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Chapter 1

Vectors

1.1 Vector Spaces

In defining vector spaces, we will consider fiedd to be given by the set of reals, denoted
by R. [One can define this set formally, but we will not do so hefd¢ elements oR are
calledscalarsor numbers

An m-vector xis an ordered set ah numbers(xs,...,Xn). The number; is called
the ith coordinateof x. We use the notatior = (X;), meaningx is the vector whoséh
coordinate isq.

The set of allm-vectors is callean-spaceand is denoted bRR™.

Some Special Vectors:

Theith unit vectoris the vector whose ith coordinate is 1, and whose other cusies
are zero. We denote the ith unit vector ®y The sum vectordenoted by, is the vector
all of whose coordinates are 1. Thall vector, denoted by 0, is the vector all of whose
coordinates are 0.

Vector Operations:

Two m-vectors x andy, are said to bequal(writtenx=y) if x;=y; fori=1,....m.

We now define two algebraic operations on the vectof®af
Addition:

If x=(x) andy= (y;) arem-vectors, theisum x+y is the vector X; +V;).

Scalar Multiplication:

If x=(x) is anm-vector and\ is a number, th@roductAx is the vector Xx;).

Given these two definitions, a number of properties, listeldw, follow immediately.
For addition, we have:

(A1) (X+Y)+z2=x+(y+2) [Associative Law]

(A2)  X+y=Yy+X [Commutative Law]
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(A.3) For everyx andy, there is
zsuchthatx + z=y [Law of Subtraction]

For multiplication, we have:

(M.1) A(X+Y) = AX+Ay [Vector Distributive Law]
(M.2) (A + )X = AX+ X [Scalar Distributive Law]
(M.3) A(X) = (AR)X [Scalar Associative Law]
(M.4) Ix=x [Identity Law]

The properties listed above may be taken as axioms for anaabsigebraic system.
Such systems are callegctor spaces

The vector space that we will study consists of a fi@dthe m-spaceR™; the oper-
ations of addition and scalar multiplication. We will geakgy refer to this vector space
itself simply asR™, although this is clearly a shorthand.

1.2 Linear Dependence of Vectors

A set of vectorsd, ..., x"in RMis linearly dependenif there exist numberay, ..., An, not
all zero, such that

n .
Z)\iX' =0
i=1

If the vectors are not linearly dependent, they are cditeghrly independent
A vectory is alinear combinatiorof the vectorsd, ..., x0 if

n .
y=> AiX
-1

for some numberd; e R. A set of vectorsx,....x" spansR™ if every y e R™ can be
expressed as a linear combinatiorxéf..., x".

Theorem 1. (Fundamental Theorem on Vector Spaces): If each of the rsaftoy?, YT
in the vector spac®" is a linear combination of the vectord x..,x™, then the yare
linearly dependent.

Corollary 1. Any set of m+ 1) vectors inR™M is linearly dependent.
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Proof. For any vectox in R™,
m
X=> Xé
i=1

Consequently, for any set ¢+ 1) vectors inR™, we can write each as a linear combi-
nation of the vectorgel, ...,e™). So the set ofm+ 1) vectors must be linearly dependent
by Theorem 1.m

Corollary 2. Any system of m homogeneous linear equatior{snifn 1) unknowns has a
non-zero solution.

Proof. We can write the system ofi homogeneous linear equations(in+1) unknowns
in the following way:

(1.1)

ajoXp+a11Xg +agXo + ... + AxmXm = 0 }

AmoX0 + Am1X1 +ampX2 + ... + Amm¥m = 0

Defineal = (aj, ayj,....,amj) for j=0,....m. Then theal are a set o{m+ 1) vectors
in m-space; hence by Corollary 1, they are linearly dependent.th&e exist numbers
Ao, --..,Am, Not all zero, such that

m .
Z)\jal =0
i=0

Then(x;) = (Aj) gives the desired solution of (1.1

1.3 Rank and Basis

Let Sbe a subset of the vector spd®. Therankof Sis the maximum number of linearly
independent vectors which can be chosen fom
If r is the rank ofS, a set ofr linearly independent vectors &fis called abasisfor S.

Corollary 3. R™has rank m.

Proof. By Corollary 1, the rank oR™ is at mostm. On the other hand, the unit vectors
el,....eMare clearly linearly independent, so the raniRéfis at leasm. m

Theorem 2. (Basis Theorem) Supposeé, x.,x" are linearly independent vectors in S.
Then ®,...,x" is a basis for S if and only if every vector y in S is a linear coration
of the vectors k..., x".
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Proof. Suppose everye¢ Sis a linear combination of the. Then any set of more than
vectors inSis linearly dependent by Theorem 1, and3fuas rank, and thex' are a basis.

Suppose the& form a basis oB. Then,Shas rank; so ifye S, the vectorsd, ..., X,y
are linearly dependent. Thus there eXigtA1,...,Arin R, not all zero, such that

r .
Y Aix +Agy=0
i-1

Clearly Ao # 0, otherwise thed are linearly dependent. Hence, defining: -Ai/Aq for
i=1,..r, we have

soyis a linear combination of!,....x". m

1.4 Inner Product and Norm

We now introduce a third operationR". If x andy are vectors ifR™, theirinner product
is denoted byy and is defined as the number:

m
Xy = inyi
i=1
Let x be anm-vector. The inner product ofand the ith unit vecto€ is

xd =x fori=1,...m

The inner product ok and the sum vectaris

m
Xu= "X
i-1

Some properties of the inner product are listed below:

(1.1) Xy =YX (Commutative Law)
(1.2) (AX)y = A(xy) (Mixed Associative Law)
(1.3) (X+Y)z=Xz+yz (Distributive Law)

(.4)  x2=xxis 0ifand only ifx=0

If xe R™ then the (Euclideam)ormof x, denoted byjx| , is the (non-negative) number
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e [2&2]1/2

Thus the norm is the (non-negative) square root of the inratyzct ofx with itself.
The following properties of the norm can be verified:

(N.1) |IX|| =0 if and only ifx=0
(N.2) [ Ax] = (Al x|
(N.3)  [x+yl < x|+l

Property (N.3) is usually referred to as the “triangle inggy” for norm.

Two vectorsx andy are callecbrthogonalif their inner product is zero; that is, xfy= 0.
For orthogonal vectors, we have the Pythagoras theorem:
2 2 2
(N.4)  Ifxy=0, then|x+y|"=x|*+]y]
If x andy are orthogonain-vectors, they are calleatthonormalif
x| =yl =1.
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1.5 Worked Out Problems on Chapter 1

Problem 1 (Linear Dependence and Independence)

Let S={el,€?,...,€"} be the set of unit vectors iR".
(@) LetT = {x1,x2,...,x"} be a set of vectors iR", defined by:

xXl=el+e?x2=?+e3, .. X" log"lig X' =& +el,
Is T a set of linearly independent vectorsi®?? Explain. [Hint: consider two cases,
odd,n even)].

(b) Letx be an arbitrary vector ifR", with x, # 0. LetU be the set of vectors defined
byU = {el,e?,---,e1 x}. IsU a set of linearly independent vectorsRA? Explain.

Solution.

(a) We will show that the vectorsl, ..., x" are linearly dependent whemnis even and
linearly independent whemis odd.

Consider a linear combination of the vectorslof

17 [0 0] (17 [ An+A1 ]

1 1 0 0 A+

0 1 0 0 7\2+)\3
)\1 O +7\2 0 +~~+)\n_1 O +)\n 0 = )\3—:_)\4

0 0 0 0 An-3+An_2

O O 1 O }\n_2+)\n_1

_O_ _0_ _1_ _1_ _)\n_]_ + )\n B

If nis even, we canfindy,..., A, not all zero such that this linear combination gives
the zero vector:
1, ifiodd

A= .
-1, ifieven

foralli=1,...,n

Thus forn even, the vectors df are linearly dependent.

But if nis odd, thes@; do not give the zero vector, because thgr A1 + 0. In fact,
we can show that there are Ng,..., A, not all zero such that the linear combination
above is equal to the zero vector. Suppose theraare., A, not all zero such that

)\n+)\1 0
)\1+)\2 _ 0

)\n_l';')\n 0
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Then, reading from the last equation to the first, sinceodd it must be that
An=-An_1=Ap2=--=-A2=A1.

Since the\,,..., A, are not all zero, it must be that eakht 0, so that\n+A1 =2A;
0. This is a contradiction, so we conclude that winas odd, the vectors of are
linearly independent.

(b) We can prove the vectors tf are linearly independent by contradiction. Suppose
they are linearly dependent, so that therejate. ., i, not all zero such that

H1 + PnX1

elt.tp et - :
Hi€ +---+Hn-1 + HnX b1+ X1
MnXn

Sincex, + 0, from the last row we must hayg = 0. But then the equation above only
holds if; =0 for alli = 1,...,n. This contradicts the assumption that the. ..,
are not all zero, so we conclude that the vectord aire linearly independent.

Problem 2 (Rank)

(a) LetSbe a set of vectors iR", defined by:
S={(X1,,Xn) €ERM:Xg +Xo + -+ Xn = 2}

What is the rank o8? Explain.
(b) LetT be a set of vectors iR", defined by:

T={(X1,.-,Xn) € R": X3 + 2Xp +-- + N¥X, = 0}

What is the rank off ? Explain.

Solution.

(a) First, note that sinc&c R", it must be that ran{S) < n. If we can findn linearly
independent vectors i8, we will know that rankS) > n and this will allow us to
conclude that ranls) = n.
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(b)

Define vectorsl' = 2¢ fori=1,...,n, where theg are unit vectors irR". Note that
eachd' € S Itis easy to check that these vectors are linearly indepeindssume
they are not, so that there are some..., A, not all zero such that

2\
Mdl+ A d" = : [=0.
2\n

This implies that each; = 0, which is a contradiction. Thus tmevectorsd?, ... d"
are linearly independent, and we conclude that (8hk n as outlined above.

Let’s try to gain some intuition from the two-dimensionakea consider the set
To = {(X1,%2) € R2: %1 + 2%, = 0}. Now, ranKT,) = 1 because every vector i
can be expressed axg(l,—%). This suggests that in thedimensional case, the
restrictionxy + 2xo +--- + NX, = 0 reduces the rank af to n—1. [Note this does not
happen in part (a) because the restriction on th&sleies not involve a zero on the
right hand side. Think about this distinction geometrigail R2.]

To prove thafl, which is a subset dR", has rankn- 1, we really need to show two
things. First, we must construct 1 linearly independent vectors from Second,

we must show that ang vectors inT are necessarily linearly dependent. By the
definition of ranKT ) as the maximum number of linearly independent vectors that
can be chosen from, this will show that rankT) =n-1.

We first claim that then— 1 vectors

r27 [-3 n
1| | o 0
ol | 1 0
ol,| of,....| o
ol | o 0

| o] | of] | 1

are elements of and are linearly independent. These can be written more com-
pactly asd =€ —iel fori=2,...,n. Itis clear that eack satisfiesd +2x, +---+nx, =
0. Now, suppose the are linearly dependent, so that therejare. ., 4, not all zero
such that
_2p_2 e — npﬂ
M2
HoXZ + -+ + X" = U3 =0.

Hn
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This can hold only if all, ..., i, are equal to zero, which is a contradiction. There-
fore thex!, as defined above, constitute 1 linearly independent vectors froim so
rank(T) >n-1.

Now, it remains only to show that anyvectors fromT are linearly dependent.
So, considen arbitrary vectorsg/?,...,y", each an element df. These are linearly
dependent if there exisk,...,0, not all zero such that

—(2y%+-l--+ny%) —(2y5+---+ny})
01 y:2 +++ 0 yg =0.
Ya yh

The lastn-1 rows form a system ofi— 1 homogeneous linear equations in the
n unknownsBs,...,0,, and Corollary 2 tells us this system must have a non-zero
solution in the thetas. Now, let’s look at the first equatianthe above system:
regroup terms for

~2(B1y5+-+-+0nyd) =+ —Nn(B1ys +---+6nyR) = 0.

For theBy,...,0, that solve the lagt- 1 equations, this equation also holds, because
the left hand side is zero term by term. Remembering that Goyoll ensures the
01,...,06, are not all zero, we conclude that amyectors inT are linearly dependent.
This last step shows that rafik) < n, and together with our conclusion above that
rank(T) > n-1, we finally have the result: ragk) =n-1.

Note that it is also possible to prove that any veael can be written as a linear
combination of the vectorg?,...,x". By the Basis Theorem, the vectod ..., x"
are then a basis far, which is only possible if rankl ) = n—1. But the proof above
is more fundamental in that it avoids the idea of basis attoge

Problem 3 (Basis)

Let S={x,...,xM} be a set of linearly independent vectorsiif, with m< n, and let
T ={y1,...,y"} be a set of basis vectors &f'.

Show that there aren—m) vectors in the set, such that then vectors inS, together
with these(n-m) vectors inT, constitute a basis d&".

Solution.
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The easiest way to prove this is by induction. The idea isweatan first find one of
they! to replace by! and the resulting set afvectors will still be a basis faR". We can
then do the same foe, thenx3, and so on until we have replaceuof theyi by all the
x1 ..., xMand then vectors still form a basis fdR". This works because thé are linear
combinations of thg’, so whatever property of the is making them a basis is somehow
embodied in thel. We just have to be careful about whighwe replace with one of the.

The base case in the induction proof is to show that thereni@gbthat can be replaced by

x! so that the remaining vectorsTn together withk!, constitute a basis fd@&". Now, note

that none of thed may be the zero vector; otherwisgwould not be linearly independent.
Similarly, none of theyl may be the zero vector. That means that when we use the fact
thatyl,...,y"is a basis foR" to write

Xt = Ayt + -+ Ay, (1.2)

we know thatAq,...,An are not all zero. Strictly speaking we do not know whighare
nonzero, but for notational simplicity we can assume withoss of generality that; 0.
(Alternatively, you can think of this as reordering tyieto fit our notation.) This allows
us to use (1) to write

yle oxtof22 _Anen (1.3)

We want to conclude thatl,y?,... y" are a basis foR". Since rankR") = n, we only
need to show that the vectorsxl,y2, ... y" are linearly independent. Suppose they are
not, so that there ana, ...,y not all zero such that

HaXt + poy? + -+ Pay” = 0. (1.4)

Now, p; # 0 because ify = 0 then the vectorg?,...,y" are linearly dependent, which
contradictsyl,...,y" being a basis foR". Then we can use (3) to write

1__ o M
xt = u1y2 plly”. (1.5)

Substituting (4) into (2), we have thgt, ..., y" are linearly dependent, which contradicts
yl....,y" being a basis foR". At last we conclude thatl,y2, ... y" are indeed linearly
independent, so they form a basis Rit.

The inductive case in the proof is, fortunately, very simtia the base case. We want
to show that ifxt,... . xk-1 yK yk+1  yn is a basis forR", wherek-1 < m<n, then
xL, .. xk1xk yk+l o ynis also a basis foR", again subject to reordering tiyk, ... y"
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to suit our notation. Now, since by hypothesis... xk-1 yk yk+1 yn form a basis for
R", and since « 0, there arédy, ..., 0, not all zero such that

X€ = 0x + -+ B XL B YK+ By 1 Y T+ By (1.6)

It is not possible that aBy, ..., 8, are zero, because th&hwould be a linear combination
of x,...,xk1, which would be a contradiction of the linear independerfcg So, assume
without loss of generality thdy # 0. Then we can use (5) to write

y"-_ﬁ 1 ..._egkl X1y elkk E’k”y"+1 ..._en (1.7)

We want to conclude thad, ..., xk-1 xk yk+1 ynare a basis faR". Since rankR") =
we only need to show that thevectorsxl,... xk-1 xk yk+1 vy are linearly indepen-
dent. Suppose they are not, so that therenare. ., a, not all zero such that

a4+ 0l X+ o+ Ol Y4+ " = 0. (1.8)

Now, ay # 0 because iti, = 0 then the vectors?,... xk-1 yk+1  yn are linearly depen-
dent, which contradicts?, ... xk-1 yk yk+1 yn being a basis foR". Then we can use
(7) to write o o o o
k 1.1 k-1 k-1 k+1, k+1 n
X = ——=xt o o et L TRyl TN, 1.9
o o . ' akyn (1.9)

Substituting (8) into (6), we have that,... xk-1 yk yk+1 vy are linearly dependent,
which contradicts?, ..., xk-1 yk yk+1 vy peing a basis foR". At last we conclude that
X xKLxk yk+l o yn are indeed linearly independent, so they form a basi&for

By induction, then, we have that tievectorsx!,...,.x™y™1 . y" are a basis foR",
after suitable reordering of the origingl.

Problem 4 (Inner Product)

Supposes= _{xl, ..., X"} is a set of non-null vectors iR", which are mutually orthog-
onal: that isx'x) = 0 whenever + j. Show thatSis linearly independent.

Solution.

We will prove by contradiction th&gis linearly independent. Suppose tisas linearly
dependent, so that for sone,...,An not all zero, we havé\x1 +---+ A,x" = 0. Now,
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consider somé&e {1,...,n} for whichAg # 0. We have

n .
0=x<0=xX A+ 4+ Anx") = SN (XK X'
i1

= M(X-X) (sincex®-x' =0 fori = k)
+0 (sinceAy # 0 andxX = 0)

This contradiction establishes tHais linearly independent.

13
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References

Much of this material is standard in texts on linear algelka,Linear Algebraby G.
Hadley(Chapter 2), oElementary Matrix Algebréay Franz Hohn(Chapters 4,5). A good
exposition can also be found ifhe Theory of Linear Economic Modddg David Gale
(Chapter 2). You will find a proof of the fundamental theoremventor spaces (by using
mathematical induction) in Gale’s boak.



Chapter 2

Matrices

2.1 Matrix Algebra

An mxn matrixis a rectangular array of numbegg,i = 1,...,m;j =1,...,n. Thus, we write

A:(aij): .............

Then-vectorA = (&, ..., ajn ) is called theth row vectorof A; them-vectorAl = (aij,...,amj)
is called thgth column vectoof A. The matrixA hasm row vectorsAy,...,An and it has
n column vectorsAl, ..., A", Thus anmx n matrix may be interpreted as an ordered set of
mrow vectors, or as an ordered setnafolumn vectors.

In view of this above statement, the operations on matricks# from the operations
on vectors.

2.1.1 Matrix Operations

Two mx n matricesA andB areequal(written A= B) if aj =bj; fori=1,....m;j=1,....n.
If AandB aremxn matrices, theisum A+ B is anmx n matrix, (& +bjj ).
If Ais anmxnmatrix, and\ is a scalar, theiproductAA is anmx n matrix (Aa;j ).
Let A be anmx n matrix, andB annxr matrix. ThenB can be premultiplied by or A
can be post-multiplied b. Thematrix product denoted byAB is anmx r matrix given

by

n
(> aikhyj) i=1,...mj=1..r
k=1

15
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For both operation8B andBA to be defined, iA is mx n, thenB must benx m.

The following properties related to matrix addition and tiplication can be verified
[assuming the relevant matrices can be added and/or niedtjpl
(MA.1) A+B=B+A [Commutative Law]
(MA.2) (A+B)+C=A+(B+C) [Associative Law]
(MM.1) (AB)C=A(BC)=ABC  [Associative Law]
(MM.2)  A(B+C)=AB+AC [Distributive Law]

(B+C)A=BA+CA  [Distributive Law]

2.1.2 Some Words of Caution

Some results which are true for real numbers are not nedgdsae for matrices. It
is useful to be aware of some of these.
(1) ABis not necessarily equal to BA.

SEINE

12 13 -3 -4
AB:[24 25]’ BA:[27 40]

Example 1. Let
Then

(i) AB=0 is possible with neitheA nor B being the null matrix.

Example 2. Let

2 4 2 4
A:ll 2]’ B:_l —2]

Then, -
00
00_

pe-|

(iii) CD =CE with C not null is possible withoub andE being equal.
2 3 11 -2 1
S E S S

CD=CE:l5 8] C+0 and D=E.

Example 3. Let

Then

15 24|’
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2.1.3 Transpose of a Matrix

If Ais anmxn matrix, then then x mmatrix B defined by

bij = aji i=1..n j=1..m

is called theransposeof A, and is denoted bgy'.
The following properties of transposes can be easily verifie
(T.1) (A=A
(T.2) (A+B) =A"+B
(T.3) (AB) =B'AY

2.1.4 Some Special Matrices

There are some special types of matrices, which are nowshsdbelow. Amxn matrix
is asquare matrixf m=n. An nxn matrix issymmetriaf

ajj=aj %]
[That is, a square matri, is symmetric ifA=A’.] An nxn matrix is adiagonal matrix
if

aj=0 i#]
An nx n matrix is anidentity matrix(denoted by, or I ) if

g = 1 i=1..n

g = 0 S J
An mx n matrix is anull matrix (denoted by 0) if

a;j=0 i=1..m j=1..n

Note that a null matrix need not be a square matrix.

The identity and null matrices are especially useful in malgebra. The following
properties of identity and null matrices can be verified{asgag the relevant matrices can
be added and/or multiplied)

(.1)  Al=IA=A

(N.1) A+0=0+A=A

(N.2) A0=0;0A=0
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2.2 Rank of a Matrix

Let Abe anmxnmatrix. The rank of the set of row vectors (column vectors) f called
therow rank (column rank of A. We note that the row and column ranks of a matrix are,
in fact, equal:

Theorem 3. (Rank Theorem)

For any mx n matrix A the row rank and the column rank are equal

In view of the rank theorem, we will, henceforth, simply mreti@therank of A [denoted
r(A)].

If Alis anmxn matrix, andB is annxr matrix, then the following properties can be
established:

(R.1)  r(A)<min(m,n)

(R.2)  r(AB)<min(r(A),r(B)).

If Ais anmx mmatrix, thenA is callednon-singularif the rank ofAism. Ais called
singularif the rank ofA is less tham.

2.3 Inverse of a Matrix

Let A be anmx mmatrix. If Bis anmxmmatrix satisfying

AB=BA=I (2.1)

thenA s calledinvertibleandB is called theénverseof A (denoted byA-1). The following
properties can be established regarding inverses of raatrifHereA andB aremx m
invertible matrices].

(IN.1) (A DH)-1=A

(IN.2)  (AB)1=B1lAl

(IN3)  (A)L=(Aly

2.4 Relationship Between Invertible and Non-Singular Ma-
trices

Consider ai€mmx m non-singular matrixA. Then them column vectors ofA are linearly
independent and is therefore a basi®8f By the basis theorem, given abhy R™, b can
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be expressed as a linear combination oftheolumn vectors. That is, for eadhe R™,
there isxe R™ such that

Ax=b (2.2)
Applying this to each of the column unit vecta@<i = 1,...,m) in turn, we will get vectors
X (i =1,...,m) such that

AX =¢ (2.3)

Defining a matrixX with x' representing the ith column, we get

AX =1 (2.4)
Themrow vectors ofA are linearly independent and is therefore a basiRdf By

the basis theorem, given angyg R™, ¢ can be expressed as a linear combination ofthe
row vectors. That is, for eaahe R™ there isy e R™ such that

yA=cC (2.5)
Applying this to each of the row unit vectoes(i = 1,...,m) in turn, we will get vectors
y' (i=1,...,m) such that

yA=¢d (2.6)

Defining a matrixy with y' representing its ith row, we get

YA=I (2.7)
Using (2.4) and (2.7), we get
Y =Y(AX) = (YAX=X (2.8)
Thus, we have a matriX such that
AX=XA=1|

which proves thaf is invertible, andX is the inverse oA.
Conversely, consider anx m invertiblematrix, A. Then, there is amx m matrix, B,
such that

AB=BA=| (2.9)
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We claim that the column vectors éfare linearly independent. For if they are linearly
dependent, there is some non-zero vegtsauch that

Ax=0 (2.10)
Multiplying (2.10) byB we get

0=B(AXx) = (BA)x=Ix=x (2.11)

which is a contradiction. Thus, th column vectors ofA are linearly independent, and
the rank ofAis m. Thus,Ais a non-singular matrix.
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2.5 Worked Out Problems on Chapter 2

Problem 5 (Matrix Multiplication).

Suppos& is anmx n matrix, B is annxr matrix, andC is anr x s matrix. Verify that:

A(BC) = (AB)C

Solution.
a;n - agn| b1 - bar Ci1 - Cis
A= i ~ |, B=|: = | c=|: -
ami Amn | Py - bnr Cr1 - Gs
(237 -+ agn |[(buaCrp+---+barcrr) -+ (braCis+-+-+byrCrs)
ABC)=| : - : 3 :
ami Amn _(bn1C11+"'+banr1) -+ (bn1Cys+-+-+bnrCrs)

[ i-181j (X bjkCia)

| > 7-18mj(Zke1 DjkCxa)
[k Ca (g a1jbje)

| Tke1 Cka(X-18mibjk)
[ (ag1b11+-+ainbn1)

| (@mby1+-+- +amnbny)

- (AB)C

Problem 6 (Transpose of a Matrix)

Y18 (Xke1bjkCrs) ]

211 8mj(Tke1 PjkCks)
Yke1Cks(Xj-181jbjk) ]

Y ke1 Cies( Z?:lafnibjk)_
(@11b1r + -+ +anbnr) |

(amubyr + -+ @mnbnr) |

SupposeA is anmx n matrix, B is annx r matrix. Verify that:

Solution.

(AB) = B'A

Ci1 -
Cr1 -

C1s

Crs



CHAPTER 2. MATRICES 22

Recall that the inner product has some nice properties: foveetorsk andy of the same
size, we haveyy = yxandx'y = xy’ = X'y’ = xy. Then we can write

AL '
(AB)' = : BL ... B

Am

ABL . ABTY

| AnB - AP |

—AlBl AmBl‘

|A1B" - ApBT

'|31A1 BlAm‘

B'A, - BAn

'(Bl)"(Al)’ (Bl)/.(Am)/:|
(B)(A) -~ (B)(Am)

- (BY }
| @y

- !/ Al !/
Am

— é’A’

(A)" - (Am)’]

Problem 7 (Rank of a Matrix)

Let A be anmx n matrix, and suppose threcolumn vectors oA\ are linearly indepen-
dent.

(a) Show tham> n.

(b) Show that the row rank @& > n.

[Do not use the Rank Theorem to answer any of the parts of tHe@earo You can, of
course, use any result, which appears in the lecture noteselibe statement of the Rank
Theorem].

Solution.
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(a) We are giventhal, ..., A" are linearly independent vectorsi®. If m< nwe have
a violation of Corollary 1 in Chapter 1. Therefore it must be thna n.

(b) We will show row rankA) > n by contradiction. Suppose row raf#) =r <n<m.
Then the row vectord\,...,A;, each of size X n, are a basis foA,...,Amn. [If
usingAq,...,Ar seems troublesome, remember that we can reorder the rows of
without changing the rank.]

Consider the system ofequations

)\1a11+---+)\na1n =0

A+ +Apan =0

wherea;; is the jth element of théth row vectorA;. If we defineA = [A1---Aq]’ then
this can be written more compactly as
Aq

: A=0.

A
This is a system af homogeneous linear equations in tiver unknownshy, ..., A,
so by Corollary 2 in Chapter 1, the system has a solutign. ., A, not all zero.

Now, sinceAy,..., A, are a basis for the rows & any rowA, can be expressed as
a linear combination of,...,A,. Thatis, there arfy, ..., such that

Ac=HAL+-+ A

Taking the inner product of both sides withwe have

AN =1 (AA) + -+ L (ArA)
=pg(0) +---+ (0)
=0

This must hold for every row, so the following equations hold:

Al)\ = A1a11+---+)\na1n =0

AmA = A1@m + -+ An@mn=0
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This is the same as writing
MAL+ -+ ApAM=0

for A1,...,An not all zero. That means the columns Afare linearly dependent,
which is a contradiction. So it must be that row réAk> n.

Problem 8 (Singular and Non-Singular Matrices)

(a) LetA be anmx 1 matrix and leB be a 1x m matrix, wherem> 2. Let C be themxm
matrix, defined byC = AB. Show thatC must be a singular matrix.

(b) Let A be anmx n matrix and letB be annx m matrix. LetC be themx m matrix,
defined byC = AB. If n<m, canC be non-singular ? Explain your answer carefully.

Solution.

(a) Let
a1l aiib;r - apbim
A=] |, BZ[bll blm], C= : :

am1 amb11 - ambim
To show thatC is singular, we want to show that rafk) < m. Suppose to the
contrary that ran{C) = m. Then the columns d are linearly independent. Now, if
by = 0 for someke {1,...,m} thenCk = 0 and we reach a contradiction immediately.
So, suppose;; #0 for alli =1,...,m. Consider the system of equations

ail ail
+A2b2| o[+ Ambim| i [=0
am1 am1

Choosing\; = = # 0,A2 = —p= # 0, and\j = 0 for j = 3,...,m, the above equations
hold. This means that the columns®@fare linearly dependent, which is a contra-
diction. So we conclude that ra(®) < m, which mean< is singular.

a1l
AMCL+AC2 4+ AeC™ = A1byq]|

am1

(b) We will first prove result (R.2) from Chapter 2:
rank(AB) < min{rank(A),rank(B)}

This result will make it very easy to show thatannot be non-singular wherx m.

We get (R.2) by showing both ra(ikB) < rank(A) and rankAB) < rank(B). Let's
prove the first statement and hope the second one followsasiyni Consider any
linear combination of the columns &B: if y is such a linear combination, then
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there exists sommx 1 vectorx such thaty = (AB)x. Since(AB)x=A(Bx), we can
say thaty is also a linear combination of the columnsAfusing the vectoBx as
the weights.

[Note that we cannot say the reversey'Ilfs a linear combination of the columns of
A, then there is som# such thay’ = AZ. How do we fitB in on the right hand side?
If m=nandB is invertible, we can writg/ = (AB)(B~1Z) = AZ, so that the vector
B-1Z provides the weights. But for this problem we are assumiagn.]

Seeking contradiction, suppose réAB) =r > g = rank(A). Now, if (AB)k denotes
thekth column ofAB, then some linearly independent vectoA8)?, ..., (AB)" form

a basis for the columns &B. [If using (AB)L,...,(AB)" seems troublesome, re-
member that we can reorder the columngA& without changing the rank.] Sim-
ilarly, some linearly independent column vectd¥s ...,A% form a basis for the
columns ofA.

Since every column oABis trivially a linear combination of the columns AB, it is
also a linear combination of the columnsAfIn particular, eacliAB)?,..., (AB)"

is a linear combination oAl,...,A". Moreover, since eachl,... A" is a linear
combination ofAl,... A, we have that eacpAB)1,...,(AB)" is a linear combina-
tion of Al,..., A9, Now, sincer > g we have by the Fundamental Theorem on Vector
Spaces that theAB)1, ..., (AB)" are linearly dependent. This is a contradiction, so
we conclude that rar{laB) < rank(A).

A similar argument establishes that rgBkA’) < rank(B’). Now, note that for any
matrix D,
rank(D) =row rank D) = col rank D’) = rank(D").

Therefore we have that
rank(AB) = rank((AB)") <rank(B’) = rank(B).
With our finding above that rarfiAB) < rank(A), we have now proved that
rank(AB) < min{rank(A),rank(B)},

which is result (R.2).

By result (R.1) in Chapter 2, we have rg®g < min{m,n} = n and rankB) <
min{n,m} =n. Then we only have to apply result (R.2) to see that (@k
rank(AB) < n<m, which shows tha€ must be singular.

Problem 9 (Inverse of a Matrix)
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Let A be annx n matrix, which satisfies:

| 1 foralli,je{1,...,n} with j<i
4 =10 otherwise

Show thatA has an inverse.[Do not use your computer to obtain the iaveerix].

Solution.

=
[
o
o

o O O

[
= e
=
|

We know that

A has an inverse= Ais non-singular
<= rank(A) =n
<= the columns oA are linearly independent

Therefore, to show has an inverse we only need to show that the columAsaoé linearly
independent. Suppose to the contrary #vat .., A" are linearly dependent, so that there
existAq,...,Ap not all zero satisfying

A
MAL+- + NA = ):\1+)\2

Al +--+ )\n
This implies that\; =0 for alli =1,...,n, which is a contradiction. So we conclude that

the columns ofA are linearly independent, which shows tidhas an inverse as outlined
above.
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Chapter 3

Simultaneous Linear Equations

3.1 System of Linear Equations

Consider a system ah linear equations im unknowns, written as

a11X) + ... + QunXn = by

————————— *)
Am1X1 + ... + 8mnXn = bm

In matrix-vector notation, we can write this as

Ax=Db

whereA is anmxn matrix, b is a (column) vector ilR™ (or anmx 1 matrix) andx is a
(column) vector inR" (or annx 1 matrix).

In analyzing a system of linear equations like (*), the fallog questions naturally
arise:

(i) (Existence) Does there exist a solution to (*)? [Are tlp@&tions “consistent”?]

(i) (Uniqueness) If there exists a solution to (*), is it gge? [Are the equations
“determinate”?]

(i) (Computation) If there exists a solution to (*), how cee find such a solution?

3.2 Existence of Solutions

The system of equations (*) is callédmogeneou$ b = 0, andnon-homogeneoukb + 0.

28
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If the system is homogeneous, there is always a trivial smiuhamelyx = 0. If the
system is non-homogeneous then, in general, there needisbtesolution to (*). For
instance consider the system:

0] 2X1+4%2 =5

(II) X1+2%2=1

Notice that if we multiply equation (ii) by 2, we get

2X1+4%Xo =2

wich contradicts(is inconsistent with) the equation (i). So, there does ri#t@ solution
to the system of equations given by (i) and (ii): the equati@hand (ii) are inconsistent.
In general, if we look at a system of equations like (*), we Vddike to tell, givenA
andb, whether there is a solution to (*).
We start our discussion of the existence of solutions taaliregjuations by noting a
simple consequence of the “rank theorem”.

Proposition 1. Suppose 4 ...,a" are linearly independent vectors &M, and b is inR",
then there is a vector y iR™ such that

ya =b; i=1...n

Proof. Let A be themxn matrix with columnsal,...,a". By the rank theorem, the rows of
A have rankn. LetAy,...,A, be a row basis; then we hawmdinearly independent vectors
in R", and hence by the basis theordmis a linear combination of\,...,A,. That is,
there exist numberk, ...,An such that

Definey in RMto be(Ay,...,An,0,...,0). Then
m
Y. ViAi=h,  oryA=b
i=1

Consequentlyd = b; fori=1,...,n sincea = Al, the ith column ofA. =
Using the above result, one can provide the following doterfor the solvability of
linear equations.
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Theorem 4. Let A be an myn matrix, and let c be ilR™M. Then exactly one of the following
alternatives holds. Either the equation

Ax=c (3.1)
has a solution, or the equations
yA=0, yc=1 (3.2)
have a solution.

Proof. Suppose (3.1) has no solution. L&t,...,A” be a column basis of. Then
Al . A" cis a linearly independent set of vectors. Otherwisean be expressed as a
linear combination ofl,..., A" and therefore ofl, ..., A". This contradicts our hypothesis
that (3.1) has no solution.

Definebin R"*1 by b= (0,...,0,1). Then by Proposition 1, thereysn R™, such that

yA=0  fori=1,..,r,andyc=1 (3.3)

SinceAl, ..., A" is a column basis oA, given anyAl(i = 1,...,n), Al can be expressed as a
linear combination oL, ..., A". So (3.3) implies thagyA =0 fori=1,....n. Thus,yis a
solution to (3.2).

On the other hand, if (3.1) has a solution (sythen (3.2) cannot have a solution.
For if it did (sayy), then multiplying (3.1) by we get

1=yc=y(AX) = (yA)x=0

a contradiction.m

Finally, there is the criterion for solvability stated inmes of the rank of the relevant
matrices.

Let A be anmx n matrix andc be a vector ilR™. Then themx (n+ 1) matrix given by
Ac = (AL,...,A", c) is known as th@ugmented matrix

Theorem 5. Let A be an nxn matrix and ¢ be a vector iiR™. Then the system of
equations
Ax=cC (3.4)

has a solution if and only if
rank A= rank A, (3.5)
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Proof. Let r be the rank ofA. We clearly haveank A > rankA SupposeaankAs >
rankA Then we can findr + 1) linearly independent vectors from the columnsAgf
Clearly this set must include the vectgrotherwiserank A>r. Thus there is a set of
column vectors ofA, call themAl, ..., A", which, together witrc, form a set of linearly
independent vectors. Thusl,..., A" are linearly independent and so is a column basis of
A. If (3.4) has a solution, say, thenc is a linear combination ofl,.... A" and therefore
of AL, ... A". Butthenthe setAl,...,A",c) is linearly dependent, a contradiction. Thus if
(3.5) does not hold, then (3.4) does not have a solution.

