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We study the provision of public goods when all agents have complete
information and can write binding agreements. This framework is in
deliberate contrast to a traditional view of the free-rider problem based
on hidden information or voluntary provision. We focus on coalition
formation as a potential source of inefficiency. To this end, we develop
a notion of an equilibrium coalition structure, based on the assumption
that each coalition that forms does so under a rational prediction of
the society-wide coalition structure. In a simple model, we characterize
the (unique) equilibrium coalition structure. Only in some cases does
the equilibrium involve full cooperation, resulting in efficient provi-
sion of the public good. In other cases, the equilibrium consists of
several coalitions and inefficient provision. However, the degree of
inefficiency and the number of possible coalitions are bounded.

I. Introduction

The normative theory of public-goods provision, leading from Lindahl
(1919) to Samuelson (1954) to Foley (1970), provides a clear and rig-
orous characterization of efficiency in public-goods economies. How-
ever, a characterization of efficiency, despite the Lindahlian connection
with prices, leaves unanswered the question of how an economy may
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attain efficiency. Accordingly, much of the more recent literature on
public goods has concentrated on the positive theory of incentives as-
sociated with the free-rider problem. The underlying premise in this
literature is that the only possible impediment to achieving efficiency
stems from the planner’s lack of information regarding agents’ char-
acteristics. The central concern then is to elicit private information from
the agents or, more generally, to design mechanisms that induce the
agents to act in a way that leads to an efficient level of provision of
public goods. Remarkable progress has been made in this literature
(see, e.g., Green and Laffont 1979; Laffont 1987). Following Clarke
(1971) and Groves (1973), to use Sonnenschein’s (1998) words, “one
does not so lightly say that it is not possible to design cooperation” (p.
10).

Nevertheless, we argue in this paper that there is an important sense
in which the free-rider problem remains unresolved. (Indeed, this is a
point that applies more generally to mechanism design.) Coalitions of
agents might reject the proposed mechanism in favor of agreements
(or mechanisms) among themselves. Our primary aim is to analyze the
nature of cooperation, and possible inefficiency, that may arise in equi-
librium (contrary to the Coasian prediction) when coalitions can form.

To make this point in the simplest possible way, we deliberately con-
sider a world of complete information, which renders trivial the problem
of mechanism design. Thus all relevant information is commonly known
to all the agents. Moreover, we assume that agents can write binding
agreements regarding their contributions toward the provision of a
(pure) public good.

Now, suppose that a Lindahl allocation is proposed for the economy.
Is it possible that a coalition may be able to do better for its members
by seceding from the grand coalition and selecting some feasible allo-
cation for itself? We are aware that a possible answer is “no,” simply on
the basis of the fact that a Lindahl allocation belongs to the “core”
(more precisely, the a core) of the economy and is therefore immune
to coalitional “deviations.” However, this notion of the core is ill-suited
to deal with positive issues of coalition formation. An allocation in the
a core is coalitionally stable in the sense that no coalition can improve
on it if it assumes that the agents outside this coalition will then decide
to make no contributions whatsoever. But this may well be a very un-
reasonable forecast of what the others, in their own interest, might
contribute.1

This is by no means a new criticism of the a core in a public-goods

1 In the language of mechanism design, it is possible to include in the mechanism the
possibility that coalitions will adopt their own mechanism simply by also incorporating the
rule that the others will then agree to contribute nothing. But this is clearly not credible.
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economy.2 It was discussed in the general context of externalities in
Rosenthal (1971) and more specifically for public-goods economies in
Richter (1974), Roberts (1974), and Champsaur, Roberts, and Rosenthal
(1975). As Roberts concludes, “the simple adaptation of the definition
of the core which has proven appropriate for private goods economies
may not be suitable with public goods economies” (p. 39).

So it was well recognized that a satisfactory theory of coalitional be-
havior in a public-goods economy must rely on coalitions to make rea-
sonable predictions regarding the reaction of agents in the comple-
mentary coalition. But little progress has been made in this direction.
In fact, the following statement from Roberts continues to be relevant
close to three decades later and provides a good motivation for the
present paper: “The task of developing an alternative core definition
(or some other formalization of the intuitive notion of social stability)
which better recognizes the structure of the public goods problem is a
very delicate one. Guaranteeing that solution allocations will exist in a
significant class of economies proves to be a particularly difficult prob-
lem” (p. 40).

We develop a notion of equilibrium that allows agents to form co-
operative agreements, that is, form coalitions and make collective de-
cisions about their level of contributions within a coalition. This equi-
librium notion has two components. First, given some coalition
structure, which is just a partition of all agents who write binding agree-
ments into subsets, we take it that cross-coalition interaction is nonco-
operative. (For instance, the coalition structure of singletons would sim-
ply induce the familiar “voluntary contributions” game.) Second, we
require that each coalition make a rational prediction of the overall
coalition structure.3 For a coalition contemplating a deviation, this is the
prediction to be kept in mind when evaluating payoffs, not some ar-
bitrary description of the way in which nondeviating agents might
retaliate.

2 Note that this is not a criticism of the standard notion of the core in a model in which
a coalition’s payoffs are well defined independently of the actions of agents not in the
coalition. We have no quarrel with the standard notion of the core in a model in which
there is some natural way of defining the characteristic function.

3 This analysis builds (in a self-contained way) on Bloch (1996) and Ray and Vohra
(1999). There have been other recent attempts to develop equilibrium notions of coali-
tional stability that rely on more “reasonable” assumptions (compared to the a core) about
the behavior of agents outside a coalition. Carraro and Siniscalco (1993) and Chander
and Tulkens (1997) analyze models of pollution control similar to the one we shall study
below. But both papers make specific assumptions about the coalitional behavior of the
outsiders in response to the formation of a new coalition. While Carraro and Siniscalco
assume that the remaining coalitions do not change in any way, Chander and Tulkens
assume that the outsiders disintegrate into singletons. In contrast, we develop an equilib-
rium notion in which the entire coalition structure is endogenously determined in
equilibrium.
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We recognize the possibility that our equilibrium concept may lead
us to conclude that any proposed (efficient) allocation in the grand
coalition may be subject to a coalitional deviation. However, in our view,
this is not a reason to abandon the entire endeavor. All it suggests is
that our equilibrium concept should not be based on the presumption
of efficiency. In particular, it is not appropriate to refer to our equilib-
rium notion as some particular modification of the core. As we shall
explain below, it is better viewed as a notion of an equilibrium coalition
structure that emerges sequentially. To be sure, agents within a coalition
maximize surplus (in the sense of playing best responses) and achieve
efficiency. Inefficiency arises, therefore, if the grand coalition of all
agents fails to form, as in Ray and Vohra (1997) and Dixit and Olson
(1998).

Our main objective is to provide a complete characterization of the
equilibrium coalition structure in a public-goods model. For this reason
we shall describe in some detail the process through which agents ne-
gotiate to form coalitions. While a formal description of the process is
contained in Section III and a discussion of the robustness of the ne-
gotiating process is provided in Section V, the main features are as
follows. (Readers who are especially interested in, or skeptical of, the
negotiating process and its connections with Coase [1960] are invited
to read Sec. V before proceeding.)

The formation of a coalition (indeed, the very definition of “coalition”
in this paper) will mean that member-agents make a binding agreement
regarding their individual contributions toward the public good. Fur-
ther, we shall assume that once a coalition is formed, it cannot change
its composition.4 Of course, the formation of a coalition will require
the unanimous consent of all its members. In agreeing to such an ar-
rangement, all members of the coalition must view this as their best
alternative. Finally, in evaluating any such coalitional agreement, the
members of the coalition must make a prediction (which in equilibrium
will be correct) of the contributions of agents in the complementary
coalition. The actions of the complement will be based on similar con-
siderations. Some or all of the remaining agents may form a coalition
of their own, again predicting the behavior of the remainder, and so
forth.

