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Abstract

We study coalition formation as an ongoing, dynamic process, with payoffs generated as

coalitions form, disintegrate, or regroup. A process of coalition formation (PCF) is an

equilibrium if a coalitional move to some other state can be ‘‘justified’’ by the expectation of

higher future value, compared to inaction. This future value, in turn, is endogenous: it depends

on coalitional movements at each node. We study existence of equilibrium PCFs. We connect

deterministic equilibrium PCFs with unique absorbing state to the core, and equilibrium PCFs

with multiple absorbing states to the largest consistent set. In addition, we study cyclical as

well as stochastic equilibrium PCFs.
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1. Introduction

1.1. A process of coalition formation

Let N be a set of players and X a set of states. Suppose that for each state in X and
each coalition S (a nonempty subset of N), a possible set of ‘‘coalitional moves’’ (by
S) to some subset of states is given. A map from the current state to a probability
distribution over the set of all coalitional moves feasible at that state induces a
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dynamic process on X : Noting that moves are associated with actions taken by
coalitions, we call this a process of coalition formation.
Under such a process players receive (additive discounted) utility from the entire

path of states. This induces a value for each player in the standard way, as a function
of the going state.
A process of coalition formation is an equilibrium if at any date and at any going

state, a coalitional move to some other state can be ‘‘justified’’ by the very same
scheme applied in future: the coalition that moves must have higher present value
(starting from the state it moves to) for each of its members, compared to (one-
period) inaction under the going state. In the most general form that we study it, a
process of coalition formation precipitates a Markov process on X ; the uncertainty
reflecting both the choice of the deviating coalition at some state (there may be
several potential deviants) and the choice of state that the coalition deviates to (there
may be several potential moves). At the same time, we do restrict the class of moves
by requiring that for each coalition, moves must be Pareto-efficient for members of
that coalition, under the value functions induced by the overall process of coalition
formation.
The use of value functions induced by the scheme itself implies perfect foresight on

the part of all coalitions: players expect and understand that coalitions may move in
the future, and form (common) beliefs about the likelihood of such events.
A model of real-time moves demands a proper interpretation of the time period.

Our interpretation is that each time period is an interval for which a coalition
structure (and the associated actions and payoffs) remains a binding agreement. At
the beginning of each new period, a fresh agreement can be written, with the going
state a historical (but not legal) status quo.

1.2. Potential contribution

The theory of coalition formation has traditionally belonged to the realm of
cooperative game theory (see, for instance, notions of the core, the bargaining set, or
the stable set of von Neumann and Morgenstern). Recent literature takes this theory
in three important methodological directions. First, characteristic functions are
dispensed with.1 A theory can be developed for situations with widespread
externalities, thereby bringing strategic games directly into the picture. Second—
and quite unlike notions of the core or the bargaining set—the theory seeks
‘‘consistent’’ formulations, in the sense that considerations of ‘‘credibility’’ are
imposed on the blocking coalition in just the same way as they are on the original
situation.2 Finally, the theory models players as being farsighted, in the sense that
they care about the ‘‘ultimate’’ payoff from a move, and not its immediate
consequences.3

1See, for example, [5–7,10,13,20,27,28,35]. An early concern with the limitations imposed by

characteristic functions is to be found in [29,33].
2 In contexts where binding agreements can be written, see, for example, [12,14,17,26].
3See, for instance, [2,11,23,34].
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The static version of the framework we use embodies several of the models in the
literature. But the explicitly dynamic nature of our definition possesses at least three
advantages relative to existing formulations.
First, by allowing all moves to take place in real time, as it were, the definition

allows us to bridge the gap between myopic notions of stability (such as those
implicit in the core or the bargaining set) and the more recent definitions based on
farsightedness (such as those in [2,6,11,23,27,28,34]) by simply changing the discount

factor of agents. Extreme myopia would correspond to a discount factor of zero,
while extreme farsightedness would be approximated as the discount factor
converges to unity. (It should be added that we are particularly interested in the
latter case.)
The point is that the static concepts based on farsightedness are really attempting

to capture a fundamentally dynamic process, in which an action may generate a long
chain of reactions. In the current paper, we take this dynamic story seriously instead
of writing down a shorthand for it.
Second, the theory of blocking and coalitional deviations has been complicated (if

not hindered) by the issue of multiple continuations following a single deviation. For
instance, Greenberg’s approach [17] distinguishes between optimistic and conserva-
tive ‘‘standards of behavior’’, in which currently deviating coalitions evaluate the
future multiplicity of other deviations in hopeful or pessimistic ways (see also
[11,26,34], which all suffer from this selection problem). This Knightian approach to
the treatment of multiplicity can be avoided by borrowing more freely from the
language of repeated or dynamic games, which we do. Future paths (perhaps
probabilistic in nature) are evaluated using common beliefs (as embodied in the
transition probability) and expected payoffs are calculated using these beliefs.
Third, several solution concepts, especially those that concern themselves with

farsighted agents, inevitably run into the problem of cycles (for an early discussion of
this, see [31]). Chains of coalitions may appear and reappear in the blocking
process.4 In the present approach, recurrent cycles of moves pose no problem at all.
Payoffs from such cycles are simply to be evaluated as any sequence of payoffs is
evaluated: by adding up discounted one-period returns over time.
A particularly relevant interpretation of cyclical outcomes arises from the

possibility of constant renegotiation. Agreements may be torn up and rewritten,
especially if the environment external to a particular coalition is altered by the
formation of other coalitions (note that this would be irrelevant for characteristic
functions, but especially important when there are widespread externalities). Is the
possibility of such ongoing renegotiation to be ignored, as they will be if cyclical
possibilities are somehow closed off?
To be sure, an explicit dynamic model also raises critical questions. Particularly

relevant is the assumption of a Markov strategy for all coalitions. The extent of

4One approach is to exclude cycles explicitly by assuming the nestedness of coalitional moves; see, e.g.,

[4,14,26] or [27]. Alternatively, one might exclude cycles by implicitly assuming that such cycles gives the

worst payoffs; see, e.g., [23,34]. Finally, one might study coalition formation in a bargaining context, in

which infinite bargaining delays result in zero payoff; see, e.g., [6,9,24,28].
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cutting power our model retains if all history-dependent strategies are allowed is an
interesting and difficult open question. It should be added, however, that this sort of
criticism also applies to the static models of farsightedness, in that the move at some
node is taken to be invariant with respect to the mode of arrival at that node.

1.3. Summary of the results

We begin with a formal description of intertemporal coalition formation (Section
2). Our main limiting assumption is that the state space X is finite. The extent to
which our results can be extended to infinite state spaces remains an open question.
In Theorem 3.1, we show that an equilibrium process of coalition formation exists
(we use finiteness of the state space but otherwise the model is perfectly general).
We then proceed to ‘‘benchmark’’ our solution, using familiar concepts from

existing literature. To do this, we study the subclass of deterministic processes of
coalition formation. We show that in all models of coalition formation that are
derived from an underlying characteristic function, the class of deterministic
processes of coalition formation with a unique limit state (essentially) characterizes
the core (Theorems 4.1 and 4.2), provided that discount factors are close enough to
unity. Apart from benchmarking our solution concept, this result is of independent
interest because it reveals an interesting consistency property of the core, which goes
beyond the ‘‘internal consistency’’ of the core established in [26].5

Next, we consider deterministic schemes that do not necessarily have a unique
limit (but nevertheless do not display cycles). We show by means of an example that
noncore limits might now emerge. However, it turns out that such schemes yields
absorbing states that always lie within the ‘‘largest consistent set’’ [11], provided that
discount factors are close enough to unity. This result (Theorem 4.3) is valid without
any restrictions on the underlying model of coalition formation.
However, the inclusion result of Theorem 4.3 is generally strict. Example 7, which

shows this, brings out the fact that our solution concept imposes more restrictions on
the final outcomes than the largest consistent set does. But this does not mean that
the outcomes selected by our solution are necessarily the ‘‘more efficient’’ ones;
Example 8 is devoted to an understanding of this point.
Next, we make some observations on cyclical solutions. These typically exist in

situations in which core-like restrictions lead to an empty outcome. But there are
examples in which no cyclical solution (and indeed, no deterministic solution) exists.
This motivates a study of probabilistic solutions, which is the final section of the
paper.

5 In [16,30], it is shown that starting from an arbitrary state, a sequence of profitable coalitional

deviations lead to a core state in exchange economies and in TU games, respectively. There is a

fundamental difference between these results and the one established here. Green [16] and Sengupta and

Sengupta [30] assume that players are myopic, so that members of a moving coalition do not foresee what

happens after their immediate deviation takes place. In the model described here, individuals are farsighted

and will need to forecast future deviations or moves.
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Uncertainty enters a process of coalition formation in two possible ways. First, a
particular coalition may be able to induce two or more states which are not
payoff-comparable, and might randomize (or be perceived as randomizing). Second,
it is possible that at some state several coalitions have access to profitable moves, and
that these are chosen randomly.
It turns out that such forms of randomization occur naturally in strategic form

games, in the sense that randomization is often necessary for existence of an
equilibrium process (contrast this with characteristic functions). Accordingly, we
focus in the section on games in strategic form. The simplest (though by no means
trivial) starting point is games with common payoffs. We show that for such games,
every equilibrium must lead to the efficient outcome, provided that discount factors
are close to unity (Theorem 5.1).
But this result fails when we depart from common payoffs. For instance, we show

(Example 11) that a 2� 2 symmetric coordination game may generate equilibria that
hone in on the ‘‘bad’’ equilibrium. The stochastic nature of the equilibrium is
explained in detail; indeed, we argue that such an equilibrium must be stochastic.
We turn finally to a detailed analysis of the Prisoners’ Dilemma. Our solution

concept applied here yield a rich variety of outcomes (though, to be sure, not
everything is possible). The main points are: (1) cooperation can be sustained using
deterministic schemes, while defection can never be sustained in this way (provided
that discount factors are close to unity); (2) in contrast, stochastic schemes can
support defection as an absorbing state, and can also generate cycles of movement
with possibly some inertia at the cooperative outcomes; and (3) cardinalities do
matter in pinning down equilibria— Example 12, which concludes the paper, makes
this amply clear.

2. Coalition formation

2.1. Basic ingredients

We consider a dynamic model of coalition formation. Let N be a finite set of
players and X a finite set of states.6 Using the language of cooperative game theory,
one might interpret a state to be the description of a coalition structure, as well as a
vector of payoffs accruing to each player. In noncooperative games in strategic form,
a state would represent a profile of actions taken in the stage game.
A coalition is a nonempty subset S of N: For each state x in X and each coalition

S; define FSðxÞ to be the set of states achievable by a one-step coalitional move (by
S) from x: A coalition always has the option to do nothing, so we include x in this
set.
Let FðxÞ be the set of all moves from x; that is, FðxÞ ¼

S
S FSðxÞ:

6The restriction to a finite set of states is for technical convenience. At present, we do not know whether

results such as Theorem 3.1 extend to the infinite case. For instance, Theorem 3.1 uses a fixed point

argument that will need to be extended to spaces of infinite-dimensional transition probabilities.
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For each player, there is a vN-M payoff function ui :X-R and a discount factor
di: Thus player i’s payoff from a sequence of states fxtg may be written as

XN
t¼0

dt
iuiðxtÞ:

This is easily extended to probabilistic paths. Let DðX Þ be the space of all
probabilities s on X : Then for any sequence s � fstg in DðXÞ; player i’s payoff is
given by the expression

UiðsÞ ¼
XN
t¼0

dt
X
xAX

stðxÞuiðxÞ
 !

:

2.2. Examples

Notice that the static, deterministic version of this model embodies several
standard models, such as characteristic functions and games in strategic form. But it
can also encompass games in partition function form [27,29,33] or networks [13,20].
Our more abstract description has been used by several authors (in its static
deterministic version): [11,17,34] represent some recent instances.
As concrete examples, consider the following:

Example 1 (A characteristic function). Consider the simplest two-person NTU
characteristic function, in which there are simply two coalition structures with a
single payoff vector in each. Let x1 be the state with structure f12g; and x2 the state
with singleton structure. Then for xAfx1; x2g; ui is just the payoff to player i under
the corresponding structure.

It is easy to describe FS as the formalization of what each coalition can do at each
state. For example, the singletons can both move at x1—precipitating x2—while the
grand coalition of two players can move at x2; precipitating x1: Whether the grand
coalition can move or not at x1 to precipitate x2 is a matter of interpretation. We are
comfortable with either view.