On the other hand, suppose (3.5) holds. Thug'jf..,A" is a column basis oA, then
(AL,...,A",c) is a linearly dependent set. Sin¢al,...,A") is a linearly independent set,
c can be expressed as a linear combination of the ve¢#dts..,A") and therefore of the
vectors(Al,...,A"). So (3.4) has a solutiorm

3.3 Uniqueness of Solutions

Theorem 6. Let A be an nx n matrix and let ¢ be a vector iR™. Then the system of
equations
Ax=cC (3.6)

has a unique solution if and only if
rank A= rankAc. =n (3.7)

Proof. If (3.7) holds, then by Theorem 5, there is a solution to (38)ppose, contrary to
the assertion of the Theorem, there &rex? in R", x! + x2 which both solve (3.6). Then

A(X1-x2)=0

Thus, the column vectors éfare linearly dependent [sin€&; —x7) # 0]. So therank A<
n, a contradiction.

Suppose, next, that (3.7) does not hold. rdhk A+ rank A, there is no solution to
(3.6) by Theorem 5, and we are done.rdhk A= rank A, and (3.7) is violated, then we
haverank A=rank A < n. It follows that (a) there is a solution, to (3.6); and (b) the
column vectors ofA, namelyAl, ..., A" are linearly dependent. Using (b), therg/isR",

y + 0 such that
Ay=0 (3.8)

But, then, clearly(x+Yy) also solves (3.6), anfk+Y) + x (sincey + 0), so (3.6) does not
have a unique solutiorm
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3.4 Calculation of Solutions

The most important case to be considered in the actual edilenlof solutions is the case
of n linear equations im unknowns. LetA be annx n matrix, andc be a vector inR".
We have the system of equations given by

Ax=c (3.9)

If (3.9) has a unique solution, then we have notedithak A=n. Conversely ifank A=n,
then Al ....A" is a basis ofR", and soc can be expressed as a linear combination of
Al ... A" yielding a solution to (3.9). Furthermore, such a solutimmst be unique since
rank A=rank A = n.

We consider, therefore, in what follows how to calcultiie solution to (3.9) when
rankA=n. SincerankA=n, A is a non-singular matrix. It follows that it has arxn
inverse matrix (denoted b§ 1) such that

AlA=AA L= (3.10)
Pre-multiplying (3.9) byA-1 and using (3.10), we obtain

x=A"1c (3.11)

asthesolution to (3.9).
In terms of calculating this solution, then, it remains tarle how to compute the
inverse of a non-singular matrix. This leads us naturally the study of “determinants”.

3.5 Determinants

Let A be annxn matrix. We can associate with a number, denoted by, called the
determinant of A.

The determinant of thex n matrix, is defined recursively as follows.

(1) For a 1x 1 matrix, which is, of course, a number, we define the deteantito
be the number itself.

(2)  For anymxm(m> 2) matrix, thecofactor A; of the elementy; is (-1)'*]
times the determinant of the submatrix obtained frary deleting rowi and column;.
The determinanbf themx m matrix is then given by

n
A=Y ajAg
i
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Thus using (2), and knowing (1), the determinant ofx&22matrix is:

11822 - a12a21
This information can then be used in (2) again to obtain therdenant of a % 3 matrix:

a11[azpaz3 — az283] — a12[@z1833— 831823] + a13[A21832 - Az1822]

This procedure can be continued to obtain the determinaantyofi x n matrix.
It is implicit in the definition of|A| that the “expansion” is done by the first row. How-
ever, it can be shown that for every [1,...,n],

n
Al = ZlaiinJ
J:

so that expansion by any row will given the same result. Idderpansion by any column
will also give the same result. That s, for evgry [1,...,n],

n
A=) aijAj
i=1
The following properties of determinants can be estabtishe

(D.1) A=A

(D.2) The interchange of any two rows will alter the sign, bat the numerical value, of
the determinant.

(D.3) The multiplication of any one row by a scalawill change the determinatfold.

(D.4) The addition of a multiple of any row to another row wilave the determinant
unaltered.

(D.5) If one row is a multiple of another row, the determinisrzero.

(D.6) The expansion of a determinant by “alien” co-factoedds a value of zero. That
is,

n
> aijAj=0 ifi+k
j=1
[Here, the expansion is by thi row, using co-factors déth row].
(D.7) |AB = |A||B]

The above properties (D.2) - (D.5) hold if the word “row” igptaced uniformly by
“column” in each statement.
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3.6 Matrix Inversion

Now, we get back to the problem of computing the inverse ofrasiagular matrix. We
first note the following result.

Theorem 7. Let A be an xn matrix. Then A is invertible if and only || + 0. Further-
more, in case A is invertiblgA-1| = |A| .

Proof. SupposéA is invertible. Then
A Al=|

so1=|l|=|AA1|=|A] |A-1] using property (D.7) of determinants, noted above. Conse-
quently|A| =0, andjA-2| = |A| .

Suppose, next, th& is not invertible. ThenA is singular and so one of its columns
(say,Al) can be expressed as a linear combination of its other caéhn., A". That s,

n .
Al=3"NA
i=2

n .
Consider the matrix3, whose first column i%Al— > AiA' [ and whose other columns are
i=2

the same as those 8f Then, the first column oB is zero, and s¢B| = 0. By property
(D.4) of determinants (noted abovéd| = |A|, and sdA|=0. m

For annx n matrix, A, we define theo-factor matrix of Ao be thenx n matrix given
by

Al A2 .. Ann
The transpose o is called theadjoint of A and denoted bgad j A
Now, by the rules of matrix multiplication,

n n
> apjAsj 2 a1jA2j e > a1jAnj
j=1 =1 1
AC' = : : =
n
_ZlanjAlj 2 anjAgj e .ZlanjAnj
i=
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This yields the equation

AC = Al (3.12)

If Ais non-singular (that is invertible) then thereAis! such that

AAL=AIAZ| (3.13)
Pre-multiplying (3.12) byA-1 and using (3.13),

C'=|A|A?
SinceA is non-singular, we hav@\ # 0, and
1 C'_adjA
Al A

Thus (3.14) gives us a formula for computing the inverse ajrasingular matrix in terms
of the determinant and cofactors Af

A (3.14)

3.7 Cramer’s Rule

Recall that we wanted to calculatiee (unique) solution of a system of equations im
unknowns given by

Ax=cC (3.15)

whereA is annx n matrix, andc is a vector inR".
To obtain a unique solution, we saw that we must hAvaon-singular, which now
translaltes to the conditiorA| # 0”. The unique solution to (3.15) is then

_adjA
A

Let us evaluate, using (3.16). This can be done by finding the inner productwith
the first unit vectore! = (1,0,...,0). Thus,

x=A"1c (3.16)

elad jAC
A

[A11A21 Ani]c
A

Xq = elx =
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= [ClA11+ 02A21+ ..... + CnAnl]/ |A|

Ci a12 .. ain

A

Ch a2 .. ann

This gives us an easy way to compute the solutior;ofIn general, in order to calculate
Xi, replace thdath column ofA by the vectorc and find the determinant of this matrix.
Dividing this number by the determinant Afyields the solutiorx;. This rule is known as
Cramer’s Rule
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3.8 Appendix: System of Homogeneous Linear Equations

Let A be annxn matrix. Consider the following system of homogeneous limeprations:
Ax=0 (2)
Suppose is singular, withrank(A) =r, where 1<r <n. Let S= {xe R": Ax=0}.

(a) Show thas contains some non-zero vector.

(b) Letq be the rank ofs. Show that kX q<n.

(c) Let{xL,...,xq} be a set of vectors i8, which is linearly independent [the existence
of such a set of vectors is guaranteed by (b)]. Show that thererectorgA+l, ... y" in
R", such that the sgxt, ..., xa,ya+1 .yl is a basis ofR". [Use the result of problem 3
in problem set 2].

(d) LetT ={veR":v=Azfor someze R"}. Show that any ¢ T can be expressed as a
linear combination of 2+1, ..., 2"}, wherezi = Ayl for j=q+1,...,n.

(e) Show that the s€tzd+1,...,2"} is linearly independent, and therefore the rank of
is equal to(n—-q).

(f) Show that rank off is also equal t@.

(g) Conclude that:

rank(S) = n-rank(A) *

(a) Since the rank oA is less tham, then column vectors oA are linearly dependent.
Consequently, there is sorae R", with c# 0, such thatAc=0. Thisce S

(b) Sincece S with c+ 0, the rank ofSis > 1. SinceSis a subset oR", and the rank
of R" is n, the rank ofSis <n. To show thaf < n, suppose on the contrary that n.
Then, we can finah vectorsxl,..,x" in S, such thatx1,..,x"} is linearly independent, and
is therefore a basis @&".

Sincer > 1, we can find at least one column vector among the column rgeofd\,
which is non-zero; lefk be such a column vector & The k-th unit vectoeX e R" can
be written as a linear combination of the vectorgx, .., x"}:

K= A+ ApX" 2)
Pre-multiplying (2) byA, we obtain:
A= A = MAX + -+ A AX = 0

sincex!,..,x" are inS. But, this contradicts the fact thak is non-zero. Thus, we must
haveqg< n.
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(c) Since the rank d&is g, we can find a set of vectox3, ..,x%in S such thafx, .., xd}
is linearly independent. Since the rankR¥fis n, we can find vectorgl,....y" in R", such
thatE = {y1,...,y"}, is a basis ofR". Using the result of problem 3 of problem set 2, we
can then find n-q) vectors fromE, such that these vectors, together with theectors
x1,..,xd constitute a basis d&". Denoting the(n-q) vectors (without loss of generality)
from E so chosen bya+1, ... y" the set{x!,...,.xq,ya+1  y"l is a basis ofR".

(d) Since{xt,...,xa,ya+1  y"l is a basis ofR", anyze R" can be expressed as a linear
combination of the set of vectofs!, ... xd ya+1 ..y} :

Z:)\1X1+---+)\qxq+}\q+1yQ+1+---+)\ny” 3)
Pre-multiplying (3) byA, we obtain:
Az=NAX + - +AgAX +)\q+1qu+1 +--+ ApAY!
= AqerAYH L A AY! 4)
= )\q+1zq+1 -+ ApZ"

the second line of (4) following from the fact that the vestg¥,..,x? belong toS, and
the third line of (4) following from the definition af! for j =q+1,...,n. Since anwe T
is equal toAz for someze R", this shows that any € T can be expressed as a linear
combination of{ 2+, ..., 2"},

(e) Suppose thdzdt?, ..., 2"} is linearly dependent. Then, there are numiogs, .., an,
not all equal to zero such that:

012+ +an2"=0 (5)
Using the definition ofl for j=q+1,...,n, we have:
A(Oge1y* ™+ +any") =0 (6)

Denoting(0g.1yd+1+--+0ny") by w, we observe that (6) implies thate S. Since the rank
of Sis g, and{x%,..,xd} is linearly independent, we know th&t!,..,xd} is a basis ofS
Consequentlyw can be expressed as a linear combination of the set of vejothrs x4}

W=[31X1+--~+quq @)
Using the definition ofv, and (7), we get:
Ogeay L+ + oy = Brxt -~ Bx@=0.

But this means thafxt, ..., xa,ya+1 . y"l is linearly dependent, a contradiction. Thus,
{z+1 ...,Z2"} must be linearly independent.
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The vectors in{z4+1, ..., 2"} belong (by definition) tol. Using (d) and the linear in-
dependence ofz4*1,..., 2"}, we infer that{z4*1,...,z"} is a basis off. Consequently, the
rank of T is (n—Q).

(f) Since the rank oA\ is r, we can find a set af linearly independent vectors among
then column vectors ofA. Without loss of generality, we let this set bal,...,A"}. Note
thatAl = Ad fori=1,...,r, so the vectors i{AL, ..., A’} belong toT. Since anywe T can
be expressed a&zfor someze R", anyve T can be expressed as a linear combination of
the vectors iJ = {Al,...,A"}.

The rank ol isrt, and so{Al, ..., A"} is a basis o). Thus, anyAl eU can be expressed
as a linear combination of the set of vectordAd,...,A"}.

It follows that anyve T can be expressed as a linear combination of the set of vectors
in {AL,...,A"}. Since{Al,... A"} is linearly independen{Al,..., A"} is a basis off . Thus,
the rank ofT isr.

(g) Using (e) and (f), we have= n-q. This establishes (*).
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3.9 Worked Out Problems on Chapter 3

Problem 10(System of Linear Equations: Existence and UniquenesslatiSos)
Consider the following system of linear equations:

2X1+4%> =8
31 +3%2=9 (1)
2X1 + 3X2 =7

(a) Show, using the existence criterion discussed in claasthe system of equations
(1) has a solution.
(b) Does the system of equations (1) have a unique solutioxpfaia.

Solution.

We can write the system (1) &x= b, where

2 4 y 8 2 4 8
A:33,x:[xll,b:9,Ab:339
2 3 2 7 2 37

(&) To show thatAx= b has a solution, we must show that réAlk = rank(Ay). First,
rank(A) = 2: rank A) < 2 becausé has only two columns, and rafk) > 2 because
AL, A? are linearly independent. Second, réfk) = 2: rankAp) > 2 sinceAl = Al
andAZ = A2 are linearly independent, and rg) < 3 sinceA3 = 2AL + AZ, so the
three columns of\, are linearly dependent. Because réi = rank(A) = 2, the
systemAx=b has a solution by the Existence Theorem from Chapter 3.

(b) We can apply the Unigueness Theorem from Chapter 3, since veaina3,n= 2.
From part (a), ranfA) = rank(Ap) = 2=n, so the systerAx=b has a unique solution.

Problem 11 (System of Linear Equations: Existence of Solutions)
Consider the following system of linear equations:

3X1+Xo+ Xz =t
X1 —Xo+2%3=1-t (2)
X1+ 3% —3Xz3 =1+t

wheret is a real number. For what values oWwill the system of equations (2) have a
solution ? Explain.
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Solution.

[Note: You are free to just solve the system, but the methdalbbmay help you solve
certain other existence or uniqueness problems.] We cae W@ system (2) a&x= b,
where

3 1 1 X1 t 3 1 1 t
A=l 1 -1 2|, x=|x | b=|1-t| A=|1 -1 2 1-t
1 3 -3 X3 1+t 1 3 -3 1+t

By the Existence Theorem from Chapter 3, the system b will have a solution when
rank(A) = rank(Ap). Now, ranKA) = 2 becaus@!, A? are linearly independent, bé =
2A; + Az. So we want to find the values bffor which rankAy) = 2. SinceAl,A? are
linearly independent, if rar(y,) = 2 thenAl A2 will form a basis for the columns 4.
In particular, we can write

t 3 1
1-t [=A| 1 |+No] -1
1+t 1 3

This is a system of three equations. By adding the first andnskequations, we have
4\1 =1, or\; = 1. By subtracting the second equation from the first equathoen sub-
tracting twice the third equation, we havéi, = -3, orA; = %. With these values ofq, A,
the second equation gives % This is the only value of for which the systeni\x=b has
a solution.

Problem 12 (System of Linear Equations: Uniqueness of Solution)

Let A be anmx n matrix and let be a vector ilR™. Consider the following system of
linear equations:
Ax=Db 3

Suppose (3) has a unigque solution émery b< R™. Canm be different frorn ? Explain.
Solution.

Using the Uniqueness Theorem from Chapter 3, we are givenfohatll b € R™,
rank(A) = rank(Ap) = n. That means thél,... A" e R™ are linearly independent and any
beR™Mis a linear combination ofl,...,A". By the Basis Theorem, then, thé,... A"
are a basis foR™. Since rankR™) = m, it must be tham=n.

Problem 13 (System of Homogeneous Linear Equations: Existence anduéness of
Solutions)
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Let A be annx n matrix. Consider the following system of homogeneous lirezpra-
tions:
Ax=0 (4)

(a) Supposd is non-singular. Show that there is a unique solution to yfstesn of
equations (4).

(b) Suppos@ is singular. Show that there are an infinite number of distsatutions
to the system of equations (4).

Solution.

(@) In class, the following result was presented fomayn matrix A: the systenmAx=Db
has a unique solution if and only if ra(k) = n. Since we are given tha& is non-
singular, we know ranf) = n and so the systerix= 0 has a unique solution.

(b) Let rankA) =k<n. ThenA, = [A0] also has rank. By the Existence Theorem in
Chapter 3, then, the systefix= 0 has a solution, since rafk) = rank(A,) = k.

SinceAx =0 has a unique solution if and only A is non-singular, it must be that
Ax=0 has more than one solution. Suppose vectarsdx’ solveAx=0, withx x'.
Considerx” = Ax+ (1-A)x’ for someA € (0,1). Note thatx”” + x andx” = x’. Now
AX" = AAX+ (1-A)AX =0, sox” solvesAx= 0. LettingA vary over (0, 1), we have
an infinite number of distinct solutions A= 0.

Problem 14 (Determinant of Upper Triangular Matrix)

Let A be annx n matrix, witha;; = 0 whenever > j.
(a) Show that: .
detA=[]._,ai

(b) Use (a) to verify thaf\ is non-singular if and only i&; # O for eachi € {1,...,n}.

Solution.

a1 a2 - Ap-1 Ain
0 axp -+ ani1 agnm

0O O - @&1n-1 @n-1n
O 0 .. 0 ann
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(a) Let’s prove this by induction.

(b)

Base case: Let=1. If Bis a 1x 1 matrix, then deB = b1 = [T, bii by the definition
of a determinant.

Inductive case: Leb > 1. Assume that for angn—-1) x (n—-1) matrix C with ¢jj =0
foralli > j, we have deC = H{‘;llcii. Now consider anyi x n matrix A with g; =0
for alli > j. Expanding by the last row, we have

detA=anAny+ -+ annfnn

a1 a2 - Aip-1
:ann(_l)n+n 0 g - A2n-1
0 0 - &ripa
n-1
=am] [ ai
i=1
n
=Haii
i=1

where the third equality follows from the inductive hypatise

As an “if and only if” statement, this requires proofs in bdikections.

[Note: You are free to cite Theorem 7, Chapter 3, the proof dtiwls contained in
the answer below, in order to write a shorter proof for thizighem.]

Claim: If the upper triangular matrix A is non-singular, then a; # O for all
i=1,...,n

Proof: LetA be non-singular. TheA has an inverséd-1. Since
1=detl =detA A= (detA™1)(detA),
we know that deA + 0. If g; =0 for anyi € 1,...,n, then by (a) we would have

detA =0, a contradiction. So it must be theat+ 0 foralli=1,...,n.

Claim: If Ais upper triangular and a; # 0 for all i =1,...,n, then A is non-
singular.

Proof: Leta; + 0 foralli=1,...,n. Then by (a), deA+ 0. Seeking contradiction,
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supposé is singular. Without loss of generality, we can wite= 3|1, A\A'. Let

B=| AL-YILAA A2 o A

=1 0 A2 ... AN

We know, by property (D.4) in Chapter 3, that d&t detA. But, expanding by
the first column, we have d&t=0. This gives defA =0, a contradiction. So we have
thatA is non-singular.

Problem 15(Test of Linear Dependence of Vectars)
Let S={x1,x2,...,xM} be a set of vectors iR", and letG be themx m matrix defined by:
Xlxl . Xlxm
G= : :
xMyl ... xmym
wherexixi is the inner product of andx, fori=1,...,mandj=1,...,m.
Show thatSis linearly dependent if and only if:
detG=0.
Solution.

As an “if and only if” statement, this requires proofs in bdihections.
Claim: If Sis linearly dependent, then detG = 0.

Proof. Suppos&is linearly dependent. Then, without loss of generality, caa write
XL = AoX2 +---+ ApX™. Substituting this intd in a clever way, we have

[ (A2 4+ AmXM)xL oo (AX2 4o+ ApXM) XM
Geo x2xL X2xm

[ AXXE 4 AL AXXM - A XX
x2x1 X2xm
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That is, the rows of5 are linearly dependentz; = A2Gy +--- + A;Gm. S0 G is singular,
which is the same as sayi@is not invertible, which is the same as d&t 0.

Claim: If det G=0, then Sis linearly dependent.

Proof: Suppose dé&t = 0. This is equivalent to saying@ is not invertible, which is equiv-
alent to sayinds is singular. That is, the columns Gfare linearly dependent: there exist
A1,...,Amnot all zero such that

x1xl x1xm
Al [+ Am] =0
XMyl XMym

We can write this as the system of equations

XEA x4+ Apx™) =0

XTAxt +--+ ApX™) = 0
Now, multiply theith equation by; and sum all the equations for
A+ 4+ AX™ A+ +ApxM) =0

Lety=Ayxt+---+Apx™. By (1.4) in Chapter 1yy=0 if and only ify=0. This means
Axt 4+ ApxM =0 for Aq,...,Am not all zero. ThusSis linearly dependent.
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Chapter 4

Characteristic Values and Vectors

4.1 The Characteristic Value Problem

Let C denote the set of complex numbers. Givemam real matrix, for whanon-zero
vectorsx e C", and for what complex numbeisis it true that

AX=AX (4.1)

This is known as theharacteristic value problerar theeigenvalue problem

If x+0 andA satisfy equation (4.1), thenis called acharacteristic valuer eigenvalue
of A, andx is called acharacteristic vectoor eigenvectoof A.

Clearly (4.1) holds if and only if

(A-ADx=0 (4.2)

But (4.2) is a homogeneous systemroéquations inn unknowns. It has a non-zero
solution forx if and only if (A-Al) is singular; that is, if and only if

A=Al =0 (4.3)
This equation is called theharacteristic equatiof A. If we look at the expression
f(A) = |A-Al| (4.9)
we note thatf is apolynomialin A; it is called thecharacteristic polynomiabf A.

Example: Consider the 2 2 matrixA given by

a7
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Then equation (4.3) becomes

‘ 2=\ 1 ‘ (4.5)

1 2-A
So,(4-2\+A2)-1=0, which yields
(1-A)(3-2)=0

Thus, the characteristic roots are 1 andA = 3.
PuttingA =1in (4.2), we get

which yields
X1+X%X=0

Thus the general solution of the characteristic vectoresponding to the characteristic
rootA =1 is given by

(X1,X%2) =0(1,-1) for6+0
Similarly, corresponding to the characteristic ract 3, we have the characteristic vector
given by

(x1,%2) =6(1,1) for@+0.

In developing the basic results on the characteristicevaloblem, we note that, in

general, the characteristic equation will haveoots in the complex plane (by the “Fun-
damental Theorem of Algebra”), since it is a polynomial éguma(in A) of degreen. [Of

course some of these roots might be repeated]. In genezalpthesponding eigenvectors
will also have their components in the complex plane.

4.2 Characteristic Values, Trace and Determinant of a
Matrix

If Ais annxn matrix, thetraceof A, denoted byr(A), is the number defined by
n
tr(A) =3 ai
i=1

The following properties of the trace can be verified eadigre A, B andC arenxn
matrices, and ¢ R].
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(TR.1)  tr(A+B)=tr(A)+tr(B)
(TR.2) tr(ANA)=A tr(A)
(TR.3)  tr(AB)=tr(BA)

(TR.4)  tr(ABC)=tr(BCA) =tr(CAB)

Let A be annx n matrix. The characteristic polynomial &f defined in (4.4) above
can generally be written as

A=A = (-A)"+bn_1(-A)" L+ .+ b1 (-A) +Dy (4.6)

whereby, ..., b,_1 are the coefficients of the polynomial which are determingthke coef-
ficients of theA-matrix.
On the other hand, KXy, ...,An are the eigenvalues & then the characteristic equation
(4.3) can be written as
0=(A1-A)(A2=A)....(An=A) 4.7)

Using (4.3), (4.6), and (4.7) and “comparing coefficient& @an conclude that
bnfl :)\1+)\2+ +)\n
and

bo = AAz.. An

Also, by looking at the terms in the characteristic polynalof A which would involve
(-\)"-1, we can conclude that

bn_]_ =aq1tag2+...+ann
Finally, puttingA =0 in (4.6), we get
bo = |A|

Thus we might note two interesting relationships betweerctiaracteristic values, the
trace and the determinant Af

n
trA = EN
i=1

n
Al =TTA
i1
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4.3 Characteristic Values and Vectors of Symmetric Ma-
trices

There is considerable simplification in the theory of cheastic values ifA is asymmet-
ric matrix. In this case, it can be shown that all the roots of)(dr8real.

Theorem 8. Let A be a symmetricxnn matrix. Then all the characteristic values of A are
real.

Proof. Suppose is a complex characteristic value, with associated comghi@xacteristic
vector,x. Then we have
AX= AX (4.8)

Definex* to be the complex conjugate wfandA* to be the complex conjugate df Then
AX = A*X* (4.9)

Pre-multiply (4.8) by(x*)” and (4.9) byx’ to get

(x*) Ax=A(X*)'x (4.10)
X' AX" = N*X/x* (4.11)

Subtracting (4.11) from (4.10)
(X*) Ax=X'AX = (A=A )X'x* (4.12)

since(x*)'x=x'x*. Also,
XAX = (X' AX) = (x*) A'x = (X*)'Ax
sinceA’ = A (by symmetry). Thus (4.12) yields
(A=A )X'x =0 (4.13)

Sincex # 0, we know thak’x* is real and positive. Hence (4.13) implies thatA*, soA
isreal. m

We will develop the theory of eigenvalues and eigenveatalg for symmetric matri-
ces

Notice that once the eigenvalues are real, the system otiegsa

(A-Al)x=0
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will yield a non-zero solutiorx in R" if and only if
|A-AI|=0

So the eigenvectors corresponding to the eigenvalu@sali also be real vectors.

If xis an eigenvector corresponding to an eigenvaluthen so igx, wheret is any
non-zero scalar A normalized eigenvectas an eigenvector with (Euclidean) norm equal
to 1.

4.4 Spectral Decomposition of Symmetric Matrices

An nxnmatrixC is called arorthogonal matrixf it is invertible, and its inverse equals its
transpose; that i’ =C-1.

Theorem 9. Suppose A is anxnn symmetric matrix with n distinct eigenvalugs, ..., A.
If x1,...,x" are (normalized) eigenvectors corresponding to the eigie@sAs, ..., An, then
the matrix B, such that'Bthe ith column of B, is the vectot,Xs an orthogonal matrix.

Proof. Pick any two distinct indicesand | (soi # j). Then we have

AX = AiX (4.14)
and _ _
AX) = \jx! (4.15)
Multiplying (4.14) by (x})" we get
(x) A = A (x)) % (4.16)
Multiplying (4.15) by(xi)" we get
(x) Axd = A (X)) X (4.17)

Now, (x')'Axl is a number, so its transpose is the same number. Thus
OO AX = (X)) AX) = (x1) A'X
But A’ = A by symmetry ofA. So

() AX = (X)) AX
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Using this in (4.16) and (4.17), we get
(Ni—Aj)xx =0

Since the eigenvalues d& are distinct); # Aj fori # j. Thusxix! =0, sox is orthogonal
to xI.

It follows from this thatxl, ..., x" are linearly independent. For if they were dependent,
there would exisft, ..., My, not all zero, such that

P+ .+ X" = 0 (4.18)
Without loss of generality consideg + 0. Then premultiplying (4.18) byxl)', we get
2
[ = 0

since (xt)'xi = 0 for all j = 1. Since|\x1||2 =1, we gety; =0, a contradiction. Thus
xL ....x" are linearly independent.

If Bis the matrix such tha', the ith column oB, is the vectox, thenB is invertible,
since we have shown thBtis non-singular. Also,

BB =1 (4.19)
sincexix) =0 fori # j, andxix) = 1 fori = j. Thus premultiplying (4.19) b1 we get
BI — Bfl
HenceB is an orthogonal matrixm

Theorem 10. (Spectral Decomposition)

Suppose A is anxin symmetric matrix with n distinct eigenvalu@s, ...,An. If B
is the nx n matrix with B, the ith column of B, being a (normalized) eigenvector of A
corresponding to the eigenvalaeof A(i = 1,...,n), then

A=BLB (4.20)
where L is the diagonal matrix with the eigenvalues of A on égdnal.
Proof. For eachi =1,...,n, we have

AB =\;B'
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This can be written in compact form as

AB=BL (4.21)
where thenx n matrix L is defined by
M O 0
Lo 0 A 0
00 .. A

We have noted in Theorem 9 thatis an orthogonal matrix. So, post-multiplying (4.21)
by B-1, we get
A=BLB!

But sinceB is orthogonal, we havB-1 = B/, and thus we arrive at (4.20
Remark: The formula (4.20) “decomposes” the matixnto a matrixL consisting of its
eigenvalues, and the matricBsB’ which consist of its eigenvectors.

4.5 Quadratic Forms
Definition 1. Let A be a symmetrican matrix. Then

(a) Ais negative semi-definiié hAh< 0 for all hin R".
(b) Ais negative definitd hAh< 0 for allhin R", h+ 0.
(c) Ais positive semi-definité hAh> 0 for all h in R".
(d) Ais positive definitef hAh> 0 for allhin R", h+0.

Let us concentrate on definitiod). Notice that the relevant inequality must hold
for everyvectorh# 0 in R". This means that if we already know that a symmetrian
matrix A is positive-definite, then we should be able to infer somduligeoperties ofA
quite easily. On the other hand, it also means that if we ddknotv that a symmetric
nx n matrix A is positive definite, definitiofid) by itself will not be very easy to check to
determine whetheA is positive definite or not.

We illustrate the first observation by noting that if a symmaeen x n matrix, A, is
positive definite then we can infer that all its diagonal edaits must be positive. To see
this, note that th&h diagonal elemeng;;, can be expressed as
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(e' )/Aé = aj
where€ is theit" unit vector ofR".  SinceA is positive definite and # 0 is in RN,
definition (d) tells us that the left-hand side of the above equation istipesi Thus the
right-hand side is also positive.
The second observation leads one to explore convenierdaaieaizations of quadratic
forms from which it should be easy to check whether a givem symmetric matrixA is
positive definite or not. We provide two such character@atiin the next two sections.

4.6 Characterization of Quadratic Forms

Let A be annxnsymmetric matrix,_with distinct eigenvalugs, ...,A,. We have seen that
we can define a matrig, such thaB', theith column ofB, is a normalized eigenvector &f
corresponding to the eigenvalNgi=1,...,n). This matrix is orthogonal, and furthermore

B'AB=L (4.22)

whereL is a diagonal matrix with the eigenvalugs ...,A, on its diagonal.

Let x be an arbitrary non-zero vector R". SinceB is an orthogonal matrix we can
define the vectoye R" by y= B-1x=B'x, so thaBy=x, andy’B’ =x’. Then premultiplying
(4.22) byy' and post-multiplying it byy, we get

y'B'/ABy=Yy'Ly
which yields, by definition oy,
X Ax=Yy'Ly (4.23)
The right hand side of (4.23) is )
yw=;mﬁ (4.24)

wherey = (y1,...,Yn). Suppose all the eigenvaluesAfire positive. Then since+ 0, by
definition ofy, we havey + 0, and (4.24) is positive. So, by (4.23)Ax> 0 for eachx + 0,
andA is positive definite.

Conversely, ify is an arbitrary vector ifR", we definex= By and soy’B’ = X/, and note
that if y # 0, thenx # 0 sinceB is orthogonal. Thus repeating the above calculations, we
get (4.23) and (4.24). Now, suppoAés positive definite. Then choosing in tuyr: e/,
the jt unit vector, it follows from (4.24) thay'Ly = Aj and from (4.23) thak; = X’ Ax> 0.
Thus, all the eigenvalues éfare positive.

In the same way, characterization of the other quadratiogaran be obtained in terms
of the signs of the eigenvalues of the matrix. We summariesdhesults as follows:
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(a) Ais positive (negative) definite if and only if every eigédneaf Ais positive (neg-
ative).

(b) A is positive (negative) semi-definite if and only if everyeavalue of A is non-
negative (non-positive).

Examples:
Consider the following matrices:

-1 0|, | -1 11~ [0 O
S KRR G
The eigenvalues oA are-1 and 0. SAA is negative semi-definite. The eigenvalues of

B are(-2+1/2) and(-2- v/2), which are both negative. is negative definite. The
eigenvalues o€ are 0 and 1. S@ is positive semidefinite.

4.7 Alternative Characterization of Quadratic Forms

There is an alternative way to characterize quadratic fanrterms of the signs of the
“principal minors” of the corresponding matrix.

If Ais annxn matrix, aprincipal minor of order ris the determinant of thexr
submatrix that remains whegm-r) rows and(n-r) columnswith the same indiceare
deleted fromA.

Examples: If Ais a 3x 3 matrix, then the principal minors of order 2 are

ajr a12 || 411 @13 || @22 az3
a1 @ |'| @1 as3 || as2 as3
And, the principal minors of order 1 are
ain ; az2 ; as3

The principal minor of order 3 is the determinant of the mxatri
If Ais annxn matrix, theleading principal minor of order iis defined as

ail -+ aArr
Dr:
&1 - an
a a
ThusDy=a;;; Dp=| 1 21 -etc.

a1 axp
We note below the characterization result for positive aegative definite matrices.
Let A be annx n symmetric matrix.
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(1) (i) Ais a positive definite if and only if all the leading princlpainors of A are
positive.

(ii) A is a negative definite if and only if the leading principahimis of A alternate
in sign, starting with negativgThat is, thert" leading principal minorD,, (where
r=1,...,n) has the same sign és1)"].

Checking that a matrix is positive or negative semi-defimgmewhat more involved.
The relevant results are stated below:

(2') (i) Ais positive semi-definite if and only if every principal orief A of every order
IS non-negative.

(i) Ais negative semi-definite if and only if every principal aniof A of odd order
is non-positive and every principal minor of even order issmegative.

Examples:
We re-examine the matrices which we studied above:

-1 0 -1 1 00
SR s Y

All the principal minors ofA of odd order are non-positii@;1 < 0 anday, = 0], and
the (only) principal minor oA of even order is non-negatiVa; 1a22— ap1a12 = 0]. SOAis
negative semidefinite.

For the matrixB, the leading principal minor of order 1 is negatj®; = -1 < 0], and
the leading principal minor of order 2 is positi{e; 1bp2— b12bp1 = 2> 0]. SoB is negative
definite.

The principal minors of of odd order are non-negatije;1 = 0 andcy2 > 0]. The

principal minor ofC of even order is hon-negatiVe; 1Cy2 — C12C21 = 0]. SoC is positive
semi-definite.
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4.8 Appendix: Spectral Decomposition of Non-Symmetric
Matrices

The characteristic roots of non-symmetric matrices ned¢daaoeal numbers. However,
when they are real numbers, one can develop a theory of apdettomposition of non-
symmetric matrices, using the methods already develop#isitourse.

The following problem, split up into five parts, provides #teps involved in such a
theory. You might wish to work through the steps; it is eryir@ptional.

Let A be annxn matrix (not necessarily symmetric), whose characterrstgts are
real and distinct; denote the roots by, ..., An.

(a) Show that for eache {1,...,n}, there exists a vectod € R", such thai + 0, and:
(A-ADX =0

(b) The principal difference from the case in whidhs symmetric is that the char-
acteristic vectors, ..., x" need not be orthogonal. To see this, consider the following

example:
2 4
S

(i) Show thatA has two real characteristic roots, which are distinct; ¢daimA; and
Ao.

(i) Obtain characteristic vectorg € R2 andx? € R2, corresponding td; and), re-
spectively.

(iii) Show thatx! is not orthogonal tox2.

(c) Continuing now with the result obtained in (a) above, stioat the sef{x!, ...,x"}
is linearly independent. Denote B¢ the matrix whose i-th column is given by for
i €{1,..,n}. Note thatX has an inverse.

(d) Show that:
AX = XA

whereA\ is a diagonal matrix with the characteristic roats...,A, on its diagonal (in that
order). Note then that:
A=XAX"1

(e) Show thatfot=1,2 3, ..., we have:

A= XL(t)X T
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whereL (t) is a diagonal matrix, with}, ..., A}, on its diagonal (in that order).

Remark:

The above theory also goes through when the characterggits are complex, but
distinct. However, the methods developed in this courskneti suffice to cover this case,
because concepts such as linear independence and maéisanvere developed in this
course starting with vectors iR" (notC").
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4.9 Worked Out Problems on Chapter 4

Problem 16 (Non-Symmetric Matrices and Real Eigenvalues)

Let A be the 22 matrix, given by:

A= a1 a2
a1 a2
wherea;, + ax1. Let p be the trace oA\, and letq be the determinant &. Assume that:

p>0,g>0, p?>4qand(p-q) <1

Denote the characteristic rootsAby A1 andA,.

(i) Show that\; andA, are real and positive.

(i) Show that exactly one of the following alternatives moscur: (A)A1 <1 and
)\2 <1; (B) )\1 >1 and)\z >1.

Solution.

(a) Note thatp=tr(A) =a11+az2 andq=detA=ajjax>—ajra21. Then we want to solve
0= f()\) = dei(A—)\I ) = (8.11—)\)(&22—)\) —adjg2d21
=A%~ (a1 +ap2) A + (A11822— A12821)
=N -pA+q
By the quadratic formula, the roots are
A PEVPP-4q
2

We are given thap? > 4q, so there are two distinct real roots. Without loss of
generality, let's call the larger roat. Then we have

_P+VPP-4g _P-VPP-4q
M=rm—— M= Ak
Sincep> 0, we have\; > 0. The smaller rook; is positive if and only if
p-VpP-49>0
— P>/ p?-4q
— p?> p®-4q
— g>0
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wherep>+/p?-4q < p?> p?2-4qholds sincep> 0. Because we are givep 0,
we haveh, > 0.