An equilibrium will therefore determine a coalition structure, reflect-
ing cooperation among agents within each coalition in the structure.
Thus full cooperation refers to the formation of the grand coalition,
and no cooperation refers to the coalition structure of singletons. The
latter case corresponds to a Nash equilibrium of a game of voluntary
contributions, as, for example, in Bergstrom, Blume, and Varian (1986).

4 This assumption matters. But it is unclear how to drop it. On this, see Sec. V.
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The former case corresponds to an equilibrium in which the outcome
is efficient. Thus an equilibrium coalition structure describes an en-
dogenously determined collection of cooperative agreements within
each coalition in the coalition structure. This framework is designed to
allow for the possibility that while full cooperation is, in principle, pos-
sible, it may not emerge in equilibrium.

We apply this general methodology, developed in detail in Ray and
Vohra (1999), to a simple scenario with one private good, one public
good, and several identical agents. As we shall see, even this elementary
structure yields fairly complex outcomes.

Full cooperation and no cooperation are, of course, easy to describe
in such a model. Because the model is so simple, it is also easy to see
what the outcome will be for any arbitrary coalition structure. (In fact,
we shall set things up so that each coalition has a dominant production
strategy.) We can concentrate, therefore, on the central issue of concern:
deriving the equilibrium coalition structure.

Three main insights underlie our findings. The first is this: if full
cooperation is available as a possible outcome, equilibrium free-riding
can never be “too extreme.” In particular, the ability to cooperate will
imply that agents choose never to play the individualistic Nash equilib-
rium involving voluntary contributions. Thus the degree of equilibrium
inefficiency cannot be “too high,” in a sense that we formalize for our
simple model.

Second (which builds on the first point), if efficiency is not to be had
in equilibrium, the equilibrium coalition structure will generally be
asymmetric even if all individuals are identical. Inefficiencies that are
borne symmetrically by all agents cannot persist if a binding agreement
can be written for the grand coalition. (Our first point, which refers to
the symmetric structure of singletons, is really a special case of this
argument.)

Third, if some healthy form of partial cooperation can be sustained
(in some nonsingleton, asymmetric coalition structure), this poses a real
threat to the sustenance of full efficiency. In general, efficiency is not
to be had even when there are no informational frictions and agents
can write binding agreements.

We now turn to the specific findings of the model. Our first result
demonstrates that in our model there is a (numerically) unique equi-
librium coalition structure.5 We shall identify an (infinite) strictly in-
creasing sequence of positive integers, containing 1, such that, for∗T ,
an economy with n agents, the grand coalition is formed in equilibrium

5 A numerically unique coalition structure corresponds to a description of the size of
each coalition. Since our model is symmetric, we cannot expect to predict the identity of
the agents in any particular coalition.
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if and only if n belongs to Otherwise the equilibrium coalition∗T .
structure is described as follows: the last coalition to form has size t,
which is the largest integer in less than n. The second-last coalition∗T

to form has size which is the largest integer in no more than′ ∗t , T

and so on.n � t,
Of course, equilibrium allocations are efficient if and only if the equi-

librium coalition structure is the grand coalition. Thus efficiency obtains
in equilibrium for every economy with n agents, where n belongs to

; that is, efficiency emerges infinitely often as n varies. On the other∗T

hand, since does not generally consist of all the positive integers, it∗T

follows that inefficiency is possible in equilibrium. However, there is a
well-defined bound on the degree of inefficiency. Our second result
shows that in an economy with n agents, the equilibrium level of the
surplus is greater than the maximum (efficient) surplus in an economy
with agents. Moreover, there is a significant degree of cooperationn/2
in equilibrium in the sense that the number of coalitions is bounded;
if k is the number of coalitions in equilibrium, then k�12 ! n.

II. A Model of Public-Goods Provision

A. Basic Structure and Payoffs

We develop the simplest symmetric structure for public-goods provision.
To fix ideas, we look at a model of pollution control. Suppose that there
are n regions (to be interpreted as firms, countries, or geographical
centers of decision making that share borders). Each region produces
a pure public good—pollution control—the benefits of which accrue
equally to all regions. Let z denote the public benefit of control activity
pursued by any particular region, and assume that its generation involves
a cost of which is private to that region. We take it that c is increasingc(z),
and strictly convex. Thus (after appropriate normalization), if Z is the
total amount of pollution control produced by all regions, then the
payoff to some region that produces z of it is

Z � c(z). (1)

In what follows, we depart from the (individualistic) voluntary pro-
visions model by permitting a region to deliberately link up with others.
Thus we conceive of an initial phase of negotiations in which a region
may make an offer to write a binding agreement with some other regions.
If all the regions (to which the offer is made) agree on this arrangement,
a coalition of regions forms, which is then bound to jointly decide on
the extent of its control activity. That is, the free-rider problem across
the regions in a coalition is assumed to be solved by the act of signing
the binding agreement. Notice that since is strictly convex, efficiencyc(z)
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within a coalition will imply that each member-region produces the same
level of pollution control. The aggregate payoff to coalition S with car-
dinality s when each of its members produces z is

s[sz � c(z) � Z ],�i

where is the aggregate production level of regions not included inZ�i

S. Thus the problem facing a coalition with cardinality s is to produce
pollution control of z per member, where z solves

max sz � c(z). (2)
z

This observation follows from the assumed linearity of external effects,
so that the optimal production decision of a coalition does not depend
on what other regions (outside the coalition) are doing; in terms of
production decisions, each coalition has a dominant strategy. Of course,
the payoff to each coalition also depends on the actions of the regions
outside the coalition.

All the interest, therefore, centers on a description of which coalition
structure will actually form. To answer this we need to specify a model
of coalition formation.

In general, a coalitional agreement may specify not just production
levels but also transfers across coalitional members.6 In the next section
we shall formally define two versions of a model of coalition formation:
a restricted model in which each coalition is constrained to equally
divide its surplus among member-regions7 and a general model without
this assumption. We shall now illustrate the basic features of our model
through a simple example. Since the basic results remain the same even
in the general model, it will be appropriate to assume the absence of
transfers in the following example.

B. An Example

Given symmetry and the assumed absence of transfers, an offer essen-
tially boils down to a proposal regarding the number of partners that a
region seeks. We take it that such coalitions form sequentially: some
region (it is unimportant which one) makes the first offer, then some
unincluded region (if any) is chosen to make a second offer to other
unincluded regions, and so on until all regions are formed into (possibly
singleton) coalitions.

Let us examine the implications of this formulation for the special

6 Notice that allowing for intracoalition transfers is equivalent to allowing arbitrary al-
locations of coalitional surplus.

7 This simplifying assumption is actually quite common in the literature (see, e.g., Bloch
1996; Alesina and Spolaore 1997).
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case in which the cost function is quadratic, that is, Then it1 2c(z) p z .
2

is obvious that a coalition of size s will produce per member, orz p s
s2 in all, and will incur a cost per region of in doing so (simply solve1 2s

2
[2]). It follows that if there are m coalitions with sizes n p

then a coalition of size si will enjoy a payoff per region of{s , s , … , s },1 2 m

m
12 2s � s . (3)� j i2

jp1

Since there are no transfers, this average is also the actual payoff to
each member of a coalition of size si.

To begin with, suppose that there are only two regions. Note that the
stand-alone payoff to each region is 1.5, whereas if the two regions form
a coalition, then the payoff per region is 2 (simply apply [3]). It should
therefore be obvious that any region will wish to team up with the other
(and that such an offer will be accepted). Thus the two-region scenario
implies full cooperation and efficiency.

The three-region case presents the first nontrivial prediction problem.
If a single region contemplates staying on its own, it must predict what
the remaining regions will do. But we know that in this case the re-
maining two regions will form a single coalition, so that the average
worth of being alone is 4.5. A two-region coalition in this setting would
average only 3. Finally, a three-region coalition averages 4.5 as well. This
suggests that a region is indifferent between being on its own and being
a member of a three-region coalition. Let us break this indifference in
favor of the larger coalition (this assumption will not be needed in the
general model). We conclude, then, that the three-region scenario is
also conducive to efficiency.