Example 2 (A partition function). Suppose that there are three players. If all three
stand together, the payoff vector is ða; a; aÞ: If all stand alone, the payoff vector is
ð0; 0; 0Þ: If i is alone and jk are together, the payoff is b to i and c each to the other
two. These determine the functions uiðxÞ for each player i and each state x:

Once again, much of the description of FS is obvious, especially if we have adopted
an interpretative convention as suggested in Example 1. But partition functions pose
new issues. Suppose that i moves from the grand coalition. Is the resulting structure
fig; fjkg or fi; j; kg? This time it is more than a mere question of interpretation, and
the dynamic model of coalition formation just described forces us to take a stand on
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the matter. So far as the formal theory is concerned, this is not an issue as long as
FSðxÞ is fully specified for all coalitions S and states x:

Example 3 (A game in strategic form). A situation in which a normal form game is
played at every date is particularly easy to embed. Let N be a set of players, and let
Ai be the (finite) action set of player i: A state is simply an action profile a ¼ ðaiÞiAN :

Starting from some action profile a a coalition S can induce any action profile of the
form ða0

S; a
SÞ; where a
S is that part of the profile not chosen by members of S; and
a0

S is any vector of actions on the part of S:7

2.3. Equilibrium

A process of coalition formation (PCF) is a transition probability p :X � X-½0; 1�
(so that

P
yAX pðx; yÞ ¼ 1 for each xAX ).

We interpret p as capturing the (possibly stochastic) transitions from one state to
another. These transitions will be induced by coalitions who stand to benefit from
them (see below).8

A PCF p induces a value function vi for each player i: This value function captures
the infinite horizon payoff to a player starting from any state x; under the Markov
process p: Standard observations tell us that the value function for i must be the
unique solution to the functional equation

viðx; pÞ ¼ uiðxÞ þ di

X
yAX

pðx; yÞviðy; pÞ: ð1Þ

We are now in a position to define profitable moves. These will be used to impose
restrictions on the process of coalition formation. Fix a PCF p; a state x; and a
coalition S: Say that S has a (weakly) profitable move from x (under p) if there is
yAFSðxÞ (with yax) such that viðy; pÞXviðx; pÞ for all iAS: S has a strictly profitable

move from x if there is yAFSðxÞ such that viðy; pÞ4viðx; pÞ for all iAS: Finally, say
that a move y is efficient for S if there is no other move for S; say z; such that
viðz; pÞ4viðy; pÞ for all iAS:
A PCF is an equilibrium process of coalition formation (EPCF) if (i) whenever

pðx; yÞ40 for some yax; then there is S such that y is a (weakly) profitable and
efficient move for S from x; and (ii) if there is a strictly profitable move from x; then
pðx; xÞ ¼ 0 and there is a strictly profitable and efficient move y with pðx; yÞ40:
Thus a going state is allowed to move to another state only if there is a coalition

whose members all agree to move to the new state and cannot find any strictly better
alternative state (under the going value functions). Moreover, if there is a strictly

7To be sure, dynamic situations of coalition formation derived from strategic form games are not devoid

of conceptual issues. Why is a
S fixed when S moves? One interpretation is that an action profile

constitutes a temporarily binding agreement, and at every date some coalition receives the opportunity to

costlessly renege on such an agreement.
8Notice that the stationarity implicit in the definition of a PCF rules out moves that are history-

dependent. Thus, we are implicitly restricting our attention to schemes that have the Markov property.
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profitable move, then the state must change, and there must be at least one move to a
state which is interpretable as a strictly profitable and efficient move for some
coalition.
Notice that this definition allows for (but does not insist on) possible changes in

state in which the initiating coalition is indifferent to the change. At the same time,
the definition does not insist that every strictly profitable move (under the
equilibrium PCF) be given positive probability. This is true in a particularly stark
way of ‘‘deterministic’’ PCFs—to be introduced in Section 4 —in which only one
coalition is selected to act at each state which admits some profitable move (even
though, in principle, there may be several such moves).9

Some further remarks on ‘‘efficient moves’’ are to be found in Appendix A.

3. Existence

Theorem 3.1. An equilibrium process of coalition formation exists.

Remark. The current theorem extends to state spaces that are countable. Whether
existence holds in more general cases remains an open question.

Proof. Denote by P the set of all possible PCF’s. We construct a correspondence
f :P ) P; show that a fixed point exists, and observe that a fixed point of fmust be
an EPCF.
We begin by observing that for every pAP; a unique value function viðx; pÞ exists

for each player i; satisfying (1). Let viðpÞ denote the vector of payoffs
fviðx; pÞgxAX ; ui the vector of current payoffs fuiðxÞgxAX ; and P the matrix of

transition probabilities (under p). Then (1) may be immediately rewritten as

ðI 
 diPÞviðpÞ ¼ ui:

Since diAð0; 1Þ; I 
 diP has a dominant diagonal. This guarantees the unique
solvability and continuity of viðpÞ in p:
To construct f; first consider ðx; pÞ such that strictly profitable moves exist; let

Yðx; pÞ be the set of all strictly profitable and efficient moves. For each yAYðx; pÞ
there is a coalition S such that y is strictly profitable and efficient for S from x (under
p). Call such a coalition allowable (given ðy; x; pÞ), and for each allowable coalition S

define sSðy; x; pÞ � miniAS ½viðy; pÞ 
 viðx; pÞ�: Having done so, let sðy; x; pÞ �
maxS sSðy; x; pÞ; where the maximum is taken over allowable coalitions S: Now
define a probability measure over Yðx; pÞ—call it qðx; pÞ—by

qðx; pÞ½y� � sðy; x; pÞP
y0AYðx;pÞ sðy0; x; pÞ: ð2Þ

Define a correspondence Dðx; pÞ as follows: when strictly profitable moves exist,
Dðx; pÞ ¼ fqðx; pÞg: Otherwise, Dðx; pÞ is the collection of all probability measures

9We allude to this restriction again in footnote 14, in the context of Example 4.
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with support contained in the union of fxg and the collection of weakly profitable
and efficient moves from x (under p).
Obviously, Dðx; pÞ is nonempty and convex-valued for each ðx; pÞ: Now we claim

that it is uhc in p for given x: To this end, let pk be some sequence in P converging to

p: Study a corresponding sequence qkADðx; pkÞ and extract a convergent
subsequence converging to some q (retain original sequence notation). We claim
that qADðx; pÞ:
This claim is obviously true if no strictly profitable move exists at ðx; pÞ:10 So

suppose that a strictly profitable move does exist at ðx; pÞ: We note that for any
yAY ðx; pÞ; sðy; x; pkÞ-sðy; x; pÞ as k-N: (This is very easy to verify, using the fact
that viðx; pÞ is continuous in p for every i and x:)

In particular, this means that for k large enough, Dðx; pkÞ is a singleton containing
the probability measure qðx; pkÞ defined by (2). It also means that qðx; pkÞ-qðx; pÞ:
We have therefore shown that Dðx; pÞ is nonempty, convex-valued and uhc in p for

each x: Define f :P ) P by fðpÞ ¼
Q

xAX Dðx; pÞ for every pAP: Then, by the

arguments above, all the conditions for the Kakutani fixed point theorem are
satisfied, and there exists p�AP such that p�Afðp�Þ: It is easy to see that p� satisfies
all the conditions of an EPCF. &

4. Deterministic equilibrium processes

In this section, we narrow our definition considerably. We then compare this
narrow definition with existing concepts, as a way of situating our proposed solution
in the perspective of existing literature. To this end, introduce the following
definitions. A PCF is deterministic if pðx; yÞAf0; 1g for all states x and y: A state x is
absorbing if pðx; xÞ ¼ 1: An absorbing PCF is one in which for each state y; there is

some absorbing state x with pðkÞðy; xÞ40 (for some kX1), where the notation pðkÞ

describes the k-step transition probability derived from p in the usual way. Finally, a
PCF has unique limit if it is absorbing and possesses a single absorbing state.

4.1. Deterministic PCFs with unique limit, and the core

A classical solution concept is the core. At first sight, the core appears to be an
extremely myopic notion, requiring the stability of a proposed allocation to
deviations or blocks by coalitions, but not examining the stability of the deviations
themselves. However, it is well known that an extended definition that tests the
deviations of coalitions by requiring immunity to further deviations by subcoalitions

gives back the core once again [26]. This means that the core automatically embodies
a certain degree of farsightedness (insofar as chains of deviations by nested coalitions

10All we need to observe is that if y is strictly profitable for the sequence ðx; pkÞ; then it must be weakly
profitable for ðx; pÞ:
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are concerned). We now show that each element of the core in an arbitrary
characteristic function game can be ‘‘supported’’ (in a sense to be made precise
below) as the outcome of a deterministic EPCF with unique limit. In other words,
the core passes a further consistency test where nested deviations are dispensed with.
We also establish a converse that yields an almost-complete characterization of

deterministic EPCF’s with unique limit.
Fix a finite set N of players. A (finite) characteristic function is a map V that

associates with each coalition S a nonempty finite set of payoff vectors in RS:
Normalize so that all payoffs are nonnegative.
A state of a characteristic function is a pair x ¼ ða; pÞ; where p is some partition of

the player set into coalitions, and a is a payoff vector such that aSAVðSÞ for any
coalition SAp:
A strong core state is a state x ¼ ða; pÞ such that there is no coalition S and payoff

bAVðSÞ with bXaS and baaS: A weak core state is a state x ¼ ða; pÞ such that there
is no coalition S and payoff bAVðSÞ with bbaS: Obviously, a strong core state is a
weak core state.
We now embed a characteristic function into an intertemporal model of coalition

formation. Let X be the collection of all states of the characteristic function. For
each partition p of N and each coalition S; letW denote the set of left-behind players

fiAT\S : TAp;T-Sa|g: Now let pS ¼ fSg,fT 0Ap : T 0-S ¼ |g,pðWÞ; where
pðWÞ is some arbitrary partition of W : (Clearly, pS ¼ p if (and only if) SAp:) Now
define FSðxÞ as any collection of states y ¼ ða0; p0Þ such that (a) p0 ¼ pS; (b)
a0

SAVðSÞ; and indeed,
S

ða0;p0ÞAFSðxÞ a0
S ¼ VðSÞ; (c) a0

T ¼ aT for all coalitions TAp

such that T-S ¼ |; and (d) if a1; a2 satisfy ðai; p0ÞAFSðxÞ for i ¼ 1; 2; then
a1
S ¼ a2
S:
This unwieldy formalism is easily interpreted in words: a move is available to S if

the payoff vector (restricted to S) is feasible for S; if the remaining coalition structure
consists of the coalitions that S left untouched and some arbitrary partition of
players that S left behind,11 if the resulting payoff vector to all nondeviant players is
independent of the particular payoff vector chosen by the deviating coalition, and
moreover, if the resulting payoffs to coalitions in p which have an empty intersection
with S remain the same as before.12

We may now state the following proposition.

Theorem 4.1. Let x� be a strong core state of a characteristic function. Then there is

d�Að0; 1Þ such that for any collection of discount factors all in ðd�; 1Þ and any

11Hart and Kurz [19] considers two formulations of coalition formation games. A D-game considers a
situation that players who are left behind by a coalitional deviation S are dissolved and each player

becomes a singleton. On the other hand, a G-game considers a situation that each of the complementary
pieces that S left behind stays together. Since we allow any regrouping of players who are left behind by S;

our setting allows for both D- and G-games.
12Note that, in principle, several correspondences of the form FSðxÞ may be written down that satisfy

this ‘‘independence property’’: our results hold for each one of them.
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associated intertemporal model of coalition formation, there exists a deterministic

EPCF defined on that model with x� as its unique limit.