(b) If Ay =21o0rAp=1, thenp—qg=1, which is a contradiction of the given information
thatp-qg< 1. So, in the proof below we consider only strict inequaditie
(A): Ar<landAy< 1. (notA):A1>1o0rAx>1.
(B): A1>1andAy>1. (notB):A;<lorAx<1.

We want to show that (A) implies (not B) and that (not A) impli@&). This will
establish that exactly one of (A) or (B) always occurs.

Claim: (A) implies (not B). Thatis, if Ay<landAy< 1, thenAi<lorAx< 1.
Proof: By hypothesis\; < 1. So the claim holds.
Claim: (not A) implies (B). Thatis, if Ay >10r A, >1,thenA;>1and Ay > 1.

Proof: There are two cases to consider: one in whichi1 and one in whiciA, > 1.
We must show that in both cas@s,> 1 andA, > 1.

Case 1: Suppose, > 1. Then it follows thatp -2 > —/p?-4q. Seeking contradic-
tion, assumé, < 1. This impliesp-2<\/p?-4q. So we have

Ip-2|<\/p*-4q
— p2—4p+4< p2—4q
— p-q>1

This is a contradiction of the given information that q < 1, so it must be that
)\2 > 1.

Case 2: Suppose > 1. ThenAy > A > 1.
SinceA1 > 1 andA, > 1 in both cases, the claim holds.

Problem 17 (Eigenvalues and Eigenvectors of Symmetric Matrices)

Let A = (aj) be a symmetric 22 matrix. We know that it has only real eigenvalues;
denote these bl; andA..

(@) Show that there is= (by,by) € R2, with b # 0, such tha{ A- A1l )b =0. This shows
that there is a real eigenvector corresponding to the eajeax;.

(b) Definey = (y1,y2) as follows:y; = by +iby,y> = by +ibs. ISy also an eigenvector of
A (corresponding to the eigenvalde)? Explain.

Solution.
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(a) SinceA; solves det(A-Ajl) =0, we know that(A—-A1l) is singular. Then there
areb; andb, not both zero such thdt; (A-A11)1+by(A-A11)2=0. Lettingb=
(b1,b2)’, we have thatA-A1l)b =0, sob is an eigenvector oA, corresponding to
the eigenvalud.

(b) We can writey=b+ib. Then
(A=A1l)y=(A-A1l)b+(A-A1l)ib=0+0i = 0.

sinceb is an eigenvector of A, corresponding to the eigenvalueSoy is an eigen-
vector of A, corresponding to the eigenvalge

Problem 18 (Application of Spectral Decomposition)
Let A be the 22 matrix defined as follows:
2 1
|12
(a) Obtain the characteristic values and correspondinghalized characteristic vec-

tors of this matrix.
(b) Use the Spectral Decomposition Theorem to show thatrigmpesitive integen,

the matrixA" can be written as:

AN [ (3"/2)+(1/2) (3"/2)-(1/2) ]
(3/2)-(1/2) (3"/2)+(1/2)

Solution.

(a) The eigenvalues of A are the roots of the characteristicrotyial

f(A) =det(A-Al) = (2-1)?-1
=N2-4\+3
=(A-1)(A-3)

The roots aré&1 =1, A> =3.
A normalized eigenvectds! = (b}, b%)' corresponding td = 1 solves

HHIb
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This system implies}+bl =0, so thab! = (bl, —bi)'. The normalization constraint

is
2 2 2
1= o] = /(61 + (-b)° =2}
This is solved bybi = -1 so a normalized eigenvector correspondingie: 1 is

/ \/21
(%3

A normalized eigenvectds? = (bf, b%)' corresponding td, = 3 solves

-1 1| b2 0
1 -1 b2 0
This system implies? = b2, so thath? = (b2,b2)". The normalization constraint is

1= [2] =/ (82)+ (1) =\ [2(12)?

This is solved b),b% = %2 so a normalized eigenvector corresponding4e 3 is

P (k)
(b) Let

B=[ bt b2]=[ ] /\:lé g]

By the Spectral Decomposition Theoref; BAB'. Becaus&’ = B-1, we have

NN
NN

A" = BA"B'

[ 1 1 1 1

N IR | I | B v
_1 1 0o 1 1
| V2 V2 V2 V2
[ 1 gni [ L _1

| vz || 2 Tz
1 gnl || L 1
[ V2 V2 V2 V2
[ 3" 1 3 1

_ 2 "2 2 2
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Problem 19(Symmetric Matrices with Repeated Characteristic Roots)

Let A be the 3«3 matrix, defined by:

(a) Show that the characteristic valuesfofre 3 and 1but 3 is a repeated root. That
is, show that the characteristic polynomfdl\) = def A—Al) can be written as a product
of three factors as follows:

F(A)=(1-M)(3-M)(3-2)

(b) Show that(b!)’ = [0,1/v/2,-1/\/2] is a normalized characteristic vector corre-
sponding to the characteristic root = 1.

(c) Show tha(b?)’ = [0,1/v/2,1//2] is a normalized characteristic vector correspond-
ing to the characteristic rodb = 3.

(d) Show that there is another normalized characteristitovegh®, corresponding to
the characteristic rodt, = 3, which is orthogonal to both! andb?.

(e) DefineB as the 3«3 matrix which hasb!,b?, b3 as its first, second and third
columns. Define\ to be the diagonal matrix:

Show thatA = BAB'.

Solution.

(a) The characteristic polynomial is

3-A 0 0
0 2-A 1
0 1 2-A
(3-M[(2-1)?-1]
(3-N)(A2-4A+3)
(3-A)(3-A)(1-7)

F(A) =




CHAPTER 4. CHARACTERISTIC VALUES AND VECTORS 64

(b) We have thatb!| = 1 and

2 0 0 0 0
1 1 | 1 _1 |_
(A-MDb'=| 0 1 1 % 1=l 5% [0
1 1 1
01 1] -% VRV

Sob! is a normalized eigenvector corresponding to the eigervalu 1.

(c) We have thatb?| =1 and

(d)

0 0 0 0 0
2 _ S IO I O T
(A-ahpP=f0 -1 1| & |=| - |=0
1 1 1
0 1 1 % VRV

Sob? is a normalized eigenvector corresponding to the eigeevalu 3.
A normalized eigenvectds® = (b3, b3, bg)' corresponding td., = 3 solves
o 0 off b

(A-NDb2= 0 -1 1(] B3 |=
0 1 -1]f b}

o O O

This system implie®3 = b3.

Any eigenvectob? satisfyingbg = bg is orthogonal td?, so this condition gives us
no information about the componentshst

We needbd to be orthogonal th?, so we require

0 b3
1 1 2
0=| = b |=-—=b3+-—=b3= b3
V2 2l Ve vet Ve
vz 1L P

This impliesh3 = 0, so any eigenvectd® satisfyingb3 = b3 = 0 is orthogonal td»?.

We can choos®? = (1,0,0)’. This is a normalized eigenvector corresponding to
A, = 3 that is orthogonal to botb! andb?.
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(e) Collecting the normalized eigenvectors above, we have

0 0O 1
_[phl B2 K3 1- 11
B_[b b b]_ 5 7 0
-1 1 9
V2 V2
Then
i r 1 1
0 0O 1 1 0 O 0 N
r_ i 1 1
BAB' = NN 0 0O 3 0 0 7 7
1 1
-5 B O__O 0 3 1 0 0
i 1r 1 1
0 0 3 072 -
= L = 0 o L L
V2 2 V2 V2
1 3
-5 B O__l 0 0
[3 0 0
=0 2 1
| 0 1 2

I
>

Problem 20 (Positive Definite Matrices)

Let A be annxn symmetric matrix, which is positive definite. For edch {1,...,n},
define the submatriR(k) by:

ajx - gk

A(K) = :
Aq Ak

(a) Show, using only the definition of a positive definite mafthat is, without using
any characterization result of positive definite matri¢baja; > O for eachi € {1,...,n}.

(b) Show, using only the definition of a positive definite mafthat is, without using
any characterization result of positive definite matricdsk A(k) is a positive definite
matrix for eactke {1,... n}.

(c) Show that the determinant A{k) is non-zero for eache {1,...,n}.

(d) Show that the determinant AfKk) is positive for eaclke {1,...,n}.
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Solution.

(a) SinceA s positive definiteg; = (¢)’Ad >0foralli=1,...,n.

(b) For anyze RK, we can write

a1 o Ak Y4]
ZAKz=[ 7 ~ z || + ~ :
| & Ak Z
[ a1371 +--- +an
:[Zl Zk] :
| Ak1Zn o+ Ak

=z1(a112y + - +agkZ) + -+ (@1 Zy + - + Az

=Y z(zan+ -+ Zaik)

Let ze R be such thaz+ 0. Define the vector” e R" by Z' = z if i € {1,...,k} and
Z'=0ifie{k+1,...,n}. Thatis,

z=(z1,...,%)’
"= (z,...,%,0,...,0)

Then we have

k k
Z'A(k)Z Z Z ZZjajj
e |
:ZZ ZZjajj (SlnCGZE+l:...:Z:j]:0)
= (z”)’Azn
>0 (sinceA is positive definitg

Since our non-nulk e RX is arbitrary, this shows tha&(k) is positive definite for
eachk=1,....n
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(c) [Note: Itis fine to first show the stronger result requestgd)rand then state that the

(d)

resultin (c) follows. The proof below establishes the ressing only the definition
of positive definiteness, together with material discussefdre Chapter 4.]

Suppose deA(k) = 0 for somek e {1,...,n}. ThenA(k) is singular, so the columns
of A(k) are linearly dependent. This means that there is some nba=n{g,, ...,z)’ ¢
RK such thatA(k)z= 0. Premultiplying byz, we have that’A(k)z= 0 for somez+ 0.
But this is a contradiction cA(k) being positive definite, which was established in
(b). SodetA(k) #O forallk=1,...,n.

It was shown in (b) thaf\(k) is positive definite. From Section 4.6, we have the
result thatA(k) is positive definite if and only if every eigenvalie, ..., Ay of A(k)

is positive. Then using the relation between charactenstiues (eigenvalues) and
the determinant of(k) from Section 4.2, we have that détk) = [T< ;A > 0.
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Chapter 5

Basic Concepts of Real Analysis

5.1 Norm and Distance

We recall thafR" is the set of alh-vectorsx = (xy,...,Xn), Where eaclx; is a real number
fori=1,...,n. The (Euclideanhormof a vectorx e R" is denoted by} x| and defined by

I - [gy&]m

We have already noted some properties of the norm, whgre R"andA € R:
(N.1) ||x|| > 0; and||x| = 0 iff x=0.

(N-2) [Ax] = [A] |x|

(N.3) [x+y[ <|x]+]y]

While (N.1) and (N.2) are easy to check, (N.3) is not. Startdiglglishing the follow-
ing property:
(N.4) pyi <[] [yl

The inequality (N.4) is known as th@éauchy-Schwarz inequality You can then use
(N.4) to prove (N.3).

Using the norm, one can define the (Euclidedisjance functioror metric  Forx, y,
€ RN, thedistancebetweerx andy, denoted byd(x,y), is

d(x,y) =[x~y

The following properties ofl can be verified (wheR, y, ze R"):

70
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(D.1) d(x,y) >0;d(x,y) =0if and only ifx=y

(D.2) d(x,y) =d(y,x)
(D.3) d(x,z) <d(x,y) +(d(y,2)

The property (D.3) is known as the “triangle inequality”can be established using
(N.3).

5.2 Open and Closed Sets

Open Ball:

If Xe RN, andr is a positive real number, aypen ball(with centerx andradius ) in

R"is
B(X,r)={xin R":d(x,X) <r}
Open Set:

A setSc R"is open(in R") if for every x € S, there is an open ball (with centeand
radiusr > 0) in R" which belongs t&.

It follows that an open ball is an open set. You can check thasetS= {(xg, x2) in
R?: X1 >0, X2 >0 andx? + x3 < 1} is an open set iiR2.

In discussing the concept of an open set, it is important ézigpthespacein which
we are considering the set. For instance, the{setR;0 < x < 1} is open inR; but the
set{(xy, X2) e R2:0< x; < 1, X2 = 0} is not open inR2, although, graphically, the two sets
“look the same”.

Complement of a Set

If Sc R", thecomplemenbf S (in R") is denoted by S, and defined by S= {xin
R":xis notinS}

Closed Set

A setSc R"is closedin R" if the complement o§in R" is open inR".

You can check that the s8t {(x1, X2) iNnR?: X1 > 0, X, > 0, andx? + x5 < 1} is a closed
set inR2.

There are many sets which ameitheropennor closed inR". For example, the set
S={(x1, %) iN R2:x; >0, %, >0, andx2 +x2 < 1} is neither open nor closed R?.

If Ac R"andxeR", then one of three possibilities must hold:

(1) There is an open bali(x,r) such thaB(x,r) c A.

(2) There is an open bali(x,r) such thaB(x,r) c~A.

(3) If B(x,r) is any open ball, theB(x,r) contains points of both and~ A.
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Those pointsce R" which satisfy (1) constitute thaterior of A; those satisfying (2)
the exterior of A; those satisfying (3) thboundaryof A. Points in these sets are called,
respectively, interior, exterior and boundary points (wispect to the sé).
Neighborhood

If xeR", any set which contains an open set containitig)called aneighborhoodf
X, and is denoted b (x).

Thus, an open ball ilR" with centerx and radiug > 0 is a neighborhood of.

Empty Set

A setpc R" which contains no elements Bf' is called theempty set

You can show thaR" and g are the only two sets which are both open and closed in
RN,

5.3 Convergent Sequences

Let x1, x2, %3, ..... be a sequence of vectorsit?. A vectorxin R" is called adimit of the
sequencel, x2, x3, ....if given any real numbeg > 0, there is a positive integé\ such that
d(xs,x) <€ wheneves> N. If the sequencgl, x2, x3, .... has a limit, we call the sequence
convergent If xis a limit of the sequence we say tliae sequence convergesx.

For example, the sequence of number, 4, 1. .... is convergent, with limit equal to
zero.

You can check that if a sequeng® x2, x3, ...... is convergent, it has aniquelimit; so
it makes sense to speaktbklimit of a convergent sequence.

An important result on convergent sequences is that “weagualities are preserved
in the limit”.

Proposition 2. Supposgx}5° is a convergent sequence of pointsRifiwith limit x e R",
and let ac R". If xS<afor all s, then x a.

Remark: You should be able to prove, by using Proposition 1, thateiiR", and {ys}{°
is convergent of points iR" with limit y e R", andy® > b for all s, theny > b.

Using the notion of convergent sequence, we can obtain a fuasable” characteriza-
tion of closed sets.

Theorem 11.Let Sc R". Then S is closed iR" iff whenever %, x2, ..... is a sequence of
points of S that is convergent R, we have

limx"eS.

Nn—oo
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Proposition 2 combined with Theorem 11 gives us a convemaygtof checking that
the typical constraint sets which arise in optimizationijeons are closed. For example,
you can check that the sBt {(x, X2) e R2:0< x; <1, 0< X, < 2} is a closed set by using
Proposition 2 and Theorem 11.

5.4 Compact Sets

Bounded Set:

A setSc R" is boundedf it is contained in some open ball iR".

For example, the s@&= {(x1, X2) € R2:x1 >0, X, > 0 andx; + %, < 1} is a bounded set,
because it is contained in the open balRiAwith center 0 and radius 2.

A setSc R" is compactf it is both closed and bounded.

You can use the above definition to check that

(i) the setS; = {(x1, %) eR2:0<x; <1 and (< xp < 2} is a compact set;

(ii) the setS; = {(x1, %) e R2:0<x; <1 and < x, < 1} is not a compact set, because it
is not a closed set;

(iii) the setS3={(x1,%2) € R2:0<x; <1 and (< xp) is not a compact set, because it is
not a bounded set.

5.5 Continuous Functions

Functions:

LetAcR". A function f, fromAtoR™ (written f : A— R™M) is a rule which associates
with each point irA a unique point inRR™M. In this caseéA is called thedomainof f. We
definef(A) = {ye RM:y= f(x) for somexe A}. For example, iff (x) = x2 for all xe R,
thenA=R, and f(A) =R,. In the special case whem=1, f is called areal valued
function.

If f:A—RMis a function, we can definél(x) as the first component of the vector
f(x) for eachxe A. Then flis a function fromA to R. Similarly, f2,..., f™ can be
defined. These functioni,...., ™ are called theomponent functionsf f.

Conversely, ifyl,...,g™ aremreal valued functions oA, we can defing(x) = (g1(x), ...,g™(x))
for eachxe A. Thengis a function fromA to R™.

Limit of a Function :
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If f:A—- R, andacA, then
Lirr;f(x):b

means that given arg/> 0, there is a numbe¥> 0, such that ifxe A, and 0< d(x,a) < 6,
then|f(x) -b| <e.
For example, iff : R — R is defined byf (x) = x2 -3, then Iirgrf(x) =1.
X—

Continuity of a Function:
A function f : A— R is calledcontinuous at & A, if I)Emaf(x) = f(a). The functionf

is continuougon A) if it is continuous at eacke A.
For example, iff : R, — R, is defined byf (x) = x+ 1, thenf is continuous at 0. If
g:R; - R, is defined byg(x) = x+1 for x+ 0, andg(0) = 0, theng is not continuous at 0.

5.6 Existence of Solutions to Constrained Optimization
Problems

The most important result to decide whether or not a comstchoptimization problem
has a solution is known as Weierstrass theorem, and cantbd stfollows:

Theorem 12. (Weierstrass) Suppose A is a non-empty closed and bountdedtsafR".
If f : A— R is continuous on A, then there exidt x2 in A such that {x) < f(x1) for all
xe A and f(x) > f(x?) forall x e A.
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5.7 Appendix I: Closed Sets

Result:
Let f : R — R be a continuous function dR'". Then the set:

C={xeRT: f(x) >0} ()
is closed inRM.

Proof:
Take an arbitrary convergent sequerge} of points inC, with limit ze R™. That is,
x1,x2 %3, .... belong toC, and:
lim x" =2z 2

N—oo
We have to show thae C.
Sincex" e C for eachn=1,23,..., we havex" > 0 for eachn=1,2,3,---. Since (2)
holds, and weak inequalities are preserved in the limit, axeh> 0; that is,ze RT.
Sincef is continuous ofR", given anye > 0, there i > 0, such that whenevel(x, z) <
0, we have:
F(0-f(2)| <& @3)

Using thisd > 0, we can find a positive integéM, such that whenevar > N, we have
d(x",z) < d, since (2) holds. Thus, using (3), for alb N, we must haveéf (x") - f(z)| < €.
This implies that the sequenéé(x™)} is convergent with limitf (z).

Sincex" € C for eachn=1,23,..., we havef(x") >0 for eachn=1,23,---. Since
{f(xM)} is convergent with limitf (z), and weak inequalities are preserved in the limit, we
havef(z) > 0.

We have now shown thate R, and f(z) >0, sozeC.

Exercise 1:
Let pe R™., w> 0 and consider the budget set:

C={xeRT: px<w}

Show thaC is closed inR™, by defining f (x) = w- pxfor all xe R, checking the conti-
nuity of f onRR"", and then using the above result.

Exercise 2:
Letu: RT — R be a continuous function dRT", and letv be a real number in the range
of the functionu. Consider the upper contour set:

C={xeRT:u(x) >V}
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Show tha(C is a closed set iiR™, by definingf (x) = u(x) — v, checking the continuity of
f on R, and then using the above result.

Exercise 3:
Let gj be a continuous function frofT to R, for eachj € {1,...,k}. Consider the set:

D = {xeRT":gj(x) > 0for eachj e {1,...,k}}

Show, by generalizing the argument used in establishinglibge result, thdD is a closed
set inR™.

Sets likeD represent many of the constraint sets encountered in magdimization
theory.
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5.8 Appendix II: Continuity of Functions of Several Vari-
ables

The sketch of continuity of the function:
f(X]_,Xz) =X1X2 for all (Xl,Xz) € ]RZ

contains a more general idea, which is quite useful in cmgckontinuity of some com-
monly encountered functions of several variables. ThisgEndea is developed below.

(a) LetA be a subset dR", and letf andg be functions fronA to R. Defineh: A—- R
by:

h(x) = f(x)g(x) forall xe A

The general result is the following: K andg are continuous functions oy thenhis a
continuous function oA.

To prove this result, lex be an arbitrary point i\, and lete > 0 be given. We have to
show that whenevetre A andd(x, z) < 8, we have:

Ih() -h(z)| <&

€

g =min{ 1, (1)
{ 1+|f(2)|+|9(2)|}

Then 0< ¢’ < 1. Sincef andg are continuous &, given theg’ > 0, there exis®; >0 and

&, > 0 such that whenevere A andd(x,z) < 81, we have:

Define:

[f)-f(2)] <€ )
and whenevex € A andd(x,z) < &,, we have:

9(x) -9(2)| <€ ®3)
Define:

0 =min{d;,d} 4)

Then, clearlyd > 0.
We can write forxe A,

IN(X) ~h(2)| = [T (x)9(x) - f(2)a(2)|
=[f()9() - f(x)9(2) + f(x)9(2) - F(2)9(2)]
<[f)(9() -9(2)[+|(f(x) - f(2))a(2)]
=f0ll(9() -9(@)|+1(f(x) - (2))l9(2)]
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Sincex € A andd(x,z) < d=min{d1,0,}, we know that both (2) and (3) must hold.
Using this in (5), we obtain:

Ih() =h(2)| <[ ()I(9(x) -a(2))[+](T(x) - 1(2))lla(2)]

<[1+]f(2)|]e' +€'|9(2)| < & (6)

the inequalities on the last line of (6) following from (1)hi§ establishes thétis contin-
uous atz.

Remark:

Note that, giverz ande, the appropriate definitions ef and ofd are suggested by (5).
So, (5) is really the first step in the proof, although it appdater in the formal proof,
compared to the appearanceebéindd.

(b) Let f : R2 - R be defined by:

f(X1,%X2) = X1 (7

Then f is continuous oR2, since given anyg ¢ R2, ande > 0, we can choosé = ¢, and
note that whenevere R2 andd(x,z) < &= €, we must havéx; —z;| < €, and sq f (xg,x2) -
f(z1,20)| <e.

(c) Letg: R2 — R be defined by:

9(X1,X2) = X2 (8)

Theng is continuous orR?, since given any ¢ R2, ande > 0, we can choosd = ¢, and
note that whenevere R? andd(x,z) < d =€, we must havex; — 2| < €, and sog(xq,Xp) -

d(z1,20)| < €.
(d) Defineh: R2 - R by:

h(x1, %) = X1%o for all (xq,X%2) € R?

Then, we have:
h(x1,%2) = f(X1,%2)g(x1,%2) for all (xq,xp) € R?

wheref andg are defined by (7) and (8) respectively. Then, using thetesu(a),(b) and
(c), his continuous oriR2.
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5.9 Appendix Ill: On a Variation of Weierstrass Theorem

Theorem:

Let A be a non-empty subset &", and letf be a continuous function from to R.
SupposeB is a non-empty, closed and bounded seRih andzis an element oB, such
thatB is a subset oA, and:

f(x)<f(z) forallxeA~B (1)
Then there i< A such that:
f(x)< f(x) forallxeA 2

Proof:

SinceB is a subset oA and f is a continuous function from to R, f is continuous
on B. SinceB is a non-empty, closed and bounded seRIh we can apply Weierstrass
theorem to infer that there ¥se B such that:

f(x) < f(x) forallxeB (3)

Let x be an arbitrary element &. There are two cases to consider:X§B, (ii) x ¢ B.
In case (i), we have:

f(x) < f(X) (4)

by (3).
In case (ii), we have ¢ A~ B, and so:

f(x) < f(2) 5)
by (1). Also, sinceze B, we have:

f(2) < £(X) (6)
by (3). Combining (5) and (6), we obtain:

F(x) < £(x) @)

Thus, we have shown that in either ca$éx) < f(x) must hold. Sincexe Bc A, we
know thatx e A, and this establishes (2).//

Remark:

Note that in the statement of the theorem, thefsé&t assumed to be neither closed
nor bounded. However, the theorem ensures that there isuticsoto the constrained
maximization problem:

Maximize x) }(P)
subjectto xA
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This variation of Weierstrass theorem is often useful inligapons.

It is important to realize that the constrained maximizagooblem you will be given
will be in the form of (P); that is, you will be givemA and f. You arenot givenB and
zeB. Thus, in order to apply the theorem to ensure that therésexisolution tqP), you
have to define an appropriate &&and an elemert e B with the properties stated in the
theorem.

Example:

Let A=R, and letf be a continuous function dR., satisfyingf(0) =0 andf(x) <0
for all x> 1. Show that there is a solution to probléfm) by applying the above theorem.
How would you choos® andze B to apply the above theorem?

Converse of “Extension of Weierstrass Theorem ”

Following example establishes the necessity of the Exbernsi Weierstrass Theorem.

Example:

Let A be a non-empty subset &", and letf be a continuous function from to R.
Suppose there existx A such that:

f(xX)>f(x) forall xeA. (8)

Then there exists a non-empty, closed and bounde®set,R", with B c A, and there is
ze B, such that
f(z)>f(x) forall xeA satisfying x¢B 9)

Solution.

Note, intuitively, even though a closed ball may seem to baraliadte for seB, we
do not know much about the s&texcept that it is non-empty and has a global maximum.
Thus it could be possible that the geinay not contain a closed ball at all. In the extreme
caseA could be a singleton containing Then our only choice would be to IBt= {x},z=
x. We will verify now that this choice is suitable in the gerarase also for any giveA.

Let B={X},z=Xx. SetB is bounded since any open ball with centeand a positive
radius contains itB is also closed since if we pick a convergent sequence Bpall the
points in this sequence must keand terefore convergent 1o SetBc Aandf(z) > f(x)
for all xe A, x ¢ B sincex s a global maximum of onA.

Thus we have proved existenceB®&ndz by construction.
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5.10 Worked Out Problems on Chapter 5

Problem 21 (Open Sets)

(a) LetSandT be open sets iiR". Show thatSn T is also an open set iR".
(b) Let A be the set defined by:

A= {(X]_,Xz) €R2:X1> 0,X2 >0,X1X2 > 1}

ExpressA as the intersection of two sets, and use (a) to showAligbpen inR2.
(c) LetB be the set defined by:

B={(x1,%2) € R?: %1 > 0,X2 > 0,%1%2 > 1}
Is B open inR2? Explain.

Solution.

(a) Consider an arbitraryxe SnT. Now, sincexe SandSis open inR", there exists
rs>0 such thaB(x,rs) c S. And sincexe T andT is open inR", there existst >0
such thatB(x,rt) c T. Taker =min{rg,rr} >0. ThenB(x,;r) c B(x,rs) c S and
B(x,r) cB(x,rt) c T. ThereforeB(x,r) c SnT, soSnT is open inR".

(b) We can writeA = A1 n A, where

A= {(X]_,Xz) GRZ | X1 > O,Xz >O}
Az = {(xa1,%2) € R? | xpxo > 1}

Note thatA, contains some points wherg < 0 andx, < 0. We want to show that
bothA; andA, are open irfR2, which will show by part (a) thad is open inR2.

Claim: A; is open inR2.

Proof: Letxe A; and take = min{xz,X2} > 0. We want to shovB(X,r) c A;. This is
the same as showing that for ax§A;, we havex¢ B(x,r). So, consider some¢ A;
and assume without loss of generality tkak 0. Then we have that <0< r < X,
S0 X; —X1 >r. That means thad(x,x) = \/(x1—>?1)2+ (X2-%2)2>r1, so we have
x ¢ B(x,r), which is what we wanted to show. Therefdkgis open.

Claim: A is open inR2,
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To show thatA; is open inR?, it is easiest to show thath; is closed inR2. First,
define the functiorf (x) = 1-x;x, for all xe R? and note thaf is continuous orR?.
Then we can write-Ay as

~Ap = {(X17X2) e R? | X1X2 < 1} = {(Xl,Xz) € R? | f(X) 2 0}

By Prof. Mitra’s result on closed sets, the, is closed inR2. ThereforeA; is
open inR2.

(c) We can write
B=Au{(x1,%) € R?| X1 = 0,% > 0, X% > 1}
U{(X1,%2) € R? | X1 > 0,%p = 0,X1%2 > 1}
U{(X1,%2) € R? | X1 = 0,Xp = 0,X1%2 > 1}
=Augugug
=A
SinceA is open inR2 andB = A, B is open inR2,
Problem 22 (Closed Sets)

(a) LetSandT be open sets iR". Show thatSuT is also an open set iR".
(b) Let A be the set defined by:

A={(X1,%2) €R?:x1>0,X2 > 0,X1 + %2 < 1}

and letB be the complement @ in R2. Express as the union of three sets and show that
B is open inR2.
(c) Show thatA is closed inR2.

Solution.

(a) Consider an arbitrarye SuT. Without loss of generality, assume S. Now, since
xe SandSis open inR", there exists > 0 such thaB(x,r) c S But Sc SUT, so
B(X,r) c SUT. ThereforeSuT is open inR".

(b) We can writexA=B=B;uB,uB3 where
B]_ = {(X]_,Xz) € RZ | X1 < O}
Bz = {(X]_,Xz) € RZ | Xo < O}
Bz ={(X1,X2) € R? | Xy + %2 > 1}
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We want to show that each &, B,, andBz are open inR2, which will show by
part (a) thaB is open inR2.

Claim: By is open inR2.

Proof: Letxe B; and taker = —-x; > 0. We want to show thaB(x,r) c B;. This
is the same as showing that for axy B;, we havex ¢ B(x,r). So, consider some
X ¢ B1. Then we have that; >0, sox; —x; = X3 +r >r. That means thad(x,X) =
V(X1 -X1)2+ (X2 -%2)2>1, so we havex¢ B(X;r), which is what we wanted to show.
ThereforeB; is open.

Claim: B, is open inR2.
Proof: Follow the steps from the proof above for theBginstead ofB;.
Claim: Bz is open inR2.

To show thatBz is open inR?, it is easiest to show thatB; is closed inR2. First,
define the functiorf (x) = 1-x; — x, for all xe R? and note thaf is continuous on
R2. Then we can write Bz as

~Bg = {(X]_,Xz) cR? | X1+Xo < 1} = {(XLXZ) E]R2| f(X) 20}

By Prof. Mitra’s result on closed sets, thevBs is closed inR2. ThereforeBs is
open inR2.

(c) We know thatB = ~A. SinceB is open, by the definition of closed sé{$s closed in
R2,

Problem 23 (Continuity of Functions)

Let f : R" — R be a continuous function dR", and letx be a vector ifR", satisfying
f(X) > 0. Show that there is a positive real numbesuch that:

f(x) >0 forallxe B(x,r)

Solution.

Let € = f(X) >0. Now, sincef is continuous orR", we know that given thig =
f(x) >0 and anyx ¢ R", there is some > 0 such that wheneveat(x,Xx) < 8, we have
|f(X) - f(X)| < f(X). This implies thatf (x) — f(x) < f(x) and f(x) - f(X) > —f(X), which
we can rearrange forOf (x) < 2f (x). Now, taker =  and note that whenevar R" and
xeB(x,r), we haved(x,x) < & and thusf (x) > 0, which is what we wanted to show.

Problem 24 (Extension of Weierstrass theorem)
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Let a andb be positive real numbers, and lebe a function fronR, to R, defined

by:
f(x) =ax+b[x/(1+x)] forallx>0

Consider the following constrained maximization problem:

Maximize {x)-x (P)
subjectto %0

(a) If a< 1, show that there exists a solution to probléR).
(b) If a> 1, show that there is no solution to probl€im).

Solution.
Defineg: R, — R hy

bx
g(x) = f(x)-x= (a—l)x+m forall x>0

Then problen(P) is to maximizeg(x) subject tax> 0. The functiorg is continuous on the
nonempty and closed constraint €et [0, o0 ), but we cannot use the Weierstrass Theorem
because the constraint set is not bounded.
(a) Note thatg is continuously differentiable ox> 0. The first order condition is
b b
a-1+ ——=0 1+x)2= —
+(1+x)2 — @+ 1-a

This suggests using the Extension of Weierstrass Theoretheobounded se® =
[0, 12 ]. We need to show that whenewer 1, we havey(72) > g(ci).

' T-a
2
b\ = b2 ab-b
g(ﬁ) = b+ 1+%i = b+ l-a+b 1l-a+b
b’c
o] b2c abc-bc-b2c? +b%c
by Ta __ _
g(cl—a) be+ 1+ be+ 1-a+bc 1-a+bc

_ (ab-b)(c+1-1)-b%c(c-1) (ab-b)+(c-1)(ab—b-b’c)

- l-a+bc - l-a+bc

_ab-b-(c-1)b(bc+1-a)

N 1-a+hc

Wheneverc > 1, the numerator irg(crba) is smaller and its denominator is larger,
so we haveg(%) > g(clfba). Therefore we can apply the Extension of Weierstrass

Theorem on the nonempty, closed, and boundech;eEO,rba] to conclude that
problem(P) has a solution.
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(b) Forallx> 0, we have that

sincea>1 andb> 0. Thereforeg is strictly increasing orx > 0, so problem(P)
cannot have a solution. Formally, we can suppose for the alad@ntradiction that
somex > 0 is a solution to(P). Then definex’ = x+1 and note that becausggis
strictly increasing ox > 0, we haveg(x’) > g(x). But this contradictx solving (P),
so it must be that probleitP) has no solution.

Problem 25 (Extension of Weierstrass Theorem)

Let p andq be arbitrary positive numbers, and et R2 - R be a continuous func-
tion on RZ. Suppose there iXg,X2) € RZ which satisfiesf (X;,%) = 1. Consider the
constrained minimization problem:

subject to fx3,x2)>1

Minimize pPX + X2
Q)
and (X1,%2) € R2

Show that there is a solution to probl€iQ).
Solution.

First, defineg: R2 — R by g(x1,%2) = f(x1,%2) - 1 for all xe R2. Sincef is continu-
ous onR2, g is also continuous of®2. Then by Prof. Mitra’s result on closed sets, the
constraint set

C={(x1,%2) €R?| X1 > 0,Xp > 0,g(xa,X2) > O}

is closed inR2. The objective function is continuous @andC is nonempty because
(X1,%2) € C. But, depending orf, C is not necessarily bounded. To use the Extension of
Weierstrass Theorem, define the set

B={(x1,%) € R?| X1 >0,% >0, f(X1,X2) > 1, pXq + X < PXy + X2}

We could show thaB is closed by showing thd is the intersection of two closed sets.
Also, Bis nonempty sinc€x;, X;) € BandB is bounded because it is contained in the open

ball B(0,r) wherer = max{pXquXZ,%} +1. Finally, for anyx’ € C,x' ¢ B, we have

pX; +0x, > pxg +gXp. Since(Q) is a minimization problem, it cannot be solved by any
X' e C,x" ¢ B. UsingB, then, the Extension of Weierstrass Theorem guarantedsitfoso

to (Q).
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References:

This material is standard in many texts on Real Analysis. YaghbtonsultPrinciples
of Mathematical Analysiby W. RudifChapters 2, 3, 4) dntroduction to Analysi®y M.
Rosenlich{Chapters 3, 4). Some of the material is also coverdgialtulus on Manifolds
by M. Spivak(Chapter 1).



Chapter 6

Differential Calculus

6.1 Partial Derivatives

Let Abe an open setiR", and letxe A. If f:A— R, the limit

im f(Xq, ., Xi+hy X)) = F (X, %n)
h—0 h

if it exists, is called thdth (first-order) partial derivativeof f at x, and is denoted by
Dif(x), wherei =1,...,n. This means, of course, that we can compute partial deresti
just like ordinary derivatives of a function ohevariable. That s, iff (x1,...,Xy) iS given
by some formula involvingxs, ..., Xn), then we findD; f (x) by differentiating the function
whose value at; is given by the formula when a¥ (for j #i) are thought of as constants.

For example, iff : R? - R is given by f(xq, X2) =X +3x3 + 2x1%p, then Dy f(x) =
3X%+2Xz, sz(X) = 9X%+ 2X1.

Theith partial derivative off atx is also, alternatively, denoted Hy(x). When the
ith partial derivative off atx exists for alli = 1,...,n, we can define the-vector of these
partial derivatives

Vf(x)=[D1f(x),...,Dnf(X)]

This vector is called thgradient vectorof f atx. In the example described above, the
gradient vector is

VE(X)=[3%+2%, M5+2x;]  for all xe R?

When f : A— R has (first-order) partial derivatives at eachA, we say thatf has
(first-order)partial derivatives on A

Second-Order Partial Derivatives and the Hessian Matrix

87
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Whenf : A— R has (first-order) partial derivatives @nthese first-order partial deriva-
tives are themselves functions frofnto R. If these (first-order) partial derivatives are
continuous orA, then we say that is continuously differentiablen A. If these functions
have (first-order) partial derivatives @y thesepartial derivatives are called trsecond-
order partial derivativeof f onA.

