddle point, and (ii)̂x
is a point of constrained global maximum.

Proof. Define, as usual,φ(x,λ) = f (x)+λg(x) for (x,λ) ∈ X ×Rm
+ . Given λ̂, φ(x, λ̂) is

concave inx, since f andg j( j = 1, ...,n) are concave inx. Thus forx ∈X we have

φ(x, λ̂)−φ(x̂, λ̂) ≤ (x− x̂)∇φ(x̂, λ̂)
Using the Kuhn-Tucker conditions, we have∇φ(x̂, λ̂) = 0, so

φ(x, λ̂) ≤ φ(x̂, λ̂) f orall x ∈X (10.14)

Also, by the Kuhn-Tucker conditions,g(x̂) ≥ 0 andλg(x̂) = 0. So, for allλ ∈Rm
+ , φ(x̂,λ) =

f (x̂)+λg(x̂) ≥ f (x̂) = f (x̂)+ λ̂g(x̂) = φ(x̂, λ̂). Thus, we have

φ(x̂, λ̂) ≤ φ(x̂,λ) f orall λ ∈Rm
+ (10.15)

Using (10.14) and (10.15),(x̂, λ̂) is a saddle point, which proves (i). Using Theorem 44,
x̂ solves(P) which proves (ii).

Theorem 47. Let X be an open set inRn, and f , gj( j = 1, ...,m) be continuously differ-
entiable on X. Suppose a pair(x̂, λ̂) ∈ X×Rm

+ is a saddle point. Then(x̂, λ̂) satisfies the
Kuhn-Tucker conditions.
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Proof. Since(x̂, λ̂) is a saddle point, we have

φ(x, λ̂) ≤ φ(x̂, λ̂) f orall x ∈X

Thus, given̂λ, φ(x, λ̂) attains a maximum at ˆx ∈X. SinceX is open, andφ is continuously
differentiable onX, we have ∇φ(x̂, λ̂) = 0

Thus, Di f (x̂)+ m∑
j=1

λ̂ j Dig j(x̂) = 0 for i = 1, ...,n. Also, by Theorem 44, we know that

g(x̂) ≥ 0 andλ̂g(x̂) = 0. Thus(x̂, λ̂) satisfies the Kuhn-Tucker conditions.

10.4 The Kuhn-Tucker Conditions and Constrained Lo-
cal Maxima

An element ˆx ∈ X is apoint of constrained local maximumif x̂ ∈C and there isδ > 0 such
that for allx ∈B(x̂,δ)∩C, f (x̂) ≥ f (x).

Let X be an open set inRn, and f , g j( j = 1, ...,m) be continuously differentiable on
X. We now establish the useful result (corresponding to the classical Lagrange theorem)
that if x̂ ∈X is a point of constrained local maximum then under suitable conditions, there
is λ ∈Rm

+ such that(x̂, λ̂) satisfies the Kuhn-Tucker conditions. The important condition
needed for the development of this theory is called a “constraint qualification” (just as it is
in classical theory). While there are several versions of this condition, the following one,
due to Arrow, Hurwicz and Uzawa, appears to be the most useful.

Let x̄ be a point in the constraint setC. Let E(x̄) ⊂ {1, ...,m} be the set of indices,j,
for which the constraints arebindingat x̄; that isg j(x̄) = 0 for j ∈ E(x̄). Thenx̄ satisfies
theArrow-Hurwicz-Uzawa (AHU) constraint qualificationif at least one of the following
three conditions is satisfied:

(a) E(x̄) is empty
(b) X is a convex set andg j is a convex function for eachj ∈E(x̄)
(c) X is a convex set and there ish ∈Rn such thath∇g j(x̄) > 0 for all j ∈E(x̄).

Theorem 48. (Arrow-Hurwicz-Uzawa) Let X be an open set inRn, and f , gj( j = 1, ...,m)
be continuously differentiable on X. Supposex̂ ∈ X is a point of constrained local maxi-
mum. Suppose, further, thatx̂ satisfies the Arrow-Hurwicz-Uzawa constraint qualification
condition, then there iŝλ ∈Rm

+ such that(x̂, λ̂) satisfies the Kuhn-Tucker conditions.

Proof. If condition (a) of the AHU constraint qualification is satisfied, theng j(x̂) > 0 for
j = 1, ...,m. DefineY = {x ∈ X ∶ g j(x) > 0 for j = 1, ...,m}. Thenx̂ ∈Y is a point of local
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maximum of f on the open setY. So, by the theory of unconstrained maximum,

∇ f (x̂) = 0

Defineλ̂ j = 0 for j = 1, ...,m. Then,(x̂, λ̂) satisfies the Kuhn-Tucker conditions.
If condition (a) is not satisfied, letE ≡E(x̂) be the set of indices,j, for whichg j(x̂) =0.

(This is the set of effective constraints at the point of constrained local maximum). Since
x̂ is a point of constrained local maximum, there isδ > 0, such thatx ∈ B(x̂,δ)∩C implies
f (x) ≤ f (x̂). Let z∈Rn be an arbitrary vector satisfyingz∇g j(x̂) ≥ 0 for j ∈ E. We will
now show that

z∇ f (x̂) ≤ 0 (10.16)

if either condition (b) or condition (c) of the AHU constraint qualification is satisfied.
First, suppose condition (b) is satisfied. By definingh = tz with t̂ > t > 0 andt̂ suf-

ficiently close to zero, we haveh ∈ Rn, (x̂+h) ∈ B(x̂,δ), g j(x̂+h) > 0 for j ∈∼ E, and
h∇g j(x̂) ≥ 0 for j ∈ E. By convexity ofX and ofg j for j ∈ E, we haveg j(x̂+h)−g j(x̂) ≥
h∇g j(x̂) ≥ 0 for j ∈E. Thus,g j(x̂+h) ≥ g j(x̂) ≥ 0 for j ∈E. So(x̂+h) ∈B(x̂,δ)∩C. Since
x̂ is a point of constrained local maximum,f (x̂+h) ≤ f (x̂). Thus, by applying the Mean
Value theorem, we get 0≥ f (x̂+h)− f (x̂) = tz∇ f (ξ) whereξ is a convex combination of ˆx
and(x̂+ tz). Thus,z∇ f (ξ) ≤ 0. Lettingt → 0, we getξ→ x̂, and∇ f (ξ)→∇ f (x̂). So, we
obtainz∇ f (x̂) ≤ 0, which is (10.16).

Next, suppose condition (c) is satisfied. Definey = λh+z, whereλ ∈ (0,1), andh is
given by condition (c). Then, we havey∇g j(x̂) > 0 for all j ∈ E, sincez∇g j(x̂) ≥ 0 and
h∇g j(x̂) > 0 for eachj ∈E.Definingb= ty with t̂ > t > 0,andt̂ sufficiently close to zero, we
haveb∈Rn

,(x̂+b) ∈B(x̂,δ), g j(x̂+b) > 0 for j ∈∼E, and for allθ ∈ [0,1], b∇g j(x̂+θb) > 0
for j ∈ E. Now, for j ∈ E, by the Mean-Value theorem,g j(x̂+b)−g j(x̂) = b∇g j(x̂+θ jb)
for someθ j ∈ [0,1]. So, for j ∈ E, g j(x̂+b)−g j(x̂) > 0,and consequentlyg j(x̂+b) > 0.
Thus, (x̂+b) ∈ B(x̂,δ)∩C. Since x̂ is a point of constrained local maximum, we have
f (x̂+b) ≤ f (x̂). Now, following the argument used in the previous paragraph,we get
y∇ f (x̂) ≤ 0. Thus, we have shown that for everyλ ∈ (0,1), y = λh+z satisfiesy∇ f (x̂) ≤
0;that is,z∇ f (x̂)+λh∇ f (x̂) ≤ 0. Letting λ→ 0,we obtainz∇ f (x̂) ≤ 0, as we had claimed.

We have now established that ifz∈Rn is an arbitrary vector which satisfiesz∇g j(x̂) ≥0
for j ∈ E, thenz[−∇ f (x̂)] ≥ 0. By the Farkas Lemma [see Chapter 7 on “Convex Analy-
sis”], there exist̂λ j ≥ 0 for j ∈E, such that fori = 1, ...,n

−Di f (x̂) =∑ λ̂ jDig j(x̂)
Defineλ̂ j = 0 for j ∈∼E. Thenλ̂ ∈Rm

+ , and fori = 1, ...,n,

Di f (x̂)+ m∑
j=1

λ jDig j(x̂) = 0
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Sincex̂ ∈C, we getg(x̂) ≥ 0. Sinceg j(x̂) = 0 for j ∈ E, andλ̂ j = 0 for j ∈∼ E, we obtain
λ̂g(x̂) = 0. Thus,(x̂, λ̂) satisfies the Kuhn-Tucker conditions.

Corollary 6. Suppose X is an open, convex set inRn, and f,g j( j = 1, ...,m) are con-
tinuously differentiable on X. Supposex̂ ∈ X is a point of constrained local maximum.
Suppose, further, that at least one of the following two conditions is satisfied:

(i) g j is convex for all j= 1, ...,m
(ii) g j is concave for all j= 1, ...,m, and Slater’s condition holds.

Then, there iŝλ ∈Rm
+ such that(x̂, λ̂) satisfies the Kuhn-Tucker conditions.

Proof. Let E ≡ E(x̂) be the set of indices for whichg j(x̂) = 0. If E(x̂) is empty, then
condition (a) of the AHU constraint qualification is satisfied and the result follows from
Theorem 48. IfE is non-empty, and condition (i) is satisfied, then clearly condition (b) of
the AHU constraint qualification is satisfied and, again, theresult follows from Theorem
48.

SupposeE is non-empty, and condition (ii) is satisfied. Then, there isx̄ ∈C, such
thatg j(x̄) > 0 for j = 1, ...,m. Thus, for j ∈ E, we haveg j(x̄)−g j(x̂) ≤ (x̄− x̂)∇g j(x̂), by
concavity ofg j . Sinceg j(x̂) = 0 andg j(x̄) > 0 for eachj ∈E, we obtain(x̄− x̂)∇g j(x̂) > 0
for j ∈E. Definingh= (x̄− x̂) ∈Rn, we haveh∇g j(x̂) > 0 for all j ∈E, and so condition (c)
of the AHU constraint qualification is satisfied, and the result follows from Theorem 48.