Proof. We will construct a PCF p as a deterministic mapping from state to state,
ultimately leading to x�: Let x� ¼ ða�; p�Þ; where p� is the coalition structure
fS�
1 ;y;S�

Kg: Let x ¼ ða; pÞ be any state.
Case 1: x ¼ x�: Set pðx; xÞ ¼ 1:
Case 2: Case 1 does not hold, and there exists a player i such that figep; and

a�
i 4ai: Pick the smallest index i with this property, and set pðx; yÞ ¼ 1; where y ¼

ðb; p0ÞAFiðxÞ with bi ¼ maxVðfigÞ:
Case 3: Cases 1 and 2 do not hold, and there exists a coalition SAp� such that

a�
i 4ai for all iAS: Pick the smallest index k such that S�

k has this property, and set

pðx; yÞ ¼ 1; where y ¼ ðb; p0ÞAFS�
k
ðxÞ with bS�

k
¼ a�

S�
k
:

Case 4: Cases 1–3 do not hold, and there exists a coalition SAp� such that a�
i Xai

for all iAS; and either Sep; or SAp and a�
SaaS: Pick the smallest index k such that

S�
k has this property, and set pðx; yÞ ¼ 1; where y ¼ ðb; p0ÞAFS�

k
ðxÞ with bS�

k
¼ a�

S�
k
:

For this construction to be sensible, at least one of the situations described must
obtain. To see this, assume that Cases 1–3 do not hold. We show that Case 4 must
hold. To this end, pick any coalition T in p: If it is a singleton, we must have aipa�

i

(because a� is a core allocation). We claim the same is true of all iAT even if T is not
a singleton.
For if this is false, then aj4a�

j for some jAT : But then, because a� is a strong core

allocation, there exists iAT such that aioa�
i : Clearly figep (because TAp and T is

not a singleton). But this means that Case 2 holds, a contradiction.
So we have shown that a�

Xa: In particular, for any SAp�; we have a�
SXaS: To

complete the argument, suppose that for all SAp; we have a�
S ¼ aS: Then p cannot

equal p� (otherwise we would be in Case 1). This means that there must exist SAp�

(with a�
SXaS; as already shown) such that Sep: So Case 4 holds whenever Cases 1–3

do not.
Therefore the (deterministic) transition from x to y is well defined in all cases. It is

also easy to see that apart from x�; xay for every other state, and that there are no
cycles. It follows that x� is the unique absorbing limit of this PCF.
To complete the proof, we must show that all the conditions of an EPCF are

satisfied by this PCF. To assure this, we first choose the threshold value of d�: For
any individual i; let mi be the maximal payoff that he enjoys over all states in which

he receives less than his core payoff a�
i : Define d

�
i by d

�C
i a�

i ¼ mi; where C is the total

number of states, and d� � maxiAN d�i : We take it that the discount factor of every
player strictly exceeds this threshold.
Begin with the state x�; and consider any move by any coalition S to x ¼ ða; pÞ:

Let L be the members of S who are no better off in the ‘‘static sense’’ by doing so:
L ¼ fjAS j ajpa�

j g: Observe that L is nonempty. Now apply our constructed PCF

thereafter. Notice that the payoff to any member of S can only change if some
member of L initiates a future move (and indeed, this must happen under the PCF).
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Let iAL be one of the first movers from S after the initial move by S:Given the PCF,
i cannot enjoy any more than his core payoff a�

i after this move is made. The same is

also true for the intervening period between the first move by S and the later move
by i:We may conclude that i cannot be strictly better off (relative to the core payoff)
by participating in the move by S: It follows that at x�; no strictly profitable move
exists, so we are justified in placing pðx�; x�Þ ¼ 1:
Now consider some state xax�: Suppose that we are in Case 2. By our condition

(d) in the definition of the move correspondence FS; and given the definition of our
PCF, it only needs to be shown that the stipulated move is profitable. Notice that

viðx; pÞ ¼ ai þ diviðy; pÞ

while

viðy; pÞX dC
i

1
 di

a�
i ;

by the normalization that all payoffs are nonnegative and the fact that the strong
core allocation is reached under the PCF in at most C periods. Combining these last
two expressions, it is easy to see that

viðy; pÞ 
 viðx; pÞXdC
i a�

i 
 ai4d�Ca�
i 
 aiXmi 
 aiX0;

where the very last inequality follows from the fact that a�
i 4ai; and the definition

of mi:
Now suppose that we are in Case 3 or 4. Then there is some coalition S�

k which is

required to move directly to its segment of the strong core allocation, creating the
state y:Moreover, by condition (c) in the definition of the move correspondence FS;
and given our PCF, S�

k will receive this payoff for ever after. Clearly this move is

weakly profitable. To see that it is efficient, consider any other state z ¼
ðb; p0ÞAFS�

k
ðxÞ: Following the same line of reasoning as in Case 1, let L be the

subset of people in S�
k who are no better off (relative to their core payoff) by doing

so: L ¼ fjAS j ajpa�
j g: Observe that L is nonempty. Now follow a parallel argument

to see that there exists iAS�
k who cannot derive a higher payoff from the route

precipitated by this alternative move by S�
k: In other words, the prescribed move for

S�
k is efficient.

Finally, notice that our ordering of the cases guarantees that some strictly
profitable (and efficient) move is always made whenever one exists. &

The following proposition describes an almost-complete converse to Theorem 4.1.

Theorem 4.2. Fix some characteristic function. There is d�Að0; 1Þ such that for any

collection of discount factors all in ðd�; 1Þ; and for any deterministic EPCF defined on

any associated intertemporal model of coalition formation with x� as its unique limit, x�

must be a weak core state.
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Proof. Our first task is to fix d�: For any x ¼ ða; pÞ that is not a weak core state,
there is some coalition S and bAVðSÞ such that bbaS: Pick e40 such that bXeþ aS:
Because there are only a finite number of states, we may choose e so that this
inequality holds uniformly across all noncore states, all coalitions S; and all
allocations of the form b that do better for S: Next, denote by M the maximal (one-
period) payoff accruing to any player under the characteristic function. Finally,

define d� so that ð1
 d�
C ÞMoe; where C is the total number of states.

Consider any associated intertemporal model of coalition formation, with di4d�

for all iAN: Suppose, contrary to the statement of the theorem, that there exists a
deterministic EPCF p with unique limit x; where x is not a weak core state. Then
there is some coalition S and bAVðSÞ such that bbaS: Let S induce the state
y ¼ ða0; p0ÞAFSðxÞ such that a0

S ¼ b: Given the EPCF, starting from y; the system
must attain x again in at most C periods and stay there. Moreover, for this to
happen, somemember i of S must participate in some profitable move z from y (for if
not, all members of S must receive b for ever after, a contradiction to the fact that x

is the unique limit). This means that

viðz; pÞXviðy; pÞ: ð3Þ

Now observe that

viðy; pÞ ¼ bi þ diviðz; pÞ;

so that

viðz; pÞ 
 viðy; pÞ ¼ ð1
 diÞviðz; pÞ 
 bi

p ð1
 dC
i ÞM þ dC

i ai 
 bi

o eþ ai 
 bi

p 0:

But this inequality contradicts (3). &

Theorems 4.1 and 4.2, taken together, show that in the context of characteristic
functions, the concept of the core and that of a deterministic EPCF with unique limit
are (essentially) equivalent, as long as discount factors are taken close enough to
unity. Of course, the core does not exist for all games while a deterministic EPCF
may exist (see, for instance, Example 7), and a general EPCF certainly does.
Moreover, as already noted, there are models of coalition formation which do not
come from characteristic functions. In both these cases the concept of an EPCF may
provide new insights, as we argue in the later section of this paper.
At the same time, our core characterization isn’t exactly old wine in a new bottle.

To appreciate this, notice that Theorems 4.1 and 4.2 would also have gone through if
we were to take d very close to zero rather than unity. The reason is simple: when
d ¼ 0 we have the purely myopic case in which the short-sighted blocking intuitions
of the core apply straightforwardly. But—as stated more than once—the novelty of
the present case is the results hold when discounting vanishes. It is therefore not

H. Konishi, D. Ray / Journal of Economic Theory 110 (2003) 1–41 13



surprising to find that a deterministic EPCF (with d close to 1) may rule out non-core
allocations in ways that are strikingly different from those suggested by the standard
definition of the core. To appreciate this, consider the following example.13

Example 4. The following characteristic function is related to the coalition
formation game studied in [3,8]. N ¼ f1; 2; 3g; Vð1; 2; 3Þ ¼ fð2; 2; 2Þg; Vð1; 2Þ ¼
fð3; 3Þg; Vð2; 3Þ ¼ fð4; 1Þg; and VðSÞ contains only the zero payoff vector for all
other coalitions S: It is easy to see that this game has a unique core state (coalition
structure) ff1g; f2; 3gg:
We now describe a deterministic EPCF with unique limit. Because each coalition

structure has only one payoff vector, we may equate states with (the five) coalition
structures and schematically write down the PCF as follows:

x1 ¼ ff1; 2; 3gg-f2gx4;

x2 ¼ ff1; 2g; f3gg-f2;3gx3;

x3 ¼ ff1g; f2; 3gg-x3;

x4 ¼ ff1; 3g; f2gg-f2;3gx3;

x5 ¼ ff1g; f2g; f3gg-f2;3gx3:

It is easy to check that if player 2’s discount factor exceeds 1=2; this scheme is
indeed an EPCF. Now focus on x1: This coalition structure is not a core state. The
only blocking coalition is formed by players 1 and 2. However, if player 1 is
farsighted enough, she would not join such a move since she expects that player 2
would ‘‘betray’’ her by forming a move with player 3 to achieve x3: That is, she
would be better off by not deviating from x1 from the first place. The point is that
our EPCF does eliminate the non-core state x1; but cannot do so by the argument that

underlies the definition of the core.
The reason that x1 is not stable in the PCF is that player 2 deviates alone,

expecting to create a further subsequent move with player 3. Actually, player 2
suffers from a low payoff for one period right after the unilateral deviation, and
enjoys higher payoffs for ever from the next period. Thus, player 2’s motive for
deviating from x1 is really based on her farsightedness. Thus the reason why x1 is
unstable comes from farsightedness, while under the standard definition, x1 is
eliminated for an immediate (myopic) gain. These are very different arguments, yet

they arrive at the same conclusion.14

13Recall that we have used a general way of transforming characteristic functions to FS-

correspondences. In all the examples, we use the particular specification that when a new coalition

forms, the induced coalition structure (that immediately results) corresponds to the G formulation in [19];
see our footnote 11 for a definition.
14Notice that under our deterministic EPCF, there may be several profitable moves at a particular state.

For instance, it is true that at state x1; both players 1 and 2 may jointly wish to move if they are given the

chance to do so. The reason why 1 also wants to move, in contrast with the argument in the main text, is

that if he does not, he foresees disaster coming in the shape of 2 moving anyway, as prescribed by the
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We end this section by addressing an obvious gap in our characterization.
Theorem 4.1 cannot be strengthened to include all weak core states, as the following
example shows.

Example 5. Consider the following characteristic function: N ¼ f1; 2; 3g;
Vð1; 2; 3Þ ¼ fð5; 5; 5Þg; Vð1; 2Þ ¼ fð5; 6Þg; Vð1Þ ¼ Vð2Þ ¼ Vð3Þ ¼ f1g; and VðSÞ
contains only the zero payoff vector for all other coalitions S: The coalition structure
f1; 2; 3g and its associated payoff vector ð5; 5; 5Þ represents a weak core state (it is
not a strong core state because of the coalition f1; 2g). But this cannot be supported
as the unique limit of a deterministic EPCF (for any discount factor less than one).
For to move from the structure f1; 2g; f3g to the weak core, player 1 must participate
in the first move (player 2 does not want to deviate, and player 3 can only do so with
the help of players 1 and 2). But it is easy to see that if player 1 participates in any
move, he must temporarily receive strictly less than his weak core payoff of 5 and
later, no more than 5. Therefore it does not pay him to deviate for any discount
factor less than one.
On the other hand, Theorem 4.2 cannot be strengthened to exclude all states that

are not in the strong core, as the following variation on Example 5 shows.

Example 6. N ¼ f1; 2; 3g; Vð1; 2; 3Þ ¼ fð5; 5; 5Þg; Vð1; 2Þ ¼ fð5; 6Þg; Vð1Þ ¼ f5g;
and VðSÞ contains only the zero payoff vector for all other coalitions S: It is easy to
see that the coalition structure f1; 2; 3g and its associated payoff vector ð5; 5; 5Þ
represents a weak core state (it is not a strong core state because of the coalition
f1; 2g). Consider the deterministic PCF in which the grand coalition structure is the
unique limit, and all states map directly to this structure, except for the structure
f1; 2g; f3g; which is mapped to the structure of singletons. It is easy to check that this
is an EPCF.

4.2. Deterministic absorbing PCFs and consistency

We have seen that the narrowest restrictions imposed so far—deterministic PCFs
with unique limit—provide an almost-complete characterization of the core. Now let
us loosen the restrictions slightly by dropping the requirement of a unique limit, but
nevertheless not permitting any cycles. This gives us the broader class of absorbing

deterministic processes of coalition formation (recall the formal definition stated
earlier).

(footnote continued)

EPCF. But the point is that the coalition f12g is not given the opportunity to move. If we do insist on going

all the way with this argument while restraining ourselves to deterministic PCFs, we must allow only f12g
to move—not just today, but tomorrow as well—but as the text argues, this cannot give rise to an EPCF.