To elaborate, iD; f(x) exists for allx ¢ A, we can define the functiob;f : A - R.

If this function has (first-order) partial derivatives @&y then thejth (first-order) partial
derivative ofD; f atx [that is, Dj(D;f(x))] is a second-order partial derivative dfat x,
and is denoted bi;; f(x). [Herei=1,...,nandj=1,....n].

In the example described abov®;1f(X) = 6xq; D12f(X) =2=D21f(X); Da2f(X) =
18x;. We note in this example that the “cross partidlyf (x) andD2; f(x) are equal.
This is not a coincidence; it is a more general phenomenootasl im the following result,
known as “Young’s theorem”.

Theorem 13. (Young) Suppose A is an open seRfh and f has first and second-order
partial derivatives on A. If [} f and Dj f are continuous on A, then;[¥ (x) = Dji f(x)
forall xe A

When all of the hypotheses of Theorem 1 hold, we will say thiattwice continuously
differentiableon A; this will be the typical situation in many applications.

When the first and second-order partial derivatives oA — R exist onA, thenxn
matrix of second-order partial derivatives otiescribed below:

|: D]_lf(X) Dlzf(X)...Dlnf(X) ]

Dnif(X) Dn2f(X)...Dpnf(X)

is called theHessian matrixof f atxe A, and is denoted b¥¢(x). When f is twice
continuously differentible oA, the Hessian matrix of is symmetriat allx € A.
In the example described above

Hi (%) = [ 6)2(l 1;(2 ]

is the Hessian matrix of for all (x1, Xo) € R2.

6.2 Composite Functions and the Chain Rule

Letg: A— R™ be a function with component functiogs: A - R(i = 1,...,m) which are
defined on an open set AR". Let f : B— R be a function defined on an open set
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B c RM which contains the sef(A). Then, we can definE : A— R by F(x) = f[g(X)] =
f[g(X),...,g™(x)] for eachx e A. This function is known as eomposite functiofiof f

andg].
The “Chain Rule” of differentiation provides us with a formdda finding the patrtial
derivatives of a composite functioR, in terms of the partial derivatives of the individual

functions, f andg.

Theorem 14.(Chain Rule) Let gA—RM be a function with component functioris 4 —
R(i =1,...,m) which are continuously differentiable on an open set®'. Let f:B—- R
be a continuously differentiable function on an open setlB" which contains the set
g(A). If F:A—Ris defined by x) = f[g(x)] on A, and & A, then F is differentiable at
a and we have for+1,...,n,

DiF (a) - zmle f(g%(a).....g"(@))Dig (@)
2

Examples

(i) Herem=2,n=1. Letg!(x) =x? onR, andg?(x) = 1+xonR; let f(y1,y2) =y1+y3 on
R2. ThenF (x) = f[g(x)] = f[gL(X), g2(X)] = g*(X) + [g2(X)]?2 = X2+ (1+X)2 is a composite
function onR. If aeR,

D1F (a) = D1f(g"(a), g*(a)) -D1g'(a) + D2 (g'(a), 9°(a)) - D197 (a)
2a+2g?(a) = 2a+2(1+a)

F'(a)

(i) Herem=1,n=2. Letg'(x) =g (x1, %) =x2+X, onR% f(y)=4y onR. Then
F(X) =F(x1,%2) = f[g}(x1, %2)] = 4[x2 +x2]. ThenifaeR?,

D:iF(a) D1 f[g%(a1, @2)]D1g" (a1, a2)

D2F(a) = le[gl(al, az)]Dggl(a]_, 3.2)

Thus,D;F (a) =4(2a;); DoF () =4(1).

6.3 Homogeneous Functions and Euler’'s Theorem
A functionF : R? - R is homogeneous of degre®n R" if for all xin R?, and allt > 0,

f(tx) =t"f(x)



CHAPTER 6. DIFFERENTIAL CALCULUS 90

Considerf : RZ2 — R given by f(xg, X) = x"i‘xg wherea>0 andb>0. Then ift >0, we
havef (tx, tXp) = (tx1)3(tx2)P =ta+bx@x8 =13+ f (x, %,). So, f is homogeneous of degree
(a+b).

We can calculate the partial derivatives bfon R2,. Thus,Dj f(xg,%) = ax"i‘lxg;
D2 f (x1,%2) =&, X571, Now, ift >0, thenDy f (txq,txp) =a(txq)a1(txp)P =ta+P-Taxd-1xh =
ta+b-1D, f (x1,%2). SoD; f is homogeneous of degréa+b-1). Similarly, one can check
thatD,f is homogeneous of degréa+b-1). More generally, whenever a functiof, is
homogeneous of degreeits partial derivatives are homogeneous of degre€l) (under
suitable differentiability assumptions), and this is dastoated in Theorem 15 below.

We can verify thatD1 f (X1, X2) +X2Da(X1, X2) = &X5 +03éx8 = (a+0)x3x8 = (a+
b) f (x1, X2). More generally, when a functior, is homogeneous of degregthen (under
suitable differentiability assumptionsy f (x) = r f (x), a result known as Euler’s theorem,
which we prove below in Theorem 16.

Theorem 15. Suppose fR" — R is homogeneous of degree r &7, and continuously
differentiable orR?,. Then for each#1,...,n, D;f is homogeneous of degree-(t) on
RA,.

To prove this let > 0 be given and define the functigh, ...,g" from R?, to R by
g(x)=tx i=1,..n
and the composite functidh from R", to R by
F(x) = f[g*(X),...,g"(X)] = f(tXq,....,t%n)
Then applying the Chain Rule, we have for eaeti,....n
DiF (x) = D f (txq,...,tXy) - t (6.1)
But sincef is homogeneous of degregwe have
F(X)=t"f(xg,...,Xn)

So,
DiF(x) =t"Di f(Xq,...,%n) (6.2)

Using (6.1) and (6.2), we get
Di f (tX,...,t%n) =t 1D; f (X1, ..., %) (6.3)

sincet > 0.
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Theorem 16. (Euler's Theorem) Suppose R" — R is homogeneous of degree r &

and continuously differentiable dR!,. Then

xvVf(x)=rf(x) forallxeR],

To prove this, let(xy, ..., Xn) be given inR",, and define the functiong', ...,g" from

R,, toR, by '
g'(t) =tx;, i=1,..,n
and the composite functida from R, , to R by

F(t) = f[gh(t),...,g"(1)] = f(txq,...,tXn)

Then, applying the Chain Rule, we have
n
F'(t) =DiF(t) = 3. Dif[g(t), ... g"(t) %
i=1
But sincef is homogeneous of degregwe have

F(t) =t"f(x1,...,Xn)

and,
F/(t) = D1F(t) =rt" 1 (xq, ..., Xn)

Also, fori=1,.....nwe have

Di f[gl(t),...,g"(t)] = Di f[txXq, ...,t%] =t~ IDi f (Xq, ..., %)

by using Theorem 15. Thus, combining (6.4), (6.5) and (6.6),
n
it (Xg, oo Xn) = 2D F (X, ey X)X
i-1
Cancelling the common tertfi-1 > 0 on both sides of (6.7), we get
n
rf (X, ... %n) = > Dif(Xa, ..., Xn)X;
i-1

which is the desired result.

(6.4)

(6.5)

(6.6)

(6.7)
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6.4 The Inverse and Implicit Function Theorems

Jacobians
SupposeA is an open set ilR", and f is a function fromA to R", with component
functionsfl,.... fn. If ac A, and the partial derivatives dft, ..., f" exist ata, then the
nx n matrix _
Df(a)=(Djf'(a))

is defined as thdacobian matrixof f ata. The determinant of this matrix, denoted by
Ji (), is defined as thdacobianof f ata.

For example, iff1(xq, X2) = X2 + 2x1%, on R?, and f2(xq, X2) = X1 + 3x3 on R?, and
a= (a1, ap) isinR2, then

2a1 + 2ay 24
1 %5

is the Jacobian matrix @&, and the Jacobian atis Js(a) = [18a3 + 18aa3 - 2a;]. Note
that, typically, the Jacobian matrix m®t a symmetric matrix (unlike a Hessian matrix).

Inverse Functions

Let A be a set ilR™, and letf be a function fromAto R". Thenf is one-to-oneon
Aif wheneverxt, x2 ¢ Aandx! = x2, we havef (x!) = f(x?). If there is a functiory, from
f(A) to A, such thag[ f (x)] = x for eachx e A, theng is called theanverse functiorof f on
f(A).

If f:R—Risdefined byf (x) =2x, then we note that is one-to-one ofR; also we can
define the functiog: R - R by g(y) = (1/2)y, and note that it has the propedjyf (x)] = X;
gis then thanverse functiorof f onRR. Furthermora/[f(x)]=1/f/(x) for all xe R.

More generally, leA be an open set iR, andf : A— R be continuously differentiable
onA. Letac A, and suppose thdt(a) # 0. If f’(a) >0, then there is an open b&la,r)
such thatf’(x) > 0 for all x in B(a,r), and f is increasing orB(a,r). Thus, for every
ye f[B(ar)], there is aunique xin B(a,r) such thatf (x) =y. That is, there is a unique
functiong: f[B(a,r)] — B(a,r) such thatg[ f(x)] = x for all xe B(a,r). Thus,gis an
inverse function off on f[B(a,r)}; we say thag is the inverse off “locally” around the
point f(a). [Notice that there is no guarantee that the inverse funéiatefined on the
entire setf(A)]. Similarly, if f’(a) <0, an inverse function could be defined “locally”
aroundf(a). The important restriction to carry out the kind of analysited above is
that f/(a) # 0.

To illustrate this, considef : R — R, given by f(x) = x2. Consider the poina = 0.
Clearly f is continuously differentiable o, but f’(a) = f’(0) =0. Now, we cannot
define a unique inverse function éfeven “locally” aroundf(a). That is, choose any

Df(a) =
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open ballB(0,r), and consider any point+ 0 in the setf[B(0,r)]. There will betwo
valuesxy, xo in B(0,r), X1 # X2, such thatf (x;) =y and f(x2) =y.

Of course,f’(a) + 0 is not a necessary condition to get a unique inverse fumatio
f. For example iff : R - R is defined byf (x) = x3, then we havef to be continuously
differentible onR, with f/(0) =0. Howeverf is an increasing function, and clearly has a
unique inverse functiog(y) = y1/3 onR, and hence locally arount{0).

Theorem 17. (Inverse Function Theorem) Let A be an open ségfand f: A— R" be
continuously differentiable on.ASuppose a A and the Jacobian of f at a is non-zero.
Then there is an open setoX¥A containing aand an open set ¥ R" containing f(a), and
a unique function gY — X, such that:

(i) F(X)=Y;

(ii) f is one-to-one on X

(i) g(Y)=X,andd f(x)] =x for all xe X.
Further, g is continuously differentiable on'Y

Note that (i) and (iii) of Theorem 17 imply thatis an inverse function of on f(X).
There are two preliminary implications of the theorem thatwaorth noting.

First, g is one-to-one olY. To see this, ley!,y2 €Y, and suppose thaf(y!) = g(y2).
Denote the common vector by by (iii) of Theorem 17 x e X. Using (i) of Theorem 17,
we can findx!, x? € X such thatf (x!) = y! and f (x?) = y2. By (iii) of Theorem 17,

g(yh) =g(f(x)) =x*
9(y*) =9(f(x*)) =x*
Thus, we must have! = x2 = x, and consequently! = y2. This establishes thatis one-to-

one onyY.
Second, we must have:

f(g(y))=y forallyeY (1)

To see this, ley be an arbitrary vector iM. By (iii) of Theorem 17 g(y) € X, and by (i) of

Theorem 17,f(g(y)) €Y. Denoteg(y) by x and f(g(y)) by z. Then, by (iii) of Theorem
17, we havg( f(x)) =x. But,g(f(x)) =9(f(9(y))) =9(2), by definition ofx andz. Thus,

g(z) = x. But, by definition ofx, we haveg(y) = x. Thus, using the fact thatis one-to-one
onY, we must have = z. This establishes (1).

The advantage of noting both the identity in (iii) of Theor&m and the identity in
display (1) is that, depending on the application, one migget either form to obtain the
partial derivatives of the inverse functiam,at f (a).

We illustrate how these partial derivatives can be obtabedsing the identity in (iii)
of Theorem 17. We can define farc X, F1(x) = g![ f(x)] as a composite function df
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andg!l. Usingthe Chain Rule we get:

DiFl(x):zn:ngl[f(x)]Difj(x) fori=1,...,n
i-1

But sinceF1(x) = x;, we haveD;F1(x) =1 fori =1, while DiF1(x) =0 fori+1. We
can repeat these calculations WiR(x) = g?[ f(x)], and getDjF2(x) = 1 fori = 2, while
DiF2(x) = 0 for i # 2. The results forF3(x),...,F"(x) should now be obvious. This
information can then be written in familiar matrix multipdition form:

D1g*[f(X)]....Dng'[ f ()] ] D1 f1(x)....Dnf1(X)

T D1 f2(X)....Dnf2(X)

D1f(X)....Dn f(X)

Thatis,| =Dg[ f (x)] Df(x). Thus,Df(a)is invertible, and we haveg| f (a)]=[Df(a)]L.
This yields, in turnJg[ f(a)] = 1/J¢(a), sinceJs(a) # 0.
Example:

Let f : R2 — R2 given by f (x,y) = (y, x+Yy?) for (x,y) e R2. Let us consider the point
(a,b) =(1,1). The Jacobian matrix of at(1,1) is

Df(l,l):[(l) ;]

The Jacobian of at(1,1) is
Ji(1,1)=-1

You can check thaf is continuously differentiable of®2. Thus, we can invoke the
inverse function theorem and get an openfsebntaining(1,1), an open seB containing
f(A), and a unique functiog: B — A, such thag is continuously differentiable oB, and
gl f(x,y)] = (xy) for all (x,y) in A. Sogl(y, x+y?) =x, andg?(y, x+y?) =y for all (x,y)
in A.

Let (Z1,Z,) € B. Then we can defing=2Z;,x=2,-72. Theng!(Z1,Z) = g*(y, x+
y2) =x=2p-22. Thusgi(Zy,Z) = Z,-Z2 for (Z1,Z,) in B.  Similarly we have
9%(Z1, Z2) = g?(y, x+y?) =y = Z1for (x1,%2) in B. Thus, in this case we can actually
computdhe inverse function. We can calculate the Jacobian matgaof (1,1) = (1,2):

RS I
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It can be checked easily that
Dg[f(1,1)]Df(1,1) =1
by simply multiplying the two matrices.

Implicit Functions::

Consider the functiorf : R2 - R given by f(x,y) =x2+y2-1. If we choose(a,b)
with f(a,b) =0, anda+ 1, a+ -1, there are open intervalc R containinga, andY c R
containingb, such that ifxe X, there is ainique y Y with f(x,y) =0. Thus, we can define
a unique functiorg: X - Y such thatf (x,g(x)) =0 for all xe X. [If a>0 andb> 0, then
g(x) = (1-x2)/2 on X.] Such a function is said to be definauplicitly by the equation
f(x,y) =0. Note thatifa=1, andb=0, so thatf (a,b) = 0, wecannotfind such a unique
function,g.

The above example can be generalized considerably to aotzny important result,
which is known as the Implicit Function Theorem.

Theorem 18. (Implicit Function Theorem) Let A be an open seR8f™, and let fL, ..., fm
be continuously differentiable functions from ARo Let(a;b) € A, with ac R" and be R™,
such that f(a;b) =0 fori=1,..,m. Suppose the rm matrix Dy, f'(a;b)[i=1,...m
and j=1,...,m] has a non-zero determinant. Then there exists an open sentdicing
a and an open setY containing b, and a unique functiod g Y, such that

() f(x,9(x)) =0forall xeX

(i) g(a)=b

Further, g is continuously differentiable on X
Example:

Consider the functionf : R2, — R, defined byf (x,y) = x®y# -1 forx> 0,y >0, where
a, [ are positive constants. Note that(atb) = (1,1), we havef(a,b) = f(1,1) =0. We
can calculate the (one by one) matixf(a,b) =D»f(1,1) =3, and this has a determinant
equal toB 0. Sincef is continuously differentiable oR?,, so we can invoke the implicit
function theorem, to obtain an open getontaininga, and an open sé& containingb,
and a unique functiog: A— B, such thag(a) = b, andf (x,g(x)) =0 for allxe A. Further,

g is continuously differentiable oA. Thus, defining=: A— R by F(x) = f(x,9(x)), we
have by the chain-rule

F/(x) = D1f(x,9(x)) + D2 (x,9(x))g'(X)

But sinceF (x) = 0 for all xe A, we get

0=D1f(x,9(x))+D2f (x.9(x))g'(x)
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Transposing terms, and evaluating the derivatives-a,

le(a, b)

D,f(ab) sinceD,f(a,b) #0

~d(a)=

Thus,

-¢'(1) = [D1f(1,1)/D2f(1,1)] = (a/B).

96
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6.5 Worked Out Problems on Chapter 6

Problem 26 (Converse of Euler’'s Theorem)

(@) Letf :R", - R,, be a continuously differentiable function on its domain,ath
satisfies
xV f(x) = f(X)

for all xe R, . Show thatf is homogeneous of degree one on its domain.
(b) Generalize the result in (a) to provide an appropriateesse of Euler’'s theorem.

Solution.

The proofs of parts (a) and (b) are very similar, so let’s s and prove the more
general result requested in part (b). Then part (a) wilbfelfor the special case where the
degree of homogeneity is one.

Claim: Let f:R", - R,, be a continuously differentiable function @&f,, and sup-
pose thakv f(x) =rf (x) for all xe R?,. Thenf is homogeneous of degre®n R, .

Proof: Letx be an arbitrary vector iiR7,. We want to show that for atl> 0, we have
f(tX) =t" f(x). Given thisxe R}, define the functiom: R, - R, by

g(t) = f(txq,...,txy) forallt>0

Using the Chain Rule and the hypothesisf (x) = r f (x), we have that for ali > 0,
n _ o — r r
§/(1) = Y Dif (15, 1)K = XV 1 (t5) = £ (15) = -g(t)
i-1

Rearranging, we have that
tg'(t)=rg(t) forallt>0

Now, considergt(,t). Differentiating with respect tg we have that for all > 0,

/ r_ r-1 r-1
%(gt(rt))=g(t)t tz%(t)rt =tt2r (tg/(t) ~rg(t)) =0

This implies that for alk > 0, gt(f) =c for somece R. Evaluating at = 1, we have that
c=9(1) = f(x), sogt(rt) = f(x). Sinceg(t) = f(tx), we have thaf (tx) =t" f(x) for all t > 0,
which is what we wanted to show.




CHAPTER 6. DIFFERENTIAL CALCULUS 98

Problem 27 (Homothetic Functions)

A functionF : R" - R, is called ahomothetic functioonR" if there exists a function
f : RT? - R, which is homogeneous of degree one R, and there exists a function
g: R, - R, which is an increasing function d&, , such that (x) = g( f(x)) for all xe R".

(@) LetF :R" - R, be a function which is homogeneous of degreé® onR". Show
thatF is a homothetic function oR".

(b) LetF : R2 - R, be defined by:
¢

1+x§x5-@

F(X]_,Xz) = for all (X]_,Xz) € R%

wherea € (0,1) is a parameter. Verify thd is a homothetic function oR2.

(c) Supposd :R2, - R,, is a continuously differentiable function &2, , which is
homogeneous of degree one, and which sati€iglgx) > 0 andD,f (x) > 0 for all x in
R2,. Suppos@: R, -~ R, is a continuously differentiable function satisfyigfy) > 0
forallyin R,,. LetF:R?, - R,, be defined byF(x) = g(f(x)). If t is an arbitrary
positive real number, show that

[D1F (tx)/D2F (tx)] = [D1F (X)/D2F (X)]
for all xin R?, .

Solution.

Note that part (a) shows that all homogeneous functionslssehamothetic functions,
while part (b) shows that a homothetic function is not neaelyshomogeneous.

(a) Homogeneity of degreeof F requires- (tx) =t"F (x), which is equivalent tg(t f (x) ) =

t'g(f(x)) since f must be homogeneous of degree one. This suggests choosing

g(x) =x". That choice implied=(x) = (f(x))", which suggests choosinfyx) =
(F(x))?l. Now we must formally use these choices to show Ehég homothetic.
Definef :R" - R, andg: R, - R, by

f(x) = (F(x))

Note thatg is increasing ofR, because we are given that 0. Also, f is homoge-
neous of degree one @i because for anye R" and anyt > 0, we have

F(1X) = (F ()7 = (TF ()7 =t(F(x)

7 forall xeR?, g(x)=x forallxeR,

1 1
r r

=tf(x)
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Finally, verify that for allxe R?,

o(f(x) =9((F®)7) = ((F(x)T) =F(x)
By the given definition, therf; is homothetic oR".
(b) Let f:R2 - R, be defined by
f(x1,%2) =xéx37%  forall (xg,%2) e R?

Now, f is homogeneous of degree oneldfi because for angx;, ;) € R2 and any
t >0, we have
f (txg, tx2) = A OxEX3 " =t f (%, %2)

Now, letg: R, — R, be defined by
X
=—— forall
g(x) Tox orall x>0

Note thatg is increasing ofR, because for ak > 0, we have

1+X-X 1

90 = Tax2 = w2 °

Finally, verify that for all(x1,xp) € R?,

1-a X(ix%_a
g(f(X17X2)) = g(XcJ}.(XZ ) = 14 x9xl-a
172

=F (X17X2)
By the given definition, therF is homothetic orR2.

(c) Sincef is homogeneous of degree onelRf,, we have by Theorem 15, that the
first-order partial derivatives of are homogeneous of degree zerdR# . That is,
for anyxeR2, and anyt > 0, we have

Dy f(tx) =D1f(x), D2f(tx)=D2f(x)

Now, using this result after applying the Chain RuleRpwe have that for any
xeR2, and anyt >0,

D1F (1) = g'(f (1)) D (tx) = g (f(£x))D1 f (X) (2.2)
D2F (tx) = g/(f (tx)) D2 f (tX) = g (f(£x))D2 f (X) (22)
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Because we are given that the first order partial derivativ€sare positive, we can
divide (2.1) by (2.2) to see that for ame R2, and anyt > 0,

DiF(tx)  g'(f(tx))D1f(x) D1f(x)

DoF (1)~ ¢/(1(80)D21(x)  D2T(¥) &3
Evaluating at = 1, we have that for anye R?,
DlF(X) _ le(x) (2 4)

DoF(x)  Daf(x)
Combining (2.3) and (2.4), we have that for anyR2, and anyt >0,

D1F (tx) B D1F (x)
DoF (tx)  D2F(x)

Problem 28(Inverse Function Theorem)

Supposeg' (for i = 1,2) are continuously differentiable functions froRf, to R, .,
satisfying for all(x1,x2) € R2, , Djg (x1,%2) >0 fori=1,2; j=1,2 . Define functions
aij (x1,%2) = Djgi (x1,%2) for (x1,%2) e R2, . Letx? = (x{,x3) e R2, ; denoteg (x°) by y°
fori=1,2. Assume that

all(Xo)azz(Xo) > alz(xo)a21(x°)
Define the functiong® and f2 from R%, to R, as follows:

f1(x1,%2,¥1,¥2) = Y1 - 9L (X1, %2)
f2(x1,%2,Y1,Y2) = Y2 - 92(X1,%2)

(a) Use the implicit function theorem to show that there s open se&fl containing
yo = (y(l),yg), and an open sé&t containingx?, and a unique functioh: U -V such that
for ally= (y1,y2) €U, g(h(y)) =y, andh(y°) = x°.

(b) Note thath is continuously differentiable od, and show thab;h'(y°) >0, and
D1h2(y°) <0.

Solution.

Note that in this problemx; andx, are treated as variables apdandy, are treated
as parameters. This is reversed from the presentation dfgblécit Function Theorem in
class.
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(a) Note thaty? e R2, becausey® andg? are functions intdR,,. We want to apply
the Implicit Function Theorem té! and f2 at the point(x?,y°) e R%,. We need to
check some conditions before applying the theorem:

e Both f1 and f2 are defined on the open s&f,. We would like to use the fact
that each off1 and f2 is the sum of two continuously differentiable functions
onRR%, to establish that! and f2 are continuously differentiable d&?, , but
gl andg? are defined oiR2, . Therefore, define the following functions, each
fromR4, toR,,:

G' (X1, %2,Y1,Y2) = @' (x1,%2)  for all (x1,Xz,y1,y2) € RY,
G2 (X1, %2, Y1,Y2) = 0%(X1,%2)  for all (xq,%o,y1,Y2) € R%,
G3(x1,%2,Y1,Y2) = Y1 for all (x1,%z,y1,Y2) € R,
G* (X1, %2,Y1,Y2) = Yo for all (x1,%2,y1,Y2) € R,

Each ofgl, §2, §3, andg* is continuously differentiable dR?, . We can express
each off1 and f2 as sums of these functions:

fL(x1, X2, ¥1,¥2) = G3(X1, %2, Y1,Y2) — G (X1, X2, Y1, Y2)
f2(x1, X2, ¥1,¥2) = G (X1, %2, Y1,Y2) — G2 (X1, X2, Y1, Y2)
Thereforef! and f2 are continuously differentiable di?, .
o We are given that atx0,y°) e R%,,
F100,y%) =y2- g1 (0) =y2-y2 -0
200.) = B-G20€) - o 3=0
By the definition off1 and f2 we have that
£i0y0 _| Daf(x%y0) D2f1(x%y°)
(i) =| brra(ee) D, r2(0y)
_| -D1g'(x%) -Dag'(x%)
-D1g?(x%) -D2g?(X%)
| —an(®)  —ar(x0) ]

—a21(x0) —a22(X0)

Then det{Dj f1(x%,y°)) = a11(x%)az2(x) —a12(x°)az1(X°) + 0 by the given in-
formation.
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By the Implicit Function Theorem, then, there is an operisefR?2, containingy?,
an open se¥ c R2, containingx’, and a unique functioh:U -V such that:

(1) f(h(y),y)=0forallyeU
(2) h(y°) =x°
Now, result (1) implies that for eadh- 1,2, we havefi(h(y),y) =yi-d'(h(y)) =0
for all ye U. This implies that for ally ¢ U, we have
g'(h'(y),h?(y)) =1 (3.1)
g*(hH(y),h*(y)) = y2 (3.2)
This is equivalent tg(h(y)) =y for all ye U, which we were asked to show.
(b) Given the conditions that were checked in part (a), we alse fram the Implicit
Function Theorem thdtis continuously differentiable od.

Using the Chain Rule to differentiate (3.1) with respect tcheafe; andy,, we have
that for ally e U,

D19t (ht(y),h2(y))D1ht(y) + Dogt(ht(y), h?(y))D1h?(y) = 1 (3.3)
D1gt(h1(y),h?(y))D2hl(y) + D2g(h(y), h?(y))Doh?(y) = 0 (3.4)

Using the Chain Rule to differentiate (3.2) with respect tcheafe/; andy,, we have
that for allyeU,

D1g%(h(y),h?(y))D1hl(y) + D2g?(h(y), h?(y))Dih?(y) = 0 (3.5)
D1g%(h1(y),h?(y))D2hl(y) + D2g?(h(y), h?(y))Dah?(y) = 1 (3.6)

Evaluating (3.3), (3.4), (3.5), and (3.6) ¥ and using the result from part (a) that
h(y?) = x9, we have the four equations

y°) +D2gH(x°)Dih*(y?) = 1
y°) +D2g' (x°)Dzh?(y°) = 0
y°) + D2g?*(x°)D1h*(y?) = 0
y°?) +D2g?(x°)Dzh?(y°) = 1
This is a system of linear equations that we can express as

a11(x%)  a12(X°) “ Dih'(y°) Doh'(y°) ]:[ 1 0]
a21(x0) a22(x0) D1h2(y0) D2h2(y0) 01

D1g'(x%)D;h!
D1g'(x%)D2ht
D1g*(x%)D;ht
D1g*(x%)D2ht

N /N /N
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In particular, we are interested in the system

[ a11(X%) a12(x0) H D:hl(y?) ]_[ 1 ]
a21(x0) agz(XO) D1h2(y0) 10

Because we are given that; (x°)az2(x0) > ag2(x%)az1(X0), az1(X°) > 0, andagy(X°) >
0, we can use Cramer’s Rule to solve this systenDigr!(y?) andD;h2(y?), which
gives the desired inequalities:

1 alzgigi
L ) 0 ay ~ aZZ(XO)
D;h (YO)_ a11(XO) a12(X0) _all(XO)azz(Xo)—a12(X0)8.21(XO)>O
a21(X0) aZZ(XO)
ag1(x0) 1‘
D1h?(y°) = a1t 9 ) °

1) ao(0) | 211(x)az2(X0) - a12(x0)az1 (X°) )
a21(x0) a2 (X0)

Problem 29 (Implicit Function Theorem)

Let X be an open set iR3, and letf be a continuously differentiable function froxnto R.
Let (x1,X2,X3) be a point inX, such that (i)f (X1, %2,%3) = 0, and (ii) for each € {1,2,3},
Di f()?la)?Z?)?S) +0.

(a) Use the implicit function theorem to obtain three opets #&, A2 A3, each in
R2, containing(Xz,X3), (X1,X3), and(Xy,X2) respectively, and three open sé&ks B2, B3,
each inRR, containingx, Xz, and Xz respectively, and unique functiomgs: A' — B' (for
i €{1,2,3}), such that:

(I) f(gl(Xz,Xg),Xz,Xg) =0 for all (X2,X3) e Al
(i) f(x1,0%(X1,%3),%3) =0 for all (x,x3) € A
("I ) f(X17X27g3(X17X2)) =0 for all (X].;XZ) e A3

and:
)G. = gl(@a)@)a)@ = 92()?17)?3)’)?3 = gs()?l)@)
Further,g' is continuously differentiable oA' fori e {1,2 3}.
(b) Using (a), show that:

D10 (%2, X3)D20% (X1, %3) D193 (X1, X2) = -1



CHAPTER 6. DIFFERENTIAL CALCULUS 104

Solution.

(a) To solve this problem, we need to apply the Implicit Funcfldreorem three times.

(b)

It is enough to work through only one of these three cases atalthat the other
two are very similar.

Claim: There is an open sat c R2 containing(Xz,X3), an open seB! c R contain-
ing X1, and a unique functiog! : Al - B! such that:

(1) f(gl(Xz,Xg),Xz,Xg) =0 for all (X2,X3) cAl

(2) x1=9g' (%2, %s)
Further,g! is continuously differentiable oAl

Proof: To establish the claim, we want to apply the ImpliainEtion Theorem to
f at the point(x, (X2,%3)) € X. Note thatx; is treated as a variable amg andxs
are treated as parameters. We need to check some condigtore lapplying the
theorem:

e The functionf is defined on the seét c R3. We are told thaK is open and that
f is continuously differentiable oX.

e We are given thaf (x1, (x2,x3)) = 0.
e We are given thaD1 f (X1, (X2,%3)) # 0.
By the Implicit Function Theorem, then, the claim above holds

From part (a) we have thdt(gl(xz,x3),X2,X%3) = 0 for all (x,x3) € Al. Using the
Chain Rule to differentiate this with respecttg we have

D1 f(g (X2, X3), X2, X3)D10* (X2, X3) + D2 f (g1 (X2, X3), X2, X3) (1)
+D3f (gl (x2,X3),%2,%3)(0) =0

Evaluating a1, X2, X3) and using the fact thag = g'(x2,%3), this becomes
D1 f (X1, X2, X3) D10™ (X2, X3) + D2 f (X1, %2, X3) = 0
Because we are given thag f (X3, %2, %3) # 0, we can rearrange this for

D2f()?17)?27)?3)

— = = 4.1
D1 f(X1,X2,X3) (1)

Dlgl()?Za )?3) ==
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From part (a) we have théft(x;,g%(x1,%3),x3) = 0 for all (x;,x3) € A2. Using the
Chain Rule to differentiate this with respectt we have

Dl f (X17 gz(xlv X3)7X3) (O) + DZ f (X17 gz(xla X3)7X3)D292(X17X3)
+D3f (x1,0%(X1,X3),%3)(1) = 0

Evaluating af(X;, X2, X3) and using the fact that = g?(X1,X3), this becomes
Do f (X1, X2, X3) D20? (X1, X3) + D3 f (X1, %2, X3) = 0
Because we are given thap f (x3,%2,%3) # 0, we can rearrange this for

D3f()?la)?27)?3)

- — =7 = 4.2
D2 f (X1,X%2,X3) (42)

DZQZ()GJ )?3) =

From part (a) we have thdt(x1,x2,93(Xg,X2)) = 0 for all (x,xz) € AS. Using the
Chain Rule to differentiate this with respecttg we have

D1 f (X1, %2, 03(X1, X2) ) (1) + D2 f (X1, X2, 0 (X1, %2) ) (0)
+Daf (x1,%2,03(x1,%2) )D1g3(x1,%2) = 0

Evaluating at(X;, Xz, X3) and using the fact thag = g3(x1,%2), this becomes
D1 f (X1, X2, X3) + D3f (X1, X2, X3) D10° (X1, X2) = 0
Because we are given thag f (x1,X2,X3) # 0, we can rearrange this for

D1 f (X1,X2,X3)

— = - 4.3
D3 f(X1,X%2,X3) (43)

D1g3(X1,%2) = -

Combining equations (4.1), (4.2), and (4.3), we have thee@sesult:

D10 (X2, %3) D202 (X1, %3) D103 (X1, %2) = -1
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Chapter 7

Convex Analysis

7.1 Convex Sets

Line Segment

If x,yeR", theline segmenjoining x andy is given by the set of point§z e R": z=
Ox+(1-0)yfor some x 6 < 1}.
Convex Set

A setSc R" is aconvex setf for every x,y € § the line segment joining andy is
contained irS,

For example, the set of poinf§x;,x2) € R?: X2 +x3 < 1} is a convex set. The set of
points{(x1, Xz) € R?:x2+x2 =1} is nota convex set.

It can be checked that if two sef andS, are convex sets iR", then

(1) the intersection of5; and S, [that is, the sef{zeR":z€ S andze S}] is a
convex set irk".

(i) the sum ofS; and$S; [that is, the se{ze R": z=x+y, wherexe S andye S} |
is a convex set ifR".

(i) the (Cartesian) product d§; and$; [that is the se{ze R?": z= (x,y), where
xe S andye $}] is a convex set ifR2",

However, ifS; andS, are convex sets IR", it doesnot follow that the union of5; and
S [thatis, the sefze R":ze S orze §} | is a convex set ifR". For example, the interval
S =[0,1] is a convex set ifR, and so is the intervaf = [3,4]. The point 2 is on the line
segment joining 1 and 3, but 2 is not in the union of the Se@ndS,. So the union of;
andS is not a convex set iR.

A vectory e R" is said to be @onvex combinationf the vectorsd, ..., xM e R" if there
existm non-negative real numbeés, ..., 0, such that

107
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(i) §9i=1; and (ii)yzieixi
i=1 i=1

A convex setA c R" can be redefined as a set such that for etepnectors in the seé,
all convex combinations of thes&o vectors are also in the sAt It can be shown that in
the above statement “two” can be replaced by tvheremis any integer exceeding one.

Proposition 3. A set Ac R" is convex if and only if for every integer»1i, and every m
vectors in A, every convex combination of the m vectorsisin A

7.2 Separating Hyperplane Theorem for Convex Sets

Hyperplane:
Let pe R"with p+0, and letx e R. The seH = {xcR": px=a} is called ehyperplane
in R" with normal p
A hyperplaneH in R" dividesR" into the two sets:
S ={XeR":px>a} andS = {xeR": px<a}
The setsS; andS; are called thelosed half-spacesssociated with the hyperplaki
A very important result on convex sets can now be stated.

Theorem 19. (Minkowski Separation Theorem)
Let X and Y be non-empty convex setRinsuch that X is disjoint fromY. Then there
exists R, | p| =1, anda € R, such that

forallxeX

pX a
a forallyeY

y

The Minkowski separation theorem can be used to establisteaan for the existence
of non-negativesolutions to a system of linear equations.