Corollary 7. Suppose c∈ Rn, b ∈ Rk and A is a k×n matrix. Consider the following
maximization problem:

Max cx
Sub ject to Ax≤ b

and x∈Rn
+

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (P)
Supposêx solves(P), then there iŝµ∈Rk

+ such that for all x∈Rn
+, and all µ∈Rk

+
(i) cx+ µ̂(b−Ax) ≤ cx̂+ µ̂(b−Ax̂) ≤ cx̂+µ(b−Ax̂)
(ii) µ̂ solves the following minimization problem:

Min µb
Sub ject to µA≥ c
and µ∈Rk

+

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (Q)
Proof. DefineX =Rn; thenX is an open, convex set inRn. Define f ∶Rn

→R by f (x)= cx;
defineg j ∶Rn

→R by g j(x) = x j for j = 1, ...,n; g j(x) = (b−Ax)( j−n) for j = n+1, ...,n+k.
Definem= n+k. Then f , g j( j = 1, ...,m) are continuously differentiable onX. Clearlyg j
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is convex for allj =1, ...,m. Thus, there iŝλ ∈Rm
+ such that(x̂, λ̂) satisfies the Kuhn-Tucker

conditions, by applying Corollary 6. We can writeλ̂ = (ν̂, µ̂) whereν̂ ∈ Rn
+ andµ̂= Rk

+.
Then, we have fori = 1, ...,n

ci + ν̂i − k∑
j=1

µ̂ja ji = 0

That is,
c+ ν̂− µ̂A= 0 (10.17)

andx̂≥ 0, (b−Ax̂) ≥ 0, ν̂ x̂+ µ̂(b−Ax̂) = 0. Clearly, then,

ν̂ x̂= 0andµ̂(b−Ax̂) = 0 (10.18)

Using (10.17), we get for allx ∈ Rn
+, cx+ µ̂(b−Ax) = cx+ ν̂x− µ̂Ax+ µ̂b− ν̂x ≤ µ̂b. Also,

using (10.17) and (10.18), we get

cx̂+ µ̂(b−Ax̂) = cx̂+ ν̂ x̂− µ̂Ax̂+ µ̂b− ν̂ x̂= µ̂b (10.19)

Thus, for allx ∈Rn
+

cx+ µ̂(b−Ax) ≤ cx̂+ µ̂(b−Ax̂) (10.20)

For all µ ∈Rk
+, we havecx̂+µ(b−Ax̂) ≥ cx̂, since(b−Ax̂) ≥ 0. Alsocx̂+ µ̂(b−Ax̂) = cx̂,

sinceµ̂(b−Ax̂) = 0. Thus, for allµ∈Rk
+,

cx̂+µ(b−Ax̂) ≥ cx̂+ µ̂(b−Ax̂ (10.21)

Combining (10.20) and (10.21) establishes the result (i).
To prove (ii), we can proceed as follows. We get from (10.18),(10.19) that

cx̂= µ̂b (10.22)

Using this in (10.20), we get for allx∈Rn
+, (c−µ̂A)x+µ̂b≤ µ̂b+µ̂(b−Ax̂) and using (10.18)

in the above inequality (c− µ̂A)x≤ 0 f orall x ∈Rn
+ (10.23)

Choosingx in turn to be then unit vectors inRn, we get from (10.23),

µ̂A≥ c (10.24)

Sinceµ̂∈Rk
+, µ̂ is in the constraint set of problem(Q).

Now, consider an arbitraryµ ∈ Rk
+ such thatµA≥ c. Then(c−µA)x̂ ≤ 0 since

x̂ ∈Rm
+ , and using this in (10.21) yields

µb≥ cx̂+ µ̂(b−Ax̂) (10.25)

Using (10.18) and (10.22) in (10.25) implies thatµb≥ µ̂b. This proves that ˆµ solves(Q).
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10.5 Constrained Local and Global Maxima

It is clear that if x̂ is a point of constrained global maximum, then ˆx is also a point of
constrained local maximum. The circumstances under which the converse is true are
given by the following theorem.

Theorem 49. Let X be a convex set inRn. Let f,g j( j = 1, ...,m) be concave functions on
X. Supposêx is a point of constrained local maximum. Then,x̂ is a point of constrained
global maximum.

Proof. Sincex̂ is a point of constrained local maximum, there isδ > 0, such that for all
x ∈B(x̂,δ)∩C, we havef (x) ≤ f (x̂).

Now, if x is not a point of constrained global maximum, then there is some ¯x ∈C, such
that f (x̄) > f (x̂). One can choose 0< θ < 1 with θ sufficiently close to zero, such that
x̃ ≡ [θ x̄+ (1−θ)x̂] ∈ B(x̂,δ). SinceX is convex andg j( j = 1, ...,m) are concave,C is a
convex set, and ˜x≡ [θ x̄+(1−θ)x̂] ∈C. Thusx̃≡ [θ x̄+(1−θ)x̂] ∈ B(x̂,δ)∩C. Also, since
f is concave,f (x̃) = f (θ x̄+(1−θ)x̂) ≥ θ f (x̄)+(1−θ) f (x̂) > θ f (x̂)+(1−θ) f (x̂) = f (x̂).
But this contradicts the fact that ˆx is a point of constrained local maximum.
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10.6 Appendix: On the Kuhn-Tucker Conditions

Let X be an open set inRn, containingRn
+, and f ,G j( j = 1, ...,r) be continuously differ-

entiable onX. We consider the optimization problem:

Max f(x)
sub ject to Gj(x) ≥ 0 f or j = 1, ...,r

and x∈Rn
+

⎫⎪⎪⎪⎬⎪⎪⎪⎭(P)
We rewrite problem(P) in its equivalent form, given by:

Max f(x)
sub ject to gj(x) ≥ 0 f or j = 1, ...,m
and x∈X

⎫⎪⎪⎪⎬⎪⎪⎪⎭(Q)
wherem= r +n, and:

g j(x) =G j(x) f or j = 1, . . . ,r
g j(x) = x j−r f or j = r +1, . . . ,r +n

(1)

We can now write down the Kuhn-Tucker conditions for problem(Q). A pair (x̂, λ̂) in
X×Rm

+ satisfies theKuhn-Tucker conditionsfor problem(Q) if:

(i) Di f (x̂)+ m∑
j=1

λ̂ jDig j(x̂) = 0 i = 1, ...,n

(ii) g(x̂) ≥ 0 and λ̂g(x̂) = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭(KT I) (2)

Denotingλ̂r+i by µ̂i for i = 1, . . . ,n, andλ̂ j = ν̂ j for j = 1, . . . ,r, we see that (2) can be
written as: (i) Di f (x̂)+ r∑

j=1
ν̂ jDiG j(x̂)+ µ̂i = 0 i = 1, ...,n

(ii) G(x̂) ≥ 0, x̂≥ 0and ν̂G(x̂) = 0, µ̂x̂= 0
(3)

Sinceµ̂i ≥ 0 andµ̂i x̂i = 0 for i = 1, . . . ,n by (3), we obtain(x̂, ν̂) ∈Rn
+×Rr+:

(i)(a) Di f (x̂)+ r∑
j=1

ν̂ jDiG j(x̂) ≤ 0 i = 1, . . . ,n

(i)(b) [Di f (x̂)+ r∑
j=1

ν̂ jDiG j(x̂)]x̂i = 0 i = 1, . . . ,n

(ii)(a)G j(x̂) ≥ 0 f or j = 1, . . .r

(ii)(b) r∑
j=1

ν̂ jG j(x̂) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(KT II) (4)
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Conversely, given problem(P), suppose we can obtain(x̂, ν̂) ∈Rn
+×Rr+ satisfying(KT

II ). Then we can define:

µ̂i = −[Di f (x̂)+ r∑
j=1

ν̂ jDiG j(x̂)] f or i = 1, . . . ,n (5)

and:
λ̂ j = ν̂ j f or j = 1, . . . ,r, λ̂r+i = µ̂i f or i = 1, . . . ,n (6)

Then denoting(r +n) by m, we obtainµ̂∈Rn
+ by (KT II(i)(a)) and (5) and̂λ ∈Rm

+ by (6).
Further, defining:

g j(x) =G j(x) f or j = 1, . . . ,r
g j(x) = x j−r f or j = r +1, . . . ,r +n

(7)

we obtain:
g j(x̂) ≥ 0 f or j = 1, . . .m (8)

sincex̂ ∈Rn
+ and(KT II(ii)(a)) holds.

Finally, using(KT II(i)(b)) and(KT II(ii)(b)), one obtains:

ν̂G(x̂) = 0, µ̂x̂= 0 (9)

Combining (5)-(9), we obtain(x̂, λ̂) in X×Rm
+ such that:

(i) Di f (x̂)+ m∑
j=1

λ̂ jDig j(x̂) = 0 i = 1, ...,n

(ii) g(x̂) ≥ 0 and λ̂g(x̂) = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭(KT I) (10)

Thus (KT I) and (KT II) are equivalent ways of writing the Kuhn-Tucker conditions,
given problem(P).
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10.7 Worked Out Problems on Chapter 10

Problem 41(Using Kuhn-Tucker Sufficiency Theory by Contracting the Domain).

Let p be an arbitrary positive real number. Consider the followingconstrained opti-
mization problem:

Maximize x0.51 +x0.5
2

sub ject to px1+x2 ≤ px3+x4(x3)2+(x4)2 ≤ 1(x1,x2,x3,x4) ∈R4+

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(R)

(a) To solve problem(R), first solve problem(S) given below:

Maximize x0.51 +x0.5
2

sub ject to px1+x2 ≤ px3+x4(x3)2+(x4)2 ≤ 1(x1,x2,x3,x4) ∈R4++

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(S)

Define X = R4++ , f (x) = x0.5
1 + x0.5

2 , g1(x) = px3+ x4− px1− x2 , g2(x) = 1− [(x3)2+(x4)2] , wherex = (x1,x2,x3,x4) ∈ X. Write down and solve the Kuhn-Tucker conditions
for problem(S), and denote the solution of the Kuhn-Tucker conditions by(x̄, λ̄) ∈X×R2+.

(b) Show that ¯x solves problem(S), and(x̄, λ̄) satisfies:

f (x)+ λ̄g(x) ≤ f (x̄)+ λ̄g(x̄) for all x ∈X

(c) Use (b) and the continuity off , g1 andg2 onR4+ to establish that ¯x solves(R).
Solution.

(a) Define the setX =R4++ and define the functionsf , g1, andg2, each fromX to R, by

f (x) = x
1
2
1 +x

1
2
2 for all x ∈X

g1(x) = px3+x4− px1−x2 for all x ∈X

g2(x) = 1−x2
3−x2

4 for all x ∈X

A pair (x̄, λ̄) ∈ X ×R2+ satisfies the Kuhn-Tucker conditions for problem(S) if it
satisfies the following:

1
2

x̄
− 1

2
1 + λ̄1(−p) = 0 (1.1) px̄3+ x̄4− px̄1− x̄2 ≥ 0 (1.5)

1
2

x̄
− 1

2
2 + λ̄1(−1) = 0 (1.2) 1− x̄2

3− x̄2
4 ≥ 0 (1.6)

λ̄1(p)+ λ̄2(−2x̄3) = 0 (1.3) λ̄1(px̄3+ x̄4− px̄1− x̄2) = 0 (1.7)
λ̄1+ λ̄2(−2x̄4) = 0 (1.4) λ̄2(1− x̄2

3− x̄2
4) = 0 (1.8)
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Since the objective function is increasing inx1 andx2, we expect that the first con-
straint in problem(S)will hold with equality at any solution. In addition, the greater
is the right hand side of the first constraint, the greater is the value of the objective
function that we can achieve. So we expect the second constraint in problem(S) to
hold with equality, also.

Seeking contradiction, suppose thatλ̄1 = 0. Then (1.1) and (1.2) cannot hold, so we
have a contradiction. Thereforēλ1 > 0. By (1.7), then, we have

px̄3+ x̄4− px̄1− x̄2 = 0 (1.9)

Again seeking contradiction, suppose thatλ̄2 = 0. But then (1.4) implies that̄λ1 = 0,
which contradicts what we have just shown. Thereforeλ̄2 > 0, so by (1.8) we have

1− x̄2
3− x̄2

4 = 0 (1.10)

From (1.3) and (1.4), we have thatp= x̄3
x̄4

. Using this in (1.10), we have that(px̄4)2+
x̄2

4 = 1, which gives

x̄4 =
1√

1+ p2
, x̄3 = px̄4 =

p√
1+ p2

Now, using (1.1) and (1.2) to eliminatēλ1, we havep=
√

x̄2
x̄1

, or x̄2 = p2x̄1. Then we

can use (1.9) andp= x̄3
x̄4

to write p2x̄4+ x̄4− px̄1− p2x̄1 = 0. This implies that

x̄1 =
1+ p2

p(1+ p) x̄4 =

√
1+ p2

p(1+ p) , x̄2 = p2x̄1 =
p
√

1+ p2

1+ p

From (1.2) and then (1.4), we have

λ̄1 =
1
2

x̄
− 1

2
2 =

(1+ p) 1
2

2p
1
2(1+ p2) 1

4

, λ̄2 =
λ̄1

2x̄4
=
(1+ p) 1

2(1+ p2) 1
4

4p
1
2

The pair(x̄, λ̄) ∈X×R2+ given above is the unique solution to the Kuhn-Tucker con-
ditions for problem(S).
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(b) We need to verify that the conditions of the Kuhn-Tucker Sufficiency Theorem are
satisfied before we can conclude that ¯x solves problem(S).
The setX is open and convex inR4. The functionsf , g1, andg2 are continuously
differentiable onX.