Now turn to the four-region problem. By a similar process of com-
putation and prediction, it turns out that if a region stays on its own,
then it is in the interest of the other three regions to form a single
coalition. Therefore, the average worth of the stand-alone region is 9.5.
In contrast, the formation of the grand coalition of four regions yields
an average worth of only 8. This suggests that full cooperation cannot
occur when there are four regions.

What is the equilibrium coalition structure? With only four regions,
it is easy to see what the answer must be. Given that the other three
regions hang together when one stands alone, this must be the best
coalition structure from the point of view of the stand-alone region. (It
is easy to check that the payoff from forming a two- or a three-region
coalition yields a lower average payoff.) It follows that in the negotiation
game, it will always pay a region (which first gets the opportunity) to
commit to standing alone: this will yield the highest return. Thus the
“numerical” coalition structure that finally obtains is {1, 3}.

Now—strikingly enough—the five-region problem yields full coop-
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eration. If one region were to stand alone, it would not be able to ensure
the stability of the remaining four regions, which would configure them-
selves into the {1, 3} structure. Consequently, the average worth of the
original region must be 10.5, whereas the formation of the grand co-
alition yields 12.5. The formation of a two-region coalition would yield
an average worth of 11 for the two regions, which again is lower. For-
mation of three- and four-region coalitions is similarly ruled out.

However, full cooperation can (thereafter) no longer be reached un-
less there are at least eight regions, and then not again until there are
at least 13 regions.8 To establish these results, the following concerns
are relevant: each region must compare the benefits of making an offer
to an arbitrary subset of other regions, and moreover, for each such
offer, a prediction of the “remaining” coalition structure is called for.
Our general analysis will provide a complete characterization of the
entire coalition structure for any “population size,” not just the efficient
outcomes. Moreover, this characterization embodies a significant re-
duction in the number of “checks” that need to be performed in order
to ascertain the equilibrium structure.9

Indeed, if we had to proceed by brute-force methods beyond the five-
region case, the problem would very quickly become intractable. The
deduction of cooperative outcomes for the other population sizes cited
above follows from our more general characterization.

There is, moreover, another reason why a general analysis is indis-
pensable. The example, with its reliance on particular population sizes
and seemingly odd cyclicities in efficiency, is not very useful in uncov-
ering certain broad patterns. As a transition to the general analysis, we
list two of these features.

First, a coalition structure of singletons—and, more generally, a sym-
metric inefficient coalition structure—is never an equilibrium. The rea-
son is that the symmetric payoff per region to the grand coalition would
always dominate the payoffs to such a structure. Thus if there is inef-
ficiency (as in the four-region case of the example), the equilibrium
structure must be asymmetric.

Second, as n increases, the degree of inefficiency cannot become too
large. There are several ways to measure this (see below), but one crude
measure is the “coarseness” of the coalition structure. With our general
results, it can be checked that there can be no more than seven coalitions
when the number of regions is 100, and no more than 10 coalitions

8 The obvious comparison to the Fibonacci sequence (suggested to us by Andrew Pos-
tlewaite) ends here: the next size supporting full cooperation is 20!

9 For instance, to ascertain the “stability” of the grand coalition when it sufficesn p 6,
to compare a stand-alone payoff under the structure {1, 5} with payoff per region under
the grand coalition. Without the characterization, of course, numerous other structures
would need to be considered.
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when the number of regions is 1,000! (It is of interest to note, moreover,
that these bounds do not depend on the quadratic cost function used
in this example.) So while there may be some inefficiency as the number
of regions grows, there cannot be too much.

Finally, the example illustrates starkly the kinds of commitment un-
derlying our model. To understand this, consider any inefficient equi-
librium structure, say {1, 3}. One might attempt to argue that the equal-
division assumption (or any model of negotiation that yields equal
division) is problematic here. The three worse-off regions could attempt
to form the grand coalition with region 1 by bribing it with the stand-
alone payoff (plus a signing bonus). This would be a way to circumvent
the inefficient outcome.

However, this is a useless exercise ex ante. The model is symmetric,
and in principle each of the four regions could play region 1. All four
cannot be simultaneously bribed. Enlarging the ability of coalitions to
divide their surplus unequally makes no difference (and this is what our
general model of negotiations will show). On the other hand, the ex-
ercise has value ex post, when some region has already committed to
standing alone but is open to renegotiation. The assumption of no
renegotiation across coalitions—once a coalition has formed, it cannot
expand in any way—is important. We return to a discussion of this issue
in Section V.

III. Equilibrium Coalition Structures

The purpose of this section is to deliver a general characterization of
equilibrium coalition structures. Accordingly, we return here to a gen-
eral cost function. As for the model of coalition formation, we present
the reader with two options. First, we retain the assumption of equal
division of coalitional surplus. The reader who is comfortable with this
postulate as a working hypothesis can read the paper in an entirely self-
contained way. Second, we describe a general model of coalition for-
mation that permits arbitrary allocations within coalitions. Using results
from Ray and Vohra (1999), we prove that the predictions of this general
model are no different from those of the simpler model.

In our view, it is important to allow transfers across coalitional mem-
bers, especially if one is interested in questions of efficiency. The general
model we describe allows for all sorts of intracoalitional allocations to
be implemented, in principle. There is no a priori reason why such trans-
fers cannot matter. (Indeed, we employ the particular public-goods
structure to argue that they do not, but this is not generally the case.)
Put another way, the general model provides the foundations of the
equal-division assumption. Moreover, it tells us how to generalize these
results to asymmetric situations, though the details of such an extension
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are beyond the scope of the current exercise. In contrast, the equal-
division hypothesis suggests no obvious extension to the asymmetric
case.

A. Coalition Formation

We now describe a model of coalition formation. For a discussion of
some conceptual issues underlying this model, see Section V.

In this model, regions are players. They will make proposals to coa-
litions (of regions) and respond to proposals made to them. To this
end, we describe a negotiation protocol: if some set T of regions is yet
to form into coalitions, a particular region in T gets to be the initial
proposer. For each conceivable coalition of regions to which a proposal
might be made, the protocol pins down an order of responses among
the member-regions of that coalition. Thus an entire ordering of pro-
posal and response (for each collection of negotiating regions) is laid
down at the very outset: this is the negotiation protocol.

With the protocol in place, a bargaining game may be described.
Some initial proposer starts the game. She chooses a coalition (of which
she is a member) and then makes a proposal to this coalition.

In general, a proposal is a complicated object. It will include pro-
duction plans, as well as a description of transfers among member-
regions. However, as already noted, production within a coalition must
be insensitive to coalition structure: a coalition of regions S with car-
dinality s will surely choose to produce pollution control of z per mem-
ber, where z solves (2). To be sure, proposed transfers might continue
to depend on the final coalition structure.

Once a proposal to coalition S is made by the initial proposer, atten-
tion shifts to the respondents in S (in the order prescribed by the
protocol). By a response we mean simply an acceptance or rejection of
the going proposal. If all respondents accept, the regions in S form their
coalition and retire from the game, which continues among the re-
maining set of regions. In the case of a rejection, it is assumed that the
first rejecter gets to make the next proposal.

If and when all agreements are concluded, a coalition structure forms.
Each coalition in this structure is now required to allocate its surplus
among its members as dictated by the proposals to which they were
signatories. If bargaining continues forever, it is assumed that all regions
receive a (normalized) payoff of zero.