IN IV

©

Theorem 20. (Farkas Lemma)
Exactly one of the following alternatives holds. Either tiq@&tion

A x = b (7.1)
(mxn) (nx1)  (mx1)

has a non-negative solution; or the inequalities

y A >0; y b <O (7.2)
(1xm) (mxn) (1xm)(mx1)

has a solution.
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Proof. First, suppose that (7.1) doest have a non-negative solution. Define

n .
Q={geR":q=) NA for someAg,...,An) >0}
i=1
It can be checked th&) is a closed convex set. By our hypothesis notin Q. Since
Qs closed, there is an open bBl{b,r) c~ Q. That is,Q andB(b,r) are disjoint. Since
B(b,r) is clearly convex, we can use Theorem 19 to obfaimR", | p| = 1, anda € R such
that

pg<a forall qeB(b,r) (7.3)
and
pg>a forallqeQ (7.4)
Note that ifg e Q, thentqe Q for everyt > 0. Using thisin (7.4), foge Q,
pg> (a/t) foreveryt>0 (7.5)
Clearly (7.5) implies that
pg>0 forallqeQ (7.6)

SinceAl e Qfori=1,...,n, so (7.6) implies
pA>0 (7.7)

Using (7.4) again, we note that since Q, we havea < 0. Using this in (7.3), we
have
pq<0 forallqeB(b,r) (7.8)
Defineq* =b+(r/2)p. Then|qg*-b| =[(r/2)p| =(r/2)|p| = (r/2). Soq*eB(b,r), and
by (7.8),
2 "
pb+(r/2) = pb+(r/2) |p|” = pa* <0
This implies that
pb<0 (7.9)
Now, (7.7) and (7.9) show that we have demonstrated a soltmithe inequalities given
in (7.2).
To complete the proof of Theorem 20, consider, next, thdt)(Mas a non-negative

solution, say e R". We have to show that (7.2) does not have a solution. Sup@a®e (
did have a solution, saye R", then

0< (yA)x=y(Ax) =yb<0

which is clearly a contradictionm
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7.3 Continuous and Differentiable Functions on Convex
Sets

We now provide three very useful theorems on continuous #fedehtiable functions on
convex sets. They are known as the Intermediate Value thedne Mean Value theorem
and Taylor’'s theorem.

Theorem 21. (Intermediate Value Theorem):

Suppose A is a convex subsetR®d, and f: A— R is a continuous function on A.
Supposekand X are in A, and {x!) > f(x2). Then given any €R such that {x!) >c>
f(x2), there isO< 6 < 1 such that fox!+ (1-6)x2] =c.

Example:

SupposeX = [a,b] is a closed interval iR (with a<b). Supposd is a continuous
function onX.

We know, by Weierstrass theorem, that there will exisaindx? in X such thatf (x1) >
f(x) > f(x2) for all xe X. If f(x1)= f(x2) [this is the trivial case], thefi(x) = f(x1) for
all xe X, and sof (X) is the single pointf (x1).

If f(x1)> f(x2), then using the fact that is aconvex setwe can conclude from the
Intermediate Value Theorem that every value betwbed) and f (x2) is attained by the
function f at some point ir. In other wordsf(X) is itself a closed interval.

Theorem 22. (Mean Value Theorem)
Suppose A is an open convex subs@fand f: A— R is continuously differentiable
on A. Supposeband ¥ are in A. Then there i6 < 0 < 1 such that

f(x%) - f(xt) = (@ -xH)v(Bxt+(1-8)x%)

Example:

Let f : R — R be a continuously differentiable function with the propehat f/(x) >0
for all xeR. Then given any!, x2 in R, with x2 > x1 we have by the Mean-Value Theorem
(sinceR is open and convex), the existence af @< 1, such that

f(x%) - f(x') = (x®-x1) £/ (Bx} + (1-8)x?)

Now f/(8x+ (1-0)x2) > 0 by assumption, an? > xI by hypothesis. Sd(x2) > f(x1).
This shows thaf is anincreasing functioron R.

A word of caution: a functiorf : R - R can be increasing without satisfyirf¢(x) > 0
atallxeR. For examplef(x) = x3 is increasing oiR, but f/(0) = 0.
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Theorem 23. (Taylor's Expansion up to Second-Order)
Suppose A is an open, convex subs@&fand f: A— R is twice continuously differ-
entiable on A. Supposé &and ¥ are in A. Then there exis@< 0 < 1, such that

f(x®) - f(x}) = (P-x) V() + %(XZ—Xl)Hf (Oxt+ (1-0)x%) (X% —x1)

7.4 Concave Functions

Let A be a convex set iflR". Thenf:A - R is aconcave functiorfon A) if for all xI,
x2e A andforall 0<06<1,

f[ext+ (1-0)x?] > 0f (x}) + (1-8) f(x?)

The functionf is strictly concaveon Aif f[0x!+(1-0)x?] >8f(x1)+(1-0)f(x2) when-
everxl, x2e A xt+x2and 0< 0 < 1.

The relation between concave functions and convex setsvéndiy the following
result, which can be proved easily from the definitions of avea set and a concave
function.

Theorem 24. Suppose A is a convex subseiRffand f is a real-valued function on A.
Then fis a concave function if and only if the $§6ta) e AxRR: f(X) >a} is a convex set
in R+,

The following result on concave functions is also usefuhalgh it does not provide
a characterization of concave functions.

Theorem 25. Suppose A is a convex subsef¥f and f: A— R is a concave function.
Then, for every € R, the set

S(a) ={xeA: f(x)>a}
is a convex set ifR".

A result on concave functions which parallels Propositi@m®onvex sets can now be
noted. Itis known as Jensen’s inequality, and is a very lisadliin convex analysis.

Proposition 4. (Jensen’s Inequality)
Let A be a convex subset&f,and f a real-valued function on A. Then a necessary
and sufficient condition for f to be concave is that for eat¢bger m> 1,

f(__zm;eixi) 226if(xi)

m
whenever ¥ ..., x"e A, (81,...,0m) eRTMand ¥ 6; = 1.
i=1
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In general, ifAis a convex set ifR", andf : A— R is concave o\, thenf need not be
continuous orA. For example, suppoge=R,, andf : R, - R is defined by:f (x) = 1+x
forx>0; f(x)=0forx=0. Thenf is a concave function oA, but f is not continuous at
x=0.

If Ais anopenconvex setiR", andf: A— R is concave o, then one can show that
f is continuous orA.

Theorem 26. Suppose A is an open convex subseRffand f: A— R is a concave
function on A. Then f is a continuous function on A.

Differentiable Concave Functions:

If AcR"is an open, convex set, arfd A — R is continuously differentiable oA,
then we can find a convenient characterization ffdo be concave o in terms of a
condition which involves the gradient vector bf (This is particularly useful in concave
programming).

Theorem 27. Suppose A R" is an open set, and :fA - R is continuously differentiable
on A. Then f is concave on A if and only if

F(0@) - 1) < 71 () (- x1)
whenever kand ¥ are in A.

Corollary 4. Suppose A R" is an open, convex set, and A— R is continuously differ-
entiable on A. Then f is concave on A if and only if

[V(x2)-vf(xt)][x2-x1] <0
whenever kand ¥ are in A.

Itis interesting to note that a characterizatiorstictly concave functions can be given
by replacing the weak inequalities in Theorem 27 and CorpHawith strict inequalities
(for x1, x2 in A with x1 # x2).

Theorem 28. Suppose A R" is an open, convex set, and A - R is continuously differ-
entiable on A. Then f is strictly concave on A if and only if

f(x2) - f(x}) < v (xt) (x@-xb)

whenever X x2 e A and 2 # x2.



CHAPTER 7. CONVEX ANALYSIS 113

Corollary 5. Suppose & R" is an open convex set, and A — R is continuously differ-
entiable on A. Then f is strictly concave on A if and only if

[Vi(x®) -vi(xh)]x2-x1]<0
whenever ¥ x2 e A and ¥ # x2.

Twice-Differentiable Concave Functions

If AcR"is an open set, antl: A — R is twice continuously differentiable ofy, then
we can find a convenient characterization foto be a concave function in terms of the
negative semi-definiteness of the Hessian matrik.of

Theorem 29. Suppose A R" is an open, convex set, and A - R is twice continuously
differentiable on A. Then f is concave on A if and only {1 is negative semi-definite
whenever x A.

If the Hessian off is actually negative definite for atle A, thenf is strictly concave
on A; but the converse is not true.

Theorem 30. Suppose A R" is an open, convex set, and A - R is twice continuously
differentiable on A. If KI(X) is negative definite for everyed, then f is strictly concave
on A.

Example: Let f : R — R be definied byf (x) = -x* for all xe R. This is a twice con-
tinuously differentiable function on the open, convexRet It can be checked thdt is
strictly concave orR, but sincef”(x) = -12x2, f”(0) =0. This shows that the converse
of Theorem 29 is not valid.

7.5 Quasi-Concave Functions

Let Ac R" be a convex set, anfla real-valued function oA. Thenf is quasi-concave
onAif
f(x%) > f(x!) implies flOx' + (1-0)x?] > f(x1)

wheneverx!, x2 e A, and 0<8<1. The functionf is strictly quasi-concaven A if
f(x2) > f(x!) implies f[Ox! + (1-8)x?] > f(x1) wheneverx!, x2 ¢ A, with xI + x2, and
0<B<1.

While the condition stated in Theorem 25 did not characermecave functions, it
doescharacterize quasi-concave functions.
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Theorem 31. Suppose A is a convex subse®df and f is a real-valued function on A.
Then f is quasi-concave on A if and only if for evaryR, the set

Sa)={xeA: f(x)>a}
is a convex set ifk".

Using the concept of strict quasi-concavity, one can pmte following result on the
uniqueness of solutions to constrained maximization moisl

Theorem 32. (Uniqueness of Solutions)

Suppose A is a non-empty, compact and convex def.in Suppose fA—- R is a
continuous, strictly quasi-concave function on A. Thearefexists ¢ A such that for
all x e A which are not equal to’ we have {x) < f(x1).

Proof. By Weierstrass theorem, therexise A such that
f(x) < f(x}) forallxeA (7.10)

If the claim of the Theorem were not true, there would existeg? € A, X2 # x1, such that
f(x2) = f(x1). But thenx®=[(1/2)x+(1/2)x?] would belong toA (sinceA is a convex
set), and by strict quasi-concavity bbn A, we would havef (x3) = f[(1/2)x!+(1/2)x?] >
f(x1), which contradicts (7.10).m

Differentiable Quasi-Concave Functions:

A characterization of differentiable quasi-concave fuots can be given which paral-
lels the characterization of differentiable concave fiong stated in Theorem 27. (This
is particularly useful in Quasi-Concave Programming).

Theorem 33. Suppose A R" is an open, convex set, and A— R a continuously differ-
entiable function. Then f is a quasi-concave if and only if

f(x%) > f(x}) implies(x*-x})vf(x)>0
whenever X x2 ¢ A.

Twice Differentiable Quasi-Concave Functions
An interesting characterization of twice continuouslyetiéntiable quasi-concave func-
tions can be given in terms of the “bordered” Hessian massoaiated with the functions.
Let A be an open subset &", andf : A— R be a twice continuously differentiable
function onA. Thebordered Hessian matrix of &t x € A is denoted byG¢(x) and is
defined as the followingn+ 1) x (n+ 1) matrix

0 v(X)
vi(x)  Hi(x)

We denote thé¢k+ 1)th leading principal minor o6 (x) by |Gt (x k)|, wherek=1,...,n.

Gt (X) =
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Theorem 34. Let A be an open convex set®f, and f: A— R be a twice continuously

differentiable function on A.
(i)  If f is quasi-concave on A, thefr1)K|G¢ (x;k)| >0 for xe A, and k=1,...,n.

(i)  If (-1)K|Gs(x;k)|>0forxe A, and k=1,...,n, then f is strictly quasi-concave
on A.
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7.6 Worked Out Problems on Chapter 7

Problem 30(Intermediate Value Theorem)

Here is a statement of the Intermediate Value Theorem fotiraaous real valued
functions of a real variable.

Theorem:

Let f be a continuous real valued function on the closed intekvala, b]. Suppose
x,y € Asatisfy f (x) > f(y). Then for everyc, satisfyingf(x) >c> f(y), there isze A, such
thatf(z) =c.

We want to use this theorem to prove the following versiorhef intermediate Value
Theorem for continuous real valued functions of severdivaaables.

Corollary:

Let B be a convex subset @", and letF be a continuous real valued function Bn
Supposexd, x? e B satisfyF (x1) > F(x2). Then for everyc, satisfyingF (x1) > ¢ > F(x2),
there isve B, such thaf (v) =c.

Proceed with the following steps.

(a) DefineA =[0,1], and for each € A, definef(t) = F(tx! + (1-t)x?). This function
is well defined sinc® is a convex set, ané is defined orB. Verify that f is a continuous
function onA.

(b) Note thatf (1) = F(x!) > F(x2) = f(0). Use the Theorem (stated above) to obtain
ze Asuch thatf (z) = c. This meand=(zxL + (1-z)x?) =c.

(c) Definev=zx + (1-2z)x2, and verify that this proves the Corollary.

Solution.
(a) Note that an arbitrary! € B andx2 ¢ B are given in the hypothesis of the Corollary.
Now, letA=[0,1]. Definef : A— R by
f(t)=F(tx'+(1-t)x?) forallteA

Note thatf is well-defined: since! ¢ B andx? e B, by convexity ofB we have that
txl+(1-t)x2eBforallteA.

To show thatf is continuous om, fix somet ¢ A and somee >9. We want to
show that there is som&> 0 such that whenevere A andd(t,t) <3, we have
|f(t)- f(t)|<e&. Note that sincé c R, we can writed(t,t) = |t —t|. Also, note that

[f(t)-f(t)|= ‘F(tXl+(l—t)X2)—F(t_Xl+(1—'[_)X2)|
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To show thatf is continuous at our arbitratye A, we can use the fact th& is
continuous at the poirtk! + (1-t)x2 ¢ B. That is, givere > 0 (note that this is the
samee as above), by continuity df there is som&’ > 0 such that whenevetre B
andd(x,tx1+ (1-1)x2) < &, we haveF (x) - F (tx1 + (1-1)x?)| < .

This is looking similar to the inequality we want to establidNow, recall that for
anyy,zweR" and anyA € R, we have that(y+w,z+w) = d(y,z) andd(Ay,Az) =
|A| d(y,z). With the goal of picking an appropriafe consider the following dis-

tance:
d(txt+ (1-t)E i+ (1-1)x?) = d (txt - txE, (1-1)x% - (1-1)x?)
=d((t-t)xt, (t-1)x?)
- - d(3)
Now, letd = d(x?—IXQ) > 0. Whenevet € A and|t -t[ < 8, we have thatx! + (1-t)x2 e B
and 7

d(txt+ (1-t)x% i+ (1-1)x?) = [t -t d(x},x?)
<dd(x,x?)
=y

Then by continuity ofF we have thafF (tx!+ (1-t)x2) - F (tx1 + (1-1)x2)| < €,
which is equivalent taf (t) - f(t)| < €. Sincet was chosen arbitrarily, this shows
that f is continuous or.

(b) By the definition off, f(1) = F(x!) and f(0) = F(x2). By hypothesis in the Corol-
lary, F(x}) > F(x?), which is equivalent tdf (1) > f(0). Let some scalac satisfy
f(1)>c> f(0). Then sincef is continuous on the closed intervalwe have by the
stated Theorem that there is somA such that = f(2) = F (z2x¢ + (1-2)x2).

(c) Definev=2zx+(1-2)x2. SinceB is convex andze A =[0,1], we have that ¢ B.
Using part (b), we have that for amysatisfyingF (x!) > ¢ > F(x2), there is some
ve B such thaf (v) = ¢c. This proves the Corollary.

Problem 31(Mean Value Theorem)

Here is a statement of the Mean Value Theorem for real valuections of a real variable.
Theorem:
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Let f be a continuous real valued function on the closed intekvala, b]. Supposef
is differentiable for allk € (a,b). Then there i € (a,b) such that:

f(b)-f(a) = (b-a)f’(c)

Use this theorem to prove the following version of the Meatu¥da heorem for real
valued functions of several real variables.

Corollary:

Let B be an open convex subsetl®f, and letF be a continuously differentiable real
valued function orB. Supposed, x2 ¢ B. Then there i® € (0, 1), satisfying:

F(x2)-F(x}) = (x®-x}) vF (8xt + (1-0)x?)
Solution.

We can use the same functidnthat we used in Problem 1 to help us establish this
result. Note that an arbitrar} € B andx? € B are given in the hypothesis of the Corollary.
Now, letA=[0,1]. Definef : A— R by

f(t)=F(tx}+(1-t)x?) forallteA

We showed in part (a) of problem 1 thétis well-defined and continuous o Now,
because we have made the additional assumptions in thigeprdhatB is open and~
is continuously differentiable oB, we can use the Chain Rule to differentidt@n the
open interval0,1). Remember that! denotes théth component of the vectod, andx?
denotes théth component of the vecto®. For allt € (0,1), we have

F(t) = é[DiF(tx1+(l—t)x2) %(txi1+(1—t)x,-2)]

Zn: [ -%2) DiF (tx} + (1-1)x?) ]
i
= (X1 =x%) VF (txt + (1-1)%?)

SinceF is continuously differentiable oB andtx! + (1-t)x2 ¢ B whenevet ¢ (0,1), we
have thatf/(t) is continuous or{0,1). By the stated Theorem, therefis (0,1) such that
f(1)- f(0) = (1-0)f’'(8). And by the definition off, we have thatf (1) = F(x!) and
f(0) = F(x2). Using the above expression fof, then, we have that for sonfe: (0, 1),

F(x}) -F(x?) = (Xt —=x%) VF(6x' + (1-0)x?)

Multiplying each side of this equation byl gives the desired result.
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Problem 32 (Jensen’s Inequality for Concave Functians)

SupposeA is a convex subset @&", and f a concave function oA. Let x1,x2,x3 € A,
and letB,, 0,03 be real numbers satisfyiry>0 fori=1,2,3, and(61+6,+63) =1
(a) Using the definition of a convex set, verify that:

(elxl + 62x2 + 93X3) eA
(b) Using the definition of a concave function, show that:
f(B1x1+0x% +03x%) > 01 f (x1) + 8o F (x2) + 03 ()
Solution.
(a) If 81=0,6,=0, orB3 = 0 the problem is trivial, becauggx! + 8,x2 + 83x3 becomes

a convex combination of just two vectorsAn and we know thaA is convex. So,
assume thad; # 0, 8, £ 0, andB3 + 0. Then we can write

91X1 + 92X2 + 93X3 = (61+ 92) 9 1 + (91+ 92) elefe X2 + 93X3

92 _ . .
We know thate 10, 20, 5,75, +e >0, ande 5, * 8,10, = 1. Then sincé\is convex,

91 1 92 2
A
91+92X " 91+92X ¢

Again, sincef; + 0, >0, 03> 0, andd1 + 6, + B3 = 1, convexity of A implies that

X=

(01+62)%+03x € A
This is equivalent t@;x! + 8,x2 + B3x3 € A, which is what we wanted to show.

(b) As in part (a), if61 =0, 62, =0, or 83 = 0 the result will follow directly from the
concavity off onA. So, assume th& + 0, 8, + 0, andB3 + 0. We can get the result
by twice applying the concavity of on A. Note that the exact conditions we need
to verify before applying concavity have been shown in part¢ be satisfied.

f((81+02)%+03x%) > (61 +62) f(R) + 03 (x°)

_ 91 l 9
‘(G”GZ)f(e 18, 8146,

z((91+ez)[el+e2 o) + eee f(xz)]+93f(x3)
:Glf(x1)+62f(x2)+93f(x3)

)+93f(x3)
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Problem 33(Test for Concavity)
Let f : R2 - R be defined by:

f(xy) = A&y for all (x,y) € R?

whereA, a andb are positive parameters. [It is known thiais continuous orR?2 and
twice continuously differentiable dR2, . |

(a) Show thatf is concave oR? if (a+b) < 1.

(b) Show thatf is not concave oiR? if (a+b) > 1.

Solution.

(a) Testing for concavity by testing for negative semi-defiméss of the Hessian df
only works on open sets, but we want to show that concave ofR2, which is not
open. Showing thaf is concave on some open set that incluitéswill not work,
as we will see from the calculations below. So, consider tases.

Case 1: Sincé is twice continuously differentiable on the open and corsatR?, ,
we can show that is concave ofR?, by showing that the Hessian 6fis negative
semi-definite orRZ, . The Hessian of at any(x,y) e R?, is

a(a-1)Axa2yb  gpAxe-1yb-1
HIOOY) = | apaviypL b 1)Aseyb-2

Now, a(a—1)Ax2yd < 0 andb(b-1)AxdyP-2 < 0 for all (x,y) € RZ, becausea ¢
(0,1), be (0,1), andA > 0. The determinant of the Hessian ot any(x,y) e R2,
IS
detH¢(x,y) = ab(a-1)(b— 1) A2x232y?0-2 _ g2j2 A2y 2a-2y20-2

= A?x?2-2y2P-2gh((a—-1)(b-1) —ab)

= A?x?2-2y2P-2gh(1-a-b)

>0
sinceac (0,1),be (0,1), anda+b< 1. This shows that the Hessian bfs negative
semi-definite orRZ ., which shows thaf is concave ofiR?, .

Case 2: Considefxs,y1) € R?, (x2,y2) € R2, andB ¢ [0,1]. BecauseR? is convex,
we know that(xg,y1) + (1-0)(x,y2) € R2. Assume that eithet; =0 ory; =0, so
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that (x¢,y1) is on the boundary of the sBZ. Given the specifid we are consider-
ing, this means thatt(x;,y;1) =0. Now,

f(8(x1,y1) +(1-0)(x2,¥2))
= f(Bx1+(1-8)x2,0y1+ (1-0)y2)

= A(Bx + (1-8)%2)% (Byy + (1-8)y2)"
> A((1-0)%2)2((1-8)y2)° (sincea> 0 andb > 0)
= A(1-8)>0x8y5

= (1-6)*Pf(x2,y2)
>(1-0)f(x2,y2) (since 1-0¢[0,1] anda+b<1)

=0f(x1,y1) + (1-6)f(x2,y2) (sincef(xq,y1) =0)
Combining the two cases, we have tlfids concave oiR?2.
(b) Recall from part (a) that the determinant of the Hessiah aff any(x,y) € R?, is
detH¢ (x,y) = A% 2y?>2ah(1-a-b) <0

sincea>0,b> 0, anda+b > 1. This shows that the Hessian btannot be negative
semi-definite at any poir(ix,y) e R2,. Thereforef is not concave oiR?,, sof is
not concave oiR2.

Problem 34 (Characterization of Quasi-Concave Functions)

Let f : R - R, be areal valued function.
(a) Show that iff is quasi-concave oR", then for everya € R, the set:

U(a)={xeR}: f(x)>a}

is a convex set.
(b) Show that if for everyx € R, the set:

U(a)={xeR?: f(x)>a}
is a convex set, thehis quasi-concave oR".

Solution.
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(a) For alla such that (a) is the empty set or has only one element, the result holds
trivially. So, pick somex € R such that) (a) has at least two distinct elements. Let
x1,x2eU(a) andB € [0,1]. We have by the definition df (a) that f (x!) > a and
f(x2) > a. Suppose without loss of generality thaix!) > f (x2). Sincef is quasi-
concave oiiR?, we have thaf (6x1+(1-0)x2) > f(x2) > a, sofx1+(1-0)x2eU ().
ThusU (a) is a convex set.

(b) Letx,x2eR"Y, 6¢[0,1], and assume without loss of generality tiax!) > f(x2).
Sincef(x?) e R andU (a) is convex for alla € R, the set

U(f(®))={xeRT|f(x)>f(x)}

is convex. Now, sincel e U(f(x2)), x2eU(f(x2)), andU(f(x2)) is convex, we
have thabx!+(1-0)x2eU (f(x2)). By the definition ofJ ( f (x2)), this is equivalent
to f (Ox1+ (1-0)x2) > f(x2), which shows thaf is quasi-concave oR".

Problem 35(Testing for Quasi-Concavity)
(a) Letf : R? - R be defined by:
f(x,y) = A&yP for all (x,y) e R?

whereA, a andb are positive parameters. [t is known thiais continuous orR? and
twice continuously differentiable dR2, .] Show thatf is quasi-concave oRZ.
(b) Letg:R?2 - R be defined by:

g(x,y) =x@+yP for all (x,y) e R?

wherea andb are parameters, with> 1 andb > 1. Show thag is increasing ofR? but it
is not quasi-concave dR?.

Solution.

(a) As in Problem 4, part (a), we must consider two cases, $kfcs not open and we
will not be able to show that is quasi-concave on some open set that conf&fs

Case 1: Sincé is twice continuously differentiable on the open and corsatR?, ,
we can show thaf is quasi-concave oR2, by showing that for al(x,y) € RZ,,
the second leading principal minor of the bordered Hessiahnat (x,y) is strictly
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(b)

negative and the determinant of the bordered Hessi&ratfx, y) is strictly positive.
The bordered Hessian dfat any(x,y) e R2, is

0 aA@-1lyp bAxayP-1
aA lyd a(a-1)Ax@2yp  gpbAx-lyb-1
bAXy>-1  abAx-lyo-1  ph(b-1)AxayP-2

Bt (Xuy) =

Now, for all (x,y) € R2, the second leading principal minor of this matrix is

0 aAx-1yb 2 A2.23-2. 2b
‘an’Hyb a(a- D2y |~ TEAX y* <0

sincea> 0 andA> 0. The determinant of the bordered Hessiarf @it any(x,y) €
R2. is
detBy (x,y) = ~aA¥ lyP [ab(b- 1)A?x?31y?-2 _ gpP A2x2a-1y2b-2]
+bARYP1 [aZ0A2x2 2L a(a— 1)A2X22y2-1]
= —a’bA3x332y-2(h_ 1 b) + abPA3 2y 2(a—a+ 1)
- a2bABx3a-2y30-2 | g2 A3y3a-2y30-2
= abA’x32y32(a+ b)
>0

sincea> 0, b> 0, andA > 0. This shows that is quasi-concave oRZ2, .

Case 2: Conside(ixy,y1) € R, (x2,¥2) € R?, andB ¢ [0,1]. BecauseR? is convex,
we know tha(xg,y1) + (1-8)(x2,y2) € R2. Assume that eithet; = 0 ory; = 0, so
that (x¢,y1) is on the boundary of the sBZ. Given the specifid we are consider-
ing, this means that(xo,y2) > f(x,y1) =0. Now,

f(8(x1,y1) +(1-8)(x2,¥2)) 20= f(xg,y1)

Combining the two cases, we have tlids quasi-concave oRZ.

Note that sincey is defined oriR?, which is not open, we can only consider deriva-
tives on the open s&?2,. For all (x,y) € R?,, we have thaD1g(x,y) = ax@1>0
sincea> 1 andD,g(x,y) = by?~1 > 0 sinceb > 1. This shows tha is increasing on
R2.. We can check directly thatis increasing on the boundary. For alt 0 and

y >0, we have thag(x,y) —g(0,y) =x2 > 0. For allx> 0 andy > 0, we have that
g(x,y) -g(x,0) =y > 0. Combined with the result thatis increasing oiR?, , we
have thag is increasing oiiR2.
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Sinceg is twice continuously differentiable on the open and corsetR? ., quasi-
concavity ofg on R2, would imply that the determinant of the bordered Hessian of
g at any(x,y) € R2, is non-negative. But we have that at aixyy) € R?,

0 a1 byP-1
detBy(x,y) = | a1 a(a-1)x&2 0
byt 0 b(b-1)yb-2
=@ [ab(b- 1)x*1y*2] + byP~ [-ab(a- 1)x*2"1]
= —ab(b-1)x?2"2yP-2 _ap?(a-1)x@ 2y?02
<0

sincea> 1 andb> 1. Thereforeg is not quasi-concave dR?,, sog is not quasi-
concave orR?.
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Chapter 8

Unconstrained Optimization

8.1 Preliminaries

We will present below the elements of “classical optimiaatiheory”. We will concen-
trate on characterizing points afaximumof a function of several variables; the theory
which characterizes points ofinimum of such a function can be inferred without too
much difficulty.

Our first task will be to look at the theory aohconstrainednaximization, and discuss
the relevant necessary and sufficient conditions for suchrnmonstrained maximum to
occur. This is the subject matter of this chapter. Our sec¢askl will be to present the
theory ofconstrainedmaximization, where the only constraints &guality constraints.
This is the theory involving the well-known “Lagrange mplier method”, and is taken
up in Chapter 9.

Unconstrained Maximization Theory

Our framework is the following. There is a s&t R"; there is a functiorf : A— R.
We are interested in identifying pointsAat which the function attains a (local or global)
maximum.

Local and Global Maximum

Let AcR", and letf be a function fromAto R. A pointce Ais said to be apoint of
local maximunof f if there existd > 0, such thatf (c) > f(x) for all xe A which satisfy
[x—c| <d. Itis said to be goint of global maximunof f if f(c) > f(x) for all xe A.

127
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8.2 Necessary Conditions for a Local Maximum

We will present two necessary conditions for a local maximu®me is a condition on the
first-order partial derivatives of the relevant functioal{ed “first-order conditions”); the
other is a condition on the second-order partial derivatofethe relevant function (called
“second-order necessary conditions”).

Theorem 35. Let A be an open setR", and let f: A— R be a continuously differentiable
function on A. If & Ais a point of local maximum of f, then

vf(c)=0 (8.1)

Remark: Then equations given by (8.1) are called the first-order conadgifor a local
maximum.

Theorem 36. Let A be an open set iR", and let f: A— R be a twice continuously
differentiable function on A. If €A is a point of local maximum of f, then

H: (c) is negative semi-definite (8.2)

Remark: The condition (8.2) is called the second-order necessamgliton for a local
maximum.

Necessary conditions like (8.1) and (8.2) stated above sgkilbecause they help us
to rule out points where a local maximum cannot occur, thergsrowing our search for
points where a local maximum does occur. The following twaregles illustrate this
point.

Examples:

M Let f : R - R be given byf(x) = 1-x2 for all xe R. ThenR is an open set,
andf a continuously differentiable function dd Consider the point=1. We calculate
f’(c)=f/(1) =-2(1) =-2. By Theorem 35, we can therefore conclude thafl isnota
point of local maximum off.

(i) Let f: R - R be given byf(x) =1-2x+x2 for all xe R. ThenR is an
open set, and a twice continuously differentiable function dd Consider the point
c=1. We can calculaté’(c) = f/(1) =-2+2(1) = 0, so condition (8.1) of Theorem 35 is
satisfied. Notice that Theorem 35, by itself, fails to be of any help & plaint \We cannot
conclude from Theorem 35 that= 1 is a point of local maximum; we cannot conclude
from Theorem 35 that = 1 is not a point of local maximum. Theorem 36, however, is
useful at this point. We can calculafé(c) = /(1) =2 >0, and so condition (8.2) of
Theorem 36 is violated. Consequently, by Theorem 36, we cadwde that =1 is not
a point of local maximum of .
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8.3 Sufficient Conditions for a Local Maximum

We present below a set of sufficient conditions for a local imaxn.

Theorem 37. Let A be an open set iR", and let f: A— R be a twice continuously
differentiable function on A. If €A, satisfies

vf(c)=0 (8.3)

and
H: (c)is negative definite (8.4)

then c is a point of local maximum of f.

Remark: Condition (8.3) of Theorem 37 is called the second-order@afit condition
for a local maximum.

It should be noted that condition (8.4) cannot be weakenesbtalition (8.2) in the
statement of Theorem 37. The following example illustraités point.

Example:

Let f : R — R be given byf(x) =x3 for all xe R. ThenR is an open set, and
is a twice continuously differentiable function & At c=0, f’(c) = f’(0) =0, and
f’’(c) = f7(0) =0, so condition (8.3) and condition (8.2) are satisfied. d&stclearly not
a point of local maximum of sincef is an increasing function oR.

It may also be observed that condition (8.2) cannot be stivengd to condition (8.4)
in the statement of Theorem 36. The following example itatsts this point.

Example:

Let f : R — R be given byf(x) = —x* for all xe R. ThenR is an open set, antlis a
twice continuously differentiable function & Clearly,c=0 is a point of local maximum
of f [sincef(0) =0, while f(x) <0 for all x+ 0]. One can calculate thdt(c) = f’(0) =0,
andf”(c) = f7(0) =0. Thus conditions (8.1) and (8.2) are satisfied, but (8.¢jdkated.

The outcome of this discussion is the following: the secordkr necessary condi-
tions for a local maximum are different from (weaker tharg #econd-order sufficient
conditions for a local maximum. This simply reflects the fdwt, in general, the first
and second derivatives of a function at a point do not capliraspects relevant to the
occurrence of a local maximum of the function at that point.

The sufficient conditions of Theorem 37 enable us to find pasfitocal maximum of
a function, as the following example shows.

Example:

Let f : R? - R be given byf (X1, Xz) = 2%z — 2x2 - x5 for all (X1, X2) € R2. ThenR?

is an open set, anflis a twice continuously differentiable function. If we waitiown the
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condition (8.1) [or (8.3)] at a poirtcy, C2) € R2, we get
le(Cl, Cg) =2Cp-4c1 =0
sz(C]_, Cz) =2C1-2c2=0

Thus condition (8.3) is satisfied if and onlydf = ¢, = 0.
Next, we can find the Hessian 6fat (cy, ¢p) € R2:

Hf(C]_, CZ) = [ _24 _22 ]

Now, -4<0, and(-4)(-2)-(2)(2) =8-4>0. SoH;(cy, ¢p) is negative definite for each
(c1,c2) e R2. Thus, condition (8.4) is clearly satisfied. It follows fréFheorem 37 that
(c1, ¢2) = (0,0) is a point of local maximum of.

8.4 Sufficient Conditions for a Global Maximum
While several sets of sufficient conditioins for a global nmaxim can be developed, the
following two are among the most useful.

Theorem 38. Let A be an open convex setlRf, and let f: A— R be a continuously
differentiable function on A. If €A satisfies

vi(c)=0 (8.5)
and f is a concave function on A, then c is a point of global mmaxn of f.
To see this note that for atle A,
f(x)-f(c)<(x-c)vf(c) (8.6)

sincef is concave and continuously differentiable AfiSee Theorem 9 of Chapter 7 on
“Convex Analysis”]. Using (8.5) in (8.6), we gdt(x) < f(c) for all xe A, soc is a point
of global maximum off.

Theorem 39. Let A be an open convex setli¥f, and let f: A— R be a twice continuously
differentiable function on A. If €A satisfies

vi(c) =0 (8.7)

and
H: (x) is negative semi-definite for allbA (8.8)

then c is a point of global maximum of f.
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To see this, note that (8.8) ensures tha concave om; so the result follows readily
from Theorem 38.

It is worth noting that Theorem 38 (or 39) might be applicableases where Theorem
37 is not applicable. Let:R — R be given byf (x) = -x*. Here, one notes thdt(0) =0
andf”(x) = -12x2 <0 forall x. Thus applying Theorem 38 (or 39), we can conclude that
x=0is a point of global maximum, and hence of local maximum. Batdonclusion that
x=0is a point of local maximum cannot be derived from Theorers8ef”(0) = 0.

8.5 The Method of Least Squares

Suppose we are givenpoints(x, ¥i),i=1,....nin R2. Let f : R - R be given byf (x) =
ax+b for all xe R. We wish to find a functiorf (that is, we want to choosge R and
b e R) such that the quantity

[f(x.) yil?

WM:

IS minimized.
We can set up the problem as anconstrained maximization probleas follows.
DefineF : R2 - R by

n

F(a,b)=->[ax+b- yi]?
i=1

The maximization problem then is

MaxF (a,b)
(ab)

F is twice continuously differentible oR2, and we can calculate

DF = —22 [ax +b-y, x._—ZZ [a0@ +bx —XxiVi]
i= 1
DoF = —22[a>q+b—yi]
i=1
In N
DiF = —sziz; DlZFZ_ZZXi
- i=1
|n I
DoF = —ZZXi; D2oF =-2n
i=1

Thus, the determinant of the Hessiarfois

det(Hr (a,b)) = 4nzn:xi2—4[zn:xi]2
i-1 i-1



CHAPTER 8. UNCONSTRAINED OPTIMIZATION 132

Now, by the Cauchy-Schwarz inequality,

< ZXI 1V/2nt/2

s

SO ]
[;xi]zs ny x?

and consequently, dgtr (a,b)) >0. SinceD;1F (a,b) <0, D2oF (a,b) <0, and defHr (a,b)) >
0, Hr(a,b) is negative semi-definite. Consequently(#, b*) satisfies the first-order
conditions, ther(a*, b*) is a point of global maximum of by Theorem 39. The first-

order conditions are . .
az X2 + bz Xi =

anxi)’i

(8.9)

(8.10)

S e

Denoting(1/n) le by X and(1/n) Zy. by y [the means ok andy respectively], we get

from (8.10) that
ax+b=y (8.11)

Using this in (8.9) leads to
n
ay X2+ (y-ax)nx= > Xyi (8.12)

Thus,

y-ax = b

solves the problem, provided not all tkeare the same.
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8.6 The Envelope Theorem

Let X be an open convex set &', andA be an open subset &™. Let f be a twice
continuously differentiable function od x A which is quasi-concave oX, givenac A.
We interpret(xs, ...,X,) as the “variables” an@ay, ...,an) as the “parameters”.