The function f can be expressed as the sum of functions that are concave onX, so
f is concave onX. The functiong1 is linear onX, so it is concave onX. Now, the
functionsh1(x) = x2

3 andh3(x) = x2
4 are convex onX, so−h1 and−h2 are concave on

X. Since we can writeg2(x) = 1−h1(x)−h2(x) for all x ∈ X, we can expressg2 as
the sum of functions that are concave onX. This means thatg2 is concave onX.

So all the conditions of the Kuhn-Tucker Sufficiency Theoremare met. Since(x̄, λ̄) ∈
X×R2+ satisfies the Kuhn-Tucker conditions for problem(S), then,x̄ solves problem(S).
Theorem 46, Chapter 10, which is the Kuhn-Tucker Sufficiency Theorem, includes
the result that(x̄, λ̄) is a saddle point. By the definition of a saddle point, then, we
have thatf (x)+ λ̄g(x) ≤ f (x̄)+ λ̄g(x̄) for all x ∈X.

(c) Let x be an arbitrary point inR4+, and define the sequence{xn}∞n=1 by

xn = (x1+ 1
n
,x2+ 1

n
,x3+ 1

n
,x4+ 1

n
) for all n= 1,2, . . .

Thenxn ∈ R4++ for all n = 1,2, . . . , and the sequence{xn}∞n=1 converges tox. Since
f , g1, andg2 are continuous onR4+, the sequence{ f (xn)}∞n=1 converges tof (x), the
sequence{g1(xn)}∞n=1 converges tog1(x), and the sequence{g2(xn)}∞n=1 converges
to g2(x). That is, the sequence{ f (xn)+ λ̄g(xn)}∞n=1 converges tof (x)+ λ̄g(x).
Using the result in part (b) and the fact thatxn ∈ X = R4++ for all n = 1,2, . . . , we
have thatf (xn)+ λ̄g(xn) ≤ f (x̄)+ λ̄g(x̄) for all n= 1,2, . . . . Since weak inequalities
are preserved in the limit and the sequence{ f (xn)+ λ̄g(xn)}∞n=1 converges tof (x)+
λ̄g(x), we have thatf (x)+ λ̄g(x) ≤ f (x̄)+ λ̄g(x̄) for our arbitraryx ∈ R4+, and thus
for all x ∈R4+.

Now, in part (b) we said that(x̄, λ̄) is a saddle point for problem(S), which includes
the inequality f (x̄)+ λ̄g(x̄) ≤ f (x̄)+λg(x̄) for all λ ∈ R2+. So, from this and the
previous paragraph, we have that

f (x)+ λ̄g(x) ≤ f (x̄)+ λ̄g(x̄) ≤ f (x̄)+λg(x̄) for all (x,λ) ∈R4
+×R2

+

That is,(x̄, λ̄) is a saddle point for problem(R). By Theorem 44, then, ¯x solves
problem(R).
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Problem 42(Using Kuhn-Tucker Sufficiency Theory by Expanding the Domain).

Let a,b be arbitrary positive numbers, satisfyinga > b > 1. Consider the following con-
strained maximization problem:

Maximize aln(1+x1)+bln(1+x2)+x3

sub ject to x1+x2+x3 ≤ 1
and (x1,x2,x3) ∈R3

+

⎫⎪⎪⎪⎬⎪⎪⎪⎭(R)
(a) DefineX = {(x1,x2,x3) ∈R3 ∶ xi > −1 for all i ∈ {1,2,3}}. Now, definef (x1,x2,x3) =

aln(1+x1)+bln(1+x2)+x3 , g1(x1,x2,x3)=1−(x1+x2+x3), g2(x1,x2,x3)=x1, g3(x1,x2,x3)=
x2, g4(x1,x2,x3) = x3 for all (x1,x2,x3) ∈X. Write down the appropriate Kuhn-Tucker con-
ditions for problem(R).

(b) Solve the Kuhn-Tucker conditions in each of the following three cases: (i)a≥ 2b ;
(ii) a< 2b and(a+b) ≥ 3 ; (iii) a< 2b and(a+b) < 3.

(c) Use your solutions to the Kuhn-Tucker conditions to obtain solutions to(R) in each
of the three cases specified in (b) above.

Solution.

(a) Define the set

X = {(x1,x2,x3) ∈R3 ∣ xi > −1 for all i = 1,2,3}
Now, define the following functions, each fromX to R:

f (x1,x2,x3) = aln(1+x1)+bln(1+x2)+x3 for all (x1,x2,x3) ∈X

g1(x1,x2,x3) = 1−(x1+x2+x3) for all (x1,x2,x3) ∈X

g2(x1,x2,x3) = x1 for all (x1,x2,x3) ∈X

g3(x1,x2,x3) = x2 for all (x1,x2,x3) ∈X

g4(x1,x2,x3) = x3 for all (x1,x2,x3) ∈X

A pair (x̂, λ̂) ∈ X ×R4+ satisfies the Kuhn-Tucker conditions for problem(R) if it
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satisfies the following:

a
1+ x̂1

− λ̂1+ λ̂2 = 0 (2.1) x̂3 ≥ 0 (2.7)
b

1+ x̂2
− λ̂1+ λ̂3 = 0 (2.2) λ̂1[1−(x̂1+ x̂2+ x̂3)] = 0 (2.8)

1− λ̂1+ λ̂4 = 0 (2.3) λ̂2x̂1 = 0 (2.9)
1−(x̂1+ x̂2+ x̂3) ≥ 0 (2.4) λ̂3x̂2 = 0 (2.10)

x̂1 ≥ 0 (2.5) λ̂4x̂3 = 0 (2.11)
x̂2 ≥ 0 (2.6)

(b) We are looking for(x̂, λ̂) ∈ X ×R4+ satisfying (2.1)–(2.11). The motivation for the
following strategy was discussed in the final section meeting of the course.

First, we want to show that the budget constraint, (2.4), holds with equality. Seeking
contradiction, suppose thatλ̂1 = 0. Then (2.3) giveŝλ4 = −1≱ 0, which is a contra-
diction. Soλ̂1 > 0. Then by (2.8), we have

1−(x̂1+ x̂2+ x̂3) = 0 (2.12)

Next, we want to show that ˆx1 > 0. Seeking contradiction, suppose ˆx1 = 0. Then by
(2.1), λ̂1 = a+ λ̂2 ≥ a > 1. Then (2.3) implies that̂λ4 = λ̂1−1 > 0, so (2.11) implies
that x̂3 = 0. Then from (2.12) we have ˆx2 = 1, so (2.10) giveŝλ3 = 0. By (2.2), then,
λ̂1 =

b
2, so by (2.1) we havêλ2 =

b
2 −a. But we requirêλ2 ≥ 0, which can only hold

if b≥ 2a. This contradicts the given information thata> b> 1, so we conclude that
x̂1 > 0.

At this point we need to split the problem into cases.

Case 1: ˆx1 > 0, x̂2 = 0. By (2.9), we have that̂λ2 = 0. Since ˆx2 = 0, it follows from
(2.2) thatb− λ̂1+ λ̂3 = 0. Then (2.3) giveŝλ4 = λ̂1−1= b+ λ̂3−1> 0 sinceb> 1, so
(2.11) implies ˆx3 = 0. From (2.12), then, we have ˆx1 = 1. Plugging this into (2.1) and
using the fact that̂λ2 = 0, we havêλ1 =

a
2. Then (2.2) yieldŝλ3 =

a
2 −b. Since we

requireλ̂3 ≥ 0, we must havea≥ 2b. From (2.3) we havêλ4 =
a
2−1. Whena≥ 2b we

have thata> 2, soλ̂4 > 0.

Case 2: ˆx1 > 0, x̂2 > 0, x̂3 = 0. By (2.9) and (2.10), we have thatλ̂2 = 0 andλ̂3 = 0.
By (2.12), we have ˆx1+ x̂2 = 1. Using this after solving (2.1) and (2.2) forλ̂1 and
equating the two expressions, we havea2−x̂2

= b
1+x̂2

. This gives ˆx2 =
2b−a
a+b . Since we

must have ˆx2 > 0, this case requiresa< 2b. Thenx̂1 = 1− x̂2 =
2a−b
a+b > 0. Next, we can
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use (2.1) to solve for̂λ1 =
a

1+x̂1
= a+b

3 . Then from (2.3) we havêλ4 = λ̂1−1= a+b
3 −1.

Since we must havêλ4 ≥ 0, a further requirement for this case isa+b≥ 3.

Case 3: ˆx1 > 0, x̂2 > 0, x̂3 > 0. By (2.9), (2.10), and (2.11), we have thatλ̂2 = 0,
λ̂3 = 0, andλ̂4 = 0. Then (2.3) yieldŝλ1 = 1. Using this in (2.1) and (2.2), we have
x̂1 = a−1> 0 andx̂2 = b−1> 0. Then (2.12) implies ˆx3 = 1− x̂1− x̂2 = 3−(a+b), so
x̂3 > 0 requiresa+b< 3. Now, if a+b< 3 anda> b> 1, it must also be thata< 2b.

To summarize:

(i) If a≥ 2b, the unique solution to the Kuhn-Tucker conditions is

(x̂, λ̂) = ((1,0,0) ,(a
2
,0,

a
2
−b,

a
2
−1))

(ii) If a< 2b anda+b≥ 3, the unique solution to the Kuhn-Tucker conditions is

(x̂, λ̂) = ((2a−b
a+b

,

2b−a
a+b

,0) ,(a+b
3

,0,0,
a+b

3
−1))

(iii) If a< 2b anda+b< 3, the unique solution to the Kuhn-Tucker conditions is

(x̂, λ̂) = ((a−1,b−1,3−(a+b)),(1,0,0,0))
(c) We need to verify that the conditions of the Kuhn-Tucker Sufficiency Theorem are

satisfied before we can conclude that the various ˆxwe found in part (b) solve problem(R) under the associated parameter restrictions.

The setX, defined in part (a), is open and convex inR3. The functionsf , g1, g2, g3,
andg4 are continuously differentiable onX.

For allx ∈X, the Hessian off atx is

H f (x) =
⎡⎢⎢⎢⎢⎢⎢⎣
− a
(1+x1)2 0 0

0 − b
(1+x2)2 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
The first order principal minors ofH f (x) are− a

(1+x1)2 , − b
(1+x2)2 , and 0, which are

each less than or equal to zero for allx ∈ X. The second order principal minors of
H f (x) are a

(1+x1)2
b

(1+x2)2 and 0, which are both greater than or equal to zero for all
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x ∈ X. The determinant ofH f (x) is zero for allx ∈ X. SoH f (x) is negative semi-
definite for allx ∈X. Therefore, sinceX is an open set, we have thatf is concave on
X.

Since the functionsg1, g2, g3, andg4 are linear onX, they are concave onX.

By the Kuhn-Tucker Sufficiency Theorem, if a pair(x̂, λ̂) ∈X×R4+ satisfies the Kuhn-
Tucker conditions given by (2.1)–(2.11), then ˆx solves problem(R). So from part
(b) we have the following solutions to problem(R), depending on the values of the
parametersa andb:

(i) If a≥ 2b, thenx̂= (1,0,0) solves(R).
(ii) If a< 2b anda+b≥ 3, then ˆx= (2a−b

a+b ,
2b−a
a+b ,0) solves(R).

(iii) If a< 2b anda+b< 3, then ˆx= (a−1,b−1,3−(a+b)) solves(R).
Problem 43 (Using Kuhn-Tucker Sufficiency Theory for a Non-Differentiable Objective
Function).