At this point, we introduce our two options.
a. A restricted game in which its is assumed that a proposal always

involves equal division of the surplus, that is, no transfers. In this case
a proposal may simply be identified with a specification of a coalition
(given equal division and the fact that production plans must solve [2]).
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Furthermore, by symmetry, all that matters is the specification of coal-
itional size (see Bloch 1996). We shall also use the convention that if a
player is indifferent between making acceptable proposals to coalitions
of different sizes, he will opt to choose the largest of these sizes.10

b. A general game in which proposals may specify any arbitrary (fea-
sible) division of the surplus among coalition members. To analyze this
more general scenario, we adopt an extension of Rubinstein (1982) and
Chatterjee et al. (1993); this is the negotiation model described in Ray
and Vohra (1999).11 This model differs from the simpler one in the
following ways: (1) A proposer can propose to divide coalitional surplus
in arbitrary ways. She can condition such divisions on the coalition
structure that eventually forms. (2) A rejection entails the lapse of a
certain amount of time, which imposes a geometric cost on all regions
and is captured by a common discount factor d � (0, 1).

From now on, in the context of the restricted game, the word “equi-
librium” will refer to a subgame-perfect equilibrium, and in the context
of the general game, it will refer to a stationary perfect equilibrium.12

Our main question is, Can we describe equilibrium coalition
structure(s)?

Because our game is symmetric (insofar as production technologies
and payoff functions are concerned), there can be no hope for a pre-
diction that links particular regions to particular coalitions. What we look
for, rather, is a description of numerical coalition structures. In other
words, we describe, for every integer n (which denotes the total number
of regions), a decomposition of that integer into other integers, so that
the number of elements in the decomposition denotes the number of
coalitions that form, and the value of each integer in the decomposition
denotes the membership size of each coalition.

To do this, we begin with some preliminary observations regarding
the outcome when a particular coalition structure forms.

10 The more general model to follow will not require this convention.
11 See also Chwe (1994), Bloch (1996, 1997), Yi (1996), Ray and Vohra (1997), and

Huang and Sjostrom (1999), among others.
12 A (stationary) strategy for a region will condition its (possibly probabilistic) proposal

only on the current state of the game—the current set of negotiating regions and the
coalitions that have already formed. It also requires that the accept-reject decision for
proposals made to it by other regions not depend on anything else but the current set
of regions, the coalitions that have already left, as well as the identity of the proposer and
the nature of the proposal. A stationary (perfect) equilibrium is defined to be a collection of
stationary strategies such that there is no history at which a region benefits by a deviation
from its strategy. Since such a game may possess many subgame-perfect equilibria (see,
e.g., Chatterjee et al. 1993), it is important to restrict attention to stationary equilibria.
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B. Average Worths

Let S be a coalition of regions with cardinality s. Let be its outputz(s)
per region, that is, the solution to (2),13 and let

f(s) { sz(s), h(s) p c(z(s)), g(s) p f(s) � h(s).

Thus denotes the aggregate output of coalition s, the corre-f(s) h(s)
sponding cost per member of provision of the public good, and g(s)
the payoff per member from the activity of the coalition (with external
effects neglected). If is a coalition structure andp p {S , … , S } S �1 m

then the average worth of a region in S is justp,

m

a(S, p) { f(s ) � h(s). (4)� j
jp1

Because all worths depend only on the sizes of the coalitions involved,
we can abuse notation a little to write

m

a(s, n) p f(s ) � h(s), (5)� j
jp1

where n is some numerical coalition structure and The averages � n.
worth function will be crucial in describing a particular decomposition
of positive integers that characterize equilibrium coalition structure.

We shall make the following regularity assumptions on the technology,
which will be in force throughout the paper.14

Assumption 1. There exists a unique solution to the problemz(s)
(2) such that is strictly positive for all and strictly increasingz(s) s 1 1
in s.

Assumption 2. The function is convex in s.f(s)
The nature of this regularity assumption can be made clear by ob-

serving that the maximization problem (2) can be viewed as a standard
profit maximization problem, where s is any positive real number, in-
terpreted as the price of the output, and y is interpreted as the output.
Notice that it is sufficient for assumption 1 to assume that is twicec(7)
continuously differentiable, and In assumption′ ′′ ′c 1 0, c 1 0, c (0) ! 1.
2, we require f, the revenue function, to be convex.15 It is easy to see
that assumption 2 holds for all convex, exponential cost functions,

13 We shall presently impose restrictions on to ensure that there exists a uniquec(7)
solution to (2).

14 Assumption 2 is used in the proofs of lemma 1 and theorem 2.
15 The standard result that the profit function is convex goes quite far in implying

convexity of f, but, in general, not far enough.



1368 journal of political economy

where and How our results may change if as-bc(z) p bz , b 1 0 b 1 1.
sumption 2 is not satisfied remains an open question.16

C. Decompositions of Positive Integers

Here is a rule that generates numerical coalition structures from any
given number n of regions. Let be an ordered collec-T p {m , m , …}1 2

tion of increasing positive integers, where For any integerm p 1.1

define the T decomposition of n as a collectionn ≥ 2, s(n) { (t , … , t )1 k

of (possibly repeated) elements of T satisfying the following properties:
(1) tk is the largest integer in T that is strictly smaller than n; (2) for
any ti is the largest integer in T no greater thani � {1, … , k � 1}, n �

In other words, the T decomposition is obtained by sub-k� t . s(n)jpi�1 j

tracting the largest integer in T (which is strictly smaller than n) from
n, then subtracting the largest possible integer in T (no greater than
the remainder) from the remainder, and so on. Notice that since 1 �

is well defined and unique for any positiveT, s(n) n 1 1.
Now consider a special collection of positive inte-∗T p {m , m , …}1 2

gers with the property that and for each is the smallestm p 1, i ≥ 1, m1 i�1

integer n, with the property that andn 1 mi

k

g(n) ≥ a(t , s(n)) p f(t ) � h(t ), (6)�1 i 1
ip1

where is the decomposition of n. It is very easy to see that∗(t , … , t ) T1 k

there is a unique sequence satisfying this property, and in fact, this∗T

sequence is computable recursively.17

For any positive integer n, define its strict decomposition to be just its
decomposition and its decomposition to be either its strict decompo-∗T

sition if or the singleton set {n} if The notation∗ ∗n � T n � T . d(n)
( ) will refer to the decomposition (strict decomposition) of n. Fors(n)
notational convenience, the decomposition of zero is empty.

Given any decomposition and integers such as s and t, we shall use
concatenation such as or to denote the numerical coa-s 7 d t 7 s 7 s(n)
lition structure generated by putting together these integers with the
decomposition. (The order of appearance of the integers is
unimportant.)

We now record for later use the following properties of and∗T

d(n).

16 As will become clear below, our results (through lemma 1 below) actually rely on the
weaker assumption that is convex.g(s) � f(n � s)

17 The collection is all that is needed to compute the decomposition of∗{m , … , m } T1 i

any integer n that exceeds mi, so recursion is possible. All we need to do is make sure
that the inequality (6) is satisfied for some To see this, simply note thatn 1 m . f(n) �i

ash(n) r � n r �.
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Observation 1. If where then ford(n) p (n , … , n ), k ≥ 2, n ( n1 k i j

all i, If then∗j � {1, … , k}, i ( j. T p {m , … , m , m , …}, m p 1,1 i i�1 1

and for allm p 2, m ! 2m i ≥ 2.2 i�1 i

The proof of this observation is a simple consequence of our defi-
nition of a decomposition. Suppose that there exist mi, suchm � d(n)j

that and Then it is easy to see thati ( j m p m p m. d(2m) pi j

In particular, so that (6) is negated, which means that∗(m, m). 2m � T ,

f(m) � g(m) 1 g(2m). (7)

Recall that where is the solution to (2) forf(m) p mz(m), z(m) s p m,
and But by definition, equals thef(m) � g(m) p 2mz(m) � c(z(m)). g(2m),
maximum value of over all z, so that (7) cannot hold. This is2mz � c(z)
a contradiction, so the first part of observation 1 must be true. The
second part of the observation now follows immediately.

D. Equilibrium Coalition Structures

For both the restricted game and the general game, we obtain the same
characterization of the equilibrium (numerical) coalition structure.

Theorem 1. Fix a set of regions n. Then there exists such∗d � (0, 1)
that, for all there is a unique numerical coalition structure,∗d � (d , 1),
which is just the decomposition of n.