Givenace A, we can formulate the following maximization problem:

I\){I&xf (x;a) (P)

Leta* €e A. Suppos&e X is a point such that
vi(xa)=0
H: (X;a")is negative definite

Using Theorem 37, we then know thas a point of local maximum of, givena*. Given
a* e A, f is quasi-concave oKX, sox can be shown to be a solution of problém), given
a*. (Can you show this?) In fact,can be shown to be the unique solution(B), given
ar.

Notice that by the implict function theorem, there is an opetB containinga*, and
an open se€ containingX, and a unique functiog: B - C, such that

() x=g(a)

(i) vf[g(a);a]=0 foraeB
Also, g is continuously differentiable oB. Furthermore, one can choose the operBset
S0 as to ensure

(iii) H:[g(a; a] is negative definite foaec B

Forde B, [& not necessarily equal ®'], we then note by (ii) and (iii), thag(8) is a
point of local maximum off, givend. And sincef is quasi-concave oK [given de B],
g(4) is the unique solution to problen®), givena.

We, can now define for problen®), thevalug V : B— R by

V(a) = I\)/(I&xf (x;a)
Furthermore, we can define theaximizer h B — X by
h(a)={zeX: f(za)> f(x;a) forallxeX}
What we have just established in the previous paragraphtis tha

V(a)=f[g(a);a] foracB (8.13)
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h(a) =g(a) foraeB (8.14)
Two questions which now arise quite naturally are:
(1) If achanges a little frona*, how will the maximized value of change?
(2) If a changes a little frona*, how will the maximizer change?

Suppose, for concreteness, we want to answer these qusektianparameter change,
where onlya; changes. Then question (1) can be answered by findinDgu¢a*); and
guestion (2) can be answered by finding out the vector

[Dig'(a*), D1g?(a*),....,D1g"(a*)].
Using (8.13), and the chain-rule,

n .
D1V (a*) =} Dif[g(a"); a"]D1g'(a") + Dea fg(a’); a’]
i=1
Using (ii), we haveD; f[g(a*); a*] =0fori=1,...,n. Hence,
D1V(a*) =Dn.af[X a’] (8.15)

This result is known as the “envelope theorem”, and it answeestion (1) above.
To answer question (2), use (ii) to obtain (employing agaedhain-rule),

¥y f[g(a);a |Pag () +Dan-aflg(a):a'] =0

iiani f[g(a*);a*]D1g'(a*) + Dpne1 f[g(a*);a*] =0

Then using (iii), we can employ Cramer’s Rule to obtain theagd®;g'(a*),...,D1g"(a*)].
This answers question (2).
As an application, considé¢ =R, ., andA=R2, , with f : X x A— R given by

f (X p,w) = p@(x) —wx

We interpretp: R, — R as the production function [witk as the input level ang(x) the
corresponding output levelp as the output price andas the input price. Thug,(x; p,w)
is the profit ifx of input is employed when the output pricegsand input price isv.
Assumingg(x) = 2x%/2 for x> 0, we observe that is twice continuously differentiable
on X x A, and given(p,w) € A, f is quasi-concave 0K, since@is concave orX.
Let (p*,w*) e A. Then, we note that

0=Daf(%p*, W) = (p*/%/?) -w"
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whenx= (p*/w*)2. Furthermore,
D1 f (% p*, W) = —[p*/2x¥?] < 0

Then applying the implicit function theorem, we can obtamapen seB containing
(p*,w*) and an open s& containingX, and a unique functiog: B — C, such that

(i)  x=g(p*w)

(i) D1 f[9(p,w); p,w] =0for(p,w)eB
Further,g is continuously differentiable oB.

Thevaluefor this problem is known as the “profit function”, and by (8).lit is given

by
m(p,w) = f[g(p,w); p,w]

The maximizer is known as the (inputgmand functionand by (8.14), it is given by
x(p,w) =9(p,w)
If we answer question (1) in this framework, we get, from £3,1
Dim(p*,w*) = @(g(p*,W*)) = @(x(p*,wW"))

DZT[( p*’w*) = _g( p*7W*) = _X( p*7W*)
This is generally known as “Hotelling result” in the theorfytloe firm.
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8.7 Worked Out Problems on Chapter 8

Problem 36 (Unconstrained Optimization: First-Order Conditians)

Here is a statement of the first-order condition for a maxinafimeal valued functions
of a real variable.

Theorem:

Let f be a continuously differentiable real valued function aaititervalA= (a,b). If
ce A satisfiesf (c) > f(t) forallt € A, thenf’(c) =0.

We want to use this theorem to prove the following versiorheffirst-order condition
for a local maximum of real valued functions of several reaiables.

Corollary:

Let C be an open subset &", and letF be a continuously differentiable real valued
function onC. If Xe C is a point of local maximum of, thenvF (x) = 0.

Proceed with the following steps.

(@) Sincexe C is a point of local maximum of, we can findr > 0 such thatB =
B(X,2r) cC, andF (x) > F(x) for all xe B.

(b) Pick anyk € {1,---,n}, and definea(k) = x-rek b(k) = X+ rek, whereeX is thek-th
unit vector inR". Then, by definition oB, we havea(k) € B andb(k) € B. And, since
B is a convex set, we hajeb(k) + (1-t)a(k)] B foralltel =[0,1]. Fortel, define
f(t) =F(tb(k)+ (1-t)a(k)), and note that this function is well defined, sifcés defined
on C (which contains the seB). DefineA=(0,1), and verify thatf is continuously
differentiable orA.

(c) Show thatf (1/2) =F(x), and f(1/2) > f(t) for allt € A.

(d) Use the Theorem (stated above) to obtHifil/2) = (2r)DxF (X) = 0. Verify that
this proves the Corollary.

Solution.

(a) SincexeC is a point of local maximum oF, there is som@ > 0 such that for all
x € C satisfyingd(x,x) < B, we haveF (x) < F(x). And sinceC is open, there is
somey > 0 such that for alk € R" satisfyingd(x,X) <y, we havexeC. Now, let
r=3min{B,y}, so thatB=B(X,2r) = {xe R"| d(x,X) < 2r } cC. Then for allx¢ B,
we have thaF (x) > F(X).

(b) Foranyke{1,...,n}, define

a(k) =x-rek, b(k) = x+reX
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Now, a(k) € B andb(k) € B because(a(k),x) = d(b(k),x) =d(rek,0) =r < 2r. Since
the open balB is convex, we have thab(k) + (1-t)a(k) e Bfor allt el =[0,1].
Definef:1 - R by

f(t) = F(th(k)+(1-t)a(k)) foralltel

Sincetb(k) + (1-t)a(k) e Bc C for all t e | andF is defined orC, the functionf
is well-defined. LetA=(0,1). We showed in problem 1 of Problem Set 8 tfids
continuous o0, 1], so it follows thatf is continuous o\. SinceF is continuously
differentiable on the open s€{ we can use the Chain Rule to differentidten A.
For allt € A, we have

7053 [DiF(tb(k) +(1-ta(k))

i= l

(18,9 + (1-Da(k) |

@lQ)

—Z[(bu(k) ai(k)) DiF (tb(k) + (1-t)a(k))]

- (b{k0-a(ko) TF(t6(6)+ (1-0)a(k)
= (2reX) vF (x+ (2t - 1)re¥)
= 2rDyF (X+ (2t - 1)re¥)

SinceF is continuously differentiable 0@ andtb(k) + (1-t)a(k) = X+ (2t -1)rek e
C whenevert € A, we have thatf’(t) is continuous orA. So f is continuously
differentiable orA.

(c) Sincetb(k) +(1-t)a(k) =X+ (2t - 1)rek, we havef(3) = F(X). And sincetb(k) +
(1-t)a(k) eBforalltel andF(x) > F(x) for all xe B, we have by the definition of
f thatf(3)> f(t) foralltel, and thus for alt € A.

(d) Using the result in part (c), we have by the stated Theoremffl@) =0. And from
part (b), we have that’(3) = 2rDF (X). Sincer >0, these two equations imply that
DkF (x) = 0. Becausd e {1,...,n} was chosen arbitrarily, we hawg= (x) = 0. This
proves the Corollary.

Problem 37 (Unconstrained Optimization: Sufficient Conditions for afdl Maximum)

SupposeéA is an open convex set iR", and f : A— R is twice continuously differentiable
and quasi-concave ol Suppose there isin A satisfying:

(i) vf(x) =0, and (ii))H¢ (x) is negative definite.

Show thatx is the unique point of global maximum défon A.
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Solution.

We will prove this by verifying a series of claims. First, wédlwhow that the Hessian
of f is negative definite in some neighborhood aroundSecond, we will use Taylor’s
Theorem to show thatis a point of strict local maximum of. Finally, we will use the
quasi-concavity of onAto show thakis the unique point of global maximum d&fon A.
Claim 1: There is somé& > 0 such that for alk € B(x,8) = {xe R" | d(x,X) < &}, we have
thatx e A andHs (x) is negative definite.

Proof: For eaclr =1,....n, let F":A— R denote theth leading principal minor of the
Hessian off. SinceF' is constructed by summing products of second derivative of
which are continuous oA, it follows that eactF" is continuous orA.

SinceH¢ (X) is negative definite, we know thBt(x) = D11 f (X) < 0. By the continuity
of F1, for el = -F1(X) > 0 there is somé! > 0 such that whenevere A andd(x,x) < &,
we haveF1(x) - F1(x)| < €1, which implies thafF1(x) < 0.

We can construd®?, ..., 3" similarly. Then for each=1,...,nwe have that for ake A
satisfyingd(x,x) < &', it follows thatF"(x) takes the appropriate sign (strictly negative for
oddr and strictly positive for even).

SinceA is open, there is somg> 0 such that for alk e R" satisfyingd(x,X) <y, we
havex e A.

Now, defined=min{d%,...,d",y} >0. Then for allx ¢ R" satisfyingd(x,x) < , we
have thatx € A andH; (X) is negative definite. This proves the claim.

Claim 2:xis a point of strict local maximum of.

Proof: Note that by Theorem 37, the conditions in the probieply thatx is a point of
local maximum off. We want to use Claim 1 to argue that we can strengthen thi# resu
to show thai’is a point of strict local maximum of.

Consider som&’ such that’ + xandd(x’,x) < &. By Claim 1, we have that € A, so f
is well-defined ak’. We want to show that (x) > f(x’). SinceA is open and convex and
f:A— R is twice continuously differentiable ofy we can apply Taylor's Theorem, which
says that there i8¢ (0,1) such that

f(xX)-f(X) = (x’—)?)vf(>?)+%[(x’—)?)’Hf(Gx’+(1—9))?)(x’—)?)]

We are given thav f (x) = 0. Also, sinceB(x,d) is a convex set and,x e B(x,d), we have
that X' + (1-8)x e B(X,d), so it follows by Claim 1 thati;(6x’ + (1-8)X) is negative
definite. Becausg —x= 0, this negative definiteness means we can use the abovéoequat
to write

f(xX)-f(X) = % [(X'=%)"H¢ (6X + (1-8)X) (X' -X)] <O

This impliesf (x’) < f(x), which shows that is a point of strict local maximum of.
Claim 3: xis the unique point of global maximum éfon A.
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Proof: Seeking contradiction, suppose the claim does ndt fidhen there is someeA
such tha* x and f (X) > f(x). Now, we can take somee (0,1) sufficiently close to zero
such thatx” = AX+ (1-A)xe B(x,0). It follows by Claim 2 thatf (x) > f(x). But since
f(X) > f(X) and f is quasi-concave oA, we have thatf (x") = f(AR+ (1-A)X) > f(X).
This is a contradiction, so the claim holds.
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Chapter 9

Constrained Optimization

9.1 Preliminaries

Let A be a subset oR", and f, g be real-valued functions oA. Define theconstraint
set C={xeA:g(x) =0}. A pointx* € Cis a point of local maximum of f subject to the
constraint dx) = 0, if there isd> 0, such thake CnB(x*,d) implies f (x) < f(x*). A point
x* € C is a point of global maximum of f subject to the constraint g(x)# x* solves the
problem:
Max f(x)
subjecttoxC

9.2 Necessary Conditions for a Constrained Local Maxi-
mum

The basic necessary condition for a constrained local maxims provided by Lagrange’s

theorem.

Theorem 40. (Lagrange)

Let Ac R"be open, and fA— R, g: A— R be continuously differentiable functions
on A. Suppose*xis a point of local maximum of f subject to the constrait)g= 0.
Suppose, further, thatg(x*) # 0. Then there i3* € R such that
[First-Order Condition] v I(x*) =A*vg(x*)
Remark: There is an easy way of remembering the conclusion of the¢heo We write

LOGA) = £(X)-Ag(x)

141
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whereL: AxR — R. L is known as the “Lagrangian”, aridas the “Lagrange multiplier”.
Consider now the problem of finding the local maximum inuarconstrained maximiza-
tion problemin which L is the function to be maximized. The first-order conditiors a

DiL(x,A) =0 fori=1,....,n+1

This yields
D;i f (X) = AD;ig(X) i=1..,n

and
9(x) =0
The firstn equations can be written as

v f(X) =Avg(x)

The method described above is known as the “Lagrange maltiplethod”.
The Constraint Qualification

It is particularly important to check the conditiarg(x*) # 0, before applying the con-
clusion of Lagrange’s theorem. This condition is known asdbnstraint qualification
Without this condition, the conclusion of Lagrange’s tresarwould not be valid, as the
following example shows.
Example

Let f : RZ — R be given byf (X1, X2) = 2x1 + 3X; for all (x1, X2) € R?; letg: R2 - R be
given byg(xi, X2) = X2 +x3. Consider the constraint $8t= {(x1, X2) € R?: g(x1,X%2) = 0}.
The only element of this set is (0,0), éxj, x5 ) = (0,0) is a point of local maximum of
subject to the constraigix) = 0.

The conclusion of Lagrange’s theorem does not hold here, iffbdid, there would
existA* € R such that

vf(0,0) =A*vg(0,0)
But this means that
(27 3) = (07 O)

which is clearly a contradiction. The problem here is thg(x;, x3) = vg(0,0) = (0,0),
so the constraint qualification is violated.

Theorem 41. Let Ac R" be open, and fA— R, g: A— R be twice continuously dif-
ferentiable functions on A. Supposeig a point of local maximum of f subject to the
constraint dx) =0. Suppose, further, thatg(x*) + 0. Then there i3* ¢ R such that
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[First-Order Conditiof V f(x*) = A*vg(x*)
[Second-Order Necessary Conditigi, (x*, A*)y < 0 for all y satisfying
yvg(x*) =0

where L(x;A*) = f(x) -A*g(x) for all x e A, and H_ is the nxn Hessian matrix of L with
respect ta(Xy, ..., Xn)-

9.3 The Arithmetic Mean-Geometric Mean Inequality

Consider the constrained maximization problem
n
Max 1 x;
-
subjecttoy. x = n (P)

i=1
andx>0 i=1...n

n
DefineC={xeR": >x =1). ThenC is a non-empty, closed and bounded seRIh
i-1

n
DefineF : R" - R by F(Xg,....,Xn) = ,I‘lei. ThenF is a continuous function oR". By
1=

Weierstrass’ Theorem, therexs € C, such that~(x) < F(x*) for all xeC. That is,x*
solves (P). Clearlyx® > 0 for alli. We can therefore conclude that also solves the
following problem:

n
Max_l'llxi
=
n
subjecttoyx; =n Q)
i=1
and x>0 i=1,...,n
DefineA=TR",; thenA is an open subset @&". Defineg: R", - R by g(xq,...,X) =
n n
YXxi—n,andf :R7, - R by f(Xg,...,Xn) = _I‘lei. Thenx* solves(Q), sox* is a point of
i=1 i=

local maximum off subject to the constraimj(x) =0. Also, vg(x*) = (1,1,...,1) # 0.
So, by the Lagrange theorem, therd isR, such that

V(X)) =Avg(x)

n
Definingy* = _I‘lei*, we obtain
1=

[(y*/xi), L) (y*/xﬁ)] = [)\7 7)\]
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n
ThusA >0, andx* = (y*/A) for alli, so thatx] =x5 =... = x3. Since} x"=n, we getx* =1
i=1
n
for alli. Thus_l‘llxi* =1. To summarize, we have now demonstrated thagif..., x,) e R,
1=
n n
and Y. X =n, then_l’llxi <1.
i=1 i=

n
Let a,...,an ben positive numbers. Define = > g, andx = [ng/a] fori=1,...,n.
i=1

n
Then(xy,...,X,) € R? and Y x; =n. So by our conclusion in the preceding paragraph, we
i=1

n
have_l'llxi <1. This means
1=

iIfll(na;/O() <1

so,
n\" n
(a) fla<
and,
n n
2. &
n .
Haig(ﬂ) |
i=1 n n
This yields finally
n
L B
/=l
(il:lla') : n

which is the Arithmetic Mean - Geometric Mean inequality.

9.4 Sufficient Conditions for a Constrained Local Maxi-
mum

Theorem 42.Let Ac R" be open, and fA— R, g: A— R be twice continuously differen-
tiable functions on A. Suppo$g*,A*) eCxR and

[First-Order Condition] vi(x*) =A*vg(x*)
[Second-Order Sufficient Condition] yk*, A*)y<Oforall y # 0 satisfying yg(x*) =
0
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where L(x,A*) = f(x) —A*g(x) for all x e A and H_is the nx n Hessian matrix of L with
respect taxy, ....,Xy). Then, X is a point of local maximum of f subject to the constraint

g(x) =0.

There is a convenient method of checking seeond-order sufficient conditistated
in the above theorem, by checking the signs of the leadingjp@l minors of the relevant
“bordered” matrix. This method is stated in the followingposition.

Proposition 5. Let B be an .xn symmetric matrix, and a be an n-vector with+a0.
Define the(n+1) x (n+ 1) matrix S by

0 a
| ]
and let/S(k)| be the(k+ 1)t leading principal minor of S for k 1,...,n. Then the follow-
ing two statements are equivalent

® yBy<Ofor ally + 0 such that ya 0
(ii) (-DK|S(k)[>0  fork=1,....n.

9.5 Sufficient Conditions for a Global Maximum

Theorem 43. Let Ac R" be an open convex set, andA— R, g: A— R be continuously
differentiable functions on A. Supposeé,A*) € C xR satisfies

[First-Order Condition] vi(x*)=A*vg(x*)

If L(x,A*) = f(X)—A*g(X) is concave in x on A, therts a point of global maximum of
f subject to the constraint(g) = 0.

To see this, lexeC. Then,
LOGA™) =L(XA%) < (x=x*) [V (X)) =A*vg(x*)]
by concavity ofL in x on A. Using the first-order condition, we get
f(X) —A*g(x) =L(x,A*) <L(x*,A*) = f(x*) -A*g(x*).

Sincex e C, andx* € C, we havey(x) = g(x*) =0. Thus,f(x) < f(x*), and sax* is a point
of global maximum off subject to the constraimg(x) = 0.

Example: Let f : R2 - R be given byf(x,y) = (1-x2-y2); g: R2 -~ R be given by
g(x,y) =x+4y-2.
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To apply the sufficient conditions, set up the Lagrangian
L(X,Y,A) = (1-x2—y?) = A[x+4y-2]
The first-order conditions yield
—(2x*,2y") =A*[1,4] (9.1)

Also, to satisfy the constraint,
X*+4y* =2 (9.2)

Thus, from (9.1)x* = —(A*/2), y* = -2A*. Using this in (9.2),
-(A*/2)-8\* =2 (9.3)

which yieldsA* = —(4/17),x* = (2/17),y* = (8/17).
To check the second-order sufficient condition, we writertdevant bordered matrix

- 0 1 4
S:[ 0 vg(x*,y*) ]: 1 2 0
VQ(X 7y) HL(X Y 7)\) 4 0 -2
0 1
|s<1>|=‘ 0 _2‘=—1<o
1 0 1 -2
=2+32=34>0

Thus (-1)|S(k)| > 0 fork = 1,2; by Proposition 5zH_(x*,y*;A*)z< 0 for all z+ 0 such
that zvg(x*,y*) = 0. Thus, the second-order condition of Theorem 42 is salisbed
so (x*,y*) = (2/17,8/17) is a point of local maximum off subject to the constraints
g(x,y) =0.

Notice that the Hessian afwith respect tax,y) is

-2 0
SIS
which is negative definite. Sine®=R2 is a convex set.(x,y,A*) is concave in(x,y) on

A. Hence, using Theorem 48x*,y*) = (2/17,8/17) is a point of global maximum of
subject to the constraigx,y) = 0.



CHAPTER 9. CONSTRAINED OPTIMIZATION 147

9.6 Worked Out Problems on Chapter 9

Problem 38 (Constrained Optimization: Proof of the Lagrange Theoresmaithe Im-
plicit Function Theorem)

Let Abe an open subset &", and letf andg be continuously differentiable functions
from Ato R. DefineC = {xe A: g(x) = 0}. Assume that there isc C such that:

(1)

f(x)< f(x) forallxeC
and Dng(x) #0

(a) Use the implicit function theorem to show that there i®pan seX c R™1 which
contains(xy,---,X,-1) and an open set c R which containsx,, and a unigue function
h: X =Y such that(xg, -, Xn-1,h(X1,---,Xn-1)) € Afor all (xq,---,Xn-1) € X, and:

(i) 9(X1, .-, Xn-1,N(X1, ..., Xn-1)) =0 for all (X, ..., Xn_1) € X } )
(i) h(Xq,...,Xn-1) = Xn

Further,his continuously differentiable oX.
(b) Using (2), we havéx,...,Xn-1,h(X1,...,Xn-1)) € C for all (Xg,...,X,-1) € X, and so
by (1) we have, for al(xy,...,Xn-1) € X:

F(Xa, - Xn-1, 0%, - Xn-1) ) < F (X, oo Xn-1, DX, -  Xn-1)) ®3)

Use (2) and (3), and the Corollary in problem 1 above, to priza if we defineA =
Dnf (X)/Dng(X), then:
v (X) = Avg(X) (4)

Solution.
(&) We want to show the existence of a Lagrange multiplier, givenknowledge that
x € C solves the constrained optimization problem. We are tad th
f(x) < f(x) for all xe C andDpg(x) + 0 (1)

Treatingx, as the variable anxh, ..., x,_1 as parameters, we want to apply the Im-
plicit Function Theorem tg at the pointx= (X1,...,X,-1,%1) € A. We need to check
the following conditions:

e The functiong is defined and continuously differentiable on the openAset
RN,
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e We are told thak € C, which impliesg(x) = 0.

e We are given thabng(Xx) # 0. Sincex, is the only variable, this is the only
derivative condition we need to check.

By the Implicit Function Theorem, then, there is an openXsetR"-1 containing
(X1,---,%1-1), an open seY c R containingx,, and a unique functioh:X - Y such
that(xa,...,Xn-1,N(Xq,...,Xn-1) ) e Afor all (xa,...,%-1) € X and

() 9(X1,.. . Xn-1,0(X1, ..., X-1)) =0 for all (X, ..., Xn-1) € X @
(i) ¥n=h(Xq,....%1)
Further,h is continuously differentiable oX.

(b) By result (2)(i) above, we have th@t;, ..., Xn_1,h(X1, ..., X,-1) ) eC wheneverXy,. .., X,1) €
X. Then sincef (x) < f(x) for all xe C, we have that for al{x, ..., Xn-1) € X,

f (Xl7 ce 7Xn—17 h(X]_, tee ,Xn—l)) < f ()GJ cee 7)Tn—17 h()G.v cee 7%’1—1)) (3)
SinceDpg(X) # 0 we can defind = %. We want to show that
v (X) = Avg(X) (4)

That is, we want to show thd; f (x) = ADjg(x) for all i =1,...,n—1,n. Note that
the last of thesa equationsPy f (X) = ADrg(X), holds by the definition ok. Now,
define the functiorr: X - R by

F(X]_, ... ,Xn_]_) = f(Xl,. .. ,Xn_l,h(X]_, . ,Xn_l)) for all (X]_, . ,Xn_]_) eX

Since(Xq,...,%n-1,N(X1,...,X-1)) € C c Awhenever(xy, ...,X,-1) € X and sincef
is defined orA, the functionF is well-defined. We know thdt is continuously dif-
ferentiable orX. Also, we found in part (a) that wheneved, . .., X,-1) € X we have
(X1, Xn-1,0(X1, ..., X-1) ) € A, and we know thaf is continuously differentiable
onA. So we can use the Chain Rule to find the derivativié oh the open seX. We
can also use the Chain Rule to differentiate result (2)(i) eb&or alli=1,...,n-1
and all(xq,...,X,-1) € X, we have

D; F(X]_, . 7Xn,]_) =Dy f(X;]_7 ...y Xn-1, h(X]_, . ,Xn,l))
+ an (Xla -y Xn-1, h(le cee 7Xn—l))Dih(X17 s aXn—l) (5)

0= Dig(xl, ey Xn-1, h(Xl, e ,Xn_l))
+ Dng(X]_, ey Xn=1, h(X]_, ... ,Xn_l))Dih(X]_, . ,Xn_]_) (6)
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We have by (3) thafxs,...,xn_1) is a point of local maximum of. Now, because
(X1,..-,X1-1) € X, X is open, andF is continuously differentiable oK, we have by
the Corollary in problem 1 thatF (X, ...,X,-1) =0. That is,DiF (X1,...,X1-1) =0
foralli=1,...,n—1. We also know from (2)(ii) that, = h(X, . ..,Xn-1). Evaluating
(5) and (6) ai(xg,...,Xr-1), then, foralli=1,...,n—-1 we have

Dif (%, %1, %) + Dnf (%, .., Ko 1,5)DiN(R, - K1) =0 (7)
Dig(Ri, . %o 1,%0) + Dng(Kes -, %o 1,5)DiN(R, . Ko 1) =0 (8)

Now, sinceDpg(X) + 0 we can solve (8) fob;h(xy,...,X,-1) and plug this expres-
sion into (7) to obtain that for all=1,...,n-1,

Dig(x) 0

n
Using the fact thak = B:;gg, we have from (9) thatforall=1,...,n-1,
D f () = ADig(X) (10)

SinceDy, f (X) = ADnhg(x) holds by the definition ok, we have by (10) that (4) holds,
which is what we wanted to show.

Problem 39 (Constrained Optimization: Sufficient Conditions for a Glokdaximum).

Supposé\is an open convex setiR", f : A— R is continuously differentiable and concave
onA, andg: A— R is a linear function orA.
Suppose there isin A andA € R which satisfy the following conditions:

(i) 9(%) -0
(it) v (%) - Avg(X) }(FOC)

Show thatx solves the problem:
Max f(x)
subjectto ¢x)=0 ;(P)
and xe A

Solution.
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Given theA in the hypothesis of the theorem, define the functioh— R by
L(x) = f(x)-Ag(x) forallxeA

Becausef is concave orA, g is linear onA, andA is fixed, we have thalt is concave
on A. Moreover,L is continuously differentiable oA becausef andg are continuously
differentiable onA. In addition, we are given th& is open and convex. So we can apply
Theorem 27 to see that for adk A satisfying the constrairg(x) = 0, we have

LX) -L(X) < (x-D VLX)
£ - F(0) -A(900 - g(9) < (x-%)(7 () ~Avg())
f(x)-f(X) <0

This shows thax solves the probleniP).
Problem 40 (Sufficient Conditions for Constrained Maximization: Apjalion).

We want to solve the problem:

Max JJHERS

subjectto Yil1x=n +(Q)
and xe R

by using the sufficient conditions for constrained maxir@a developed in problem 4

above.
Instead of solvind Q) directly, we look at the following problem:

Max YiLpInx
subjectto YL, x-n=0 }(R)
and xe RM,

(a) DefineA=R",, f:A=R by f(x) = XL, Inx; for all xe A, andg: A— R by g(x) =
YL, x —nfor all xe A. Verify thatA, f andg satisfy all the hypotheses stated in problem
4.

(b) Show thatx=(1,1,...,1) andA = 1 satisfy the(lF OC) of problem 4. Use the result
of problem 4 to infer thak=(1,1,...,1) solves problen{R).

(c) Verify, using (b), thak=(1,1,...,1) solves:

Max | JHERS
subjectto ¥l x-n=0 }(R)
and xe R,

(d) Conclude, using (c), that=(1,1,...,1) solves(Q).
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Solution.

(@)

(b)

(©)

(d)

DefineA=R", and note thafis an open and convex seti®. Now, definef:A— R
andg:A— R by

n n

f(x)=>1Inx forallxeA g(x)=>x-n forallxeA
i=1 i=1

The functionf can be expressed as the sum of functions that are contiryudidts|

ferentiable and concave @ so f is also continuously differentiable and concave

onA. Also, gis linear onA. ThereforeA, f, andg satisfy all the hypotheses stated

in problem 4.

It is straightforward to check that whers (1,...,1) e AandA = 1, we haveg(x) =0
andv f(x) =Avg(x). Therefore by the sufficiency result in problenx4olves the
problem(R).

Define the functiorh: A — R by
n
h(x)=]]x forallxeA
i=1

Then for allxe A, we have Im(x) = f (x), which is equivalent th(x) = ef(*). Seeking
contradiction, suppose thasolves(R) but does not solvéR'). Then there i’ € A,
X' + X satisfyingg(x’) = 0 andh(x') > h(x), which is equivalent tef ) > e (). Since
the exponential function is strictly increasing &n this implies thatf (x’) > f(x).
But that contradicts solving (R), so it must be that solves botR) and(R).

We have from part (c) thdt(x) > h(x) for all xe A=R", satisfyingg(x) =0. Con-
sider the set

S=RI\R"7, ={xeR" |x =0forsomeie{1,...,n}}

For allxe S, we have thah(x) =0< 1=h(x). Thereforex solves(Q).
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Chapter 10

Concave Programming

10.1 Preliminaries

We will present below the elements of “modern optimizatibedry” as formulated by
Kuhn and Tucker, and a number of authors who have followeid gfemeral approach. As
in our exposition of “classical optimization theory”, wellioncentrate on characterizing
points ofmaximumof a function of several variables (subject to certain c@msts). The
theory which characterizes points minimumof a function of several variables (subject
to certain constraints) can be obtained analogously.

Modern constrained maximization theory is concerned wighfollowing problem:

Max f(x)
Subjectto  §(x)>0 forj=1,...m (P)
and Xe X

whereX is a non-empty subset &, andf, gi(j = 1,...,m) are functions fronX to R.
We define theonstraint setC as follows:

C={xeX:g(x) >0}
where, as usuag(x) = [g1(x),...,g"(X)].
An elementx® X is a point of constrained global maximurifi X solves the problem
(P). Apair (X A) e (XxRT") is asaddle poinif

O A) <R A) <QPRA)

for all xe X and allA e R, where@(x,A) = f(X) +Ag(x) for (x,A) e X xR

154
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10.2 Constrained Global Maxima and Saddle Points

A major part of modern optimization theory is concerned vestablishing (under suitable
conditions) an equivalence result between a point of caims&d global maximum and a
saddle point. We explore this theory in what follows.

Theorem 44. If ()?,5\) e (XxRTM) is a saddle point, then (@g()‘() =0, (ii) g(X) >0, and
(ii) X is a point of constrained global maximum

Proof. Since(i,fx) is a saddle point, we have for alk R,
f(R) +Ag(R) < f (%) +Ag(R)

That is, we have A
Ag(X) <Ag(X) forall AeRT (10.1)

Choosing\ = 0 in (10.1), we gehg(%) <0. Choosing\ = 2\ in (10.1), we gehg() > 0.
ThusAg(X) = 0, which proves (i).
Using (i) in (10.1), we get

0<Ag(X) forallA e RT (10.2)
Choosingh in turn to be themunit vectors inR™M in (10.2), we get
0<g(X) (10.3)

which proves (ii). Thuis in the constraint se€. Now, letx be an arbitrary element of
C. Since(X, A) is a saddle point, we have

f(R)+Ag(R) > f(x) +Ag(X) (10.4)
Using (i), and the fact thak e R™Min (10.4), we obtain
f(X) > f(x)

Thus,X'solves (P), proving (iii).//m

A converse of Theorem 44 can be proveifs a convex setf,gi(j=1,...,m) are
concave functions o, and a condition on the constraints generally known as égtat
condition” is satisfied. [Notice that none of these condisi@are needed for the validity of
Theorem 44].

Given the problem (P), we will say th&ater’'s conditiorholds if there is<e X, such
thatg/(x) >0 forj=1,...,m.
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Theorem 45. (Kuhn- Tucker) Supposee X is a point of constrained global maximum.
If X is a convex set, ,B/(j =1,...,m) are concave functions on X, and Slater’s condition
holds, then there i& e R™M such that (|))\g(x) 0, and (ii) (X, )\) is a saddle point.

Proof. Define the set# andB as follows:

A={(a,B) eRM1: f(x) - f(X)>a andg(x) > B for somexe X}

B={(a,B) e R™1:a>0andB>>0}
ThenB is clearly a non-empty, convex set. Ardis a non-empty, convex set, sinxe
is convex, andf, g/(j = 1,...,m) are concave functions. Singesolves(P), A andB are
disjoint. Using the Minkowski Separation theorem, we hqee) e R™1 (u,v) 0, and
0 ¢R, such that

Ha+vB <O forall (a,B)eA (10.5)

pa+vB >0 forall (a,B)eB (10.6)

Using (10.5),8 > 0, while using (10.6)f<0. Thus6=0. Also, using (10.6)p>0 and
v>0. Summarizing, we hav@giv) e R, (1, v) £ 0, such that

uf(x)- f(X)]+vg(x) <0 (10.7)

for all xe X.
We claim, now, thaft+ 0. Forifu=0, thenv + 0, and (10.7) yields

vg(x) <0 forallxeX (10.8)

By Slater’s Condition, there ise X with g(x) >>0. Sincev >0 andv # 0, sovg(x) >0,
which contradicts (10.8). Thug,# O; that is,u> 0. DefineA = (v/i). ThenA e RT and
(10.7) yields

f(x)+Ag(x) < f(X)  forallxeX (10.9)

Puttingx=Xin (10.9), we get A
Ag(X) <0 (10.10)

Also g(X) >0, and\ e RMimplies A
Ag(X) >0 (10.11)

Clearly (10.10) and (10.11) impl?yg(i) =0, which proves (i).
Using (i) in (10.9), we get

f(x)+Ag(x) < f(R)+Ag(R)  forallxeX (10.12)
If A e RT, thenAg(X) >0, sinceg(X) > 0. Thus, using (i) again, we have
f(R)+Ag(X) < f(R)+Ag(X)  forallAeRT (10.13)
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Combining (10.12) and (10.13), one can conclude (b?ai) is a saddle point, which
establishes (ii).m

The following examples demonstrate why the assumptiondebilem 45 are needed
for the conclusion to be valid.
Example: Let X =R,; let f : X - R be given byf(x) = x, andg: X - R be given by
g(x) = -x2. ThenX is convex,f andg are concave. But Slater's Condition is clearly
violated. |t is easily checked that="0 is a point of constrained global maximum. But
there is no\ € R, such thatX,\) is a saddle point. For if there were such,ahen

X-MC<RR-A=0
for all xe X. But by choosing > 0 andx sufficiently close to zero, this inequality is clearly
violated.
Example: Let X =R,; let f : X - R be given byf(x) = x2, andg: X - R be given by
g(x) =1-x. Here,X is convex,g is concave, and Slater’s condition is satisfied with (for
instanceX = (1/2). Buf f is not concave oiX. It is easily checked that="1 is a point

of constrained global maximum. But there isheR, such thal(i,f\) IS a saddle point.
For if there were such &, then

X2+ A(1-X) < RR+A(1-%) =1

for all xe X. But by choosingx > 0 andx sufficiently large, this inequality is clearly
violated.

Example: Let X =R,; let f : X - R be given byf(x) =x, andg: X - R be given by
g(x) =1-x%2. ThenX is convex,f is concave, and Slater’s condition is satisfied with
(for instancek = (1/4). Butgis not concave oiX. Itcan be checked that="1 is a point

of constrained global maximum. But there isheR,, such tha(X, )\) is a saddle point.
For, if there were such &, then

A

X+A(1-x2) < R+ A (1-%H2) =

for all xe X. But, by choosing« > 0 andx sufficiently large, this inequality is clearly
violated.
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10.3 The Kuhn-Tucker Conditions and Saddle Points

Let X be an open set iR", andf, g!(j=1,...,m) be continuously differentiable ok. A
pair (X,A) in X x R satisfies th&uhn-Tucker conditions

m ~ .
(i) Dif(X)+> AjDig/(X) =0 i=1,..,n
=1
(i)  g(®)>0 and Ag(R)=0
A part of modern optimization theory is concerned with elssaing the equivalence (un-

der some suitable conditions) between a saddle point anchawbere the Kuhn-Tucker
conditions are satisfied. We examine this theory in whaoved!.

Theorem 46. Let X be an open set iR", and f, g/(j=1,...,m) be continuously differen-
tiable on X. Suppose a pafk,A) € X x R satisfies the Kuhn-Tucker conditions. If X is
convex and f, fj=1,...,m] are concave on X, then (()2,5\) is a saddle point, and (iif

is a point of constrained global maximum.