Let a1,a2, p1, p2,w be arbitrary positive numbers. Consider the constrained optimization
problem:

Maximize min{a1x1,a2x2}
sub ject to p1x1+ p2x2 ≤w(x1,x2) ≥ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭(Q)
Here the objective function is not differentiable (the indifference curves are L-shaped).
Instead of solving(Q), we consider the following constrained optimization problem:

Maximize a1x1

sub ject to a2x2 ≥ a1x1

p1x1+ p2x2 ≤w(x1,x2) ≥ 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(Q′)

(a) Solve problem(Q′) by using the Kuhn-Tucker sufficiency theorem.
(b) Show that any solution of(Q′) is also a solution of(Q).

Solution.

(a) To use the Kuhn-Tucker Sufficiency Theorem, we need to specify an open setX.
The setR2++ would work, but we would have to go through the trouble of ruling out
corner solutions. On the other hand, if we think about solving the utility maximiza-
tion problem on all ofR2, it is clear that the solution will be somewhere inR2++. So



CHAPTER 10. CONCAVE PROGRAMMING 173

it suffices to useX = R2, and we don’t even have to include the constraintsx1 ≥ 0
andx2 ≥ 0 as long as we find a solution ˆx ∈R2+ for all positive parameter values, as
required by the problem.

Define the following functions, each fromX =R2 toR:

f (x1,x2) = a1x1 for all (x1,x2) ∈X

g1(x1,x2) = a2x2−a1x1 for all (x1,x2) ∈X

g2(x1,x2) =w− p1x1− p2x2 for all (x1,x2) ∈X

Now, X is open and convex inR2. The functionsf , g1, andg2 are each linear on
X, so they are each continuously differentiable and concave on X. Therefore all the
conditions of the Kuhn-Tucker Sufficiency Theorem are met. Apair (x̂, λ̂) ∈X×R2+
satisfies the Kuhn-Tucker conditions for problem(Q′) if it satisfies the following:

a1− λ̂1a1− λ̂2p1 = 0 (3.1)

λ̂1a2− λ̂2p2 = 0 (3.2)

a2x̂2−a1x̂1 ≥ 0 (3.3)

w− p1x̂1− p2x̂2 ≥ 0 (3.4)

λ̂1(a2x̂2−a1x̂1) = 0 (3.5)

λ̂2(w− p1x̂1− p2x̂2) = 0 (3.6)

First, note that (3.1) and (3.2) form two equations in two unknowns. Without divid-
ing by λ̂1 or λ̂2, we can solve them for

λ̂1 =
a1p2

a2p1+a1p2
, λ̂2 =

a1a2

a2p1+a1p2

Sinceλ̂1 > 0 andλ̂2 > 0, from (3.5) and (3.6) we have thata2x̂2−a1x̂1 = 0 andw−
p1x̂1− p2x̂2 = 0. This is again two equations in two unknowns, and without dividing
by x̂1 or x̂2 we can solve them for

x̂1 =
a2w

a2p1+a1p2
> 0, x̂2 =

a1w
a2p1+a1p2

> 0

By the Kuhn-Tucker Sufficiency Theorem,(x̂1, x̂2) solves problem(Q′).
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(b) Consider the problem

maximize a2x2

subject to a1x1 ≥ a2x2

p1x1+ p2x2 ≤w(x1,x2) ≥ 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(Q′′)

Following steps symmetric to those in part (a), we have that the solution ˆx also solves
problem(Q′′).
Let x̄ by a solution to problem(Q′). Thenx̄ also solves problem(Q′′). Note that
a1x̄1 = a2x̄2. Seeking contradiction, suppose that ¯x is not a solution to(Q). Then
there is somex′ ∈R2+, x′ ≠ x̄ such thatp1x′1+ p2x′2 ≤w and min{a1x′1,a2x′2} > a1x̄1 =

a2x̄2. We can consider two cases.

Case 1: min{a1x′1,a2x′2} = a1x′1. Then we havea1x′1 ≤ a2x′2, so thatx′ is in the
constraint set of problem(Q′), anda1x′1 > a1x̄1. This contradicts ¯x solving problem(Q′).
Case 2: min{a1x′1,a2x′2} = a2x′2. Then we havea2x′2 ≤ a1x′1, so thatx′ is in the
constraint set of problem(Q′′), anda2x′2 > a2x̄2. This contradicts ¯x solving problem(Q′′).
In either of these two collectively exhaustive cases, we arrive at a contradiction. So
it must be that if ¯x solves(Q′), thenx̄ also solves(Q).

Problem 44(Applying the Arrow-Hurwicz-Uzawa Necessity Theorem).

Let a,b,c andp,q,r be arbitrary positive numbers, satisfying: 1> (p/r) ≥ (a+b)c. Con-
sider the following two problems of constrained optimization:

Maximize xac
1 xbc

2 − px1−qx2

sub ject to (x1,x2) ∈R2+
}(Q)

Maximize xac
1 xbc

2 − px1−qx2

sub ject to rx1+qx2−xac
1 xbc

2 ≥ 0(x1,x2) ∈R2+

⎫⎪⎪⎪⎬⎪⎪⎪⎭(R)
(a) Using an appropriately modified version of Weierstrass theorem, establish that there

is a solution ¯x to problem(Q), and a solution ˆx to problem(R).
(b) Show that ¯xi > 0 for i = 1,2 , and ˆxi > 0 for i = 1,2.
(c) Use the Arrow-Hurwicz-Uzawa necessity theorem to compare the solutions ¯x and

x̂ , and show that: (x̂1/ x̂2) > (x̄1/ x̄2)
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explaining your procedure clearly.[Hint: you might want touse the fact thatxac
1 xbc

2 is
homogeneous of degree(a+b)c in (x1,x2)].
Solution.

(a) Define f ∶R2+→R andg∶R2+→R by

f (x1,x2) = xac
1 xbc

2 − px1−qx2 for all (x1,x2) ∈R2
+

g(x1,x2) = rx1+qx2−xac
1 xbc

2 for all (x1,x2) ∈R2
+

Note thatf andg are continuous onR2+. Define the constraint sets

CQ =R
2
+, CR= {(x1,x2) ∈R2

+ ∣ g(x1,x2) ≥ 0}
Now,CQ is closed inR2 sinceR2+ is closed inR2, andCQ is nonempty since(0,0) ∈
CQ. Also,CR is closed inR2 sinceg is continuous onR2+, andCR is nonempty since(0,0) ∈CR. ButCQ andCR are both unbounded sets inR2.

Because(a+b)c < 1, for large enoughx1 or x2, we will have f (x1,x2) < 0. So
we can use(0,0), with f (0,0) = 0, as our comparison point in order to apply the
Extension of Weierstrass Theorem. Here is a formal argumentof this. First, define
k=max{x1,x2} andπ =min{p,q}. Then we have

f (x1,x2) = xac
1 xbc

2 − px1−qx2

≤ [max{x1,x2}](a+b)c− [min{p,q}](x1+x2)
= k(a+b)c−π(x1+x2)
≤ k(a+b)c−π[max{x1,x2}]
= k(a+b)c−πk

Define the functione∶R+→R by

e(k) = k(a+b)c−πk for all k≥ 0

Our goal is to find somēk> 0 such thate(k) < 0 wheneverk> k̄. That will imply that
f (x1,x2) < 0 whenever max{x1,x2} > k̄.

For k > 0, there is a unique solution to the equatione(k) = 0, which isk̄ = π
1

(a+b)c−1 .
Now, e′(k) = (a+b)ck(a+b)c−1−π for all k > 0. Since(a+b)c−1< 0, we have that
e′(k̄) = π((a+b)c−1) < 0. Sincek̄ is the unique solution toe(k) = 0 for k > 0, e is
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continuous on its domain, ande′(k̄) <0, we have thate(k) <0 for all k> k̄. Therefore
f (x1,x2) < 0 whenever max{x1,x2} > k̄.

Define the sets

C̄Q = {(x1,x2) ∈R2
+ ∣max{x1,x2} ≤ k̄}

C̄R= {(x1,x2) ∈R2
+ ∣max{x1,x2} ≤ k̄ andg(x1,x2) ≥ 0}

Since (0,0) ∈ C̄Q and (0,0) ∈ C̄R, these sets are nonempty. Sinceg(x1,x2) and
max{x1,x2} are continuous functions onR2+ and the sets are defined by weak in-
equalities, the sets are closed. And the restriction max{x1,x2} ≤ k̄ means that the
sets are bounded.

Now, for any(x1,x2) ∈CQ∖C̄Q, or for any(x1,x2) ∈CR∖C̄R, we have that max{x1,x2}>
k̄, so it must be thatf (x1,x2) < 0= f (0,0). So by the Extension of Weierstrass The-
orem, there is some ¯x ∈ C̄Q that solves problem(Q) and some ˆx ∈ C̄R that solves
problem(R).

(b) Seeking contradiction, suppose that ¯x1 = 0 or x̄2 = 0. Then f (x̄1, x̄2) ≤ 0. But for

0< ε < (p+q) 1
(a+b)c−1 , we have that

f (ε,ε) = εacεbc− pε−qε

= ε(ε(a+b)c−1− p−q)
> 0

Since(ε,ε) ∈CQ and f (ε,ε)> f (x̄1, x̄2), we have a contradiction of ¯xsolving problem(Q). So it must be that ¯x1 > 0 andx̄2 > 0.

The idea for showing that ˆx1 > 0 andx̂2 > 0 is conceptually similar, but the proof is a
bit trickier because we now have the constraint to worry about. First, define

δ = (r +q) 1
(a+b)c−1 > 0

This ensures that the constraint is satisfied:g(δ,δ) = 0. Seeking contradiction, sup-
pose that ˆx1 = 0 or x̂2 = 0. Then f (x̂1, x̂2) ≤ 0. Now, sincer > p and(a+b)c< 1, we
have that

δ = (r +q) 1
(a+b)c−1 < (p+q) 1

(a+b)c−1

Thereforef (δ,δ) > 0. Then(δ,δ) ∈CR and f (δ,δ) > f (x̂1, x̂2), which is a contradic-
tion of x̂ solving problem(R). So it must be that ˆx1 > 0 andx̂2 > 0.
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(c) DefineX =R2++. ThenX is open inR2 and the functionsf andg are continuously
differentiable onX. By parts (a) and (b), there is some ¯x ∈ X that is a point of
local maximum in problem(Q) and some ˆx ∈X that is a point of local maximum in
problem(R).
We need to verify that the Arrow-Hurwicz-Uzawa Constraint Qualification is satis-
fied. We have thatX is convex. For allx ∈X, the Hessian ofg atx is

Hg(x) = [ ac(1−ac)xac−2
1 xbc

2 abc2xac−1
1 xbc−1

2
abc2xac−1

1 xbc−1
2 bc(1−bc)xac

1 xbc−2
2

]
Since(a+b)c < 1 with each parameter positive, it must be thatac< 1 andbc< 1.
Thereforeac(1−ac)xac−2

1 xbc
2 > 0 andbc(1−bc)xac

1 xbc−2
2 > 0. Now, the determinant

of the Hessian ofg at anyx∈X is abc2(1−ac−bc)x2ac−2
1 x2bc−2

2 > 0 since(a+b)c< 1.
This means that the Hessian ofg is positive semi-definite for allx ∈ X, which is
equivalent to saying thatg is a convex function onX. Therefore the Arrow-Hurwicz-
Uzawa Constraint Qualification is satisfied.

By the Arrow-Hurwicz-Uzawa Necessity Theorem, then, there is somêλ ∈R+ such
that x̄ satisfies the Kuhn-Tucker conditions for problem(Q) and(x̂, λ̂) satisfies the
Kuhn-Tucker conditions for problem(R).
Note that because of the result in part (b), we could apply theArrow-Hurwicz-
Uzawa Necessity Theorem to problem(R) only and use unconstrained optimization
theory on problem(Q). This would require showing thatf is concave onR2++, so
that the first order conditions are sufficient for a solution.

Also note that regarding problem(R), the result in part (b) allows us to leave the
constraints ˆx1 > 0 andx̂2 > 0 out of the Kuhn-Tucker conditions, so that we do not
have to deal with two additional multipliers.