We discuss this result, postponing its formal proof to the Appendix.
Combining observation 1 and theorem 1, we see that the equilibrium

of this (ex ante) symmetric game typically displays a high degree of
asymmetry.

Corollary 1. Suppose that the number of regions is n and the grand
coalition does not form in equilibrium; that is, the equilibrium coalition
structure is where Then for all i,d(n) p (n , … , n ), k ≥ 2. n ( n1 k i j

andj � {1, … , k} n 1 n/2.k

The main idea behind the argument in theorem 1 is that whenever
a coalition forms, it will tend to divide its worth equally among its mem-
bers. This is true by assumption in the restricted game. For the general
game, it is an outcome when discount factors are close enough to unity.
Indeed, any other model of negotiation with the feature that average
worth plays an important role will generate the same results.

With this in mind, a coalition S that forms will do so with the intention
of maximizing its average worth, which we have denoted by Buta(S, p).
note well the dependence of this worth on both the coalition S and the
entire coalition structure p of which it is a part. Thus it is not enough
for S to simply form: its members must also attempt to predict the entire
coalition structure in which S will be embedded.

Prediction is assisted by the understanding that other coalitions, when
they form, will have the same motivation as S does. They will all seek
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to maximize their average worths and will be confronted with a similar
problem of prediction. This suggests that a solution may be found by
a backward recursion argument: if only two regions are left, the problem
of prediction is trivial (given that most of the coalition structure has
already formed). The solution to the two-region case will, in turn, inform
predictions in the three-region case: for instance, if a region decides to
“go it alone,” it will be able to predict what the other two regions will
do. In this way, we can solve out for equilibrium coalition structures.

To understand how this recursive procedure boils down to a coalition
structure that is just the decomposition of n, return to the quadratic
example. It is easy to write down the first few terms in : they are {1,∗T

2, 3, 5, …}.
Now follow the procedure. To construct the equilibrium structure

when there are, say, six regions, it will suffice to compare a(1, (1, 5)),
which is 25.5, to a(6, (6)), which is 18. (According to our result, it is
not necessary to compute a(2, (2, 4)), a(2, (1, 2, 3)), or the average
worth of a region in any of the several other coalition structures.) This
shows that {1, 5} is the equilibrium coalition structure when Itn p 6.
also means that Thus, when we need only compare a(2,∗6 � T . n p 7,
(2, 5)), which is 27, to a(7, (7)), which is 24.5. This establishes that {2,
5} is the equilibrium coalition structure when and, in particular,n p 7
that Therefore, when the comparison is to be made∗7 � T . n p 8,
between a(3, (3, 5)), which is 29.5, and a(8, (8)), which is 32. This
signals the return of the grand coalition: ∗8 � T .

With this sort of argument, it is easy enough to proceed further and
to show that the next two elements in are 13 and 20.∗T

Our decomposition achieves a significant reduction in the number
of checks for an equilibrium coalition structure. What is estab-
lished—and this is the part of the formal argument that requires
work—is that regions that get the opportunity to move initially must
attempt to create opportunities for the largest possible blocs to form in
their wake. The idea of a decomposition captures this. For any integer
n, its strict decomposition is obtained by first taking the largest possible
integer in (less than n), then taking the largest possible integer in∗T

no less than the remainder, and thereafter repeating the same op-∗T

eration with the remainder (if any). Think of the initial coalition size
that forms as the last integer in this decomposition. This captures (in-
ductively) the best that a region can do if it were not to propose full
cooperation. The payoff from this strict decomposition is then com-
pared with the payoff from full cooperation, which is captured formally
in the rule that includes n as a member of (see [6]).∗T
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IV. How Much Inefficiency?

It should be clear from the discussion above that our model of coalition
formation in the provision of public goods admits some inefficiency.
For efficient outcomes are to be had only through the formation of the
grand coalition; only a binding agreement among the set of all regions
can cause all the effects of provision to be fully internalized.

Yet it should also be clear that there cannot be too much inefficiency.
If a high degree of inefficiency were anticipated in equilibrium, then
some region would move to make a suitable proposal to the grand
coalition, and all the regions, fearing a huge loss if the proposal falls
through, would accept. Therefore, a destruction of the fully efficient
outcome can be achieved only at not too great a loss in efficiency. The
purpose of this section is to make these ideas clearer through the use
of our model.

We look at two efficiency criteria. First, we compare the total surplus
generated by the equilibrium coalition structure (by simply adding up
over all surpluses) to the surplus that would have been generated by
the grand coalition were it to form. Second, we attempt to place a bound
on the number of coalitions that can form in equilibrium. In both these
comparisons we are particularly interested in the case of a large number
of regions, where the problems of inefficiency are likely to be more
severe.

A. Full Efficiency, Sometimes

Indeed, along an infinite subsequence of region populations, given by
the outcome is fully efficient.∗T ,

Full efficiency also obtains if the number of regions does not exceed
some upper bound. For instance, in the case of a quadratic cost function
discussed in Section III, the grand coalition of regions must form when
the number of regions is no more than three. To see how this is com-
puted, return to the general case. Then the initial range of populations
for which full efficiency obtains is just all the values of n for which a
single region does not want to be on its own under the assumption that
all the other regions stay together. (It is easy enough to verify the truth
of this assertion by a recursive argument, which we omit.) This boils
down to the condition that18

f(n � 1) � g(1) ≤ g(n). (8)

To make this condition more transparent, assume that the cost function

18 Of course, if (8) does not hold and then ; full efficiency is not∗ ∗(n � 1) � T , n � T
to be expected in general.
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takes the constant elasticity form for some Thenac(z) p (1/a)z a 1 1.
(8) is equivalent to the requirement that

l ll(n � 1) � n � 1 ≤ 0,

where It is easy enough to see that the largest n satisfyingl { a/(a � 1).
this condition is 3 for the quadratic case. (As another example, if

the largest run of initial consecutive integers yielding efficiencya p 1.2,
is four.)

Efficiency is also to be had along a subsequence of n, but the argument
here is more complicated. Now a group of “deviating regions” must
attempt to predict the entire coalition structure that will be left behind
after their defection and compare the gains from full cooperation with
the return to be had from defection. With theorem 1 already obtained,
it is easy to see that this condition is given by (6). Because this condition
is met again and again along a subsequence (another way of saying this
is that the set is infinite), full efficiency must return (infinitely often)∗T

as n varies.

B. The Extent of Inefficiency

The discussion above also tells us that the degree of inefficiency cannot
be too large in equilibrium: the formation of the grand coalition of
regions is always an option. This allows us to place a lower bound on
what we might call the efficiency ratio: the ratio of equilibrium surplus
to the highest potential surplus.

Corollary 1 has an obvious implication for computing a lower bound
on the degree of inefficiency: in the decomposition of n there must be
one coalition with a size of at least This coalition generates a pern/2.
capita surplus that is no less than whereas every other coalitiong(n/2),
enjoys a per capita surplus of at least (the output of the largestf(n/2)
coalition). This, in turn, is at least as large as so that the ratiog(n/2),
of equilibrium to potential surplus is at least In the case ofg(n/2)/g(n).
a quadratic cost function, this yields an “efficiency ratio” of at least 25
percent. With additional work, however, one can obtain a tighter bound,
which we report in theorem 2 below. This theorem also provides an
upper bound on the total number of coalitions that can form.

Theorem 2. (1) For each n, let e(n) denote the ratio of equilibrium
to potential surplus. Then

4 g(n/2)
e(n) 1 . (9)

3 g(n)

(2) If k is the number of equilibrium coalitions, then
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k ! log n � 1. (10)2

Part 1 of the theorem can be applied to the quadratic case to get a
tighter lower bound on the efficiency ratio: one-third. Note that the
bound is independent of n, the number of regions. Whether it is possible
to obtain an improvement on this bound (which is also uniform in n)
remains an open question.