Proof. Define, as usualp(x,A) = f(x) + Ag(x) for (x,A) e X x R GivenA, cp(x,5\) is
concave ir, sincef andgl(j = 1,...,n) are concave ix. Thus forxe X we have

@(x,A) = @R N) < (X=R) V(R A)
Using the Kuhn-Tucker conditions, we haV$()?,3\) =0, so
P(x,A) <@(RA)  forallxeX (10.14)

Also, by the Kuhn-Tucker conditiong(X) > 0 andAg(X) = 0. So, for allA € RT, ¢(X,A) =
f(X) +Ag(X) > f(X) = f(X) +Ag(X) = @(X,A). Thus, we have

ORA)<O(RA)  forallAeRM (10.15)

Using (10.14) and (10.15}[?(,5\) is a saddle point, which proves (i). Using Theorem 44,
X solves(P) which proves (ii). m

Theorem 47. Let X be an open set iR", and f, d(j=1,..,m) be continuously differ-
entiable on X. Suppose a pdiX,A) e X xRT is a saddle point. The(X,A) satisfies the
Kuhn-Tucker conditions.
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Proof. Since(f(,fx) is a saddle point, we have

¢(x,5\)g¢(>2,5\) forallxeX

Thus, giveni, cp(x,ﬂ) attains a maximum at€’X. SinceX is open, andpis continuously
differentiable onX, we have A
VO(X,A) =0

ma .
Thus, Dif(X) + X AjDig!(X) =0 fori=1,...,n. Also, by Theorem 44, we know that
j=1

g(x)>0 and5\g(f<) =0. Thus(f(,fx) satisfies the Kuhn-Tucker conditionm.

10.4 The Kuhn-Tucker Conditions and Constrained Lo-
cal Maxima

An elementx’e X is apoint of constrained local maximurhX e C and there i® > 0 such
that for allx e B(X,0) nC, f(X) > f(x).

Let X be an open set iR", and f, gi(j = 1,...,m) be continuously differentiable on
X. We now establish the useful result (corresponding to thssital Lagrange theorem)
that if Xe X is a point of constrained local maximum then under suitablelitions, there
is A e RT such that(X,\) satisfies the Kuhn-Tucker conditions. The important coodlit
needed for the development of this theory is called a “cangtgualification” (just as it is
in classical theory). While there are several versions af¢bindition, the following one,
due to Arrow, Hurwicz and Uzawa, appears to be the most useful

Let x be a point in the constraint s€t LetE(X) c {1,...,m} be the set of indiceg,
for which the constraints afgindingatx; that isg! (X) = 0 for j e E(X). Thenx satisfies
the Arrow-Hurwicz-Uzawa (AHU) constraint qualificatiahat least one of the following
three conditions is satisfied:

(@) E(X) is empty

(b) X is a convex set ang! is a convex function for eache E(X)

(c)  Xis aconvex set and therehg R" such thahvgi (x) > 0 for all j € E(X).

Theorem 48. (Arrow-Hurwicz-Uzawa) Let X be an open sefiff, and f, d(j=1,...,m)

be continuously differentiable on X. SuppdseX is a point of constrained local maxi-
mum. Suppose, further, thasatisfies the Arrow-Hurwicz-Uzawa constraint qualification
condition, then there ia ¢ R such that(X,\) satisfies the Kuhn-Tucker conditions.

Proof. If condition (a) of the AHU constraint qualification is sdigl, theng! (%) > 0 for
j=1,...,m. DefineY ={xeX:gl(x)>0for j=1,...m}. ThenxeY is a point of local
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maximum off on the open set. So, by the theory of unconstrained maximum,
vi(X)=0

Definef\j =0forj=1,....m. Then,(i,f\) satisfies the Kuhn-Tucker conditions.

If condition (a) is not satisfied, |& = E(X) be the set of indiceg, for whichg! (X) = 0.
(This is the set of effective constraints at the point of ¢ised local maximum). Since
X is a point of constrained local maximum, ther&is 0, such thak € B(X,8) nC implies
f(x) < f(X). LetzeR" be an arbitrary vector satisfyirgyg! (X) >0 for j e E. We will
now show that

zvf(X) <0 (10.16)

if either condition (b) or condition (c) of the AHU constragualification is satisfied.

First, suppose condition (b) is satisfied. By definigtz with f >t > 0 andf suf-
ficiently close to zero, we havee R", (X+h) e B(X,8), g/(X+h) >0 for j e~ E, and
hvg!(X) >0 for j e E. By convexity ofX and ofg! for j € E, we haveg! (X+h) -gi(X) >
hvgi (%) >0 for jeE. Thus,gi(%+h)>gi(X)>0forjeE. So(X+h)eB(X8)nC. Since
X is a point of constrained local maximurh¢X+h) < f(X). Thus, by applying the Mean
Value theorem, we get®f (X+h) - f(X) =tzv f (&) whereg is a convex combination of ~
and(X+tz). Thus,zvf (&) <0. Lettingt -0, we ge€ — X, andvf (&) - vf(X). So, we
obtainzv f (X) <0, which is (10.16).

Next, suppose condition (c) is satisfied. DefinreAh+z whereA € (0,1), andh is
given by condition (c). Then, we hawarg!(X) > 0 for all j € E, sincezvg!(X) > 0 and
hvg! (X) > 0 for eachj € E.Definingb =ty with f > t > 0,andf sufficiently close to zero, we
havebe R", (X+b) € B(X,8), g/ (X+b) > 0 for j e~ E, and for allf € [0, 1], bvg! (X+6b) >0
for j € E. Now, for j € E, by the Mean-Value theoreng) (X+b) — gl (X) = bvg! (X+8b)
for some®; € [0,1]. So, for j € E, g/(X+b) - gl (X) > 0,and consequentlg! (X+b) > 0.
Thus, (X+b) € B(X,0) nC. Sincex'is a point of constrained local maximum, we have
f(X+b) < f(X). Now, following the argument used in the previous paragraph,get
yv f(X) < 0. Thus, we have shown that for eveky (0,1), y = Ah+z satisfiesyv f (X) <
O;that is,zv f (X) + Ahv f (X) < 0. Letting A — O,we obtainzv f (X) <0, as we had claimed.

We have now established thati R" is an arbitrary vector which satisfies gl (X) > 0
for j € E, thenz[-vf(X)] >0. By the Farkas Lemma [see Chapter 7 on “Convex Analy-
sis”], there exishj >0 for j € E, such thatfoi =1,....n

-Dif (=Y ADig'(®)
Definef\j =0forje~E. ThenA e R™ and fori=1,...,n,

m .
Dif(X)+ > A;jDig!(X) =0
i



CHAPTER 10. CONCAVE PROGRAMMING 161

SincexeC, we getg(x) >0. Sinceg/(X) =0 for j eE, and)\J 0 for j e~ E, we obtain
)\g(x) 0. Thus,(% A) satisfies the Kuhn-Tucker conditiona.

Corollary 6. Suppose X is an open, convex selRify and f g/(j =1,...,m) are con-
tinuously differentiable on X. Suppo%e X is a point of constrained local maximum.
Suppose, further, that at least one of the following two camaktis satisfied:

(i) gl is convex forall F1,...,m

(i) g is concave for all | 1,...,m, and Slater’s condition holds.
Then, there i3 ¢ R such that(X,A\) satisfies the Kuhn-Tucker conditions.

Proof. Let E = E(X) be the set of indices for which!(X) =0. If E(X) is empty, then
condition (a) of the AHU constraint qualification is satisfiend the result follows from
Theorem 48. IE is non-empty, and condition (i) is satisfied, then clearlgditon (b) of
the AHU constraint qualification is satisfied and, again,résult follows from Theorem
48.

SupposeE is non-empty, and condition (ii) is satisfied. Then, ther& ¢C, such
thatg/(x) >0 for j=1,....m. Thus, forj € E, we haveg! (x) -g!(X) < (X-X)vg!(X), by
concavity ofgl. Sinceg!(X) = 0 andg!(x) > 0 for eachj ¢ E, we obtair{x-X)vg!(X) >0
for j e E. Definingh=(x-X) ¢ R", we havenvg! (X) >0 for all j € E, and so condition (c)
of the AHU constraint qualification is satisfied, and the hefllows from Theorem 48.
]

Corollary 7. Suppose € R", be Rk and A is a k«n matrix. Consider the following
maximization problem:

Max CX
Subjectto Axb (P)
and xe R

Suppos& solves(P), then there ifie RX such that for all x R7, and all pe RX
(i) cx+fi(b—Ax) < cX+(b-AX) < cX+ pu(b-AX)
(i) [t solves the following minimization problem:

Min ub

Subjectto pA C (Q)
and pe RX

Proof. DefineX =R"; thenX is an open convex setiR". Definef :R"—> R by f(x)=cx

definegl : R" - R by gl (x) = X for j =1,...,n gl(x) = (b- AX)(j-m for j=n+1,....,n+k.
Definem=n+k. Thenf,gi(j= m) are continuously differentiable ox. CIearIng
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is convex forallj =1,...,m. Thus, there i& ¢ R such 1 thatX, )\) satisfies the Kuhn-Tucker
conditions, by applylng Corollary 6. We can wrike= (V, ) whereV e R? andji= RX.
Then, we have for=1,...,n

k
Ci+Vj— Zﬁjaji =0
j=1

That is,
c+V-[1A=0 (10.17)
andx> 0, (b—AX) > 0,VX+{i(b-AX) =0. Clearly, then,
U%=0andfi(b—AR) =0 (10.18)

Using (10.17), we get for akke R7, cx+ fi(b— Ax) = cx+Ux - lAX+ flb—Vx < fib.  Also,
using (10.17) and (10.18), we get

cX+{i(b-AX) = cX+VX-IAX+{lb-VX=[ib (10.19)

Thus, for allx e R?
cx+[i(b—Ax) < cX+[i(b-AX) (10.20)

For all pe RX, we haveck+ p(b-AR) > cX, since(b-AX) > 0. AlsocX+fi(b-AR) =c%,
sincel{b-AR) =0. Thus, for allpe R,

cX+pu(b—AX) > cX+i(b-AX (10.21)

Combining (10.20) and (10.21) establishes the result (i).
To prove (ii), we can proceed as follows. We get from (10.18),19) that

c%=fib (10.22)

Using this in (10.20), we get for atle R", (c-lA)x+ [ib< fib+[i(b— AX) and using (10.18)
in the above inequality

(c-fIA)x<0 forallx e R? (10.23)
Choosingx in turn to be then unit vectors inR", we get from (10.23),
RA>c (10.24)

Sinceie R, fiis in the constraint set of proble(®).
Now, consider an arbitrarp e RX such thatyA>c. Then(c- pA)X < 0 since
XeR™, and using this in (10.21) yields
pb> cX+ [i(b-AX) (10.25)

Using (10.18) and (10.22) in (10.25) implies thdt> fib. This proves thaft Solves(Q).
u
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10.5 Constrained Local and Global Maxima

It is clear that ifX'is a point of constrained global maximum, thers also a point of
constrained local maximum. The circumstances under whiehcbnverse is true are
given by the following theorem.

Theorem 49. Let X be a convex set R". Let f g/(j=1,...,m) be concave functions on
X. Supposé is a point of constrained local maximum. Th&ns a point of constrained
global maximum.

Proof. Sincex’is a point of constrained local maximum, theredis 0, such that for all
X e B(X,0) nC, we havef (x) < f(X).

Now, if X is nota point of constrained global maximum, then there is se@€, such
that f(x) > f(X). One can choose 96 < 1 with 8 sufficiently close to zero, such that
%= [6x+(1-08)X] € B(X,8). SinceX is convex andy!(j =1,...,m) are concaveC is a
convex set, andl = [0x+ (1-0)X] eC. Thusx=[6x+(1-0)X] e B(X,8)nC. Also, since
f is concave f(X) = f(Ox+ (1-0)X) >0f(X)+ (1-0)f(X) > 0f(X)+(1-0)f(X) = f(X).
But this contradicts the fact thatis a point of constrained local maximuna.
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10.6 Appendix: On the Kuhn-Tucker Conditions

Let X be an open set iRR", containingR?, and f,GI(j = 1,...,r) be continuously differ-
entiable onX. We consider the optimization problem:

Max f(x)
subjectto G(x)>0  for j=1,...,r {(P)
and xeR"

We rewrite problen{P) in its equivalent form, given by:

Max f(x)
subjectto ¢(x)>0  forj=1,...m }(Q)
and xe X

wherem=r +n, and: _ '
gl(x)=Gl(x) forj=1,...r
gl(X)=xj_r forj=r+1,...,;r+n

(1)

We can now write down the Kuhn-Tucker conditions for problg®). A pair (f(,f\) in
X xR satisfies th&Kuhn-Tucker conditionfor problem(Q) if:

(i) Dif(i)+j§:jl)\jDigi(>2):0 i=1,..n }(KTI) o

(i)  g(®)>0 and Ag(R)=0

Denotingf\m by fori=1,....n, andf\,- =V; for j =1,...,r, we see that (2) can be
written as:

(i) Dif(R)+X0DG®R) +H=0 i=1..n -
=1
(i) G(%)>0,%>0and YG(R) = 0,i%=0
Sincelj >0 andpi% =0 fori=1,...,n by (3), we obtainX,V) e R? xR :
(i)(a) D-f()?)+zrj0jD-Gj(>2)§O i=1,...n
i) (b) [Di f DG/ 0i=1,...
()0 <x>+zvj S T

(u)(a)GJ(x)>Ofor j=
(i) (b) _Zlv,GJ(x) 0
j=
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Conversely, given probleifP), suppose we can obta{if,V) ¢ R? xR', satisfying(KT
I1). Then we can define:

B =-[Dif(X)+ Zr: U;DiG!(8)] fori=1,...,n (5)

and: ) )
Aj=vjforj=1...,rAi=f fori=1,....n (6)

Then denotindr +n) by m, we obtaine R? by (KT 11(i)(a)) and (5) and ¢ R™ by (6).
Further, defining: _ _
g'(x)=Gl(x) forj=1,

gl(x)=xj_r forj=r+1,...,r+n (7)
we obtain: _
g'(X)>0forj=1,...m (8)
sincexe R? and (KT Il(ii)(a)) holds.
Finally, using(KT 11(i)(b)) and(KT 1l (ii)(b)), one obtains:
VG(X)=0,[x=0 9)
Combining (5)-(9), we obtaifik,A) in X x R™ such that:
m A .
[ D;i f (X AiDig/(X)=0 i=1,..,n
() D)+ ZADg ) T 10)
(ii) g(x)>0 and Ag(X) =0

Thus (KT I) and (KT 1) are equivalent ways of writing the Kuhn-Tucker conditions,
given problem(P).
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10.7 Worked Out Problems on Chapter 10

Problem 41 (Using Kuhn-Tucker Sufficiency Theory by Contracting the Rxom)

Let p be an arbitrary positive real number. Consider the follonsngstrained opti-
mization problem:

Maximize £°+x3°

subjectto px+Xo < pXg+X4 (R)
(x3)%+(xa)? <1
(X17X2>X37X4) € ]le—

(a) To solve problentR), first solve problen(S) given below:

Maximize £°+x3°

subjectto px+X2 < pX3+X4 (9)
(x3)%+(xa)?<1
(X1,X2,X3,%4) € RY,

Define X =R, , £(x) =3§%+33%, g1(x) = Pxo+Xa = Pxa—Xz , B2(X) = 1-[(xg)2 +
(x4)2] , wherex = (X, X2,%3,X4) € X. Write down and solve the Kuhn-Tucker conditions
for problem(S), and denote the solution of the Kuhn-Tucker condition$hj) € X xR2.

(b) Show that solves problentS), and(x,A) satisfies:

f(x) +Ag(x) < F(X) +Ag(X) for all xe X

(c) Use (b) and the continuity df , g* andg? onRR? to establish that Solves(R).

Solution.

(a) Define the seX = R%, and define the functions, g, andg?, each fromX to R, by

11
f(X) =X +X3 for all xe X

gl(X) =pxg+Xga—pxa—X2 forall xe X
9%(X) = 1-x5-x4 for all xe X

A pair (ZX) e X x R? satisfies the Kuhn-Tucker conditions for proble®) if it
satisfies the following:

252 h(-p)=0  (L1) P+ %~ pR-% 20 (L5)
%g%dl(-l):o (12) 1-2-2>0  (L6)
M(p)+A2(-2) =0 (1.3) M(Pa+Xa-pa-%)=0  (17)
A+A2(-2%G)=0  (1.4) M(1-38-32)=0  (18)
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Since the objective function is increasingx¥pandxy, we expect that the first con-
straint in problem(S) will hold with equality at any solution. In addition, the giter
is the right hand side of the first constraint, the greateinasvialue of the objective
function that we can achieve. So we expect the second canstrgroblem(S) to
hold with equality, also.

Seeking contradiction, suppose tﬂ@tz 0. Then (1.1) and (1.2) cannot hold, so we
have a contradiction. Therefokg > 0. By (1.7), then, we have

PX3+X4— PX1—X2 =0 (1.9)

Again seeking contradiction, suppose tP_vgt= 0. But then (1.4) implies thaﬁl =0,
which contradicts what we have just shown. Therefgre 0, so by (1.8) we have

1-x¢-x5=0 (1.10)
From (1.3) and (1.4), we have that %. Using this in (1.10), we have thépxs)2 +
X2 = 1, which gives
1 p

Vg PR

Now, using (1.1) and (1.2) to eIiminar_q, we havep = % or X2 = p?X1. Then we
can use (1.9) and= i—j to write p2Xg + Xz — pX1 — p?x1 = 0. This implies that

_ 1+p? — J1+p? o py/l+p?

X1 = X4 Xp=pPX1=

X =

“p(+p) "t p(1+p)’ 1+p
From (1.2) and then (1.4), we have
_ N 1 7 1 o\ 1
A]_:})g?:%) )\2=)\—£=(1+p)2(1—+p)4
2 2p2(1+p2)s 24 4p>

The pair(Z)_\) e X xR? given above is the unique solution to the Kuhn-Tucker con-
ditions for problem(S).
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(b) We need to verify that the conditions of the Kuhn-Tucker Sigficy Theorem are
satisfied before we can conclude tkalves problentS).

The setX is open and convex iR*. The functionsf, gl, andg? are continuously
differentiable onX.

The functionf can be expressed as the sum of functions that are concaxesm
f is concave orX. The functiong! is linear onX, so it is concave oiX. Now, the
functionsh!(x) = x3 andh3(x) = x are convex orX, so—h! and-h? are concave on
X. Since we can writ@?(x) = 1-hl(x) - h2(x) for all xe X, we can expresg? as
the sum of functions that are concaveXnThis means thag? is concave oiX.

So all the conditions of the Kuhn-Tucker Sufficiency Theosmmet. Sincéx,\) €
X xR? satisfies the Kuhn-Tucker conditions for problé8), then,xsolves problem
().

Theorem 46, Chapter 10, which is the Kuhn-Tucker Sufficienogofrem, includes

the result thatx,A) is a saddle point. By the definition of a saddle point, then, we
have thatf (X) + Ag(x) < f(X) +Ag(x) for all x e X.

(c) Letx be an arbitrary point ifR%, and define the sequenge'} >, by
1 1 1 1
X=Xy + =, X0+ =, X3+ — =] foralln=12,...
( l+n7 2+n; 3+n7)(4+n) s &

Thenx"e R4, for alln=1,2,..., and the sequence" o4, converges tx. Since
f, g, andg? are continuous oit?, the sequencéf (x")}, converges td (x), the
sequencgg!(x")}>, converges t@!(x), and the sequendg?(x")}>°, converges
to g2(x). That is, the sequendd (x") +Ag(x") }> , converges td (x) + Ag(X).

Using the result in part (b) and the fact thdte X = R4, for all n=1,2,..., we
have thatf (x") + Ag(x") < f(x) +Ag(x) foralln=1,2,.... Since weak inequalities
are preserved in the limit and the sequef€&x") +Ag(x") } 2, converges td (x) +
Ag(x), we have thaff (x) +Ag(x) < f(X) +Ag(X) for our arbitraryx ¢ R, and thus
for all xe R?.

Now, in part (b) we said tha(b?,)_\) is a saddle point for problerf), which includes
the inequality f (X) + Ag(X) < f(X) + Ag(x) for all A e RZ. So, from this and the
previous paragraph, we have that

f(x) +Ag(x) < F(X) +Ag(X) < F(X) +Ag(X) for all (x,A) e R4 x R2

That is, (Z)_\) is a saddle point for problertR). By Theorem 44, therx solves
problem(R).
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Problem 42 (Using Kuhn-Tucker Sufficiency Theory by Expanding the Damha

Let a,b be arbitrary positive numbers, satisfyiag- b > 1. Consider the following con-
strained maximization problem:

subject to X+Xo+Xx3<1

Maximize dn(1+xp)+bIn(1+x2)+X3
(R)
and (X1,%2,X3) € R3

(@) DefineX = {(x1,%2,%3) € R3: % > -1 for alli € {1,2,3} }. Now, definef (x;,x2,X3) =
aln(L+xq) +bIn(1+x2) +X3, gH(X1, %2, X3) = 1~ (X1 +X2+X3), 9% (X1, X2, X3) = X1, §3(X1, X2, X3) =
X2, g*(X1,%2,X3) = X3 for all (X1,X%,X3) € X. Write down the appropriate Kuhn-Tucker con-
ditions for problem(R).

(b) Solve the Kuhn-Tucker conditions in each of the follogvthree cases: (8> 2b;

(i) a<2band(a+b) > 3; (iii) a<2band(a+b) < 3.

(c) Use your solutions to the Kuhn-Tucker conditions to obsalutions to(R) in each

of the three cases specified in (b) above.

Solution.

(a) Define the set
X = {(x1,%2,%3) e R3| x> -1 foralli=1,2,3}

Now, define the following functions, each frato R:

f(x1,X2,x3) =aln(1l+xy) +bIn(1+x2) +x3 forall (x1,X2,x3) € X
gl (X1, %2, %3) = 1 — (X1 + X2 + X3) for all (x1,%2,X3) € X
0% (X1, X2, X3) = X1 for all (x1,Xp,X3) € X
03 (X1, X2, X3) = X2 for all (x1,Xp,X3) € X
0* (X1, X2, X3) = X3 for all (x1,Xp,X3) € X

A pair (2,5\) e X x R% satisfies the Kuhn-Tucker conditions for probléR) if it
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satisfies the following:

R “A+A2=0  (21) 23>0  (2.7)
1+)22—5\1+5\3:0 (2.2) M[1-(+%+%)]=0  (28)
1-A+As=0  (2.3) Af1=0  (2.9)
1-(Zq+%+%3) >0  (2.4) A% =0  (2.10)
£1>0  (25) MX3=0 (2.11)

2>0  (2.6)

(b) We are looking for(f<,5\) e X x R4 satisfying (2.1)—(2.11). The motivation for the
following strategy was discussed in the final section meetiirthe course.

First, we want to show that the budget constraint, (2.4)d$wlith equality. Seeking
contradiction, suppose thai = 0. Then (2.3) gived4 =-13 0, which is a contra-
diction. SoA; > 0. Then by (2.8), we have

1—()21+)22+)23)=0 (2.12)

Next, we want to show that; > 0. Seeking contradiction, suppose="0. Then by
(2.1),Ar=a+Az>a>1. Then (2.3) implies thaks =A1-1>0, so (2.11) implies
thatx3 0. Then from (2.12) we havgg 1, s0(2.10) glveé\g 0. By (2.2), then,

A= 2, so by (2.1) we hava, = 5 —a. But we require\, > 0, which can only hold
if b>2a. This contradicts the glven information theat b > 1, so we conclude that
)?1 > 0.

At this point we need to split the problem into cases.

Case 1:x;1>0,% =0. By (2.9), we haveAthaStAz =0. Sincex; =0, it follows from
(2.2) thatb—A1+A3=0. Then (2.3) giveds=A1-1=b+A3-1>0 sinceb>1, so
(2.11) impliesxz = 0. From (2.12), then, we havwe = 1. Plugging this into (2.1) and
using the fact tha1\2 =0, we have\l =%. Then (2.2) ylelds\3 =2-b. Since we
requwe)\g >0, we must hava > 2b. From (2.3) we have4 =5-1. Whena>2bwe
have that > 2, so}\4 >0.

Case 2:x1 >0, % >0, X3=0. By (2.9) and (2.10), we have thAb.i =0 and2\3 =0.
By (2.12), we havex;+ X = 1. Using this after solving (2.1) and (2.2) fag and

equating the two expressions, we hai = . This givesx; = 22. Since we

must havex; > 0, this case requires< 2b. Thenx; =1-X%, = zgfjb > 0. Next, we can
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use (2.1) to solve fok; = T = &b Then from (2.3) we havkg =A1—1= %’ -1
Since we must havk, > 0, a further requirement for this caseais b > 3.

Case 3:x7 >0, %2 >0, X3 >0. By (2.9), (2.10), and (2.11), we have thet=0,
A3=0, andA4 =0. Then (2.3) yielda\1 = 1. Using this in (2.1) and (2.2), we have
X1=a-1>0andX; =b-1>0. Then (2.12) impliexs=1-%; - X =3-(a+b), so
X3 >0 requiresa+b < 3. Now, ifa+b<3 anda>b> 1, it must also be that < 2b.

To summarize:
(i) If a>2b, the unique solution to the Kuhn-Tucker conditions is

a

3 a a
(%A) = ((1’0’0)’(5’0’5 —b,é—l))
(i) If a<2banda+b> 3, the unique solution to the Kuhn-Tucker conditions is

()A(,;\) :((Za—b 2b-a 0)7(a+b70,07 a+b_1))

a+b’ a+b’ 3 3

(i) If a<2banda+b< 3, the unique solution to the Kuhn-Tucker conditions is
(%,A) = ((a-1,b-1,3-(a+b)),(1,0,0,0))

(c) We need to verify that the conditions of the Kuhn-Tucker Sigficy Theorem are
satisfied before we can conclude that the variows found in part (b) solve problem
(R) under the associated parameter restrictions.

The setX, defined in part (a), is open and convex®if. The functionsf, g1, g2, g5,
andg* are continuously differentiable ox.

For allx e X, the Hessian of atxis

"z 00
M= 0 —mgr
0 0 0

The first order principal minors dfl (x) are—(lj(l)z, —(1+t)’(2)2, and 0, which are

each less than or equal to zero forxaH X. The second order principal minors of

Ht(X) arem(h—%)2 and 0, which are both greater than or equal to zero for all
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x e X. The determinant ofi;(x) is zero for allxe X. SoH;(x) is negative semi-
definite for allxe X. Therefore, sincX is an open set, we have thiats concave on
X.

Since the functiong?!, g2, g3, andg?* are linear orX, they are concave oX.

By the Kuhn-Tucker Sufficiency Theorem, if a pair,f\) e X xR% satisfies the Kuhn-
Tucker conditions given by (2.1)—(2.11), thersdlves problen{R). So from part
(b) we have the following solutions to problefR), depending on the values of the
parametera andb:

(i) If a>2b, thenx=(1,0,0) solves(R).

(i) If a<2banda+b> 3, thenx= (232,22 0) solves(R).

(i) If a<2banda+b<3, thenx=(a-1,b-1,3-(a+b)) solves(R).

Problem 43 (Using Kuhn-Tucker Sufficiency Theory for a Non-Differeattie Objective
Function)

Let a1, ap, p1, P2, W be arbitrary positive numbers. Consider the constraineinigztion
problem:

subject to pX1+ poXo <W

Maximize min{agxy,axXo}
Q)
(X1,X2) >0

Here the objective function is not differentiable (the ffelience curves are L-shaped).
Instead of solvind Q), we consider the following constrained optimization probie

Maximize axq
subject to axp>ajxp
P1X1 + P2Xz <W
(Xl,XZ) >0

(Q)

(a) Solve problen{Q’) by using the Kuhn-Tucker sufficiency theorem.
(b) Show that any solution @iQY’) is also a solution ofQ).

Solution.

(a) To use the Kuhn-Tucker Sufficiency Theorem, we need to spacifopen sek.
The sefR?, would work, but we would have to go through the trouble ofniglbut
corner solutions. On the other hand, if we think about sgjthre utility maximiza-
tion problem on all oR2, it is clear that the solution will be somewhereR4, . So
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it suffices to useX = R2, and we don’t even have to include the constraiqts 0
andx, > 0 as long as we find a solutiore R? for all positive parameter values, as
required by the problem.

Define the following functions, each frok=R? to R:

f(x1,%2) =a1x1 for all (x1,X2) € X

gl (X1, %) = ApXo —a1X1 for all (x1,%2) € X

07 (X, X2) =W-prxa - paxe  for all (x1,%2) € X
Now, X is open and convex iR2. The functionsf, g1, andg? are each linear on
X, so they are each continuously differentiable and concave. d'herefore all the

conditions of the Kuhn-Tucker Sufficiency Theorem are mepak (%,A) € X x R?
satisfies the Kuhn-Tucker conditions for problé@Y) if it satisfies the following:

a1-A183-Aapy =0 (3.1)
Maz-A2p2=0 (3.2)

X —a1%X1 >0 (3.3)

W p1X1— P2Xz 2 0 (3.4)
A(apRo—a1%y) =0 (3.5)
A2(W- p1#y - paRe) = 0 (36)

First, note that (3.1) and (3.2) form two equations in twonmkns. Without divid-
ing by A1 or A2, we can solve them for

h a1p2 A aijap
1=——————, 2= ————
apPr+aip2 apPr+ai1P2

Since5\1 >0 and5\2 >0, from (3.5) and (3.6) we have thagX, — a;X; = 0 andw-
p1X1 — p2X2 = 0. This is again two equations in two unknowns, and withouitihg
by X; or X, we can solve them for

n awW " aw

X1=—>0 Xo=——>0
apPr+a1p2 apPr+a1p2

By the Kuhn-Tucker Sufficiency TheorerfX:,X2) solves problen{Q’).
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(b) Consider the problem

maximize axXo
subjectto  ajx; > axXp
P1X1+ P2Xo < W
(X1,%2) >0

Q")

Following steps symmetric to those in part (a), we have thasblutiornxalso solves
problem(Q"").

Let x by a solution to problenQ’). Thenx also solves probleniQ’”). Note that
aix1 = axXp. Seeking contradiction, suppose thxat not a solution tqQ). Then
there is somex’ ¢ Ri, X' # X such thatp;X] + p2x, <w and min{aixj, apx,} > arx; =

axX,. We can consider two cases.

Case 1. mifaix;,ax,} = a1x;. Then we haveax; < apx,, so thatx’ is in the
constraint set of problerQ’), anda;x} > a;x;. This contradictx solving problem
Q).

Case 2: mifaixy,axX,} = apx,. Then we haveapx, < a;x;, so thatx’ is in the
constraint set of problerfQ”), andayXx,, > apx,. This contradictx solving problem
(Q").

In either of these two collectively exhaustive cases, weeat a contradiction. So
it must be that ifx solves(Q’), thenx also solvegQ).

Problem 44 (Applying the Arrow-Hurwicz-Uzawa Necessity Theorem)

Leta,b,c andp,q,r be arbitrary positive numbers, satisfying>1p/r) > (a+b)c. Con-
sider the following two problems of constrained optimieati

Maximize £%5¢- px - g% Q)
subjectto (xg,xp) € R?

Maximize £x5¢— px — gx
subjectto rg+qx -5 >0 }(R)
(Xl, X2) € R+

(a) Using an appropriately modified version of Weierstraestem, establish that there
is a solutionx to problem(Q), and a solutiorx fo problem(R).

(b) Show thatx >0 fori=1,2,andx >0 fori=1,2.

(c) Use the Arrow-Hurwicz-Uzawa necessity theorem to camlae solutions and
X, and show that:

(X1/ %2) > (X1/ X2)
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explaining your procedure clearly.[Hint: you might wantuee the fact thaxi‘cxgc is
homogeneous of degréa+b)cin (x1,x2)].

Solution.

(a) Definef:R? - R andg:R? - R by

f(xq,%2) = X8EC— pxg —qx  for all (xg,%) € R?
9(x1,X2) = X1 + g -85S for all (xg,xp) € R?

Note thatf andg are continuous of®2. Define the constraint sets

Co=R2,  Cr={(x.%)ecR2|g(x1,%)>0}

Now, Cq is closed inR? sinceR? is closed inR2, andCq is nonempty sinc€0,0) «
Co. Also,Cris closed inR? sinceg is continuous ofR2, andCg is nonempty since
(0,0) € Cr. ButCq andCr are both unbounded setsIi?.

Because(a+b)c < 1, for large enoughx; or xo, we will have f(x1,x2) <0. So
we can us€0,0), with f(0,0) = 0, as our comparison point in order to apply the
Extension of Weierstrass Theorem. Here is a formal arguiofethis. First, define

k =max{xy, %2} andrt=min{p,q}. Then we have

f (X, %2) =X49%°- pxa— g
< [max{x, x} ] [

= k(@D)C_11(x1 +Xp)

<k(@b)e_mimax{xy, %} ]

_ k(a+b)c Tk

min{p,q}] (x1 +x2)

Define the functiore R, — R by
e(k) =k@PC_mk forallk>0

Our goal is to find somk> 0 such thae(k) < 0 whenevek > k. That will imply that
f(x1,%2) < 0 whenever mafxi, X2} > k.

— 1
Fork > 0, there is a unique solution to the equategik) = 0, which isk = Tt@bye-1,
Now, € (k) = (a+b)ck@b)e-1_rrfor all k> 0. Since(a+b)c-1<0, we have that
e(k) = T[((a+ b)c- 1) < 0. Sincek is the unique solution te(k) =0 for k>0, eis
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(b)

continuous on its domain, ar(k) < 0, we have thag(k) < 0 for all k> k. Therefore
f(x1,%2) < 0 whenever magxi, X2} > k.

Define the sets

Co = { (x1,%2) € R2 | max{x¢, %z} <k}
Cr={ (X1, %) € R? | max{x1, %z} < k andg(xq, %) > 0}

Since (0,0) € Cqo and (0,0) € Cgr, these sets are nonempty. Singiex;,X2) and
max{x;,%,} are continuous functions dR? and the sets are defined by weak in-
equalities, the sets are closed. And the restriction{max,} < k means that the
sets are bounded.

Now, for any(xq,X2) € Co~\Cq, or for any(xy,x2) € Cr\ Cr, we have that ma;, x>} >
k, so it must be thaf (x1,x2) < 0= f(0,0). So by the Extension of Weierstrass The-
orem, there is somg e Cq that solves problenfQ) and somex  Cr that solves
problem(R).

Seeking contradiction, suppose that=0 or x =0. Thenf(x1,x2) <0. But for
1
O<e< (p+q)@del we have that

f(g,€) = €2%P°— pe—qe
=€ (8(a+b)c71 ~p- C])
>0

Since(e,g) eCq andf(g,€) > f(X1,X2), we have a contradiction afsolving problem
(Q). So it must be that; > 0 andx; > 0.

The idea for showing thag > 0 andx> > 0 is conceptually similar, but the proof is a
bit trickier because we now have the constraint to worry ablest, define

1
0= (r+q)@del >0

This ensures that the constraint is satisfig@, d) = 0. Seeking contradiction, sup-
pose thaky = 0 orX; = 0. Thenf(X,%2) <0. Now, sincer > pand(a+b)c<1, we
have that ) .

0= (r+q) @Dt < (p+q) @et

Thereforef (,8) > 0. Then(d,8) eCrandf(d,d) > f(X1,X2), which is a contradic-
tion of X solving problem(R). So it must be that;™> 0 andx; > 0.
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(c) DefineX =R2,. ThenX is open inR?2 and the functions andg are continuously
differentiable onX. By parts (a) and (b), there is some X that is a point of
local maximum in problenfQ) and somexé X that is a point of local maximum in
problem(R).

We need to verify that the Arrow-Hurwicz-Uzawa Constraintaffication is satis-
fied. We have thaX is convex. For alk e X, the Hessian ofj atx is

ac(1- ac)xf"c‘zxbC ab@xac-1xoe-1
H (X) a _ 1 2 _
9 abcxac 1be bc(1- be)xaoxge-2

Since(a+b)c < 1 with each parameter positive, it must be thak 1 andbc< 1.
Thereforeac(1-ac)x¢%-2x3¢ > 0 andbc(1-bc)x3x5%-2 > 0. Now, the determinant
of the Hessian off at anyx e X is ab&(1-ac- bc)xzaC‘ZXZbC‘ >0 since(a+b)c<1.
This means that the Hessian @fis positive semi-definite for ab € X, which is
equivalent to saying thatis a convex function oX. Therefore the Arrow-Hurwicz-
Uzawa Constraint Qualification is satisfied.

By the Arrow-Hurwicz-Uzawa Necessity Theorem, then, thermme\ eR, such
thatx satisfies the Kuhn-Tucker conditions for problé@®) and (X, \) satisfies the
Kuhn-Tucker conditions for problerfR).