Now, the Kuhn-Tucker conditions for problem(Q) are

acx̄ac−1
1 x̄bc

2 − p= 0 (4.1)

bcx̄ac
1 x̄bc−1

2 −q= 0 (4.2)

From (4.1) and (4.2), we can obtain

x̄1

x̄2
=

q
p

a
b

(4.3)
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The Kuhn-Tucker conditions for problem(R) are

acx̂ac−1
1 x̂bc

2 − p+ λ̂(r −acx̂ac−1
1 x̂bc

2 ) = 0 (4.4)

bcx̂ac
1 x̂bc−1

2 −q+ λ̂(q−bcx̂ac
1 x̂bc−1

2 ) = 0 (4.5)

rx̂1+qx̂2− x̂ac
1 x̂bc

2 ≥ 0 (4.6)

λ̂(rx̂1+qx̂2− x̂ac
1 x̂bc

2 ) = 0 (4.7)

If λ̂ = 0 then the solution to problem(R) will be the same as the solution to problem(Q). But we wantx̂1
x̂2
> x̄1

x̄2
, so we need to show thatλ̂ ≠ 0.

We can start by rewriting (4.5) as

(λ̂−1)(q−bcx̂ac
1 x̂bc−1

2 ) = 0 (4.8)

Now, if λ̂ = 1, then from (4.4) we haver = p, which is a contradiction of the given
information thatr > p. So it must be that̂λ ≠ 1. Then by (4.8), we have

qx̂2 = bcx̂ac
1 x̂bc

2 (4.9)

Seeking contradiction, supposeλ̂ = 0. Then by (4.4), we havepx̂1 = acx̂ac
1 x̂bc

2 . Using
(4.9) in (4.6), we haverx̂1 ≥ (1−bc)x̂ac

1 x̂bc
2 . Now, divide the left side of this inequal-

ity by px̂1 and the right side byacx̂ac
1 x̂bc

2 , recalling that the divisors are equal. The
result is r

p ≥
1−bc

ac . But we are also given thatr
p ≤

1
(a+b)c, so we can form the inequality

1
(a+b)c ≥

1−bc
ac , which is equivalent toa≥ (1−bc)(a+b) = a+b−abc−b2c. Rearrang-

ing, we have thatb(1−ac−bc) ≤ 0, which, sinceb> 0, implies that(a+b)c≥ 1. But
this is a contradiction of the given information that(a+b)c< 1, so we can conclude
thatλ̂ > 0.

Using (4.7) and (4.9), then, we have

rx̂1+(bc−1)x̂ac
1 x̂bc

2 = 0 (4.10)

Since(a+b)c < 1, we havebc−1 < −ac, so (4.10) implies thatrx̂1−acx̂ac
1 x̂bc

2 > 0.
Multiplying (4.4) by x̂1, then, we have

acx̂ac
1 x̂bc

2 < px̂1 (4.11)

We can divide the left side of (4.11) bybcx̂ac
1 x̂bc

2 and the right side byqx̂2. Since the
divisors are equal by (4.9), we have

x̂1

x̂2
>

q
p

a
b

(4.12)
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Combining (4.3) and (4.12), we have the result:

x̂1

x̂2
>

x̄1

x̄2
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Chapter 11

Quasi-Concave Programming

11.1 Properties of Concave and Quasi-concave functions

For this section, it is convenient to denoteRn
+ by Y andRn

++ by Z.

11.1.1 Concave Functions

Lemma 1. If h ∶Y→R is continuous on Y and concave on Z, then it is concave on Y.

Proof. Let x, x̄ ∈Y and 0< θ < 1 be given. Denote the vector(1, . . . ,1) ∈Y by u and define:

xs= x+(u/s), x̄s= x̄+(u/s) f or s= 1,2,3, ... (11.1)

Thenxs ∈ Z andx̄s ∈ Z for eachs. Sinceh is concave onZ, we have for eachs:

h(θxs+(1−θ)x̄s) ≥ θh(xs)+(1−θ)h(x̄s) (11.2)

Now, lets→∞. Then,xs
→ x, x̄s

→ x̄ and(θxs+(1−θ)x̄s)→ (θx+(1−θ)x̄). Using (11.2)
and the continuity ofh onY, we get:

h(θx+(1−θ)x̄) ≥ θh(x)+(1−θ)h(x̄) (11.3)

This establishes thath is concave onY.

Lemma 2. Let X be an open set containing Y. Let h be continuously differentiable on X
and concave on Y. If x, x̄ ∈Y, then:

h(x)−h(x̄) ≤ (x− x̄)∇h(x̄) (11.4)

181
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Proof. Denote the vector(1, . . . ,1) ∈Y by u and define:

xs= x+(u/s), x̄s= x̄+(u/s) f or s= 1,2,3, ... (11.5)

Thenxs ∈Z andx̄s ∈Z for eachs. Sinceh is concave and continuously differentiable on the
open convex setZ, we have for eachs:

h(xs)−h(x̄s) ≤ (xs− x̄s)∇h(x̄s) (11.6)

Now, let s→∞. Then,xs
→ x, x̄s

→ x̄. Using (11.6) and the continuous differentiability of
h onX, we get (11.4).

11.1.2 Quasi-concave functions

Lemma 3. If h ∶Y→R is continuous on Y and quasi-concave on Z, then it is quasi-concave
on Y.

Proof. Let x, x̄ ∈Y be given withh(x) ≥ h(x̄), and let 0< θ < 1 be given. We have to show
that:

h(θx+(1−θ)x̄) ≥ h(x̄) (11.7)

Suppose, contrary to (11.7), we have:

h(θx+(1−θ)x̄) < h(x̄) (11.8)

Then, there isε > 0 such that:

h(θx+(1−θ)x̄) < h(x̄)−ε (11.9)

Denote the vector(1, . . . ,1) ∈Y by u and define:

xs= x+(u/s), x̄s= x̄+(u/s) f or s= 1,2,3, ... (11.10)

Then, sincexs
→ x andx̄s

→ x̄ ass→∞, andh is continuous onY, we can findSsuch that
for all s≥S,

h(xs) ≥ h(x)−ε, h(x̄s) ≥ h(x̄)−ε (11.11)

Sinceh is quasi-concave onZ, andxs ∈ Z, x̄s ∈ Z for s≥S, we get:

h(θxs+(1−θ)x̄s) ≥ min{h(xs),h(x̄s)}
≥ min{h(x)−ε,h(x̄)−ε}
= h(x̄)−ε (11.12)

Since(θxs+(1−θ)x̄s)→ (θx+(1−θ)x̄) ass→∞, andh is continuous onY, (12) yields:

h(θx+(1−θ)x̄) ≥ h(x̄)−ε

which contradicts (11.9) and establishes (11.7).
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Lemma 4. Let X be an open set containing Y. Let h be continuously differentiable on X
and quasi-concave on Y. If x, x̄ ∈Y, and h(x) ≥ h(x̄), then:

(x− x̄)∇h(x̄) ≥ 0 (11.13)

Proof. For 0< θ < 1, definex(θ) = (θx+(1−θ)x̄); thenx(θ) ∈Y, sinceY is a convex set.
By quasi-concavity ofh onY,

h(x(θ)) = h(θx+(1−θ)x̄) ≥ h(x̄) (11.14)

Sinceh is continuously differentiable onX, we can apply the Mean-Value Theorem to
obtainz(θ) ∈Y, such that:

h(x(θ))−h(x̄) = [x(θ)− x̄]∇h(z(θ)) = θ[x− x̄]∇h(z(θ)) (11.15)

wherez(θ) is a convex combination ofx(θ) andx̄. Using (11.14) and (11.15), we obtain
for each 0< θ < 1: [x− x̄]∇h(z(θ)) ≥ 0 (11.16)

Lettingθ→ 0, we see thatx(θ)→ x̄ and soz(θ)→ x̄. Using the continuous differentiability
of h onX,and (11.16), we get (11.13).

11.2 Definitions

Let X be an open set inRn, containingRn
+, and f ,G j( j = 1, ...,r) be continuously differ-

entiable onX. We are concerned with the optimization problem:

Max f(x)
sub ject to Gj(x) ≥ 0 f or j = 1, ...,r

and x∈Rn
+

⎫⎪⎪⎪⎬⎪⎪⎪⎭(P)
A pair (x̂, ν̂) ∈Rn

+×Rr+ satisfies theKuhn-Tucker conditionsif:

(i)(a) Di f (x̂)+ r∑
j=1

ν̂ jDiG j(x̂) ≤ 0 i = 1, . . . ,n

(i)(b) [Di f (x̂)+ r∑
j=1

ν̂ jDiG j(x̂)]x̂i = 0 i = 1, . . . ,n

(ii)(a) G j(x̂) ≥ 0 f or j = 1, . . .r

(ii)(b) r∑
j=1

ν̂ jG j(x̂) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(KT II) (11.17)
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For problem(P), these Kuhn-Tucker conditions(KT II) are equivalent to the ones in-
troduced in our discussion of concave programming in Chapter10 (see handout on Kuhn-
Tucker conditions).

The constraint setis defined asC = {x ∈ Rn
+ ∶G j(x) ≥ 0 for j = 1, ...,r}. We say that

Slater’s Conditionis satisfied if there isx∗ ∈C, such thatG j(x∗) > 0 for j = 1, ...,r.

11.3 The Sufficiency Theorem of Arrow-Enthoven

Lemma 5. Suppose f,G j( j =1, ...,r) are continuously differentiable functions on X. Sup-
pose there is a pair(x̂, ν̂) ∈Rn

+×Rr+, such that(x̂, ν̂) satisfies the Kuhn-Tucker conditions.
If each Gj is quasi-concave onRn

+, then

x ∈C implies(x− x̂)∇ f (x̂) ≤ 0 (11.18)

Proof. Let x ∈C. Then, we have

(x− x̂)∇ f (x̂) = (x− x̂)[∇ f (x̂)+ r∑
j=1

ν̂ j∇G j(x̂)]
−(x− x̂) r∑

j=1
ν̂ j∇G j(x̂)

= x[∇ f (x̂)+ r∑
j=1

ν̂ j∇G j(x̂)]
−(x− x̂) r∑

j=1
ν̂ j∇G j(x̂)

≤ −(x− x̂) r∑
j=1

ν̂ j∇G j(x̂)
If ν̂ j = 0 for some j, then ν̂ j(x− x̂)∇G j(x̂) = 0 for that j. If ν̂ j > 0 for some j, then
G j(x̂) = 0 for that j, soG j(x)−G j(x̂) =G j(x) ≥ 0. By quasi-concavity ofG j , we then
haveν̂ j(x− x̂)∇G j(x̂) ≥ 0 for that j, by Lemma 4. Thus, for eachj, ν̂ j(x− x̂)∇G j(x̂) ≥ 0.
Consequently, we have(x− x̂)∇ f (x̂) ≤ 0.

To state the sufficiency result of Arrow and Enthoven, let us call an indexk ∈ {1, ...,n}
a relevant indexif there existsx∗ ∈C, such thatx∗k > 0. We defineI as the set of relevant
indices.

Theorem 50. Suppose f, G j( j = 1, ...,r) are continuously differentiable on X, and quasi-
concave onRn

+. Suppose there is a pair(x̂, ν̂) ∈ Rn
+ ×Rr+, such that(x̂, ν̂) satisfies the
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Kuhn-Tucker conditions. Suppose, further that at least oneof the following conditions is
satisfied:

(a) Di f (x̂) < 0 for some i∈ [1, ...,n].
(b) Di f (x̂) > 0 for some i∈ I
(c) f is concave on X.