Finally, part 2 of the theorem is a close descendant of corollary 1. In
any decomposition, the size of each successive coalition (counting from
the largest) must exceed half the number of the remaining regions. A
little manipulation then reveals that the total number of regions must
be (approximately) at least two raised to the power of the number of
coalitions, which yields the required result. Note that this bound predicts
substantial cooperation: for instance, no more than seven coalitions can
form when there are 100 negotiating regions. Whether an upper bound
on the number of coalitions can be given that is independent of the
number of regions is an open question.

V. Discussion and Extensions

This admittedly stylized model raises a number of questions regarding
robustness.

1. How important is the particular model of negotiation used?—What is
central to the results in this paper is the idea that members of a coalition
are influenced by the average and not the total payoff of that coalition.
This was the explicit assumption in the restricted game. In the general
game, the particular model we use yields the outcome that (as discount
factors go to unity) a formed coalition must exactly divide its worth
among its members. Any other model that has the same feature will do.
It is, however, of some significance that in a well-specified noncooper-
ative bargaining model, equal division turns out to be a result.

Another important implication of (both versions of) our coalition
formation model is that it allows us to circumvent the usual problems
of coordination failure. In particular, the completely noncooperative,
Nash, outcome is not an equilibrium in our model. This is in sharp
contrast to Dixit and Olson (1998), who rely on a much simpler model
of coalition formation.19 In the first stage of their game, agents decide,

19 In the second stage of their model, agents who have formed a coalition act efficiently.
In this respect their approach is the same as the one followed here and in Ray and Vohra
(1997, 1999).
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independently, whether or not to join one potential coalition.20 There
are always two pure-strategy equilibria in their model: one involving a
complete coordination failure and another nonsymmetric equilibrium
in which an efficient allocation emerges. They mainly focus on a sym-
metric mixed-strategy equilibrium, and they show that it leads to grossly
inefficient outcomes in large economies. It is easy to see that our equi-
librium concept applied to their public-goods model would yield a co-
alition structure in which one (last) coalition is just large enough to
find it worthwhile to provide the public good, predicting full efficiency.

2. Is the additive representation of payoffs important?—We have chosen the
payoff functions so that pollution control by any region (or regions)
enters the return to a particular region in an additive way. The main
implication of this assumption is that we can apply the decomposition
rule to “subintegers”—subgroups of the original set of negotiators
—regardless of which coalition structure has already formed. If external
effects do not enter in an additive way, the particular structure of already
formed coalitions will influence the structures that emerge among the
remaining set of negotiators. For the recursive rule that we employ, this
poses no problem at all. Ray and Vohra (1999) analyze these and other
issues in a more abstract setting. However, it will become more difficult
to provide a transparent characterization of equilibrium structure (the
characterization in the additive case is complicated enough as it is).

3. If binding agreements are possible, why does the Coase theorem not apply
to generate full efficiency, regardless of the number of regions?—This is an issue
that requires careful discussion. Our model of negotiations permits co-
alitions to form freely and divide their worth freely, but once formed, a
coalition is not permitted to break up or expand, even if all its members unan-
imously agree to do so. To understand the implications of this assumption,
let us return to the quadratic case of Section III and focus on the
situation with only four regions. Our model predicts that the coalition
structure in this case is {1, 3}. However, consider the subgame in which
the one-region coalition has already committed to forming. If the three-
region coalition forms thereafter, the stand-alone region will receive a
payoff of 9.5, whereas the three-region coalition averages 5.5. Now cal-
culate the average worth of the four-region coalition; it is 8. So its total
worth is 32. There is room, then, for the three remaining regions to
make a mutually beneficial offer to the stand-alone region. For instance,
the stand-alone region could be offered a payoff of 14. This would still
leave a payoff of 18 for the remaining three regions: an average of 6,

20 They study a model of a discrete public good with identical consumers. The decision
to join a coalition is effectively a decision to undertake the efficient choice for the coalition,
sharing the cost equally. Given a population of N consumers, one can assume that there
is an integer such that a coalition of size M finds it profitable to provide the publicM ! N
good.
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which exceeds the 5.5 that they would receive in the absence of full
efficiency. Thus full efficiency should finally obtain.

Note the emphasis on the word “finally.” For it is impossible to obtain
this outcome without an intermediate stage in which the stand-alone
region commits to standing alone. If an efficient proposal were made
prior to this stage, then at least one region in that proposal must get
no more than a payoff of 8. As soon as that region obtains the oppor-
tunity to respond to the going proposal, it will commit to standing alone
(this guarantees a payoff of at least 9.5). Thus full efficiency requires
the creation of an intermediate, inefficient stage in which a coalition
structure comes into being.21

We can regard this situation in three different ways. First, a commit-
ment is a commitment and cannot be reversed. This will be true of
situations in which a commitment must be made by the use of concrete
actions (not legal devices) that are prohibitively costly to reverse. For
instance, pollution control might require the setting up of environ-
mentally friendly factories that must be built from scratch. A region that
does not take this route is committing to a reduced level of pollution
control in a way that may be too costly to reverse (it may be setting up
factories that are not built environmentally friendly, and moving to a
greater level of control will require the tearing down of these fixed
investments). In this case, our model may be taken to be a “literal”
description of the coalition structure that is likely to emerge.

Second, a commitment may be costly but reversible (at some addi-
tional cost). As in the previous example, this might occur if pollution
control devices are, by and large, modular, so that they can be tacked
on to existing installations at moderate cost. In this situation, renego-
tiation is more likely to occur, but nevertheless the inefficient situation
must first obtain (otherwise the beneficiaries of renegotiation will have
no power to extract the surplus). In this case our prediction of a coalition
structure must be broadened to a prediction of a coalitional power struc-
ture, which describes the initial constellation of groupings that must
occur before a final efficient agreement comes about. Note, however,
that efficiency can be said to obtain only in an “end state sense”: the
final outcome is efficient, but the negotiating process must be costly and
involve inefficiencies.

Finally, it may be that a commitment, once made, is costless to reverse.
This may sound a bit paradoxical (and perhaps it is), but in the interests
of playing the devil’s advocate, let us pursue this line of thought a bit
further. In the context of our four-region example, it may be that the

21 It can be seen that this observation is perfectly general and independent of any process
of negotiation that we might choose to write down. A full treatment of the generality of
this observation is beyond the scope of the current paper.
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first region has access to an international court in which it makes the
following declaration: that it commits to forming no binding relation-
ship with the other regions unless the other regions are signatories to
an agreement that gives it more than its stand-alone payoff. The qual-
ification may then be used to “reverse the commitment,” which was
really a conditional commitment all along. In this case the final outcome
must be truly efficient in the Coasian sense, but it is nevertheless still
true that an intermediate power structure must first form before the
efficient agreement is realized. Moreover, the final agreement will not
involve equal division of the surplus. The division will mirror the en-
dogenously generated coalitional power structure. We claim that even
in this case (most conducive to efficiency), our model sheds light on
this intermediate structure. For the coalitional structure that we predict
must form before the final renegotiation (if any) is carried out.

Appendix

Proofs

We begin with an informal outline of the steps for theorem 1. First, we describe
an algorithm that assigns a unique numerical coalition structure to each “pop-
ulation size” n. It will be clear that this algorithm picks out the subgame-perfect
equilibrium of the restricted game. Proposition 1 (below) will show that this
algorithm is identical to the decomposition of n. This will complete the proof
of theorem 1 for the restricted game.

To establish the same result for the general game, we shall prove proposition
2 (below). This proposition shows that the numerical coalition structure of the
algorithm satisfies a sufficient condition introduced in Ray and Vohra (1999)
for that coalition structure to be the unique equilibrium (for discount factors
close enough to one).

The algorithm now follows. Formally, to each integer n we assign a choice of
integer Applying T to n and then repeatedly to willT(n) � {1, … ,n}. n � T(n)
allow us to break up any integer n into a numerical coalition structure. Let c(n,
T) denote this numerical structure.