Note that because of the result in part (b), we could applyAfrew-Hurwicz-
Uzawa Necessity Theorem to probléR) only and use unconstrained optimization
theory on problen{Q). This would require showing thdtis concave oiR?,, so
that the first order conditions are sufficient for a solution.

Also note that regarding problefiR), the result in part (b) allows us to leave the
constrainty > 0 andx > 0 out of the Kuhn-Tucker conditions, so that we do not
have to deal with two additional multipliers.

Now, the Kuhn-Tucker conditions for proble(®) are
accc 8¢ p=0 (4.1)
bo?"ﬁ%" l—q=0 (4.2)
From (4.1) and (4.2), we can obtain

X]_ qa

%" ob (4.3)
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The Kuhn-Tucker conditions for proble(iR) are

aceo 18— p+ 5\(r ~acke1%5%) = 0 (4.4)
bek3eR8°1 - g+ A(q- bekdREe 1) = 0 (4.5)
Iy +gfo - 25%8¢ > 0 (4.6)

A(rsq + %o - 5985 = 0 (4.7)

If A =0 then the solution to problegR) will be the same as the solution to problem
(Q). But we wan r >3, so we need to show thAt: 0

We can start by rewrltlng (4.5) as
(A-1)(g-bcgs8e1) =0 (4.8)

Now, if A = 1, then from (4.4) we have= p, which is a contradiction of the given
information thatr > p. So it must be thak # 1. Then by (4.8), we have

Rz = berdeRse (4.9)

Seeking contradiction, suppolceo Then by (4.4), we havpX; = acxacxbC Using
(4.9) in (4.6), we havex; > (1- bc)xacxbc Now, divide the left side of thls inequal-
ity by pX; and the right side bﬁcxacxbc recalllng that the divisors are equal. The

1-bc ; ;
resulti |sp > = . Butwe are also given th%t< (a+b)c, so we can form the inequality

(afb)c > 1be which is equivalent ta> (1-bc)(a+b) = a+b-abc-b2c. Rearrang-
ing, we have thalb(1-ac-bc) < 0, which, sincéb > 0, implies thata+b)c>1. But
this is a contradiction of the given information that+ b)c < 1, so we can conclude

thatA > 0.
Using (4.7) and (4.9), then, we have

rfy+(bc-1)%8°%5¢= 0 (4.10)

Since(a+b)c< 1, we havebc- 1< -ac, so (4.10) implies that%; - ackg5¢ > 0.
Multiplying (4.4) by Xy, then, we have

aceRC < pxy (4.11)

We can divide the left side of (4.11) lby:chigc and the right side bgx,. Since the
divisors are equal by (4.9), we have

q a
X2 % (4.12)
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Combining (4.3) and (4.12), we have the result:

X1 X1

A

X2 X2
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Chapter 11

Quasi-Concave Programming

11.1 Properties of Concave and Quasi-concave functions

For this section, it is convenient to den@®®g by Y andR", by Z.

11.1.1 Concave Functions

Lemmal. Ifh:Y — R is continuous on Y and concave ontéen it is concave on.Y

Proof. Letx,xeY and 0< 8 < 1 be given. Denote the vectft,...,1) €Y by uand define:
x®=x+(u/s),x®=x+(u/s) fors=123, ... (11.2)

ThenxS e Z andxS € Z for eachs. Sinceh is concave oiZ, we have for each:
h(6x3+ (1-8)x%) > 6h(>®) + (1-8)h(>®) (11.2)

Now, lets— co. Then,xs — x,x® — X and (6x5+ (1-0)x®) — (6x+ (1-6)x). Using (11.2)
and the continuity oh onY, we get:

h(Bx+ (1-8)x) > 6h(x) + (1-0)h(x) (11.3)
This establishes thétis concave orY. m

Lemma 2. Let X be an open set containing lyet h be continuously differentiable on X
and concave on Mf x,xeY, then:

h(x) - h(X) < (x-X) Vh(X) (11.4)

181
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Proof. Denote the vectofl,...,1) €Y by u and define:
X®=x+(u/s),x®=x+(u/s) fors=1,23, ... (11.5)

ThenxSe Z andxS e Z for eachs. Sinceh is concave and continuously differentiable on the
open convex se&f, we have for each:

h(>x®) -h(>®) < (x¢-x°) Vh(>®) (11.6)

Now, lets— co. Then,xs - X, X% - X. Using (11.6) and the continuous differentiability of
honX,we get (11.4).m

11.1.2 Quasi-concave functions

Lemma3.1fh:Y - Ris continuous onY and quasi-concave gih&n it is quasi-concave
onY.

Proof. Let x,xeY be given withh(x) > h(x), and let 0< 6 < 1 be given. We have to show
that:

h(6x+ (1-6)X) > h(x) (11.7)
Suppose, contrary to (11.7), we have:
h(6x+ (1-8)X) < h(x) (11.8)
Then, there i€ > 0 such that:
h(Bx+ (1-8)x) <h(x)-¢ (11.9)
Denote the vectofl,...,1) €Y by u and define:
x®=x+(u/s),x®=x+(u/s) fors=123, ... (11.10)

Then, sinces® — x andxS - X ass— oo, andh is continuous orY, we can findS such that
foralls>S
h(x®) > h(x) —€, h(>®) > h(x) - ¢ (11.11)

Sinceh is quasi-concave of, andxSe Z,x5¢ Z for s> S we get:
h(6x+(1-0)x°) min{h(x®),h(>®) }
min{h(x) -&,h(x) — €}
h(x)-¢ (11.12)
Since(6x5+ (1-0)x%) - (Bx+ (1-8)X) ass— oo, andh is continuous orY, (12) yields:
h(Bx+(1-6)X) >h(x)-¢€
which contradicts (11.9) and establishes (11/).

v vV
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Lemma 4. Let X be an open set containing et h be continuously differentiable on X
and quasi-concave on ¥f x,x €Y, and h(x) > h(x), then:

(x-X)Vh(X) >0 (11.13)

Proof. For 0< 0 <1, definex(0) = (6x+ (1-0)x); thenx(0) €Y, sinceY is a convex set.
By quasi-concavity ohonY,

h(x(8)) = h(8x+ (1-8)X) > h(X) (11.14)

Sinceh is continuously differentiable oX, we can apply the Mean-Value Theorem to
obtainz(0) €Y, such that:

h(x(8)) ~h(X) = [x(8) -X]Vh(z(8)) = B[x-X]Vh(z(6)) (11.15)

wherez(8) is a convex combination of(8) andx. Using (11.14) and (11.15), we obtain
for each x B < 1:
[x-Xx]Vh(z(8))>0 (11.16)

Letting © — 0, we see thax(0) — x and saz(8) — x. Using the continuous differentiability
of honX,and (11.16), we get (11.13)m

11.2 Definitions

Let X be an open set iRR", containingR?, and f,GI(j = 1,...,r) be continuously differ-
entiable onX. We are concerned with the optimization problem:

Max f(x)
subjectto G(x)>0  for j=1,...,r {(P)
and xeR"?

A pair (X,V) e R? xR". satisfies th&uhn-Tucker conditions:
(i)(a) Dif(>z)+i0-o-ei(>z)go i=1,....n
(H(b) [Dif(x)+ ZVJ iGI(R)%=0i=1,...,n

(iy(a) G ()z forJ— ¢
(")(b) GI(%) =0

(KT 1) (11.17)

IIM*
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For problem(P), these Kuhn-Tucker conditiofT 1I) are equivalent to the ones in-
troduced in our discussion of concave programming in Chdi¢see handout on Kuhn-
Tucker conditions).

The constraint seis defined a€ = {xe R} : Gi(x) >0 for j=1,....,r}. We say that
Slater’'s Conditioris satisfied if there ix* € C, such thatG)(x*) >0 for j=1,...,r.

11.3 The Sufficiency Theorem of Arrow-Enthoven

Lemma 5. Suppose G (j =1,...,r) are continuously differentiable functions on Sup-
pose there is a pai(x,v) e RT xR, such that(X,V) satisfies the Kuhn-Tucker conditions.
If each G is quasi-concave oR", then

xeC implies(x-X)Vf(X)<0 (11.18)
Proof. LetxeC. Then, we have
r .
(x=-X)VFf(X) = (x—)?)[vf(f()+ZOJ-VGJ(>"<)]
j=1
r

~(x=%) Y- 0;VG! (%)

j=1

= X[VI(X)+ Zr: 0;vG (X)]

0vG (%)

M-‘

~(x-%).
1

IN

0;vG/(R)

M-‘

—(X=%),
1

If Uj =0 for somej, then¥;(x-X)VGI(X) =0 for thatj. If Vj >0 for somej, then
GI(X) =0 for that j, soGl(x) - GI(X) = GI(x) >0. By quasi-concavity oG, we then
haveV(x-X)VGI(X) > 0 for thatj, by Lemma 4. Thus, for each V;(x-X)VGI(X) > 0.
Consequently, we hayx-X)Vf(X)<0. m

To state the sufficiency result of Arrow and Enthoven, letalsan indexk € {1,....n}
arelevant indexf there existsx* € C, such thai; > 0. We defind as the set of relevant
indices.

Theorem 50. Suppose fG!(j = 1,...,r) are continuously differentiable on,Xand quasi-
concave orR?. Suppose there is a paiik,V) € RT xR, such that(X,V) satisfies the
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Kuhn-Tucker conditions. Suppose, further that at leastadribe following conditions is
satisfied:

(@) D; f(X) <0for some k [1,...,n].

(b) D; f(X) >0 for some k|

(© f is concave on X.
ThenX solveq P).

Proof. If condition (a) holds, there is some indkxsuch thaDy f(X) <0. Letek be the
kth unit vector, and define =X+ eX. ThenxeR", and

(X-R)VF(R) <0 (11.19)

Let x be an arbitrary vector i€. We have to show thatt(x) < f(X). To this end, define
for0<B6<1,x(0)=(1-0)x+06Xy(6)=(1-0)X+6X. Then, usingd >0 and (11.19), we
have

[y(0)-X]Vf(X)=8(X-X)Vf(X)<0 (11.20)

Also, by Lemma 5,
[x(0)-y(B)]Vf(X)=(1-0)(x-X)Vf(X)<0 (11.21)

Thus, adding (11.20) and (11.21), we ¢&{0) - X]Vv f(X) < 0. Sincef is quasi-concave,
we havef (x(8)) < f(X) by Lemma 4. Lettind — 0, we getf (x) < f(X).

Suppose condition (b) holds. If condition (a) still holdsg are already done. So,
assume that (a) does not hold. Thati§(X) >0, andDyf(X) > 0 for some indexXe I.
Thus, there i* € C such thak; > 0. Using Lemma 5,

RV (%) >x*VF(R) >0 (11.22)

Let xe C. Then for 0< 6 < 1, by using Lemma 5 and (11.22), we gé&x)V f(X) <
BxXv f (X) < XV f(X). Using the quasi-concavity dfand Lemma 4, we havE(8x) < f(X).
Letting 6 — 1, we getf (x) < f(X).

Suppose condition (c) holds. *f& C, we havef (x) - f(X) < (x-X)V f(X) <0, by using
Lemmas 2 and 5, and concavity bf m

Corollary 8. Suppose f, &j=1,...,r) are continuously differentiable on,Xand quasi-
concave orR". Suppose there is a paiik,v) ¢ RT xR",, such that(X,V) satisfies the
Kuhn-Tucker conditions. Suppose there*isx0, such that G(x*) >0for j=1,...,r,and
v f(X) #0. ThenX solveqP).
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Proof. Since there i* >> 0, such thatG/(x*) >0 for j = 1,...,r, all indicesi € {1,...,n}
are relevant indices. Sincef(X) # 0, there is some indeik for which Dy f(X) #0. If
Dk f (X) < 0 then condition (a) of Theorem 50 is satisfied D|ff (X) > 0, then condition (b)
of Theorem 50 is satisfied. Thus, in either case, the resildirfe from Theorem 50m

Corollary 9. Suppose f, &j=1,...,r) are continuously differentiable on,Xand quasi-
concave orR?. Suppose there is a pa{k,V) € RT xR", such that(X,V) satisfies the
Kuhn-Tucker conditions. Suppose Slater’s condition igs8atl, andv f (X) # 0. ThenX
solves(P).

Proof. By Slater’s condition, there ise C such thatG! (x) >0 for j=1,...,r. By continuity
of GI(j=1,...,r), there isx* >> X, such thatGl(x*) >0 for j=1,...,r. Thusx*>>0 and
x* € C. So, the result follows directly from Corollary Ga

Remark 1. To apply Theorem 50, Corollary 8 or Corollary 9, one has to chdéwkt
f,Gi(j=1,...,r) are continuously differentiable on,>and quasi-concave oR". How-
ever, in view of Lemma 3, it is sufficient to check tha®/{j = 1,...,r) are continuously
differentiable on Xand quasi-concave dR", .

11.4 The Necessity Theorem of Arrow-Enthoven

Theorem 51. Suppose fGi(j = 1,...,r) are continuously differentiable functions on X
Suppose & j =1,...,r) are quasi-concave oR" and there is x ¢ C such that G(x*) >0
for j=1,...,r. If Re R} solves problentP), and for each F1,...,r, vGI(X) # 0, then there
isVeR", such that(X,V) satisfies the Kuhn-Tucker conditiofi§T 11).

Proof. Definem=r+n, and for j € {1,...,m}, defineg! : X - R by g/(x) = GI(x) for
j=1,..1,g/(X)=xj_ for j=r+1,...,r+n.

Let E = E(X) be the set of indices, denoted kyfor whichgk(X) = 0. If E is the empty
set, we can clearly apply the Arrow-Hurwicz-Uzawa theoré&mmoni Chapter 10). IE is
non-empty, we proceed as follows.

By continuity of G, there isx>> 0, such thaG!(x) >0 for j = 1,...,r. That is, there is
Xe X such thag!(x) >0 forall je{1,...,m}.

Note that ifx € C, then fork € E, g¢(x) - g¢(X) = g¢(x) > 0. So, by quasi-concavity of
gk, we have:

(x-R)vgh(R) >0 (11.23)

by Lemma 4.
We claim, now, that for eacke E, (x-X)vgk(X) >0. To see this, given anke
E, definexk(0) = [x-6vgK(X)] where® > 0 and sufficiently small to makg(8) > 0,
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andGI(xk(8)) >0 for all j e {1,...,r}. [Sincex>>0 andG!(x) >0 for j = 1,...,r, this is
possible]. Thusk(8) eC, and so by using (11.23), we have:

[X$(8) -%]vg*(X) 20 (11.24)
But (11.24) implies that:
[X-R]vg*(R) -8 |vgk(®)| >0 (11.25)

and so(X-X)vgk(R) > 0, sincevg(X) # 0.

Defineh = (x-X). Thenhvgk(X) > 0 for allk e E, and we can again apply the Arrow-
Hurwicz-Uzawa theorem (from Chapter 10). Thus, we have shihahwhethelE is
empty or not, we can apply the Arrow-Hurwicz-Uzawa theoremetA = (V, 1) e R, xR7,
such that

(i) V(X)) +

]_
(ii) VG(X) +fX=0.
From (i), andu™> 0, we get

0;VGI(R)+f1=0

Lt~

r .
ViR + Y 0;vGI(%) <0
=1

From (i) and[X,G(X)] > O,[{1,v] > O, we get
(iii) ux=0
(iv) VG(X) =0
Multiplying (i) by X and using (iii), we get
r .
) K[VE(R)+ X V;VvGI(X)]=0
j=1

Thus, the Kuhn-Tucker conditiod&T Il) are satisfied byX,V) e R? xR’,. m
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11.5 Worked Out Problems on Chapter 11

Problem 45 (Applying Arrow-Enthoven’s theory of Quasi-Concave Pragnaing).

Let a,b be arbitrary positive real numbers. Consider the followingstrained opti-
mization problem:

subjectto ax+bx <1

Maximize XXo+[x1/(1+Xx1)]
"
(X1, %2) € R2

(@) DefineX = {(x1,%2) e R2:x; > -1,% > -1}. Let f : X > R andg: X — R be defined by:
f(x1,%2) =xaxo+ [X1/(1+X1) ], 9(X1,X%2) = (1—axg — bxp) for all (x1,X%2) € X. Verify that X
is an open set ifR?2, and thatf andg are continuously differentiable ox. Show thatf
andg are quasi-concave d&? , and thatf is notconcave orR? .

(b) Write down the Kuhn-Tucker conditions for problei) along the lines of Arrow-
Enthoven for a paifX,A) e RZ xR, .

(c) Show that if(%,A) e R?2 xR, satisfies the Kuhn-Tucker conditions in (b) above, then

(i) (1-aXy—bXp) =0 (ii) X1 > 0; (iii) vf(X)#0, and (iv)f\ > 0.
(d) Define a functiorn: R, — R as follows:

h(z) = [b/(1+2)?]-2az+1 forz>0

Show that there is a unique positive solution to the equati¢r) = 0. Call this solutiorc.

(e) Use the Arrow-Enthoven sufficiency theorem to show thaif (c > (1/a), then
X=((1/a),0) solves problentP); (ii) if c< (1/a), thenxX=(c,(1-ac)/b) solves problem
(P).

Solution.

(a) Define the set
X ={(x1,%) € R?|x1 > -1 andxp > -1}

For any(x,X2) € X, letr =min{xg + 1,2+ 1}. Then we havd(x,r) c X, soX is an
open set iMR2. Also, we have thax > R?.

Definef:X - R andg: X - R by

f (Xl, Xz) =X1X2 +

for all (x1,%2) e X
T+x (X1,%2) €

g(xl,x2) =l-ax; - bX2 for all (Xl,Xz) eX
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The functionsf andg are continuously differentiable ox.

Note that we only have to establish quasi-concavityRgn Sinceg is linear onR?,
it is quasi-concave oR2. For allxe RZ, , the bordered Hessian dfatx is

0 . X2+(]é++1)2 X1
Br(¥)=| X+ e L

X1 1 0

2
The second leading principal minor Bf (x) is - (x2+ (1+—§(1)2) <0forallxeR2,.
And for all xe R2,, the determinant oBs (x) is

~ 1 1 2X1
detB (x) = (X2+ (1+x1)2)( X)+x (X2+ (1+x1)2 ’ (1+X1)3)
2x2

iy
T T2 (L)

>0

Thereforef is quasi-concave oiR?,. Since f is continuous oriR? and quasi-
concave onR?,, by Lemma 3, Chapter 11f is quasi-concave oiR?. But for
all xe R2, , the determinant of the Hessianbtx is -1 # 0, so the Hessian df atx
is not negative semi-definite, which means thas not concave oiR?, . Therefore
f is not concave oiR2.

Sincef is quasi-concave but not concave ¥nwe need to verify two further con-
ditions in order to apply the Arrow-Enthoven Sufficiency ©hem. In part (b) we
will show that if a pair(%,A) e R? x R, satisfies the Kuhn-Tucker conditions, then
v f(X) 0. Slater's Conditions holds becau$g0) € R2 andg(0,0) =1> 0.

Therefore all the conditions of the Arrow-Enthoven Suffimg Theorem are met,
so if some pail(%,\) e R2 xR, satisfies the Kuhn-Tucker conditions, thesolves
problem(P).

(b) A pair ()?,3\) e R?2 xR, satisfies the Kuhn-Tucker conditions for problgm) if it
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satisfies the following:

A

X2+m—a}\§0 (51)
%1-bA <0 (5.2)

. 1 .

X_‘]_(XZ-Fm—a)\):O (53)
Ro(%1-bA) =0 (5.4)
1-aR;—bR >0 (5.5)

A(1-a% —b%p) =0 (5.6)

(c) Seeking contradiction, suppose that 0. Then by (5.2), we have; =0, so (5.1)

(d)

givesx, < -1, which is a contradiction of,”> 0. Therefore\ > 0, so (5.6) yields

1-a% -bR =0 (5.7)

Again seeking contradiction, suppose that="0. By (5.7), we havex = % > 0.
Therefore by (5.4) we must haxg=bA > 0 sinceh > 0, which is a contradiction. So
it must be thaky > 0. SinceD, f(X) =x; andx3 >0, we have thav f (X) # 0. Another
consequence of; > 0 is that we can use (5.3) to write

. 1 2

o 0 (5.8)

Define the functio: R, — R by

h(z) = (1+—bz)2 -2az+1 forallz>0

Now, h is a continuous function oR... Its derivative is

h(z) = (1_+—2§)3 -2a<0 forallz>0
With continuity ofh on its domain, this shows thhts strictly decreasing oR,. In
addition, we havé(0) =b+1> 0 and lim-, . h(z) = —c0. By the Intermediate Value
Theorem, then, there is sorne 0 such thah(c) = 0.
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(e) We can split the analysis into two cases, depending on whéh2) holds with
equality or strict inequality.

Case 1x1- bA < 0. Then by (5.4), we have, =0, so (5.7) givex; = % >0. Using
this and (5.8), we can rewrite the requirement for this case a

0>%-bA=>_bfigps —+ |1 B
a a’ a(l+%)?) a a(1+l)2
a

This implies that

h} = b -1>0=h(c
(3] (©

3l (1+3)°
Sincehis strictly decreasing on its domain, this requices%. Note that from (5.8),
we have\ = (3%1)2 > 0.

Case 2x1 - bA = 0. Then, solving (5.7) fox,"and using this in (5.8), we have

1 a. 1 a>?1=0

b b T+%)2 b

Multiplying both sides byb, we have

0 o4 +1-0
(L+x)2 07

Sincec is the unique point ifR ;. that givesh(c) = 0, it must be thak; = c. Then by
(5.7), we have thaty= %. Since we requirey™> 0, a requirement for this case is

c< . Note thath = £%; = £ > 0.

Recall that we showed in parts (a) and (b) that the Arrow-BreghaSufficiency
Theorem applies. So we have the following conclusions:

(i) If c> 1 then(%A) = (%,O,W—E‘l)z) is the unique solution to the Kuhn-Tucker

conditions, sox= (%,0) solves problengP).
(i) If c< 2 then () = (c, 52, €) is the unique solution to the Kuhn-Tucker
conditions, sx = (c, 152¢) solves problengP).
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Chapter 12

Linear Programming

12.1 The Primal and Dual Problems

The theory of linear programming is concerned with the felig problem:

Maxqx gislxn

(P) Subjectto Axb Aismxn
x>0 xisnx 1

bismx 1

We will call (P) thePrimal problem. Associated witfiP) is the following problem:
Miny'b bismx1
(D) Subjectto JA>( Aismxn
y' >0 y'islxm
g'islxn

We will call (D) theDual problem.
Define the set ofeasible solutions to the Primalk

F(P) = {x>Osuchthat Ax b}
Define the set ofeasible solutions to the Dualks

F(D) = {y’ > Osuchthat{A>q'}

193
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12.2 Optimality Criterion

In studying solutions to the Primal and Dual problems, we fistablish the following
optimality criterion: ifx° is a feasible solution to the primal ag®l a feasible solution to
the dual, and theivaluesare equal, [that isy’x° = y°'b], thenx® is an optimal solution to
the Primal [that isx° solves(P)] and y°' is an optimal solution to the Dual [that ig?
solves(D)].

Lemma 6. If x° e F(P), y? ¢ F(D), then
gx° <y? AR <y (12.1)
Proof. Sincey® e F(D), andx® >0
9 < Yo AR (12.2)

Sincex? € F(P), andy®’ >0
y'b>yo AR (12.3)

Combining (12.2) and (12.3) yields (12.1m.
Theorem 52(Optimality Criterion) If x°¢ F(D), and

gx°=y"b (12.4)
then ® solves(P) and y' solves(D).
Proof. Letxe F(P). Then sincg® ¢ F (D), we can use Lemma 6 to get

gx<y’b

and we can use (12.4) to ggk < g'x°. Sox° solves(P). Similarly yo solves(D). m

12.3 The Basic Duality Theorems

The basic duality theorems of Linear Programming may besdtas follows. If both

the primal and the dual have feasible solutions, then botlk batimal solutions and the
values of the optimal solutions are the same; if either tlimadror the dual is infeasible,
then neither has an optimal solution. We establish thesdtses Theorem 53 and 54
below.



CHAPTER 12. LINEAR PROGRAMMING 195

Lemma 7 (Non-negative solutions of linear inequalitiegxactly one of the following
alternative holds.
(1) Either the inequality
Bu<a

has a non-negative solution for u
(2) Or the inequalities
vVB>0,Va<0

have a non-negative solution fof.v

The proof, which is omitted, follows from the Farkas Lemnee €hapter 7 on Convex
Analysis

Lemma 8. If there is ¥ in F(P), and y¥' in F(D) then there it in F(P), andy’ in F(D)
such that
gx>¥b

Ax <b
-Aly <-q
<0

-g'x+b'y

Proof. Suppose not. Then

has no non-negative solution f(x,y). Thatis,

EEINEEE

has no non-negative solution fdx,y). By Lemma 7, there is an m-vectat> 0, an
n-vectorw’ > 0, and a scald® > 0, such that

A 0
[Z,w, 6] 0 -A [»0
_q/ b/

and

That is,
ZA>0q (12.5)
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WA < ob’ (12.6)
Zb<wq (12.7)

Now, we claim thab+ 0. Forif®=0, then

Zb>ZAX>0q'xX =0

—— — ,

(b>AXC) Using (12.5)
and

Wa<WA'Y <ob'y°=0

—_—— —

(q<A'Y°) Using (12.6)

Thus,w'q < Zb, which contradicts (12.7). This establishes our claim tha0. Since
0> 0, we haved > 0. Using (12.5),

z , z
aAzq, so(é)eF(D).

Using (12.6),

W<l Vi’)
eAsb, so(e eF(P).

Soq/ () < (%) b by Lemma 6, which contradicts (12.7) agam.
Theorem 53(Fundamental Theorem of Linear Programmingf)there is ¥ in F(P) and
y° in F(D), then there i in F(P) andy’ in F(D) such that

(i)  aX=yb
(i) X solveqP), §' solves(D).

Proof. (i) By Lemma 8, there ixih F(P) andy’ in F(D), such that

gx>yb
By Lemma 6,

gX<yb
So

gX=¥b

(i) By (i) and Theorem 52x Solves(P) andy” solves(D). m
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Theorem 54. If either F(P) = ¢, or F(D) = @, then(P) has no solution angdD) has no
solution.

Proof. Suppose=(P) =¢@. Then(P) clearly has no solution. To show théD) has no
solution, suppose, on the contrary, th@itsolves(D).
SinceAx< b has no non-negative solution thereg/is 0 such that

y'A>20,yb<0
by Lemma 7. Thefy” +y'] ¢ F(D) since
y’+y >0
Y +Y]A>d

Also,

[y” +Y]b=y"b+yb<y’b
Soy” does not solvéD), a contradiction. A similar proof can be worked out by suppgs
F(D)=¢. =

12.4 Complementary Slackness

We finally state a result which has been very useful in apppdina of linear programming.

It says that ifx° andy® are optimal solutions to the primal and dual problems, then (
whenever a constraint (say ti€) of the primal problem is not “binding” (at°), the opti-
mal solution of the corresponding dual variable (thay‘]"$,must be zero; (ii) whenever a
constraint (say thé") of the dual problem is not “binding” ('), the optimal solution of
the corresponding primal variable (thatf§ must be zero. We establish this in Theorem
55 below.

Corollary 10. If x° solves(P) and y’ solves(D), then dx° = yAx® = y°'b,

Proof. Using Lemma 2y®’b > y”AxX° > ¢'x°. Sincex° solves(P) andy” solves(D), we
havey®b = g'x°, by Theorem 53. Henc®'b=y"AxX=q'x°. m

Corollary 11. If x° solves(P) and y’ solves(D), then
@  Y[AC-b];=0 foreach j
(b)  [YA-d]ix=0 foreachi



CHAPTER 12. LINEAR PROGRAMMING 198

Proof. By Corollary 10,

y/[AX-b] =0 (12.8)
Sincey” >0, AX-b<0, we obtairy?’ [AX°-Db]; <0 for eachj. This, together with (12.8)
impliesy‘J?’[Axo—b]j =0for j=1,....m. This proves (a). The proof of (b) is similam

Theorem 55 (Goldman-Tucker) If x° e F(P),y* ¢ F(D), then the following two state-
ments are equivalent:
(i) x0solvegP)and y?' solvegD)
(i) (@ y‘j’ = OwhenevefAX]; < b;, and
(b) = 0whenevefy® A]; > g
Proof. [(ii) implies (i)]. If [AX]; = bj, then Y?[AXO]J' = y?bj. If [AX];j < bj, then
Y?[AXO]J' =0= Y?bj , by (i) (a). Thusy? A% =y%b. Similarly y*Ax% =g'x°. Soy®b=q'x°.

Hencex® solves(P), y*’ solves(D), by Theorem 52.
[(i) implies (ii)]. Sincex® solves(P) andy” solves(D), we have by Corollary 11,

Y][AX -Db]j=0 foreach j

and
[YA-d'ix’=0 foreachi

Thus, whenevefAX°-b]; <0, we must havg? = 0. And, whenevefy”A-q']i >0, we
must havex’ =0. m
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12.5 Worked Out Problems on Chapter 12
Problem 46. The theory of linear programming is concerned with the folloyyproblem:

Maximize ¢x
P) subjectto Axb
and x>0,

where g and x are i€ xn, A is mxn and b is mx 1. We will call (P) the Primal problem.
Associated with (P) is the following problem:

Minimize Yb
(D) subjectto YA>(
and y>0,

where y is nx 1. We will call (D) the Dual problem. Define the set of feasibliBons to
the Primal as
F(P)={xeR"}:Ax<b}.

Define the set of feasible solutions to the Dual as

F(D)={yeRT:YA>(}.

(a) Supposec F(P),yeF(D) and(x,y) satisfies

Y (b-AX) = (YA-q')x=0.

Show that(x,y) satisfies the Kuhn-Tucker conditions (KT II) for problem (Bye the
Arrow-Enthoven sufficiency theorem to conclude thablves problem (P). Show thwat
solves problem (D) by using an analogous argument.
(b) Suppose solves (P) ang solves (D). Using the fact thak F (P) andye F(D), show
that

X< YAX<Yh. 1)
Using the fact thak solves (P) and applying the Arrow-Hurwicz-Uzawa necessityrém,
show that there existge F (D) such that

Y (b-AX) = (YA-q)x=0. (2)

Using the fact thay solves (D), and (2), show thab@ y'b. Using this inequality and (1),
show that

Yy (b-AX) = (YA-q)x=0. ®3)
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Solution (a) Let X =RR" be an open set containif®!. Let us definef (x) = g’x and
Gl(x) = (b-Ax)jonX, j=1,...,m. A pair (x;y) ¢ R xR satisfies the KT Il conditions
for the problem (P) if and only if

(i)(a) Dif(X)+X1yjDiGI(x) <0 fori=1,...,n,
(i)(b) X(Dif(x)+XT1yiDiGI(X)) <0 fori=1,..n,
(i) (a) Gi(x)>0 forj=1,...,m,
(i) (b) >, ¥GI(X) = 0.

For the linear problem (P) these conditions look like

(i)(a) Qi+2?1137j(—aji)30 fori=1,...,n,
(i)(b) X(gi+XT1yj(-aji))=0 fori=1,..,n,
(ii)(a) (b-AX);>0 forj=1,...m,
(i)b) XMy ¥i(b-AR); =0,

Conditions (i)(a) can be rewritten d§' —y’A); <0 and hence are satisfied becayse
F (D). Conditions (ii)(a) follows fromx e F(P). Conditions (i)(b) are implied by (i)(a),
xeR" and(yA-qg)x= 0. Condition (ii)(b) follows from (ii)(a)y € RT andy’(b- Ax) = 0.

Since f andgl,j=1,...,m, are linear on the open s&t= R" containingR?, these
functions are continuously differentiable @' and quasi-concave oR". Sincef is
concave orX, it follows that condition (c) of the Arrow-Enthoven sufiéicy theorem
(Theorem 50, p. 79 in the Lecture Notes) is satisfied. Theedfa pair(x,y) ¢ R x RT
satisfies the KT Il conditions for the problem (P), then theor-Enthoven sufficiency
theorem implies thax solves problem (P). By the analogous argument it follows yhat
solves problem (D).

(b) If xe F(P) andye F(D), we haveAx<b andy’A> . Sincex>0 andy >0,
premultiplying byy” and postmultiplying by yield yAx < y’b andy’Ax > g'x.

Let us definegl(x) = (b—Ax); andg™i(x) =x on X =R", j=1,...m i=1...n.
ThenX =RR" is open and convex set, functiofsandgk, k=1,...,n+m, are continuously
differentiable onX, and functiorgX is convex orX for k=1, ...,n+m. Hence condition (b)
of the AHU constraint qualification is satisfied. Therefafeq solves (P), theris a point
of constrained local maximum fdr, and by the Arrow-Hurwicz-Uzawa necessity theorem
(Theorem 48, p.73 in the Lecture Notes) there exist®R"™ such that(x,y) satisfy the
Kuhn-Tucker (KT I) conditions:

()  Dif(0)+IP ADiIg(X) =0, i=
i)  g{x)>0 k=1,..,n+m,
(i) Ag(¥) =0, k=1
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Hence ) A
() Qi+ZT:17\j(—aji)+)\m+i =0, 1=1,....n,
(ii) (b-AX); 20, j=1,..m,
(i) =0, k=m+1,...,m+n,
(i) Aj(b-AX)j =0, j=1,..,m,
(i) Ami%=0, i=1,..n.

If we definey’= (A, ...,Am)’, then (i) impliesy’e F(D) and (iii) impliesy (b— AX) = 0.
Also it follows from (i) that

(YA-q')x= Zn;fi(f"A—Q')i = Zn;fi(—qi + f:l;\jaji) = Zn;)?ii\mﬂ =0.
I= I= ]= 1=

From (2) we immediately hawgx = y'Ax = y'b. Now, sincey solves (D) and/¢ F(D), we
havey’b < ¥'b, thereforeq’x = y’b > y’b. From this inequality and from (1) it follows that
g'x =Yy Ax=Yyb, hence (3) is satisfied.

Problem 47. Consider the following linear programming problem:

Maximize 3xj+4xo +3X3
subjectto x+Xp+3x3<12
2X1 + 4% + X3 <42
and (xg,%p,x3) € R3

Q)

Find a solution to problem (Q) showing your procedure cleafiint: you might want
to use your solution to problem 1 of PS11, and the dualityrhéar linear programming
developed in problem 1 of PS12].

(a) Write down the Kuhn-Tucker conditions for problem (P).

(b) Use the Kuhn-Tucker (sufficiency) theorem to showtkd®, 1/2) solves problem (P)
(c) Draw an appropriate diagram to illustrate your solution

Solution (a) If we define

3
113 12
q(g), A:(z 4 1)’ b:(42)’

then problem (Q) and its dual problem (QD) can be written as

Maximize q'x Minimize y'b
(Q) subjectto Ax<b (QD) subjectto YA>(q'
and xeR3, and yeR2.
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where problem (QD) reads as

Minimize 1%/1+42y2
subject to y; +2y, > 3,
(QD) y1+4y2 24,
3y1+y2 >3
and yeR?.

Let us recall thay = (2,1/2) solves problem (QD from problem 1 of PS11 given by

Minimize 12y1+42y,
subjectto y; +2y, >3,
yi+4y,>4

and yeR?.

(QD')

Sincey= (2,1/2)' solves (QD) and the third constrainty3 +y» > 3 from problem (QD) is
satisfied ay,"'we can conclude thagt="(2,1/2) also solves the dual problem (QD). Assume
X solves the primal problem (Q). Then complementary slacknesditions (Corollary 11,
p. 87 in the Lecture Notes) are satisfied:

(a) yi (AX-b);=0 forj=1,2,
(b) (YA-q');%=0 fori=1,23.

Since

yA-q'=( 2 1/2)(; 411 i)—(s 4 3)=(0 0 7/2),

and hencéy’A-q')3=7/2>0, it follows from (b) thatxz = 0. Sincey; >0 andy> >0, we
can conclude from (a) thAX-b), = (AX-b)2 =0, i.e.

)A(1+)A(2 12,

42.

2)'(\1 + 4)’(\2

It immediately follows thak{ = 3 andxz = 9. Thereforex= (3,9,0)’ is the only candidate
for the solution to problem (Q). Let us prove now tixactually solves (Q) by checking
condition (ii) of the Goldman-Tucker theorem (Theorem 558p in the Lecture Notes).
Since
AX-b=0 and y'A-d =(0,0,7/2),

it follows that

(ii,a)  y;=0 wheneverAX); <bj (never),

(ii,b) X =0 whenever(y'A), > q; (fori=3),
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Therefore Goldman-Tucker theorem implies tkat(3,9,0)’ solves problem (Q). [Please
note that since in this problem we hasg > 0 for all i and j, it immediately follows
that constraint set for problem (Q) is bounded, and hencextstence of the solution to
problem (Q) follows form the Weierstrass theorem. In gelps@me elements ok may
be non-positive, and applicability of the Weierstrass teeomight be more difficult to

justify.]
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