(To be sure, there may be stochastic EPCFs where both coalitions f12g and f2g obtain the chance
to move.) This example therefore also illustrates the conceptual restrictions mentioned at the end of

Section 2.3.
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We first show that this relaxation permits absorbing states that are disjoint from
core states, irrespective of whether or not the core itself is empty.

Example 7. Consider the following two characteristic function games. Game 1 is
as follows: N ¼ f1; 2; 3; 4g; Vð1; 2; 3; 4Þ ¼ fð4; 3; 2; 2Þg; Vð2; 3; 4Þ ¼ fð4; 3; 5Þg;
Vð1; 3Þ ¼ fð2; 4Þg; Vð1; 4Þ ¼ fð3; 4Þg; Vð2; 4Þ ¼ fð2; 3Þg; VðiÞ ¼ 1 for any other
iAN; and VðSÞ contains only zero payoffs for all other coalition S: Game 2 retains
all the features of Game 1, but changes Vð2; 3; 4Þ to fð4; 3; 4Þg and Vð1; 4Þ to
fð3; 5Þg: Game 1 does not have any core state (weak or strong), and Game 2 has a
unique (weak and strong) core allocation ff1; 4g; f2g; f3gg:
There are 15 states in each of these two games, since each coalition structure has

only one payoff vector. Define an absorbing deterministic PCF in the following
schematic way:

x1 ¼ ff1; 2; 3; 4gg-x1;

x2 ¼ ff1; 2; 3g; f4gg-f1;2;3;4g x1;

x3 ¼ ff1; 2; 4g; f3gg-f1;2;3;4g x1;

x4 ¼ ff1; 3; 4g; f2gg-f2;4g x8;

x5 ¼ ff2; 3; 4g; f1gg-f1;3g x8;

x6 ¼ ff1; 2g; f3; 4gg-f1;2;3;4g x1;

x7 ¼ ff1; 2g; f3g; f4gg-f1;3g x9-f2;4g x8;

x8 ¼ ff1; 3g; f2; 4gg-x8;

x9 ¼ ff1; 3g; f2g; f4gg-f2;4g x8;

x10 ¼ ff1; 4g; f2; 3gg-f1gx12-f1;2;3;4g x1;

x11 ¼ ff1; 4g; f2g; f3gg-f1g x15-f1;2;3;4g x1;

x12 ¼ ff2; 3g; f1g; f4gg-f1;2;3;4g x1;

x13 ¼ ff2; 4g; f1g; f3gg-f1;3g x8;

x14 ¼ ff3; 4g; f1g; f2gg-f1;2;3;4g x1;

x15 ¼ ff1g; f2g; f3g; f4gg-f1;2;3;4g x1:

The absorbing states under this PCF are x1 and x8: We claim that if the common

discount factor d satisfies dX3
4
; then this is actually an EPCF. States x10 and x11

(involving a coalition f1; 4g) are not an absorbing state, since player 1 wants to break
off to generate state x1 if dX3

4
: Now, between the two absorbing states, players 1 and

2 prefer x1 to x8; and players 3 and 4 prefer x8 to x1: However, starting from x1;
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players 3 and/or 4 can move only to x2; x3; and x6: All of these states will come back
to x1: Thus, players 3 and 4 cannot move the state to x8 without the help of players 1
and/or 2. A parallel argument applies to players 1 and 2 at x8; if they try to go to x1:

There is no temporal gain from those moves, either (given dX2
3
). We have therefore

shown that there may be an absorbing deterministic EPCF with no core elements
among its absorbing states, and this is true regardless of whether the core is empty or
not.
Is this a counterexample to our earlier theorems on core equivalence? No, it is not,

for this EPCF has multiple absorbing states. Example 7 tells us it is possible to
‘‘support’’ a noncore state as an absorbing state, by knocking out possible blocks or
deviations by further moves to some other absorbing state.
Combining this observation with the results of the previous section, we see that the

core does possess a nice consistency property in a ‘‘self-referential’’ sense: a
deterministic EPCF with a unique limit picks out a core point. But when the self-
referential nature of the process is dropped (by admitting more than one absorbing
state), then the possibilities widen beyond the core.
It turns out, however, that all absorbing deterministic EPCFs have absorbing

states that lie within the largest consistent set. This notion is due to Chwe [11].
Consider any model of intertemporal coalition formation (not necessarily one
derived from a characteristic function). Following Chwe, say that a state y indirectly

dominates some other state x; if there exist x0; x1;y; xm in X with x0 ¼ x and

xm ¼ y; and coalitions S0;S1;y;Sm
1 such that for j ¼ 0;y;m 
 1; xjþ1AFSj
ðxjÞ

and uiðyÞXuiðxjÞ for all iASj :
15

Notice how the concept of indirect domination makes reference to payoff
comparisons between each intermediate state in the ‘‘domination chain’’ and the final

outcome y: It is in this sense that the concept of indirect domination incorporates
farsightedness.
Now say that a collection Y of states is consistent if the following holds: xAY if

and only if for every coalition S and for any state zAFSðxÞ; there exists yAY ; where
either y ¼ z or y indirectly dominates z; such that the inequality uiðxÞXuiðyÞ holds
for at least one player iAS:
In other words, a collection of states is consistent if every coalitional move from

any element of that collection leads to a ‘‘domination chain’’ (starting with the move
and ending within the given collection of states) such that at the ‘‘end’’ of that chain,
there is some member of the original deviating coalition who feels that the move was
not worthwhile.
Proposition 1 in [11] establishes that there is a largest consistent set among all

consistent sets: a set which is itself consistent and which contains every consistent

15Our definition of indirect domination requires that all players be weakly better off. Chwe’s definition

requires that they all be strictly better off. Given our insistence on efficient moves, this will not turn out to

be a major issue. In any case, notice that there is no inconsistency between the use of weak inequalities

both as a potential force for movement by coalitions, as well as its use as a deterrent for movement.

Indifference may be resolved in either direction.
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set.16 The following proposition links (at least in one direction) the largest consistent
set to the limit states of absorbing deterministic EPCFs.17

Theorem 4.3. There exists d�Að0; 1Þ such that for any collection of discount factors all

in ðd�; 1Þ; and for any absorbing deterministic EPCF, the set of all absorbing states is

contained within the largest consistent set.

Proof. Let C be the total number of states. Let M and W be the maximal and
minimal (one-period) payoffs to any player. Pick d�Að0; 1Þ such that for any two
states x and y in X and any index i with uiðxÞ4uiðyÞ; we have (i) uiðxÞ4ð1

d�CÞM þ d�CuiðyÞ; and (ii)ð1
 d�CÞW þ d�CuiðxÞ4uiðyÞ: Consider any collection of
discount factors all in ðd�; 1Þ; and fix some absorbing deterministic EPCF. Let ZDX

be its set of absorbing states.
Let zAZ be some absorbing state. Fix any coalition S and consider any xAFSðzÞ:

Use the notation x0; x1;y; xm to describe the subsequent path prescribed by the

PCF starting from x ¼ x0 and ending at the absorbing state xm ¼ yAZ: Because the
PCF is an equilibrium, we also know that there are coalitions S0;S1;y;Sm
1 such

that for j ¼ 0;y;m 
 1; xjþ1AFSj
ðxjÞ and

viðxjþ1ÞXviðxjÞ ð4Þ

for all iASj: Now observe that viðxjÞ ¼ uiðxjÞ þ diviðxjþ1Þ; so that by (4),
ð1
 diÞviðxjþ1ÞXuiðxjÞ ð5Þ

for each Sj and iASj : Next, note that

ð1
 diÞviðxjþ1Þpð1
 dC
i ÞM þ dC

i uiðyÞ

(because the PCF from xjþ1 leads to the absorbing state y in at most C steps), and
combining this with (5), we may conclude that

ð1
 dC
i ÞM þ dC

i uiðyÞXuiðxjÞ:
But this means (by (i) in our definition of d�) that

uiðyÞXuiðxjÞ ð6Þ
for all Sj and all iASj: Eq. (6) proves that y; apart from being in Z; is an indirect

objection to x:
Moreover, since x is a possible move (by S) from z and z is an absorbing state,

viðxÞpviðzÞ for some iAS: Because z is absorbing, it follows that

ð1
 diÞviðxÞpuiðzÞ: ð7Þ
Now observe that

ð1
 diÞviðxÞXð1
 dC
i ÞW þ dC

i uiðyÞ

16As noted in footnote 15, we use the weak domination ordering, but Chwe’s proposition extends to this

case with no changes.
17We thank an anonymous referee for pointing out an error in an earlier version of this theorem.
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(because the PCF from x leads to the absorbing state y in at most C steps), and
combining this with (7) we may conclude that

uiðzÞXð1
 dC
i ÞW þ dC

i uiðyÞ:

By part (ii) in the definition of d�; we deduce that

uiðzÞXuiðyÞ ð8Þ

for some iAS:
Now (6) and (8) together prove that f ðZÞ+Z; where f ðZÞ is the set of all states x

such that for every coalition S and for any state yAFSðxÞ; there exists zAZ; where
either y ¼ z or z indirectly dominates y; such that the inequality uiðxÞXuiðzÞ holds
for some iAS:Using the same argument in the proof of Proposition 1 in [11], we may
conclude that Z is contained in the largest consistent set. &

It is worth noting that the largest consistent set may be ‘‘large’’ but it is certainly
not exhaustive. For instance, in the Prisoners’ Dilemma—transformed into a
dynamic model of coalition formation along the lines of Example 3—the largest
consistent set is a singleton consisting of the cooperative outcome. Nevertheless,
there are reasons to believe that the largest consistent set may be too inclusive in
some situations (see, for example, the discussion in [34]). The notion of an EPCF
highlights one reason for this, as elaborated in the following example.

Example 8. N ¼ ð1; 2; 3Þ: There are four states, represented by the payoffs they
provide to each of the three players: x1 ¼ ð2; 2; 2Þ; x2 ¼ ð0; 0; 0Þ; x3 ¼ ð6; 6; 0Þ and
x4 ¼ ð1; 0; 6Þ: We describe the correspondence FS as follows. At x1; the coalition
f12g or player 3 are the only coalitions that can move, and the only move (in either
case) is to x2: At x2; only coalitions f2g and f13g can move, and in both cases either
x3 or x4 may be induced at will. From no other state is any move possible, and no
other coalition is capable of any other move.

It is easy to see that the largest consistent set consists of the three states ðx1;x3; x4Þ:
In particular, the state x1 is a member of this set for the following reason: the
coalition f12g avoids inducing x2 because it anticipates the continuation by f13g to
x4; and player 3 similarly negates a move to x2 because she fears the subsequent
creation of state x3 (by player 2).
However, there is no deterministic absorbing EPCF—and indeed, no EPCF at

all—with x1 as an absorbing state (provided that discount factors are close enough to
unity). To see this, let p be the probability that some EPCF assigns to f2g moving at
x2 (so that 1
 p is assigned to f13g). Neglecting discounting for a moment, note that
if p41=3; then f12g will want to move from x1; whereas if po2=3 player 3 will want
to move from x1: It is now trivial to see that the for discount factors close enough to
1, x1 cannot be an absorbing state.
This example shows quite starkly why the notion of consistency is less restrictive

than that of an EPCF. Two domination chains along two indirect objections may
have different moves attached to them starting from the same state. Thus, as seen
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above, in the largest consistent set, coalition f12g entertains one sort of conjecture
about what will happen at x2 and player 3 entertains another. If all players have
common beliefs (as they must in an EPCF), then this possibility cannot arise. This is
one reason why the set of all absorbing states (under all deterministic absorbing
EPCFs) is typically a strict subset of the largest consistent set.18

4.3. Deterministic schemes: absorption, cycles and efficiency

Example 8 in the previous section makes the point that the set of absorbing states
(under deterministic absorbing EPCFs) can be a strict subset of the largest consistent
set. It does so by pruning inefficient outcomes from that set. This suggests that our
dynamic structure may be generally adept at taking out inefficient outcomes.
Certainly, this is true of absorbing schemes that have unique limit (and discount
factors close to unity), at least in the space of characteristic functions, by virtue of
Theorem 4.2. For schemes with multiple absorbing states, this is not true.

Example 9. N ¼ f1; 2g; X ¼ fa; b; c; dg; and F is as described in Fig. 1. In the class
of absorbing deterministic schemes there is exactly one equilibrium, provided the
discount factor of each player exceeds 2=3: This equilibrium has absorbing states
fa; cg: Notice that the payoffs from these states are inefficient.19

To see why, first note that in any absorbing deterministic equilibrium, neither b

nor d can be absorbing states. For suppose, on the contrary, that b is absorbing.
Then notice that a cannot be absorbing; indeed, that a-b: This means that a move
from b to c; engineered by player 2, has the following possible payoff continuations

(2,0)

(6,1)

(0,2)

(1,6)

a

b

c

d

{1,2}

{1,2}{1}

{2}

Fig. 1. An inefficient outcome.