Step 1. Set T(1) p 1.
Step 2. Recursively, for any integer suppose that we have definedn 1 1,

for all Choose to be the largest integer t inT(m) m p {1, … ,n � 1}. T(n)
that maximizes Let be this maximum value.∗{1, … ,n} a(t, t 7 c(n � t, T)). a (n)

Step 3. Complete this recursive definition so that T is now defined on all the
positive integers. Define a numerical coalition structure for a situation with n
regions as c(n, T).

This completes the description of the algorithm, and we can now state the
two main steps involved in proving theorem 1.

Proposition 1. For any positive integer n, c(n, T) p d(n).
Clearly, the restricted game possesses a subgame-perfect equilibrium. More-

over, given our tie-breaking convention, every such equilibrium involves a nu-
merically unique coalition structure. It is also easy to see that this coalition
structure is precisely c(n, T). Proposition 1 therefore completes the proof of
theorem 1 for the restricted game.
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To prove theorem 1 for the general game, we shall also need the following
result.

Proposition 2. For any positive integer n and any such thatt � {1, … ,n � 1}

′ ′ ′a(t, c(n � t, T)) ≥ a(t , c(n � t , T)) for all t � {1, … , t}, (A1)

we have

∗ ∗a (n) ≥ a (n � t) � f(t). (A2)

Proposition 2 implies condition (6) of Ray and Vohra (1999). Since, by prop-
osition 1, the algorithm and the decomposition yield the same coalition struc-
ture, it now follows from theorem 3.4 in Ray and Vohra (1999) that the decom-
position characterizes the unique equilibrium coalition structure for the general
game (for a sufficiently high discount factor).

To complete the proof of theorem 1, therefore, it remains to prove propo-
sitions 1 and 2.

Recall that, for each t, we define The following lemma col-g(t) { f(t) � h(t).
lects some elementary observations regarding the functions f and g.

Lemma 1. (i) If for some theng(t) � f(n � t) ≥ g(s) � f(n � s) 1 ≤ s ≤ t ! n,
for all (ii) If then′ ′ ′g(t ) � f(n � t ) ≥ g(t) � f(n � t) t ≤ t ! n. t ≥ s, g(s) � f(t) ≥

with strict inequality wheneverg(t) � f(s), t 1 s.
Proof. As we have already noted in Section IIIB, g is a convex function since

it is the value function for the maximization problem described in (2). By
assumption 2, f is also convex. It then follows that the function g(s) � f(n � s)
must be convex in s, for If a convex function is nondecreasing overs � [0, n].
some interval, it can never decrease thereafter. This proves part i.

To prove part ii, observe that (by assumption 1) optimal output per region
is strictly increasing in s, and therefore so is the cost It follows that ifz(s) h(s).
thent ≥ s,

g(s) � f(t) p f(s) � f(t) � h(s) ≥ f(s) � f(t) � h(t) p g(t) � f(s),

with strict inequality whenever which proves part ii. Q.E.D.t 1 s,
The next lemma collects some elementary observations regarding decom-

positions of positive integers.
Lemma 2. For any positive integer n, (i) if then, for all…d(n) p t 7 7 t ,1 k

(ii) If tk is the largest value in s(n),…t � {1, … , t }, d(n � t) p d(t � t) 7 t 7 7 t .1 1 2 k

then for all m such that (iii) The strict decom-d(m) p d(m � t ) 7 t t ≤ m ! n.k k k

position whenevers(n) p d(n � t) 7 t t � s(n).
Proof. These observations follow directly from the definition of a decompo-

sition. Q.E.D.
The following lemma is central to the main argument.
Lemma 3. Suppose that n has strict decomposition Thens(n) p {t , … , t }.1 k

a(t , s(n)) ≥ a(t, t 7 d(n � t)) for all t � {1, … , t � 1} (A3)1 1

and

a(t , s(n)) 1 a(t, t 7 d(n � t)) for all t � {t � 1, … ,n � 1}. (A4)1 1

Proof. Proceed by induction. Clearly for the assertion is trivially truen p 2
because both the sets in question are empty. Suppose, then, that the lemma is
fully established for all integers m that lie between 2 and and considern � 1,
the lemma for n.
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First, take Then (part i of…t � {1, … , t � 1}. d(n � t) p d(t � t) 7 t 7 7 t1 1 2 k

lemma 2), so that

…a(t, t 7 d(n � t)) p a(t, t 7 d(t � t) 7 t 7 7 t )1 2 k

k

p a(t, t 7 d(t � t)) � f(t )�1 j
jp2

k

≤ a(s , s(t )) � f(t )�1 1 j
jp2

k

≤ f(t ) � h(t ) � f(t )�1 1 j
jp2

p a(t , s(n)),1

where s1 is the first term in the strict decomposition of t1,
22 and the inequality

in that line holds by the induction hypothesis. The second inequality holds from
(6) and the fact that ∗t � T .1

Next, take There are now two subcases, each of whicht � {t � 1, … ,n � 1}.1

we consider in turn.
Subcase 1. Note that in this case From part ii of lemmat ! t ≤ n � t . k ≥ 3.1 k

2, the decomposition of is given by so thatn � t d(n � t � t) 7 t ,k k

a(t, t 7 d(n � t)) p a(t, t 7 d(n � t � t) 7 t )k k

p a(t, t 7 d(n � t � t)) � f(t ). (A5)k k

Since it follows that and, by part iii of lemma 2,k ≥ 3, d(n � t ) p s(n � t )k k

Applying the induction hypothesis to the integer…d(n � t ) p t 7 7 t . n �k 1 k�1

we see thatt ,k

a(t, t 7 d(n � t � t)) ! a(t , s(n � t )). (A6)k 1 k

Combining (A5) and (A6) and using part iii of lemma 2 once again, we may
conclude that

a(t, t 7 d(n � t)) ! a(t , s(n � t )) � f(t ) p a(t , s(n)),1 k k 1

which completes the proof in this subcase.
Subcase 2. Suppose that (A4) does not hold for some thatt 1 n � t . t 1 n � t ,k k

is,

a(t, t 7 d(n � t)) ≥ a(t , s(n)). (A7)1

Recall that for all t. Notice that the highest possible averageg(t) { f(t) � h(t)
worth to a coalition of size t arises when the rest of the regions form one single
coalition, that is, Combining this informationa(t, t 7 d(n � t)) ≤ g(t) � f(n � t).
with (A7), we see that

g(t) � f(n � t) ≥ a(t , s(n)). (A8)1

From the previous subcase (or the definition of s(n) in the case )n p t � t1 k

and from the fact that it follows thatd(t ) p t ,k k

22 This is well defined because in the case under consideration, t1 must be at least 2.
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a(t , s(n)) ≥ a(n � t , (n � t ) 7 t ) p g(n � t ) � f(t ). (A9)1 k k k k k

Combining (A8) and (A9), we have

g(t) � f(n � t) ≥ g(n � t ) � f(t ).k k

Applying part i of lemma 1, we conclude that

g(n � 1) � f(1) ≥ g(t) � f(n � t) ≥ g(n � t ) � f(t ). (A10)k k

Applying part ii of lemma 1 to the first and third expressions of the inequality
(A10), we conclude that This means that In other words,∗n � t 1 1. n � 1 � T .k

we can write where 23 Using (6), we conclude that…d(n � 1) p (s 7 7 s ), q ≥ 2.1 q

q

g(n � 1) ! a(s , d(n � 1)) p g(s ) � f(s ).�1 1 j
jp2

Since we know from part ii of lemma 2 that this in-g(1) � f(s ) ≥ g(s ) � f(1),1 1

equality can be rewritten as

q

g(n � 1) � f(1) ! g(1) � f(s )� j
jp1

p a(1, 1 7 d(n � 1))

≤ a(t , s(n)).1

But this, along with (A10), implies

a(t , s(n)) 1 g(t) � f(n � t),1

which contradicts (A8). Q.E.D.