Thenx̂ solves(P).
Proof. If condition (a) holds, there is some indexk, such thatDk f (x̂) < 0. Let ek be the
kth unit vector, and define ˜x= x̂+ek. Thenx̃ ∈Rn

+, and

(x̃− x̂)∇ f (x̂) < 0 (11.19)

Let x̄ be an arbitrary vector inC. We have to show thatf (x̄) ≤ f (x̂). To this end, define
for 0< θ < 1, x(θ) = (1−θ)x̄+θ x̃,y(θ) = (1−θ)x̂+θx̃. Then, usingθ > 0 and (11.19), we
have [y(θ)− x̂]∇ f (x̂) = θ(x̃− x̂)∇ f (x̂) < 0 (11.20)

Also, by Lemma 5,

[x(θ)−y(θ)]∇ f (x̂) = (1−θ)(x̄− x̂)∇ f (x̂) ≤ 0 (11.21)

Thus, adding (11.20) and (11.21), we get[x(θ)− x̂]∇ f (x̂) < 0. Sincef is quasi-concave,
we havef (x(θ)) < f (x̂) by Lemma 4. Lettingθ→ 0, we getf (x̄) ≤ f (x̂).

Suppose condition (b) holds. If condition (a) still holds, we are already done. So,
assume that (a) does not hold. That is∇ f (x̂) ≥ 0, andDk f (x̂) > 0 for some indexk ∈ I .
Thus, there isx∗ ∈C such thatx∗k > 0. Using Lemma 5,

x̂∇ f (x̂) ≥ x∗∇ f (x̂) > 0 (11.22)

Let x̄ ∈C. Then for 0< θ < 1, by using Lemma 5 and (11.22), we get(θ x̄)∇ f (x̂) ≤
θ x̂∇ f (x̂) < x̂∇ f (x̂). Using the quasi-concavity off and Lemma 4, we havef (θ x̄) < f (x̂).
Letting θ→ 1, we getf (x̄) ≤ f (x̂).

Suppose condition (c) holds. If ¯x∈C, we havef (x̄)− f (x̂) ≤ (x̄− x̂)∇ f (x̂) ≤ 0, by using
Lemmas 2 and 5, and concavity off .

Corollary 8. Suppose f , Gj( j = 1, ...,r) are continuously differentiable on X, and quasi-
concave onRn

+. Suppose there is a pair(x̂, ν̂) ∈ Rn
+ ×Rr+, such that(x̂, ν̂) satisfies the

Kuhn-Tucker conditions. Suppose there is x∗ >> 0, such that Gj(x∗) ≥ 0 for j = 1, ...,r, and∇ f (x̂) ≠ 0. Thenx̂ solves(P).
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Proof. Since there isx∗ >> 0, such thatG j(x∗) ≥ 0 for j = 1, ...,r, all indicesi ∈ {1, ...,n}
are relevant indices. Since∇ f (x̂) ≠ 0, there is some indexk for which Dk f (x̂) ≠ 0. If
Dk f (x̂) < 0 then condition (a) of Theorem 50 is satisfied. IfDk f (x̂) > 0, then condition (b)
of Theorem 50 is satisfied. Thus, in either case, the result follows from Theorem 50.

Corollary 9. Suppose f , Gj( j = 1, ...,r) are continuously differentiable on X, and quasi-
concave onRn

+. Suppose there is a pair(x̂, ν̂) ∈ Rn
+ ×Rr+ such that(x̂, ν̂) satisfies the

Kuhn-Tucker conditions. Suppose Slater’s condition is satisfied, and∇ f (x̂) ≠ 0. Thenx̂
solves(P).
Proof. By Slater’s condition, there is ¯x∈C such thatG j(x̄)>0 for j =1, ...,r. By continuity
of G j( j = 1, ...,r), there isx∗ >> x̄, such thatG j(x∗) > 0 for j = 1, ...,r. Thus,x∗ >> 0 and
x∗ ∈C. So, the result follows directly from Corollary 8.

Remark 1. To apply Theorem 50, Corollary 8 or Corollary 9, one has to checkthat
f ,G j( j = 1, ...,r) are continuously differentiable on X, and quasi-concave onRn

+. How-
ever, in view of Lemma 3, it is sufficient to check that f,G j( j = 1, ...,r) are continuously
differentiable on X, and quasi-concave onRn

++.

11.4 The Necessity Theorem of Arrow-Enthoven

Theorem 51. Suppose f,G j( j = 1, ...,r) are continuously differentiable functions on X.
Suppose Gj( j = 1, ...,r) are quasi-concave onRn

+ and there is x∗ ∈C such that Gj(x∗) > 0
for j = 1, ...,r. If x̂∈Rn

+ solves problem(P), and for each j= 1, ...,r,∇G j(x̂) ≠ 0, then there
is ν̂ ∈Rr+, such that(x̂, ν̂) satisfies the Kuhn-Tucker conditions(KT II).
Proof. Define m= r +n, and for j ∈ {1, . . . ,m}, defineg j ∶ X → R by g j(x) ≡ G j(x) for
j = 1, ...,r,g j(x) ≡ x j−r for j = r +1, ...,r +n.

Let E ≡E(x̂) be the set of indices, denoted byk, for whichgk(x̂) = 0. If E is the empty
set, we can clearly apply the Arrow-Hurwicz-Uzawa theorem (from Chapter 10). IfE is
non-empty, we proceed as follows.

By continuity ofG j , there is ¯x>> 0, such thatG j(x̄) > 0 for j = 1, ...,r. That is, there is
x̄ ∈X such thatg j(x̄) > 0 for all j ∈ {1, . . . ,m}.

Note that ifx ∈C, then fork ∈ E, gk(x)−gk(x̂) = gk(x) ≥ 0. So, by quasi-concavity of
gk
, we have: (x− x̂)∇gk(x̂) ≥ 0 (11.23)

by Lemma 4.
We claim, now, that for eachk ∈ E, (x̄− x̂)∇gk(x̂) > 0. To see this, given anyk ∈

E, definexk(θ) = [x̄− θ∇gk(x̂)] whereθ > 0 and sufficiently small to makexk(θ) ≥ 0,
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andG j(xk(θ)) ≥ 0 for all j ∈ {1, ...,r}. [Since x̄ >> 0 andG j(x̄) > 0 for j = 1, ...,r, this is
possible]. Thusxk(θ) ∈C, and so by using (11.23), we have:

[xk(θ)− x̂]∇gk(x̂) ≥ 0 (11.24)

But (11.24) implies that:

[x̄− x̂]∇gk(x̂)−θ∥∇gk(x̂)∥2 ≥ 0 (11.25)

and so(x̄− x̂)∇gk(x̂) > 0, since∇gk(x̂) ≠ 0.
Defineh= (x̄− x̂). Thenh∇gk(x̂) > 0 for all k ∈E, and we can again apply the Arrow-

Hurwicz-Uzawa theorem (from Chapter 10). Thus, we have shownthat whetherE is
empty or not, we can apply the Arrow-Hurwicz-Uzawa theorem to getλ̂ = (ν̂, µ̂) ∈Rr+×Rn

+,
such that

(i) ∇ f (x̂)+ r∑
j=1

ν̂ j∇G j(x̂)+ µ̂= 0

(ii) ν̂G(x̂)+ µ̂x̂= 0.
From (i), andµ̂≥ 0, we get

∇ f (x̂)+ r∑
j=1

ν̂ j∇G j(x̂) ≤ 0

From (ii) and[x̂,G(x̂)] ≥ 0,[µ̂, ν̂] ≥ 0, we get
(iii) µ̂x̂= 0
(iv) ν̂G(x̂) = 0

Multiplying (i) by x̂ and using (iii), we get

(v) x̂[∇ f (x̂)+ r∑
j=1

ν̂ j∇G j(x̂)] = 0

Thus, the Kuhn-Tucker conditions(KT II) are satisfied by(x̂, ν̂) ∈Rn
+×Rr+.
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11.5 Worked Out Problems on Chapter 11

Problem 45(Applying Arrow-Enthoven’s theory of Quasi-Concave Programming).

Let a,b be arbitrary positive real numbers. Consider the following constrained opti-
mization problem:

Maximize x1x2+ [x1/(1+x1)]
sub ject to ax1+bx2 ≤ 1(x1,x2) ∈R2+

⎫⎪⎪⎪⎬⎪⎪⎪⎭(P)
(a) DefineX = {(x1,x2) ∈R2 ∶ x1 > −1,x2 > −1}. Let f ∶X→R andg ∶X→R be defined by:
f (x1,x2) = x1x2+ [x1/(1+x1)], g(x1,x2) = (1−ax1−bx2) for all (x1,x2) ∈X. Verify thatX
is an open set inR2, and thatf andg are continuously differentiable onX. Show thatf
andg are quasi-concave onR2+ , and thatf is not concave onR2+ .

(b) Write down the Kuhn-Tucker conditions for problem(P) along the lines of Arrow-
Enthoven for a pair(x̂, λ̂) ∈R2+×R+.

(c) Show that if(x̂, λ̂) ∈R2+×R+ satisfies the Kuhn-Tucker conditions in (b) above, then
(i) (1−ax̂1−bx̂2) = 0 ; (ii) x̂1 > 0 ; (iii) ∇ f (x̂) ≠ 0 , and (iv)λ̂ > 0.

(d) Define a functionh ∶R+→R as follows:

h(z) = [b/(1+z)2]−2az+1 f or z≥ 0

Show that there is a unique positive solution to the equation: h(z) = 0. Call this solutionc.
(e) Use the Arrow-Enthoven sufficiency theorem to show that (i) if c > (1/a), then

x̂= ((1/a),0) solves problem(P); (ii) if c≤ (1/a), thenx̂= (c,(1−ac)/b) solves problem(P).
Solution.

(a) Define the set
X = {(x1,x2) ∈R2 ∣ x1 > −1 andx2 > −1}

For any(x̄1, x̄2) ∈X, let r =min{x̄1+1, x̄2+1}. Then we haveB(x̄,r) ⊂X, soX is an
open set inR2. Also, we have thatX ⊃R2+.

Define f ∶X→R andg∶X→R by

f (x1,x2) = x1x2+ x1

1+x1
for all (x1,x2) ∈X

g(x1,x2) = 1−ax1−bx2 for all (x1,x2) ∈X
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The functionsf andg are continuously differentiable onX.

Note that we only have to establish quasi-concavity onR2+. Sinceg is linear onR2+,
it is quasi-concave onR2+. For allx ∈R2++, the bordered Hessian off atx is

Bf (x) =
⎡⎢⎢⎢⎢⎢⎢⎣

0 x2+ 1
(1+x1)2 x1

x2+ 1
(1+x1)2

−2
(1+x1)3 1

x1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
The second leading principal minor ofBf (x) is −(x2+ 1

(1+x1)2)2 < 0 for all x ∈R2++.

And for all x ∈R2++, the determinant ofBf (x) is

detBf (x) = −(x2+ 1(1+x1)2)(−x1)+x1(x2+ 1(1+x1)2 + 2x1(1+x1)3)
= 2x1x2+ 2x1(1+x1)2 +

2x2
1(1+x1)3

> 0

Therefore f is quasi-concave onR2++. Since f is continuous onR2+ and quasi-
concave onR2++, by Lemma 3, Chapter 11,f is quasi-concave onR2+. But for
all x∈R2++, the determinant of the Hessian off atx is−1≱ 0, so the Hessian off atx
is not negative semi-definite, which means thatf is not concave onR2++. Therefore
f is not concave onR2+.

Since f is quasi-concave but not concave onX, we need to verify two further con-
ditions in order to apply the Arrow-Enthoven Sufficiency Theorem. In part (b) we
will show that if a pair(x̂, λ̂) ∈ R2+ ×R+ satisfies the Kuhn-Tucker conditions, then∇ f (x̂) ≠ 0. Slater’s Conditions holds because(0,0) ∈R2+ andg(0,0) = 1> 0.

Therefore all the conditions of the Arrow-Enthoven Sufficiency Theorem are met,
so if some pair(x̂, λ̂) ∈R2+×R+ satisfies the Kuhn-Tucker conditions, then ˆx solves
problem(P).