18Another reason has to do with the efficiency of coalitional moves, something we do not stress here.

But see [34], in which similar concerns are raised in the context of a static model of coalitional moves.
19fa; cg is also the largest consistent set.
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for player 2: the constant payoff ð2; 2;yÞ; the path ð2; 6; 6;yÞ; and the path
ð2; 6; 0; 1; 1yÞ: In each of these cases 2 earns a (normalized) discounted payoff that
exceeds 1, which contradicts the presumption that b is absorbing. The argument that
d cannot be absorbing is an exact parallel.
So a or c (or both) must be absorbing, and there are no other absorbing states.
Next, observe that both a and c must simultaneously be absorbing. For say only a

were absorbing. Then it must be the case that d-a: Now consider a move from a to
b; engineered by f1; 2g: It is obvious that player 2 must earn positive payoff from this
move. Moreover, for any d1o1; player 1’s (normalized) discounted payoff must
strictly exceed 2 (we use here the observation that d-a). This contradicts the
assumption that only a is absorbing. A parallel argument holds for c: Therefore both
a and c are absorbing.
This leaves us with only one possible absorbing deterministic EPCF, in which

d-a and b-c: Indeed, such a PCF is an equilibrium, provided that the discount
factor of each player exceeds 2=3: The outcome is inefficient.
Readers interested in understanding better the source of this efficiency failure are

referred to Appendix A, item 5.
To conclude this section, consider the following PCF which, while deterministic,

has no absorbing states: a-b-c-d-a: Provided that discount factors are
close to unity, it is easy to check that each move prescribed by the scheme is strictly
profitable (and efficient in the class of all profitable moves). Therefore this
cyclical scheme is an EPCF. For discount factors close to one, the (normalized)
discounted payoff to each player is approximately 2.25. This payoff vector is
efficient. In what follows, we move on to a closer investigation of cyclical and
stochastic schemes.

5. Stochastic equilibrium processes

In the remainder of the paper, we concentrate on stochastic processes of coalition
formation. Uncertainty enters the story in two distinct ways. First, at any stage,
several coalitions may have profitable moves. Which coalition gets to move may well
be probabilistically chosen. Second, it is possible that a particular coalition has more
than one efficient move, and that it might randomize among them. The discussion
that follows shows that in many typical situations one or more of these
randomizations may be necessary in order to generate an equilibrium.
The uncertain nature of the process may or may not be intertwined with cycles—

possibly stochastic reversions of the state of the game to some given state. Formally,

a (nonsingleton) collection of states ðx1;y; xkÞ under a PCF forms a (stochastic)
cycle if pðxi; xiþ1Þ40 for all 1piok and pðxk; x1Þ40: A PCF that exhibits a cycle
will be called cyclical.
The purpose of the analysis that follows is to understand these phenomena, largely

through the use of examples. A large part of our discussion will take place explicitly
in the context of strategic form games.
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5.1. Randomization and cycles: an example

The purpose of this section is to illustrate the ‘‘need’’ for cycles and/or
randomization in certain situations. We do this by considering the following
restatement of the ‘‘roommate problem’’. This is a situation with three players, any
of two of whom can share a room. In each case, the player left out obtains zero.
Moreover, for each pair of roommates, there is one who obtains a payoff of 1, while
the other obtains a lower payoff of a (to be parametrically varied in the example).
Details follow, couched in the language of a model of coalition formation.

Example 10. Let N ¼ f1; 2; 3g; X ¼ fx; y; zg; Ff2;3gðxÞ ¼ fx; yg; Ff1;3gðyÞ ¼ fy; zg;
Ff1;2gðzÞ ¼ fz; xg; and FSðx0Þ ¼ fx0g for all other combinations of ðx0;SÞ: Players
have a common discount factor d: Payoffs for each state x0 are described in the
following array:

x y z

1 1 0 a

2 a 1 0
3 0 a 1

Note that it is easy to rewrite this example in the more familiar characteristic
function form.20 Appendix B contains a demonstration of the following

Observation 1. The game in Example 10 admits the following unique EPCF that is

symmetric for any a and d: For ap 1
1þd; pðx; yÞ ¼ pðy; zÞ ¼ pðz; xÞ ¼ 1; and for a4 1

1þd;

pðx; yÞ ¼ pðy; zÞ ¼ pðz; xÞ ¼ ð1
aÞð1
dÞ
dð2a
1Þ :

This example (and the accompanying observation) is designed to illustrate several
points.
First, there is no hope of a general existence result for deterministic schemes. This

is true of characteristic functions for which the core is empty (as the example
demonstrates). While it is also true of strategic form games, we will also see
situations in which stochastic EPCFs coexist with their deterministic counterparts,
leading to new insights.
Second, observe that once cycles and randomization make an appearance, the

cardinality of payoffs really matters in the determination of a particular equilibrium.

In the example, if a is small enough (that is, ap 1
1þd), then the equilibrium cycle is

deterministic, and there is no chance of remaining in the same state in any period.

However, as a goes up from a ¼ 1
1þd; the probability of moving to the next state

comes down. The cycles turn stochastic. As a increases, each coalition structure
becomes relatively more stable since the cyclical movement becomes slower in the

20Let N ¼ f1; 2; 3g with Vðf1; 2; 3gÞ ¼ fð0; 0; 0Þg; Vðf1; 2gÞ ¼ fð1; aÞg; Vðf2; 3gÞ ¼ fð1; aÞg;
Vðf3; 1gÞ ¼ fð1; aÞg; and VðfigÞ ¼ f0g for any iAN: Then the relevant part of the game is described as

the game in Example 9. We can construct a strategic form representation of essentially the same game.
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stochastic sense, although no state ever becomes an absorbing state. On the other

hand, given a4 1
1þd; p goes down as d increases. If d is very close to unity, p is very

close to zero. Notice that p never becomes zero—the tension of a possible move is
needed to sustain the scheme.21 Nevertheless, we still can say that if d goes to unity,
each coalition structure becomes more stable in a stochastic sense.
Third, the example illustrates one of the two sources of stochastic behavior

discussed earlier. At each state, there is only one potential deviating coalition. Yet an
EPCF can (and sometimes, as in the example, must) be stochastic. Randomization
occurs not over multiple deviating coalitions, but over whether a single coalition
moves or stays. This type of randomization can occur only when at least one member
of the deviating coalition needs to be indifferent between moving and staying. Note
that in such a case, the payoff of a player who is indifferent between these options
has a very simple form. For instance, player 1 is indifferent between deviating and

staying at state z in the EPCF when a4 1
1þd ðpðz; xÞ ¼ ð1
aÞð1
dÞ

dð2a
1Þ Þ: Then it must be the
case that22

v1ðz; pÞ ¼ v1ðx; pÞ ¼ a

1
 d
:

This property is not specific to the roommate problem. As long as (i) there is only
one possible coalitional deviation, and (ii) that coalitional move is randomized, the
indifferent player’s payoff is exactly the same as the discounted sum of atemporal
payoffs from the current state.
In the next section, we will see several examples of the second source of

uncertainty: that stemming from randomization over multiple coalitional deviations.

5.2. Games in strategic form

In this section, we apply our solution concept to strategic form games. Such games
are usually employed to describe purely noncooperative situations, but there is no
reason why this should necessarily be the case. It is possible that subgroups (or even
the entire set) of players can come together to write temporarily binding agreements.
Under this interpretation, the period length is the duration for which a binding
agreement can be written.
We assume that every member in a coalition needs to agree on a temporary

binding agreement. This unanimity postulate is natural in defining a coalitional
move (recall, for instance, the definitions of strong Nash and coalition-proof Nash
equilibria). Models of binding agreements also use the unanimity principle very
widely (see, for instance, the survey [7] and the many references contained therein).
The objective of our analysis is to show how the possibly stochastic nature of

coalition formation affects efficiency in strategic-form games.

21 It should be noted, however, that asymmetric roommate problems (in which the cardinalities of vNM

utility functions or the values of discount factors differ across agents) may have well absorbing states.
22The claim to be made follows from the fact that v1ðz; pÞ ¼ a þ d½pðz; xÞv1ðx; pÞ þ ð1


pðz; xÞÞv1ðz; pÞ� ¼ a þ dv1ðz; pÞ (we have v1ðx; pÞ ¼ v1ðz; pÞ by indifference).
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5.2.1. Games with common payoffs

It will be useful to begin with a situation in which efficiency is not impaired, and
this will serve as a benchmark for the more interesting cases to follow. To this end,
consider the class of all strategic games with common payoffs, which yield similar
payoffs to all players for any action profile. To be sure, such games are not without
genuine strategic significance; for instance, the following well-known pure
coordination game (with a and b negative) is a special case:

L R

T 1,1 b,b

B a,a 0,0

Formally, consider a strategic game with finite player set N: Player i has finite
action set Ai: Let A �

Q
iAN Ai: Player i has payoff function ui defined on A: We

assume that for each action profile aAA; and for all i and j; uiðaÞ ¼ ujðaÞ: For
simplicity of notation, we assume that there is a unique action profile a� at which all
players’ payoffs are maximized. We call this game a game of common payoffs.
It is easy enough (as in Example 3) to embed this game into an intertemporal

model of coalition formation. A state will simply describe the ongoing action profile,
and FSðxÞ is the set of all states a0 such a0

SA
Q

iAS Ai; and a0
i ¼ ai for all ieS:

In words, an action vector is available to S if it is feasible for its members and if
the remaining players leave their actions unchanged.23

To complete the description, assume each player i has a common discount factor
dAð0; 1Þ:

Theorem 5.1. Every EPCF for the game of common payoffs with a common discount

factor d involves pða�; a�Þ ¼ 1 and has a� as the unique absorbing limit starting from

any aAA:

Remark. That at least one such EPCF exists with the claimed property is trivially
true. The extra bite of this result lies in its assertion for every EPCF.

Proof. First we prove that pða�; a�Þ ¼ 1: Suppose not. Then there is some coalition S

and a move to a state a such that viða; pÞXviða�; pÞ for all iAS: Choose a0 to be some
state having the lowest value of vi among all states satisfying the requirement of the
previous sentence. [By the assumption of common payoffs and a common discount
factor, the same state can achieve this for every player.] By not moving, each member
i of coalition S gets a payoff of

uiða�Þ þ d
X
aAA

pða�; aÞviða; pÞ

which is obviously larger than viða0; pÞ; a contradiction.

23Note that we are economizing on the definition of a state here. We could record the coalition structure

that is implicitly in place at every situation. It would make no difference to the results that follow, but the

statement would be more cumbersome.
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Next, we show that a� is the unique absorbing limit. To this end, we first note that
if a0aa�; then there exists a00aa0 such that pða0; a00Þ40: Suppose not; then pða0; a0Þ ¼
1: In particular, viða0; pÞ ¼ 1

1
d uiða0Þ; while viða�; pÞ ¼ 1
1
d uiða�Þ: However, since

uiða�Þ4uiða0Þ; we have viða�; pÞ4viða0; pÞ for any iAN: So there is a strictly profitable
move from a0; which contradicts requirement (ii) of an EPCF.
Now, if a� is not the unique absorbing limit, then the set CðpÞ � faAA: for any

kX1; pðkÞða; a�Þ ¼ 0g is nonempty. By the common payoff assumption, there exists
a0ACðpÞ such that viða0; pÞXviða; pÞ for any aACðpÞ: By the argument of the previous
paragraph, there is a state a00 such that pða0; a00Þ40:
In order to satisfy requirement (i) of an EPCF, it must be (recalling common

payoffs) that viða0; pÞpviða00; pÞ for all i: But it is obvious that a00ACðpÞ:
Consequently, from the definition of a0 it follows that viða0; pÞ ¼ viða00; pÞ; and
indeed, this is true for any state a00 such that pða0; a00Þ40:
At the same time, we know that viða�; pÞ ¼ 1

1
d uiða�Þ4viða0; pÞ: Therefore, we
conclude that although viða�; pÞ4viða0; pÞ for any iAN (common payoffs),
pða0; a00Þ40 occurs only for a00 with viða00; pÞ ¼ viða0; pÞ: This violates requirement
(ii) of an EPCF, a contradiction. &

Although games with common payoffs are special, this result provides a strong
base for our later remarks. In addition, these results may be of intrinsic interest for
coordination games. For instance, Lagunoff and Matsui [22] contains a related result
(see also Corollary 2 in [21]). Lagunoff and Matsui [22] study repeated pure
coordination games in which only one player can change her action in each period,
and show that for d close to unity there is a unique subgame perfect equilibrium in
which the action profile converges to the Pareto efficient one. To be sure, there are
important differences, not the least of which is that our approach permits the writing
of temporarily binding agreements.
Binding agreements notwithstanding, the finding of ubiquitous cooperation in

common-payoff situations does not extend, even to coordination games with
noncommon payoffs. The following example describes a 2� 2 game in which there is
an EPCF with an inefficient absorbing limit.24

Example 11. Consider the following 2� 2 strategic form game:
L R

T 1, 1 –5, –1
B –1, –5 0, 0

Denote ðT ;LÞ; ðB;LÞ; ðT ;RÞ; ðB;RÞ by x; y; z; and w; respectively. Assume a
common discount factor d for both players. Then the game induced by this strategic
form game has an EPCF with its unique absorbing limit w if dX2

3
:

24Equilibrium selection in [21] is related to the risk-dominance of an action profile (see [18]), and in the

example, something similar plays an important role. Indeed, in the example, the Pareto superior Nash

equilibrium is a risk dominated equilibrium ð1
 ð
1Þo0
 ð
5ÞÞ: However, in general, the conditions for
a breakdown in cooperation are different even in coordination games.