Proof of Proposition 1

Note that this result is trivially true when so assume inductively that, forn p 1,
some integer for all All we need ton ≥ 2, c(m, T) p d(m) m p {1, … ,n � 1}.
show now is that is just the first term in the decomposition of n. In otherT(n)
words, if we need to prove that…d(n) p t t ,1 k

t p max arg max a(t, t 7 c(n � t, T)) . (A11){ }1
t�{1,…,n}

Let From lemma 3 we know that…s(n) p s s .1 q

s p max arg max a(t, t 7 c(n � t, T)) . (A12){ }1
t�{1,…,n�1}

Consider the two following cases: (1) Suppose This means that n doess p t .1 1

not satisfy (6), that is,

a(t , t 7 d(n � t )) 1 a(n, n).1 1 1

Since, by the induction hypothesis, and thisc(n � t , T) p d(n � t ) s p t ,1 1 1 1

23 In fact we know that if then and if then…t p 1, d(n � 1) p (t 7 7 t ), t 1 1,1 2 k 1

But this need not concern us in what follows.…d(n � 1) p [d(t � 1) 7 t 7 7 t ].1 2 k
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along with (A12) implies (A11). (2) Suppose This means that andt 1 s . t p n1 1 1

that n satisfies (6), that is,

a(t , d(n)) p a(n, n) ≥ a(s , s 7 d(n � s )),1 1 1 1

and again (A12) implies (A11). Q.E.D.
The following lemma is an intermediate step in the proof of proposition 2.
Lemma 4. For any positive integer m, let f(m) be the first term in the strict

decomposition of m. Let fk denote the k-fold composition of f. Then if t �
satisfies (A1), for some integer k.k{1, … ,n � 1} t p f (n)

Proof. Suppose that t satisfies (A1) but the conclusion of the lemma is false.
Noting that after some finite k, let s be the largest integer of the formkf (n) p 1

such that s is smaller than t. Use the convention Thenk 0f (n) f (n) p n.

k k�1s p f (n) ! t ! f (n) { m.

It is easy to see, from lemma 2, that because k�1m p f (n),

′ ′ ′d(n � t ) p d(m � t ) 7 d(n � m) for all t ! m. (A13)

Since s is the first term in the strict decomposition of m, it follows from lemma
2 that

s 7 d(n � s) p s 7 d(m � s) 7 d(n � m) p s(m) 7 d(n � m).

Thus

′a(s, s 7 d(n � s)) p a(s, s(m � s)) � f(t )�
′t �d(n�m)

′1 a(t, t 7 d(m � t)) � f(t )�
′t �d(n�m)

p a(t, t 7 d(n � t)),

where the inequality uses (A4) of lemma 3 applied to the integer m. Since
for every n, we may conclude thatc(n, T) p d(n)

a(s, s 7 c(n � s, T)) 1 a(t, t 7 c(n � t, T)),

which contradicts the presumption that t satisfies (A1). Q.E.D.

Proof of Proposition 2

Pick any integer satisfying (A1). We must show that (A2) holds. Byt � {1, … ,n}
lemma 4, for some Let (to be interpreted, by con-k k�1t p f (n) k ≥ 1. m p f (n)
vention, as n if ). Then, if s2 is the second term in the strict decompositionk p 1
of m (t being the first),

a(t, s(m)) 1 a(s , s(m)),2

by virtue of the simple fact that and by part ii of lemma 1. Using (A13),t ! s2

we have

a(t, t 7 d(n � t)) p a(t, s(m) 7 d(n � m))

1 a(s , s(m) 7 d(n � m)). (A14)2

Since we can appeal to (A13) to assert thats(m) p t 7 d(m � t),
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a(s , s(m) 7 d(n � m)) p a(s , t 7 d(m � t) 7 d(n � m))2 2

p a(s , d(n � t)) � f(t). (A15)2

Since for all n, it follows from the definition of that∗c(n, T) p d(n) a

∗a(s , d(n � t)) p a (n � t). (A16)2

Combining equations (A14), (A15), and (A16), we see that

∗a(t, t 7 d(n � t)) 1 a (n � t) � f(t). (A17)

On the other hand, the definition of implies that∗a

∗a (n) ≥ a(t, t 7 c(n � t, T)) p a(t, t 7 d(n � t)). (A18)

Combining (A17) and (A18), we conclude that

∗ ∗a (n) ≥ a (n � t) � f(t),

which establishes (A2). Q.E.D.

Proof of Theorem 2

Let the decomposition of n be denoted by (We know that this is the{t , … , t }.1 k

equilibrium coalition structure as well.)
First, we establish part 1 of the theorem. Using the negation of (6), we see

that, for each i,

i�1 i�1

a(t , d(n)) p f(t ) � a t , d n � t� �( )( )i j i j
jp1 jp1

i�1 k

≥ f(t ) � g t� �( )j j
jp1 jpi

k

≥ g t . (A19)�( )j
jpi

Now observe that the per capita surplus generated by the decomposition is simply
Expression (A19) permits us to describe a lower boundk(1/n)� t a(t , d(n)).ip1 i i

on this surplus:

k k k1 1
t a(t , d(n)) ≥ t g t . (A20)� � �( )i i i jn nip1 ip1 jpi

The remainder of the proof looks for a lower bound to this expression that is
free of endogenous terms such as the particular decomposition of n.

Notice that we can view g as a smooth convex function defined on any non-
negative real n (and not just the positive integers). For any sequence of non-
negative numbers that sum to n, define for all The� i{n } S { � n i ≥ 1.i ip0 i jp1 j

convexity of g implies that
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� i �

n g n p n g(n ) � n g(n � S )� � �( )i j 0 0 i 0 i
ip0 jp0 ip0

�

′≥ n g(n ) � n [g(n ) � S g (n )]�0 0 i 0 i 0
ip1

�

′p ng(n ) � g (n ) n S . (A21)�0 0 i i
ip1

It is possible to show that24

�

2 2n S ≥ (n � n ) . (A22)� i i 03
ip1

Combining (A21) and (A22), we conclude that
� i

2 2 ′n g n ≥ ng(n ) � (n � n ) g (n )� �( )i j 0 0 03
ip0 jp0

2
2≥ g(n ) n � (n � n ) , (A23)0 0[ ]3n 0

where the second inequality uses the fact that by convexity of′g (n ) ≥ g(n )/n0 0 0

g. Now consider the function

2
2y(n ) { g(n ) n � (n � n ) .0 0 0[ ]3n 0

It is easy to check that for all (see n. 24). Using this infor-′y (n ) 1 0 n ≥ n/20 0

mation in (A23), we may conclude that
� i 2n 2n /4

n g n 1 g n �� �( )i j ( ) ( )2 3 n/2ip0 jp0

4n n
p g (A24)( )3 2

whenever n 1 n/2.0

Let and define a particular sequence by∗ � ∗d(n) p {t , t , … , t }, {n } n p1 2 k i ip0 i

for all and for all Applying corollary 1, we note∗t i p 0, … ,k � 1 n p 0 i ≥ k.k�i i

that Therefore, (A24) applies to the sequence Combining this∗ ∗ �n 1 n/2. {n } .0 i ip0

information with (A20), we see that
k k k1 1

t a(t , d(n)) ≥ t g t� � �( )i i i jn nip1 ip1 jpi

� i1 ∗ ∗p n g n� �( )i jn ip0 jp0

4 n
1 g .( )3 2

24 Details are available at http://econ.pstc.brown.edu/∼/rvohra/papers/details98-
24.pdf.
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We may therefore conclude that
k(1/n)� t a(t , d(n)) 4g(n/2)ip1 i i

e(n) p 1 .
g(n) 3 g(n)

Now we establish part 2 of the theorem. Let and defined(n) p (t , … , t )1 k

By corollary 1, we know thatiR { � t .i jp1 j

1t 1 R for all i p 1, … ,k. (A25)i i2

Furthermore,

R p R � t . (A26)i�1 i i�1

Combining (A26) with (A25) for index we may conclude thati � 1, R 1 2Ri�1 i

or that Now observe that to conclude that (10) holds. Q.E.D.i�1R 1 2 . R p ni k
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