(b) A pair (x̂, λ̂) ∈ R2+ ×R+ satisfies the Kuhn-Tucker conditions for problem(P) if it
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satisfies the following:

x̂2+ 1(1+ x̂1)2 −aλ̂ ≤ 0 (5.1)

x̂1−bλ̂ ≤ 0 (5.2)

x̂1(x̂2+ 1(1+ x̂1)2 −aλ̂) = 0 (5.3)

x̂2(x̂1−bλ̂) = 0 (5.4)

1−ax̂1−bx̂2 ≥ 0 (5.5)

λ̂(1−ax̂1−bx̂2) = 0 (5.6)

(c) Seeking contradiction, suppose thatλ̂ = 0. Then by (5.2), we have ˆx1 = 0, so (5.1)
givesx̂2 ≤ −1, which is a contradiction of ˆx2 ≥ 0. Thereforêλ > 0, so (5.6) yields

1−ax̂1−bx̂2 = 0 (5.7)

Again seeking contradiction, suppose that ˆx1 = 0. By (5.7), we have ˆx2 =
1
b > 0.

Therefore by (5.4) we must have ˆx1 = bλ̂ > 0 sinceλ̂ > 0, which is a contradiction. So
it must be that ˆx1 >0. SinceD2 f (x) = x1 andx̂1 >0, we have that∇ f (x̂) ≠0. Another
consequence of ˆx1 > 0 is that we can use (5.3) to write

x̂2+ 1(1+ x̂1)2 −aλ̂ = 0 (5.8)

(d) Define the functionh∶R+→R by

h(z) = b(1+z)2 −2az+1 for all z≥ 0

Now, h is a continuous function onR+. Its derivative is

h′(z) = −2b(1+z)3 −2a< 0 for all z> 0

With continuity ofh on its domain, this shows thath is strictly decreasing onR+. In
addition, we haveh(0) = b+1> 0 and limz→∞h(z) = −∞. By the Intermediate Value
Theorem, then, there is somec> 0 such thath(c) = 0.



CHAPTER 11. QUASI-CONCAVE PROGRAMMING 191

(e) We can split the analysis into two cases, depending on whether (5.2) holds with
equality or strict inequality.

Case 1: ˆx1−bλ̂ < 0. Then by (5.4), we have ˆx2 = 0, so (5.7) gives ˆx1 =
1
a > 0. Using

this and (5.8), we can rewrite the requirement for this case as

0> x̂1−bλ̂ =
1
a
−b(1

a
x̂2+ 1

a(1+ x̂2)2) = 1
a
− b

a(1+ 1
a)2

This implies that

h(1
a
) = b

(1+ 1
a)2 −1> 0= h(c)

Sinceh is strictly decreasing on its domain, this requiresc> 1
a. Note that from (5.8),

we havêλ = a
(a+1)2 > 0.

Case 2: ˆx1−bλ̂ = 0. Then, solving (5.7) for ˆx2 and using this in (5.8), we have

1
b
− a

b
x̂1+ 1(1+ x̂1)2 − a

b
x̂1 = 0

Multiplying both sides byb, we have

b(1+ x̂1)2 −2ax̂1+1= 0

Sincec is the unique point inR+ that givesh(c) = 0, it must be that ˆx1 = c. Then by
(5.7), we have that ˆx2 =

1−ac
b . Since we require ˆx2 ≥ 0, a requirement for this case is

c≤ 1
a. Note that̂λ = 1

bx̂1 =
c
b > 0.

Recall that we showed in parts (a) and (b) that the Arrow-Enthoven Sufficiency
Theorem applies. So we have the following conclusions:

(i) If c > 1
a then(x̂, λ̂) = (1

a,0,
a

(a+1)2) is the unique solution to the Kuhn-Tucker

conditions, so ˆx= (1
a,0) solves problem(P).

(ii) If c ≤ 1
a then (x̂, λ̂) = (c, 1−ac

b ,

c
b) is the unique solution to the Kuhn-Tucker

conditions, so ˆx= (c, 1−ac
b ) solves problem(P).
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References:
This material is primarily based on K.J. Arrow and A.C. Enthoven,“Quasi-concave

Programming”,Econometrica(1961), 779-800. This paper also provides a further alter-
native condition (involving twice differentiability of the objective function, and a non-zero
gradient vector of the objective function at ˆx) under which Theorem 1 is valid.

Theorem 2 is based on the Arrow-Hurwicz-Uzawa theorem discussed in Chapter 10.
For this, see K.J. Arrow, L. Hurwicz and H. Uzawa, “ConstraintQualifications in Maxi-
mization Problems”,Naval Research Logistics Quarterly, 8 (1961), 175-191.

The theory of quasi-concave programming can be further extended to the class of
“pseudo-concave” objective functions [and quasi-concaveconstraint functions]. For this,
seeNon-Linear Programmingby O.L. Mangasarian(Chapters 9, 10).



Chapter 12

Linear Programming

12.1 The Primal and Dual Problems

The theory of linear programming is concerned with the following problem:

(P)
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Maxq′x q′ is1×n
Sub ject to Ax≤ b Aism×n

x≥ 0 xisn×1
bism×1

We will call (P) thePrimal problem. Associated with(P) is the following problem:

(D)
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Miny′b bism×1
Sub ject to y′A≥ q′ Aism×n

y′ ≥ 0 y′ is1×m
q′ is1×n

We will call (D) theDual problem.
Define the set offeasible solutions to the Primalas

F(P) = {x≥ 0suchthat Ax≤ b}
Define the set offeasible solutions to the Dualas

F(D) = {y′ ≥ 0suchthat y′A≥ q′}

193



CHAPTER 12. LINEAR PROGRAMMING 194

12.2 Optimality Criterion

In studying solutions to the Primal and Dual problems, we first establish the following
optimality criterion: ifxo is a feasible solution to the primal andyo′ a feasible solution to
the dual, and theirvaluesare equal, [that is,q′xo = yo′b], thenxo is an optimal solution to
the Primal [that is,xo solves(P)] and yo′ is an optimal solution to the Dual [that is,yo′

solves(D)].
Lemma 6. If xo ∈ F(P), yo′ ∈ F(D), then

q′xo ≤ yo′Axo ≤ yo′b (12.1)

Proof. Sinceyo′ ∈ F(D), andxo ≥ 0

q′xo ≤ yo′Axo (12.2)

Sincexo ∈ F(P), andyo′ ≥ 0
yo′b≥ yo′Axo (12.3)

Combining (12.2) and (12.3) yields (12.1).

Theorem 52(Optimality Criterion). If xo ∈ F(D), and

q′xo = yo′b (12.4)

then xo solves(P) and yo
′
solves(D).

Proof. Let x ∈ F(P). Then sinceyo′ ∈ F(D), we can use Lemma 6 to get

q′x≤ yo′b

and we can use (12.4) to getq′x≤ q′xo. Soxo solves(P). Similarly yo′ solves(D).
12.3 The Basic Duality Theorems

The basic duality theorems of Linear Programming may be stated as follows. If both
the primal and the dual have feasible solutions, then both have optimal solutions and the
values of the optimal solutions are the same; if either the primal or the dual is infeasible,
then neither has an optimal solution. We establish these results in Theorem 53 and 54
below.
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Lemma 7 (Non-negative solutions of linear inequalities). Exactly one of the following
alternative holds.

(1) Either the inequality
Bu≤ a

has a non-negative solution for u
(2) Or the inequalities

v′B≥ 0, v′a< 0

have a non-negative solution for v′.

The proof, which is omitted, follows from the Farkas Lemma; see Chapter 7 on Convex
Analysis

Lemma 8. If there is xo in F(P), and yo
′
in F(D) then there is̃x in F(P), andỹ′ in F(D)

such that
q′x̃≥ ỹ′b

Proof. Suppose not. Then
Ax ≤ b−A′y ≤ −q−q′x+b′y ≤ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
has no non-negative solution for(x,y). That is,

⎡⎢⎢⎢⎢⎢⎣
A 0
0 −A′−q′ b′

⎤⎥⎥⎥⎥⎥⎦
[ x

y
] ≤

⎡⎢⎢⎢⎢⎢⎣
b−q
0

⎤⎥⎥⎥⎥⎥⎦
has no non-negative solution for(x,y). By Lemma 7, there is an m-vectorz′ ≥ 0, an
n-vectorw′ ≥ 0, and a scalarθ ≥ 0, such that

[z′,w′, θ]
⎡⎢⎢⎢⎢⎢⎣

A 0
0 −A′−q′ b′

⎤⎥⎥⎥⎥⎥⎦
≥ 0

and

[z′w′, θ]
⎡⎢⎢⎢⎢⎢⎣

b−q
0

⎤⎥⎥⎥⎥⎥⎦
< 0

That is,
z′A≥ θq′ (12.5)
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w′A′ ≤ θb′ (12.6)

z′b<w′q (12.7)

Now, we claim thatθ ≠ 0. For if θ = 0, then

z′b≥ z′Axo´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ≥ θq′x0´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶ = 0

(b≥Axo) Using (12.5)

and

w′q≤w′A′yo´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ≤ θb′y0´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶ = 0

(q≤A′yo) Using (12.6)

Thus,w′q ≤ z′b, which contradicts (12.7). This establishes our claim thatθ ≠ 0. Since
θ ≥ 0, we haveθ > 0. Using (12.5),

z′

θ
A≥ q′, so(z′

θ
) ∈ F(D).

Using (12.6),
w′

θ
A′ ≤ b′, so(w′

θ
) ∈ F(P).

Soq′ (w
θ ) ≤ (z′

θ )b by Lemma 6, which contradicts (12.7) again.

Theorem 53(Fundamental Theorem of Linear Programming). If there is xo in F(P) and
yo′ in F(D), then there is̃x in F(P) andỹ′ in F(D) such that

(i) q′x̃= ỹ′b
(ii) x̃ solves(P), ỹ′ solves(D).

Proof. (i) By Lemma 8, there is ˜x in F(P) andỹ′ in F(D), such that

q′x̃≥ ỹ′b

By Lemma 6,
q′x̃≤ ỹ′b

So
q′x̃= ỹ′b

(ii) By (i) and Theorem 52, ˜x solves(P) andỹ′ solves(D).



CHAPTER 12. LINEAR PROGRAMMING 197

Theorem 54. If either F(P) = φ, or F(D) = φ, then(P) has no solution and(D) has no
solution.

Proof. SupposeF(P) = φ. Then(P) clearly has no solution. To show that(D) has no
solution, suppose, on the contrary, thatyo′ solves(D).

SinceAx≤ b has no non-negative solution there isy′ ≥ 0 such that

y′A≧ 0, y′b< 0

by Lemma 7. Then[yo′+y′] ∈ F(D) since

yo′+y′ ≥ 0

[yo′+y′]A≥ q′

Also, [yo′+y′]b= yo′b+y′b< yo′b

Soyo′ does not solve(D), a contradiction. A similar proof can be worked out by supposing
F(D) = φ.

12.4 Complementary Slackness

We finally state a result which has been very useful in applications of linear programming.
It says that ifxo andyo′ are optimal solutions to the primal and dual problems, then (i)
whenever a constraint (say thejth) of the primal problem is not “binding” (atxo), the opti-
mal solution of the corresponding dual variable (that is,yo

j ) must be zero; (ii) whenever a
constraint (say theith) of the dual problem is not “binding” (atyo′), the optimal solution of
the corresponding primal variable (that isxo

i ) must be zero. We establish this in Theorem
55 below.

Corollary 10. If xo solves(P) and yo′ solves(D), then q′xo = yo′Axo = yo′b.

Proof. Using Lemma 2,yo′b≥ yo′Axo ≥ q′xo. Sincexo solves(P) andyo′ solves(D), we
haveyo′b= q′xo, by Theorem 53. Henceyo′b= yo′Axo = q′xo.