H. Konishi, D. Ray / Journal of Economic Theory 110 (2003) 1–41 25



To see this, consider the following PCF: pðx; yÞ ¼ pðx; zÞ ¼ 1
2; pðy;wÞ ¼ pðz;wÞ ¼

pðw;wÞ ¼ 1: Then, we have

v1ðx; pÞ ¼ v2ðx; pÞ ¼ 1þ d

1
 5
2

� �
¼ 1
 3d;

v1ðy; pÞ ¼ v2ðz; pÞ ¼ 
1;

v1ðz; pÞ ¼ v2ðy; pÞ ¼ 
5;

v1ðw; pÞ ¼ v2ðw; zÞ ¼ 0:
As we can easily see from these expressions, there is an incentive for either player to

move away from x as long as 1
 3dp
 1; which is equivalent to dX2
3
: So the PCF is

an EPCF under this condition.
The striking feature of this EPCF is that although x is the highest payoff state for

every player, it is not stable. The temporary agreement x is upset by unilateral
‘‘deviations’’, in which each ‘‘deviation’’ is bolstered by the fear of the other player’s
‘‘deviation’’. Notice that this sort of ‘‘meta coordination failure’’ relies intimately on
the failure of common payoffs.
Note, moreover, that this EPCF represents an example of the second type of

uncertainty and its effects. Randomization among profitably deviating coalitions
may cause inefficiency in the resulting outcome.25

5.2.2. The prisoners’ dilemma

The prisoners’ dilemma represents a leading example of intrinsic interest. We
therefore study the EPCFs of this game in some detail. Consider the following 2� 2
strategic form game:

L R

T 1,1 b,a

B a,b 0,0

where a41 and bo0: As in Example 11, denote ðT ;LÞ; ðB;LÞ; ðT ;RÞ; ðB;RÞ by x; y;
z; and w; respectively.
Unlike coordination games, x no longer attains the highest possible payoff, and it

is well-known that w is the unique dominant strategy Nash equilibrium of this game.
Our model of coalition formation yields a more varied set of results, which we
attempt to characterize in the following.

Observation 2. The prisoners’ dilemma admits various EPCFs depending on specific

parameter values:

25Of course, there are other EPCFs: for instance, a ‘‘cooperative’’ EPCF with pðx; xÞ ¼ pðy; xÞ ¼
pðz; xÞ ¼ pðw;xÞ ¼ 1 exists for any value of d: What Example 11 says is that there can be another EPCF
that attains a Pareto inferior state as the unique absorbing state even in a coordination game unless we

have common payoffs.
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1. Deterministic EPCFs:

ðaÞ there is a deterministic EPCF with its unique absorbing limit at x ðpðx; xÞ ¼
pðy;wÞ ¼ pðz;wÞ ¼ pðw; xÞ ¼ 1Þ; iff ap1þ d;

ðbÞ there is a deterministic EPCF with its unique limit at w ðpðx; yÞ ¼ pðy;wÞ ¼
pðz;wÞ ¼ pðw;wÞ ¼ 1Þ; iff aX 1

1
d and bp
 1
d;

ðcÞ there is a deterministic cyclical EPCF ðpðx; yÞ ¼ pðy;wÞ ¼ pðz;wÞ ¼ pðw; xÞ ¼
1Þ; iff aX1þ d and bX
 1

d:

2. Stochastic and symmetric EPCFs:

ðaÞ there is a stochastic (symmetric) EPCF with its unique limit at w

(pðx; yÞ ¼ pðx; zÞ ¼ 1
2
; pðy;wÞ ¼ pðz;wÞ ¼ pðw;wÞ ¼ 1), iff bp
 a 
 2

d;

ðbÞ there is a stochastic (symmetric) cyclical EPCF (pðx; yÞ ¼ pðx; zÞ ¼ p;

pðy;wÞ ¼ pðz;wÞ ¼ pðw; xÞ ¼ 1), iff 
a 
 2
dpbpð1þdþd2

dþd2
Þa 
 2

d: Moreover, if

aX1þ d (resp. ao1þ d), then p ¼ 1
2
(resp. po1

2
).

Observation 2 outlines a rich array of possible outcomes. In what follows, we
discuss the outcomes thoroughly. As a pictorial summary, Fig. 2 depicts the various
regions—in the space of parameters describing the defection and ‘‘sucker’’ payoffs—
for which different outcomes obtain. For simplicity, the diagram has only been
constructed for the limit case as d-1:
Now for a verbal account. Begin with deterministic equilibrium processes. Case

1(a) permits cooperation to be sustained as the unique limit of a deterministic EPCF
as long as (and only if) a is not too large. Although this finding is not unintuitive, it
provides a different perspective on the relationship between our solution concept and
the largest consistent set (LCS) in [11]. It is easy to see that the LCS is simply the
singleton fxg no matter what values a and b take (provided, of course, that a41 and
bo0). However, no EPCF supports x if a is too large even when d is close to unity.
This observation does not contradict Theorem 4.3, in which a deterministic EPCF

with absorbing limit was shown to lie within the LCS. The point is that once a is
large enough, such EPCFs fail to exist. Cycles occur (as Case 1(c) illustrates), but
Theorem 4.3 is silent on cyclical EPCFs.
Another seeming contradiction to Theorem 4.3 is Case 1(b), which asserts

that a deterministic EPCF may support w as a unique absorbing limit.
Notice, however, that the existence of such a scheme is conditional on d not being
too large, whereas Theorem 4.3 only applies for discount factors sufficiently close to
unity.
Taken together, Cases 1(a) and 1(b) reveal two things. For discount factors large

enough, if a deterministic EPCF with unique absorbing limit exists, then it can only
sustain cooperation rather than defection. If, in addition, a is too large then the
existence of such EPCFs is jeopardized: Case 1(c) shows that in such cases one
typically cycles between cooperation and defection.
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The remarks so far pertain to deterministic schemes. Stochastic EPCFs tell a
different story. Case 2(a) tells us that in contrast to the deterministic case, it is

possible (even when dC1) to construct stochastic schemes with unique absorbing
limit at mutual defection. The condition for this to happen can be interpreted in the
form of a low enough value of b; the so-called ‘‘sucker payoff’’. That b matters is not
surprising, as this payoff (induced by the other agent’s departure from cooperation)
is what creates the ‘‘meta-coordination failure’’ discussed in the context of
Example 11.
Finally, Case 2(b) identifies (necessary and sufficient) conditions for the presence

of stochastic EPCFs that exhibit cycles. Notice that if a is not too large then the
cooperative outcome must exhibit some inertia along this cycle (pðx; xÞ40).
It may be worth pointing out that the conditions identified in Cases 1(c)

and 2(b) apply for the entire range of values for a and b: In particular, we can use
these conditions to conclude that no (symmetric) coordination game can exhibit a
cycle.
The preceding discussion should make clear that cardinalities do matter in

determining the sort of EPCF that drives any given prisoners’ dilemma. To

(0,1)

Deviation Payoff (a)

"Sucker" Payoff (b)

Stochastic EPCF 
absorbed at mutual 
defection (only in region A)

Deterministic EPCF absorbed 
   at mutual cooperation (in 
       regions A,B and C)

Deterministic
   cyclical EPCF
(only   in region D) 

Cyclical EPCF with stochastic
departure from mutual cooperation

(in regions B,D and E)

A B C

DE

-1/2-3

2

Fig. 2. Symmetric EPCFs in the prisoners’ dilemma.
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emphasize this and to focus on the leading case in which d is close to unity, we end
this section (and the paper) with three examples.

Example 12.1 (Prisoners’ dilemma 1). No EPCF supports the unique dominant
strategy Nash equilibrium (and the unique coalition proof Nash equilibrium) as its
absorbing state, but cooperation can be supported as the unique absorbing state of a
deterministic EPCF for d close to unity.26

L R

T 1,1 1
2 , 3

2

B 3
2 , – 1

2 0, 0
–

Example 12.2 (Prisoners’ dilemma 2). No EPCF supports cooperation, but the
Nash equilibrium can be supported as the unique absorbing state of a stochastic
EPCF for d close to unity.

L R

T 1, 1 –6, 3
B 3, –6 0, 0

Example 12.3 (Prisoners’ dilemma 3). Both cooperation and noncooperation states
may be supported as the unique absorbing state of EPCFs (deterministic and
stochastic, respectively) for d close to unity.
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Appendix A. Remarks on efficient moves

We make some brief remarks on the notion of efficient moves in the definition of
an EPCF. As observed in the main text, one might weaken the definition of an EPCF
to allow for all profitable moves, not just the efficient ones. Call such an EPCF a
weak EPCF.
1. The existence of weak EPCFs is obviously not an issue, because an EPCF is

clearly a weak EPCF.
2. Weak EPCFs might lead to outcomes that appear unreasonable. Consider the

following example with two players—1 and 2—and three states, x; y and z: Payoffs
are as follows:

x y z

1 0 1 100
2 1 0 100

Suppose further that individual 1 can induce y and z from x; while 2 can induce x

and z from y; and that no other coalition/state combination permits nontrivial
moves.
Now it is easy to construct a weak EPCF (for all discount factors, in fact) in

which, starting from either x or y; the system endlessly oscillates between x and y;
even though either player could induce z and make both players much better off. An
EPCF would negate this possibility by permitting—indeed, demanding—that each
player make an efficient move.
3. At the same time, it is worth noting that our core characterization theorems

may be strengthened by taking note of the distinction between EPCFs and weak
EPCFs. This is true in the following sense. In Theorem 4.1, a (strong) core outcome
is ‘‘implemented’’ by an EPCF (satisfying the efficient moves principle). At the same
time, a cursory glance at the proof of Theorem 4.2 will reveal that every weak
deterministic EPCF with unique absorbing limit must pick out a (weak) core
allocation. That is, Theorem 4.2 applies to the broader class of weak EPCFs.
4. It hardly needs to be mentioned that the ‘‘efficient moves’’ requirement need not

lead to efficiency overall, for exactly the same reason that Nash equilibria need not
be Pareto optimal. For instance, Observation 2 tells us that an EPCF may lead to
mutual defection as its unique absorbing limit in the case of the prisoners’ dilemma.
5. However, there is an important sense in which our equilibrium concept fails to

capture certain aspects of ‘‘efficient moves’’. We have proceeded entirely in the spirit
of dynamic games, in which the one-shot deviation principle is applied: players take
not only the strategies of other players as given, they take as given their own

strategies in the future. By the well known principle of Blackwell that
‘‘unimprovability implies optimality’’ in discounted situations, there is seemingly
no loss of generality in doing this.27

27The equivalence between the unimprovability of a single-step move, and optimality, lies at the heart of

modern theories of repeated games (see, for example, [1] or [15]).
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But the principle fails when ‘‘players’’ are coalitions (and also if players have
vector-valued objectives). To create a profitable deviation for the coalition as a
whole (or for every component of the vector payoff function), several moves may be
needed. Indeed, this is behind the efficiency failure in Example 9. There, the coalition
f1; 2g can engineer, if it so wishes, a move from one of the inefficient absorbing states
a or c: However, a move from a only ends at c; and vice versa, so that both players
cannot find it simultaneously worthwhile to participate in the proposed move. At the
same time, if players f1; 2g were to simultaneously deviate at both a and c; the
‘‘double deviation’’ would indeed be worthwhile.
This raises a conceptual issue. The principle of one-step deviations is built into our

solution concept: individuals and coalitions at different dates are regarded as
different individuals and coalitions. Therefore coalitions are as involved (in this
conceptualization) in a game against themselves as against other coalitions. It is
unclear whether this formulation should be dropped (compare this, for instance,
with the literature on changing preferences, e.g., [25,32]). We tentatively retain it,
despite the disturbing feature of Example 9.
6. Finally—while accepting the efficient moves principle—one might question the

particular formulation adopted in our definition. For instance, one could rule out an
efficient move for S (as described by us) if there is some strict subset of S; say T ;
which can generate another change that makes its members still better off relative to
the payoff under the efficient move (by S). In this case one might want to assign
probability zero to the move by S (and positive probability to the move by T).
However, this refinement raises other issues. One interpretation of the probabilistic
nature of a move is that nature chooses a coalition randomly and permits it to enjoy
a profitable deviation. In that case, the subset T might be bound by the decisions of
the entire coalition S: On the other hand, if this interpretation is rejected, then other
problems arise. For instance, why restrict the search for better moves to subsets of S

and not other sets T which share a common intersection with S (where the
intersecting members are allowed to go with the coalition that has the better move)?
But this further refinement leads to possible circularities, rendering a conceptually
satisfactory definition impossible. At the same time, it should be noted that such
potential circularities in defining efficient moves—which we avoid by assumption—
do not in any way preclude the study of cycles over time, which are allowed for in the
definition.

Appendix B. Proofs omitted in the main text

Proof of Observation 1. The value functions of this game can be rewritten as follows:

viðx0; pÞ ¼ uiðx0Þ þ dfpðx0; y0Þviðy0; pÞ þ ð1
 pðx0; y0ÞÞviðx0; pÞg;

or

ð1
 dþ dpðx0; y0ÞÞviðx0; pÞ 
 dpðx0; y0Þviðy0; pÞ ¼ uiðx0Þ;
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for any iAN; and any ðx0; y0ÞAfðx; yÞ; ðy; zÞ; ðz; xÞg: The incentive to move from x0 to
y0 is captured as follows:

viðy0; pÞ 
 viðx0; pÞ ¼ ð1
 dÞviðy0; pÞ
1
 dþ dpðx0; y0Þ 


uiðx0Þ
1
 dþ dpðx0; y0Þ:

First, we find a symmetric equilibrium. Since the game is symmetric, we can
describe a symmetric equilibrium in the following way:

1
 dþ dp 0 
dp


dp 1
 dþ dp 0

0 
dp 1
 dþ dp

0
B@

1
CA

vH

vM

vL

0
B@

1
CA ¼

1

a

0

0
B@

1
CA;

where

vH

vM

vL

0
B@

1
CA ¼

v1ðx; pÞ
v1ðz; pÞ
v1ðy; pÞ

0
B@

1
CA ¼

v2ðy; pÞ
v2ðx; pÞ
v2ðz; pÞ

0
B@

1
CA ¼

v3ðz; pÞ
v3ðy; pÞ
v3ðx; pÞ

0
B@

1
CA:

By solving this equation we see that

vH ¼ 1
D
fð1
 dþ dpÞ2 þ aðdpÞ2g;

vM ¼ 1
D
fað1
 dþ dpÞ2 þ dpð1
 dþ dpÞg;

vL ¼ 1
D
fðdpÞ2 þ adpð1
 dþ dpÞg;

where D ¼ ð1
 dþ dpÞ3 
 ðdpÞ340; and p denotes the probability of moving to the
next state.

Note first that vM 
 vL ¼ ð1
 dÞfdp þ að1
 dþ dpÞg40: Thus, a player who is
currently getting 0 surely joins a coalitional move. The question is whether a player

who is currently getting a would also do so. This can be checked by comparing vH

and vM:

vH 
 vM ¼ 1
D
fð1
 dþ dpÞð1
 dÞ þ aðdpÞ2 
 að1
 dþ dpÞ2

¼ 1
D
ð1
 dÞfð1
 dþ dpÞ 
 að1
 dþ 2dpÞg:

Hence, we obtain

vHXðoÞvM 3 apð4Þ 1
 dþ dp

1
 dþ 2dp
:

Note that p ¼ 1 if vH4vM; and pAð0; 1Þ can occur only if vH ¼ vM: Thus, when

ao 1
1þd; vH4vM holds for any p; and we must conclude that p ¼ 1: Similarly, when

a ¼ 1
1þd; the only possibility is, again, p ¼ 1:
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When a4 1
1þd; p can no longer be 1; since p ¼ 1 implies vHovM: Since ao1; neither

can it be that p ¼ 0 ðvH4vMÞ: Thus, the only possibility left is the case where vH ¼
vM so that pAð0; 1Þ holds. Hence, when a4 1

1þd; p ¼ ð1
aÞð1
dÞ
dð2a
1Þ is the unique symmetric

EPCF.
The rest of the proof shows that no other EPCF exists. To do that, we need to

investigate a few possibilities. We first show that this game does not possess an
EPCF that has an absorbing state for any d and a: Suppose, to the contrary, that

pðx; xÞ ¼ 1 (i.e., x is an absorbing state). Then, viðx; pÞ ¼ uiðxÞ
1
d : Given this, the

incentives for players 1 and 2 to move from z to x can be described by the difference
between viðx; pÞ and viðz; pÞ:

v1ðx; pÞ 
 v1ðz; pÞ ¼
ð1
 dÞ 1

1
d

ð1
 dþ dpðz; xÞÞ þ
a

ð1
 dþ dpðz; xÞÞ

� �

¼ 1
 a

ð1
 dþ dpðz; xÞÞ40

and

v2ðx; pÞ 
 v2ðz; pÞ ¼
ð1
 dÞ a

1
d

ð1
 dþ dpðz; xÞÞ
¼ a

ð1
 dþ dpðz; xÞÞ40:

Hence, given that x is an absorbing state, it must be that pðz; xÞ ¼ 1: Consequently,
the discounted payoffs at z are

viðz; pÞ ¼ uiðzÞ þ
d

1
 d
uiðxÞ:

Now, we can check the incentives for players 1 and 3 to move from y to z:

v1ðz; pÞ 
 v1ðy; pÞ ¼ ð1
 dÞv1ðz; pÞ
1
 dþ dpðy; zÞ40

and

v3ðz; pÞ 
 v3ðy; pÞ ¼ ð1
 dÞv2ðz; pÞ
1
 dþ dpðy; zÞ 


a

1
 dþ dpðy; zÞ

¼ 1
 d
 a

1
 dþ dpðy; zÞ:

Suppose that 1
 doa: Then it must be that pðy; zÞ ¼ 0: However, if this is so, y is
also an absorbing state, and by repeating the same argument as before, players 2 and
3 would move from x with probability 1 (pðx; yÞ ¼ 1). This is a contradiction. Next
suppose that 1
 dXa: Then, by the argument above, we must have pðy; zÞAð0; 1�:
We check if there is any pðy; zÞAð0; 1� that can support pðx; yÞ ¼ 0: The discounted
sum of payoffs at y can be written as

ð1
 dþ dpðy; zÞÞviðy; pÞ ¼ uiðyÞ þ dpðy; zÞviðz; pÞ:
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Therefore, we obtain

viðy; pÞ ¼ 1

1
 dþ dpðy; zÞ uiðyÞ þ dpðy; zÞ uiðzÞ þ
uiðxÞ
1
 d

� �� �
:

Now, at state x; we check if pðx; yÞ ¼ 0 is supportable. Player i’s incentive to move
from x to y is given by

viðy; pÞ 
 viðx; pÞ ¼
uiðyÞ þ dpðy; zÞuiðzÞ þ dpðy; zÞ uiðxÞ

1
d

1
 dþ dpðy; zÞ 
 uiðxÞ
1
 d

¼ uiðyÞ þ dpðy; zÞuiðzÞ 
 ð1þ dÞuiðxÞ
1
 dþ dpðy; zÞ :

Obviously, v3ðy; pÞ 
 v3ðx; pÞ40: For player 2, we can utilize 1
 dXa to show
v2ðy; pÞ 
 v2ðx; pÞ40:

v2ðy; pÞ 
 v2ðx; pÞ ¼ 1

1
 dþ dpðy; zÞ ½1
 ð1þ dÞa�

X
1

1
 dþ dpðy; zÞ ½1
 ð1þ dÞð1
 dÞ�40:

This is a contradiction to pðx; yÞ ¼ 0: As a result, we conclude that for any a and d;
this game does not possess an absorbing EPCF.
So far, we know that pðx0; y0ÞAð0; 1� must hold for any ðx0; y0ÞA

fðx; yÞ; ðy; zÞ; ðz; xÞg: Now, we will show that pðx0; y0ÞAð0; 1Þ for any ðx0; y0ÞA
fðx; yÞ; ðy; zÞ; ðz; xÞg unless pðx; yÞ ¼ pðy; zÞ ¼ pðz; xÞ ¼ 1: Two sub-cases need to be
investigated. The first one is the case with only one deterministic move. Without loss
of generality, we assume pðy; zÞ ¼ 1: Since pðx; yÞAð0; 1Þ; we have

v2ðy; pÞ ¼ 1þ dv2ðz; pÞ ¼ a

1
 d

and

v2ðz; pÞ ¼ dpðz; xÞ
1
 dþ dpðz;xÞ v2ðx; pÞ ¼ dpðz; xÞ

1
 dþ dpðz; xÞ
a

1
 d
:

These two equations together imply

1þ d2pðz; xÞ
1
 dþ dpðz; xÞ

a

1
 d
¼ a

1
 d
;

which is equivalent to

pðz; xÞ ¼ a 
 ð1
 dÞ
dð1
 aÞ :

Since pðz; xÞp1; we must have 1
1þdXa: Now, consider player 1. Since pðz; xÞAð0; 1Þ;

we have v1ðz; pÞ ¼ v1ðx; pÞ ¼ a
1
d: Because we have that ð1
 dþ dpðx; yÞÞv1ðx; pÞ ¼

1þ dpðx; yÞv1ðy; pÞ and v1ðy; pÞ ¼ dv1ðz; pÞ; it follows that

ð1
 dþ dpðx; yÞ 
 d2pðx; yÞÞ a

1
 d
¼ 1
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or

pðx; yÞ ¼ 1
 a

a
:

Since pðx; yÞp1; we have 1
2
pa: Together with the previous result, this implies 1

2
pap

1
1þd: But this contradicts the fact that do1:
Next, we consider the remaining subcase in which two moves are deterministic.

Suppose, without loss of generality, that pðx; yÞAð0; 1Þ and pðy; zÞ ¼ pðz;xÞ ¼ 1: In
this case, player 2 has to be indifferent between x and y: Thus, v2ðx; pÞ ¼ v2ðy; pÞ ¼

a
1
d: Since v2ðy; pÞ ¼ 1þ d � 0þ d2v2ðx; pÞ; we have ð1
 d2Þv2ðx; pÞ ¼ 1: By these two
equations, we obtain a ¼ 1

1þd: Now, we focus on player 3’s incentive to move from y

to z: We have

v3ðx; pÞ ¼ dpðx; yÞ
1
 dþ dpðx; yÞ v3ðy; pÞ;

v3ðy; pÞ ¼ a þ dþ d2v3ðx; pÞ

v3ðz; pÞ ¼ 1þ dv3ðx; pÞ:

From the first two equations, we obtain

v3ðx; pÞ ¼ dpðx; yÞ
1
 dþ dpðx; yÞ ða þ dþ d2v3ðx; pÞÞ:

Substituting a ¼ 1
1þd into this equation, we obtain

ð1
 dÞð1þ dð1þ dÞpðx; yÞÞv3ðx; pÞ ¼ dpðx; yÞ 1þ dþ d2

1þ d
:

Thus, we have a formula for v3ðx; pÞ;

v3ðx; pÞ ¼ dð1þ dþ d2Þpðx; yÞ
ð1
 dÞð1þ dÞð1þ dð1þ dÞpðx; yÞÞ:

Now, to check the incentive to move from y to z; we calculate v3ðz; pÞ 
 v3ðy; pÞ: This
is given by

v3ðz; pÞ 
 v3ðy; pÞ ¼ 1
 a 
 dþ dð1
 dÞv3ðx; pÞ

¼ 
 d2

1þ d
þ d2ð1þ dþ d2Þpðx; yÞ
ð1þ dÞð1þ ðdþ d2Þpðx; yÞÞ

p 
 d2

1þ d
þ d2ð1þ dþ d2Þ
ð1þ dÞð1þ dþ d2Þ

¼ 0:

Equality holds only when pðx; yÞ ¼ 1: But this contradicts our supposition that
pðx; yÞAð0; 1Þ: Therefore, we may conclude that pðx0; y0Þ ¼ 1 cannot hold for any
ðx0; y0ÞAfðx; yÞ; ðy; zÞ; ðz; xÞg:
Finally, we check if there is an asymmetric EPCF when pðx0; y0ÞAð0; 1Þ for any

ðx0; y0ÞAfðx; yÞ; ðy; zÞ; ðz; xÞg: Since pðx0; y0Þ is strictly mixed, there must be player i in
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S with y0AFSðx0Þ who is indifferent between staying at x0 and moving to y0: that is,

viðy0; pÞ 
 viðx0; pÞ ¼ ð1
 dÞviðy0; pÞ
1
 dþ dpðx0; y0Þ 


uiðx0Þ
1
 dþ dpðx0; y0Þ ¼ 0;

so that

viðx0; pÞ ¼ viðy0; pÞ ¼ uiðx0Þ
1
 d

:

Note that the indifferent players are players 2, 3, and 1 for ðx0; y0Þ ¼ ðx; yÞ; ðy; zÞ; and
ðz; xÞ; respectively. Since everything is symmetric, we focus on the case of ðx0; y0Þ ¼
ðx; yÞ: In this case, player 2 is indifferent between x and y: Since v2ðz; pÞ ¼
0þ dðpðz; xÞv2ðx; pÞ þ ð1
 pðz; xÞÞv2ðz; pÞÞ; we obtain

v2ðz; pÞ ¼ dpðz; xÞ
1
 dþ dpðz;xÞ v2ðx; pÞ:

Similarly, we know v2ðy; pÞ ¼ 1þ dðpðy; zÞv2ðz; pÞ þ ð1
 pðy; zÞÞv2ðy; pÞÞ: Substitut-
ing the above equation and v2ðx; pÞ ¼ v2ðy; pÞ ¼ a

1
d into this equation, we obtain

a

1
 d
¼ 1þ a

1
 d
dpðy; zÞdpðz; xÞ
1
 dþ dpðz; xÞ þ dð1
 pðy; zÞÞ
� �

:

This is equivalent to

1
 dþ dpðz; xÞ
1
 dþ dpðz; xÞ þ dpðy; zÞ ¼ a:

Repeating the same argument for players 1 and 3, we obtain

1
 dþ dpðz; xÞ
1
 dþ dpðz; xÞ þ dpðy; zÞ ¼

1
 dþ dpðx; yÞ
1
 dþ dpðx; yÞ þ dpðz; xÞ

¼ 1
 dþ dpðy; zÞ
1
 dþ dpðy; zÞ þ dpðx; yÞ

¼ a:

Suppose that dpðy; zÞodpðz; xÞ: Then, we have dpðz; xÞodpðx; yÞ and
dpðx; yÞodpðy; zÞ: However, these two inequalities together imply dpðz; xÞo
dpðy; zÞ; a contradiction. Thus, asymmetric probabilities within an open interval
ð0; 1Þ cannot survive. Note that if pðx; yÞ ¼ pðy; zÞ ¼ pðz; xÞ; then we indeed obtain
pðx; yÞ ¼ ð1
aÞð1
dÞ

dð2a
1Þ : &

Proof of Observation 2. First, note that in any EPCF, pðy;wÞ ¼ pðz;wÞ ¼ 1; since y

and z give players 1 and 2 the minimum payoff, respectively (this implies pðy; yÞ ¼
pðz; zÞ ¼ 0; and to move to w is the only incentive compatible path). We start with
deterministic EPCFs.

Case 1a: Deterministic EPCFs with unique absorbing state x: From Theorem 4.3,
we know that x can be the only absorbing state of a deterministic EPCF when d is
close to one, so we first find a deterministic EPCF with its absorbing state at x:
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For this to happen, we must have in particular that pðw;xÞ ¼ 1: This in turn
requires that (i) viðw; pÞpviðx; pÞ: Moreover, since x is an absorbing state
ðpðx; xÞ ¼ 1Þ; we need (ii) v1ðx; pÞXv1ðy; pÞ (since the EPCF is symmetric, we can
focus on player 1). First, let us consider (i). Since pðx; xÞ ¼ 1; viðx; pÞ ¼ 1

1
d40; and
viðw; pÞ ¼ 0þ dviðx; pÞ: Obviously, (i) is satisfied with a strict inequality. Thus,
pðw; xÞ ¼ 1 is incentive compatible. Second, (ii) is investigated. Since the EPCF is
fully specified by the previous analysis, it is easy to see the value of

v1ðy; pÞ : v1ðy; pÞ ¼ a þ dv1ðw; pÞ ¼ a þ d2v1ðx; pÞ: Thus, we have
v1ðx; pÞ 
 v1ðy; pÞ ¼ ð1
 d2Þv1ðx; pÞ 
 a

¼ð1
 d2Þ 1

1
 d

 a

¼ 1þ d
 aX0:

Thus, if (and only if) ap1þ d; we can support x as the unique absorbing state of a
deterministic EPCF.

Case 1b: Deterministic EPCFs with unique absorbing state w: We analyze a PCF
with pðx; yÞ ¼ pðy;wÞ ¼ pðz;wÞ ¼ pðw;wÞ ¼ 1: (Since it is deterministic, the EPCF
must treat moves to y and z asymmetrically. The only other case is the mirror image
of this, to be analyzed in exactly the same way.)
Since pðy;wÞ ¼ pðz;wÞ ¼ 1 always follows, we only need to focus on (i) pðx; yÞ ¼ 1

and (ii) pðw;wÞ ¼ 1 (or pðw; xÞ ¼ 0). First, we analyze (i): In order to give player 1 an
incentive to move from x; we need a þ dv1ðw; pÞXv1ðx; pÞ: Note that v1ðx; pÞ ¼
1þ da þ d2v1ðw; pÞ and v1ðw; pÞ ¼ 0: Thus, what we need is aX1þ da or aX 1

1
d:

Second, we check (ii): It is sufficient to show that player 2 (who suffers more by

moving to x) does not agree with moving to x: Thus, we need 0 ¼
v2ðw; pÞXv2ðx; pÞ ¼ 1þ db þ d2v2ðw; pÞ ¼ 1þ db: Therefore, if (and only if) (i)

aX 1
1
d and (ii) bp
 1

d are satisfied, then w can be supported as the unique

absorbing state of a deterministic EPCF.
Case 1c: Deterministic cyclical EPCF. We analyze a PCF with pðx; yÞ ¼ pðy;wÞ ¼

pðw; xÞ ¼ 1: We need two conditions: (i) a þ dv1ðw; pÞXv1ðx; pÞ; and (ii)
v2ðx; pÞXv2ðw; pÞ (since player 2 suffers more by moving to x). However, we know

viðw; pÞ ¼ dviðx; pÞ for i ¼ 1; 2;

v1ðx; pÞ ¼ ð1þ da þ d20Þ þ d3ð1þ da þ d20Þ þ? ¼ 1þ da

1
 d3

and

v2ðx; pÞ ¼ ð1þ db þ d20Þ þ d3ð1þ db þ d20Þ þ? ¼ 1þ db

1
 d3
:

Thus, condition (i) becomes

aXð1
 d2Þv1ðx; pÞ ¼ ð1
 d2Þ1þ da

1
 d3
¼ ð1þ dÞð1þ daÞ

1þ dþ d2
:
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This is equivalent to aX1þ d: Condition (ii) boils down to v2ðx; pÞX0; which is
equivalent to bX
 1

d: Hence, if (i) aX1þ d and (ii) bX
 1
d are satisfied, then this

cyclical deterministic EPCF is supportable.
Case 2a: Stochastic symmetric EPCFs with an absorbing state w: Once again, we

set up the value functions. We focus on player 1 without loss of generality
(symmetry):

v1ðx; pÞ ¼ 1þ d
2
ðv1ðy; pÞ þ v1ðz; pÞÞ;

v1ðy; pÞ ¼ a þ dv1ðw; pÞ;

v1ðz; pÞ ¼ b þ dv1ðw; pÞ;

v1ðw; pÞ ¼ 0:
By substituting v1ðw; pÞ ¼ 0 to others, we obtain

v1ðx; pÞ ¼ 1þ d
2
ða þ bÞ;

v1ðy; pÞ ¼ a;

v1ðz; pÞ ¼ b:

Since bo0; pðy;wÞ ¼ pðz;wÞ ¼ 1 are incentive compatible. Moreover, pðw;wÞ ¼ 1
can be supported if v1ðx; pÞp0; or a þ bp
 2

d: Now, the question is if we can

support pðx; yÞ ¼ 1
2
: The answer is yes, if v1ðy; pÞXv1ðx; pÞ; or aX1þ d

2
ða þ bÞ: Thus,

if (i) a þ bp
 2
d; and (ii) aX1þ d

2
ða þ bÞ; then the above PCF is indeed an EPCF.28

Since condition (ii) is satisfied trivially (a is the highest payoff of all), condition (i) is

the only one that needs to be satisfied. That is, if a þ bp
 2
d; then w can be

supported as unique absorbing state of a symmetric stochastic EPCF.

Case 2b: Stochastic symmetric cyclical EPCFs. We analyze a PCF with pðx; yÞ ¼
pðx; zÞ ¼ pp1

2
; and pðy;wÞ ¼ pðx;wÞ ¼ pðw; xÞ ¼ 1: Again, the key conditions are (i)

v1ðy; pÞXv1ðx; pÞ; and (ii) v1ðx; pÞXv1ðw; pÞ: The formula of v1ðx; pÞ can be written as
v1ðx; pÞ ¼ 1þ dfpðv1ðy; pÞ þ v1ðz; pÞÞ þ ð1
 2pÞv1ðx; pÞg

¼ 1þ dpða þ bÞ þ 2d2pv1ðw; pÞ þ dð1
 2pÞv1ðx; pÞ

¼ 1þ dpða þ bÞ þ 2d3pv1ðx; pÞ þ dð1
 2pÞv1ðx; pÞ:
Thus, we have

f1
 dþ 2dp 
 2d3pgv1ðx; pÞ ¼ 1þ dpða þ bÞ

28We can also consider a PCF with pðy;wÞ ¼ pðz;wÞ ¼ pðw;wÞ ¼ 1; pðx; yÞ ¼ pðx; zÞ ¼ p; and pðx;wÞ ¼
1
 2p for pAð0; 1

2
Þ: It is easy to see that whenever there is such an EPCF, we also have an EPCF described

in the main text.
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or

v1ðx; pÞ ¼ 1þ dpða þ bÞ
ð1
 dÞð1þ 2dpð1þ dÞÞ:

Now, we are ready to check condition (i). We need v1ðy; pÞ ¼ a þ
d2v1ðx; pÞXv1ðx; pÞ; or a

1
d2
Xv1ðx; pÞ: Thus, we need

1þ dpða þ bÞ
ð1
 dÞð1þ 2dpð1þ dÞÞp

a

ð1
 dÞð1þ dÞ

or

1þ dpa þ dpbp
ð1þ 2dpð1þ dÞÞa

1þ d
¼ a

1þ d
þ 2dpa:

Hence, condition (i) boils down to

bp
1

ð1þ dÞdp
þ 1

� �
a 
 1

dp
:

Now, condition (ii). This is equivalent to v1ðx; pÞX0; or a þ bX
 1
dp
: These two

conditions together, we finally obtain,


a 
 1

dp
pbp

1

ð1þ dÞdp
þ 1

� �
a 
 1

dp
:

Recall pAð0; 1
2
�: Thus, an stochastic EPCF with pðx; xÞ ¼ 0 ðp ¼ 1

2
Þ can be supported

in the parameter range of 
a 
 2
dpbpð2þdþd2

dþd2
Þa 
 2

d: The second inequality is almost

always satisfied if a41 (the prisoners’ dilemma) and d close to unity. The first
inequality is more demanding and we need 
2pa þ b in the case of d being close to
unity.

What if p is less than 1
2? In this case, pðx; xÞ40 holds. To have this situation,

players 1 and 2 need to be indifferent between deviating from x and staying at x: This
implies the second inequality needs to hold as an equality. Thus, we need have

b ¼ 1

ð1þ dÞdp
þ 1

� �
a 
 1

dp

or

p ¼
1
 a

1þd

dða 
 bÞ:

Thus, if aX2; then there is no such p40 for any do1; and we can only have a
stochastic EPCF with p ¼ 1

2
: If ao2; then the above p satisfies the first inequality as

long as d4a 
 1; and po1
2
can form a stochastic EPCF. &
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