Corollary 11. If xo solves(P) and yo′ solves(D), then
(a) yo

j [Axo−b] j = 0 f oreach j
(b) [yo′A−q′]i xo

i = 0 f oreachi
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Proof. By Corollary 10,
yo′[Axo−b] = 0 (12.8)

Sinceyo′ ≥ 0,Axo−b≤ 0, we obtainyo′
j [Axo−b] j ≤ 0 for eachj. This, together with (12.8)

impliesyo′
j [Axo−b] j = 0 for j = 1, ...,m. This proves (a). The proof of (b) is similar.

Theorem 55(Goldman-Tucker). If xo ∈ F(P), yo′ ∈ F(D), then the following two state-
ments are equivalent:

(i) x0solves(P)and yo
′
solves(D)

(ii) (a) yo
j = 0whenever[Axo] j < b j , and

(b) x0
i = 0whenever[yo′A]i > qi

Proof. [(ii) implies (i)] . If [Axo] j = b j , then yo
j [Axo] j = yo

j b j . If [Axo] j < b j , then
yo

j [Axo] j =0= yo
j b j , by (ii) (a). Thusyo′Axo = yo′b. Similarlyyo′Axo =q′xo. Soyo′b=q′xo.

Hencexo solves(P), yo′ solves(D), by Theorem 52.
[(i) implies (ii)]. Sincexo solves(P) andyo′ solves(D), we have by Corollary 11,

yo
j [Axo−b] j = 0 f oreach j

and [yo′A−q′]ixo
i = 0 f oreachi

Thus, whenever[Axo−b] j < 0, we must haveyo
j = 0. And, whenever[yo′A−q′]i > 0, we

must havexo
i = 0.
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12.5 Worked Out Problems on Chapter 12

Problem 46. The theory of linear programming is concerned with the following problem:

(P)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Maximize q′x
subject to Ax≤ b

and x≥ 0,

where q and x are is1×n, A is m×n and b is m×1. We will call (P) the Primal problem.
Associated with (P) is the following problem:

(D)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Minimize y′b
subject to y′A≥ q′

and y≥ 0,

where y is m×1. We will call (D) the Dual problem. Define the set of feasible solutions to
the Primal as

F(P) = {x ∈Rn
+ ∶Ax≤ b} .

Define the set of feasible solutions to the Dual as

F(D) = {y ∈Rm
+ ∶ y′A≥ q′} .

(a) Supposēx ∈ F(P), ȳ ∈ F(D) and(x̄, ȳ) satisfies

ȳ′(b−Ax̄) = (ȳ′A−q′)x̄= 0.

Show that(x̄, ȳ) satisfies the Kuhn-Tucker conditions (KT II) for problem (P).Use the
Arrow-Enthoven sufficiency theorem to conclude thatx̄ solves problem (P). Show thatȳ
solves problem (D) by using an analogous argument.
(b) Supposēx solves (P) and̄y solves (D). Using the fact that̄x ∈F(P) andȳ∈F(D), show
that

q′x̄≤ ȳ′Ax̄≤ ȳ′b. (1)

Using the fact that̄x solves (P) and applying the Arrow-Hurwicz-Uzawa necessity theorem,
show that there existŝy ∈ F(D) such that

ŷ′(b−Ax̄) = (ŷ′A−q′)x̄= 0. (2)

Using the fact that̄y solves (D), and (2), show that q′x̄≥ ȳ′b. Using this inequality and (1),
show that

ȳ′(b−Ax̄) = (ȳ′A−q′)x̄= 0. (3)
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Solution (a) Let X = Rn be an open set containingRn
+. Let us definef (x) = q′x and

G j(x) = (b−Ax) j on X, j = 1, ...,m. A pair (x̄, ȳ) ∈Rn
+×Rm

+ satisfies the KT II conditions
for the problem (P) if and only if

(i)(a) Di f (x̄)+∑m
j=1 ȳ jDiG j(x̄) ≤ 0 for i = 1, ...,n,(i)(b) x̄i(Di f (x̄)+∑m

j=1 ȳ jDiG j(x̄)) ≤ 0 for i = 1, ...,n,(ii)(a) G j(x̄) ≥ 0 for j = 1, ...,m,(ii)(b) ∑m
j=1 ȳ jG j(x̄) = 0.

For the linear problem (P) these conditions look like

(i)(a) qi +∑m
j=1 ȳ j(−a ji) ≤ 0 for i = 1, ...,n,(i)(b) x̄i(qi +∑m

j=1 ȳ j(−a ji)) = 0 for i = 1, ...,n,(ii)(a) (b−Ax̄) j ≥ 0 for j = 1, ...,m,(ii)(b) ∑m
j=1 ȳ j(b−Ax̄) j = 0.

Conditions (i)(a) can be rewritten as(q′ − ȳ′A)i ≤ 0 and hence are satisfied because ¯y ∈
F(D). Conditions (ii)(a) follows from ¯x ∈ F(P). Conditions (i)(b) are implied by (i)(a),
x̄ ∈Rn

+ and(ȳ′A−q′)x̄= 0. Condition (ii)(b) follows from (ii)(a), ¯y ∈Rm
+ andȳ′(b−Ax̄) = 0.

Since f and g j
, j = 1, ...,m, are linear on the open setX = Rn containingRn

+, these
functions are continuously differentiable onRn and quasi-concave onRn

+. Since f is
concave onX, it follows that condition (c) of the Arrow-Enthoven sufficiency theorem
(Theorem 50, p. 79 in the Lecture Notes) is satisfied. Therefore if a pair(x̄, ȳ) ∈Rn

+×Rm
+

satisfies the KT II conditions for the problem (P), then the Arrow-Enthoven sufficiency
theorem implies that ¯x solves problem (P). By the analogous argument it follows thatȳ
solves problem (D).

(b) If x̄ ∈ F(P) and ȳ ∈ F(D), we haveAx̄ ≤ b and ȳ′A ≥ q′. Since ¯x ≥ 0 and ȳ ≥ 0,
premultiplying byȳ′ and postmultiplying by ¯x yield ȳ′Ax̄≤ ȳ′b andȳ′Ax̄≥ q′x̄.

Let us defineg j(x) = (b−Ax) j and gm+i(x) = xi on X = Rn, j = 1, ...,m, i = 1, ...,n.
ThenX =Rn is open and convex set, functionsf andgk, k = 1, ...,n+m, are continuously
differentiable onX, and functiongk is convex onX for k= 1, ...,n+m. Hence condition (b)
of the AHU constraint qualification is satisfied. Therefore,if x̄ solves (P), then ¯x is a point
of constrained local maximum forf , and by the Arrow-Hurwicz-Uzawa necessity theorem
(Theorem 48, p.73 in the Lecture Notes) there existsλ̂ ∈Rn+m

+ such that(x̄, ŷ) satisfy the
Kuhn-Tucker (KT I) conditions:

(i) Di f (x̄)+∑m+n
k=1 λ̂kDigk(x̄) = 0, i = 1, ...,n,

(ii) gk(x̄) ≥ 0, k= 1, ...,n+m,

(iii) λ̂kgk(x̄) = 0, k= 1, ...,n+m.
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Hence
(i) qi +∑m

j=1 λ̂ j(−a ji)+ λ̂m+i = 0, i = 1, ...,n,
(ii) (b−Ax̄) j ≥ 0, j = 1, ...m,

(ii ′) x̄k ≥ 0, k=m+1, ...,m+n,
(iii) λ̂ j(b−Ax̄) j = 0, j = 1, ...,m,

(iii ′) λ̂m+i x̄i = 0, i = 1, ...,n.

If we defineŷ = (λ̂1, ..., λ̂m)′, then (ii) implies ˆy ∈ F(D) and (iii) implies ŷ′(b−Ax̄) = 0.
Also it follows from (i) that

(ŷ′A−q′)x̄= n∑
i=1

x̄i(ŷ′A−q′)i = n∑
i=1

x̄i
⎛⎝−qi + m∑

j=1
λ̂ ja ji

⎞⎠ =
n∑

i=1
x̄i λ̂m+i = 0.

From (2) we immediately haveq′x̄= ŷ′Ax̄= ŷ′b. Now, since ¯y solves (D) and ˆy ∈ F(D), we
haveȳ′b≤ ŷ′b, thereforeq′x̄ = ŷ′b≥ ȳ′b. From this inequality and from (1) it follows that
q′x̄= ȳ′Ax̄= ȳ′b, hence (3) is satisfied.

Problem 47. Consider the following linear programming problem:

Maximize 3x1+4x2+3x3

subject to x1+x2+3x3 ≤ 12,
2x1+4x2+x3 ≤ 42

and (x1,x2,x3) ∈R3
+

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(Q)

Find a solution to problem (Q) showing your procedure clearly. [Hint: you might want
to use your solution to problem 1 of PS11, and the duality theory for linear programming
developed in problem 1 of PS12].
(a) Write down the Kuhn-Tucker conditions for problem (P).
(b) Use the Kuhn-Tucker (sufficiency) theorem to show thatŷ= (2,1/2) solves problem (P)
(c) Draw an appropriate diagram to illustrate your solution.

Solution (a) If we define

q=
⎛⎜⎝

3
4
3

⎞⎟⎠ , A= ( 1 1 3
2 4 1

) , b= ( 12
42
) ,

then problem (Q) and its dual problem (QD) can be written as

(Q)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Maximize q′x
subject to Ax≤ b

and x ∈R3
+,

(QD)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Minimize y′b
subject to y′A≥ q′

and y ∈R2+.
,



CHAPTER 12. LINEAR PROGRAMMING 202

where problem (QD) reads as

(QD)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize 12y1+42y2

subject to y1+2y2 ≥ 3,
y1+4y2 ≥ 4,
3y1+y2 ≥ 3

and y ∈R2+.

Let us recall that ˆy= (2,1/2) solves problem (QD′) from problem 1 of PS11 given by

(QD′)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Minimize 12y1+42y2

subject to y1+2y2 ≥ 3,
y1+4y2 ≥ 4

and y ∈R2+.

Sinceŷ= (2,1/2)′ solves (QD′) and the third constraint 3y1+y2 ≥ 3 from problem (QD) is
satisfied at ˆy, we can conclude that ˆy= (2,1/2) also solves the dual problem (QD). Assume
x̂ solves the primal problem (Q). Then complementary slackness conditions (Corollary 11,
p. 87 in the Lecture Notes) are satisfied:

(a) ŷ j (Ax̂−b) j = 0 for j = 1,2,(b) (ŷ′A−q′)i x̂i = 0 for i = 1,2,3.

Since

ŷ′A−q′ = ( 2 1/2 )( 1 1 3
2 4 1

)−( 3 4 3 ) = ( 0 0 7/2 ) ,
and hence(ŷ′A−q′)3 = 7/2> 0, it follows from (b) that ˆx3 = 0. Since ˆy1 > 0 andŷ2 > 0, we
can conclude from (a) that(Ax̂−b)1 = (Ax̂−b)2 = 0, i.e.

{ x̂1+ x̂2 = 12,
2x̂1+4x̂2 = 42.

It immediately follows that ˆx1 = 3 andx̂2 = 9. Therefore ˆx= (3,9,0)′ is the only candidate
for the solution to problem (Q). Let us prove now that ˆx actually solves (Q) by checking
condition (ii) of the Goldman-Tucker theorem (Theorem 55, p. 87 in the Lecture Notes).
Since

Ax̂−b= 0 and ŷ′A−q′ = (0,0,7/2) ,
it follows that (ii ,a) ŷ j = 0 whenever(Ax̂) j < b j (never),(ii ,b) x̂i = 0 whenever(ŷ′A)i > qi (for i = 3),
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Therefore Goldman-Tucker theorem implies that ˆx = (3,9,0)′ solves problem (Q). [Please
note that since in this problem we haveai j > 0 for all i and j, it immediately follows
that constraint set for problem (Q) is bounded, and hence theexistence of the solution to
problem (Q) follows form the Weierstrass theorem. In general, some elements ofA may
be non-positive, and applicability of the Weierstrass theorem might be more difficult to
justify.]
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References:This material is based almost entirely on D. Gale,The Theory of Linear
Economic Models, McGraw-Hill, New York, 1960, chapter 3.


