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We study informal insurance within communities, explicitly recognizing the possibility that
subgroups of individuals may destabilize insurance arrangements among the larger group. We therefore
consider self-enforcing risk-sharing agreements that are robust not only to single-person deviations but
also to potential deviations by subgroups. However, such deviations must be credible, in the sense that
the subgroup must pass exactly the same test that we apply to the entire group; it must itself employ
some self-enforcing risk-sharing agreement. We observe that the stability of subgroups is inimical to the
stability of the group as a whole. Two surprising consequences of this analysis are that stable groups
have (uniformly) bounded size, a result in sharp contrast to the individual-deviation problem, and that the
degree of risk-sharing in a community is generally non-monotonic in the level of uncertainty or need for
insurance in the community.

1. INTRODUCTION

Risk is a pervasive fact of life in developing countries. As a response to the large fluctuations in
their income, individuals—mainly in rural areas—often enter into informal insurance or quasi-
credit agreements. To be sure, such arrangements are potentially limited by the presence of
various incentive constraints. As a first cut, it appears that the most important constraint arises
from the fact that such agreements are not written on legal paper, and must therefore be designed
to elicit voluntary participation. To be self-enforcing, the expected net benefits from participating
in the agreement must be at any point in time larger than the one time gain from defection.1

There is a growing body of literature, both theoretical and empirical, on self-enforcing
risk-sharing agreements. Some important theoretical contributions are Posner (1980), Kimball
(1988), Coate and Ravallion (1993), Kocherlakota (1996), Kletzer and Wright (2000), and Ligon,
Thomas and Worrall (2002).2 Our starting point is the following observation: all these studies
(and to our knowledge all existing studies) define “self-enforcing” agreements as those that
are proof from defection byindividual members of the group. As a consequence, the common

1. Udry (1994), in his study of rural northern Nigeria, finds this constraint to be the most important in describing
the structure of reciprocal agreements. While this does not prove that other informational asymmetries are of second-
order importance (for instance, they may limit the choice of whom to transact with in the first place), we feel that the
self-enforcement constraint represents a good first approximation.

2. The literature on risk-sharing without commitment in rural societies started with the suggestions of Posner
(1980) and Kimball (1988) that schemes of mutual insurance with limited commitment were possible. In an important
paper, Coate and Ravallion (1993) characterized mutual insurance arrangements with a restriction to stationary transfers
for a symmetric two-household model. A recent strand of literature investigates efficient dynamic contracts in the absence
of commitment (Kocherlakota (1996), Kletzer and Wright (2000), Ligonet al. (2002)).
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practice in the literature is to define self-enforcing risk-sharing agreements as subgame perfect
equilibria of a repeated game (in which self-insurance is always an option), and to characterize
the Pareto frontier of such equilibria. But this raises the obvious question: if a “large” group—
say the village community or a particular caste or kinship group within the community—can
foresee the benefits of risk-sharing and reach an agreement, why might smaller groups not
be able to do so? Why would subgroups not be able to agree to jointly defect and share risk
among themselves? This concern implies that to be truly self-enforcing, an informal risk-sharing
agreement needs to be immune to joint deviations by subgroups. At the same time, it seems
only natural to require that deviating groups themselves satisfy the same criterion. To be of
any value—or to pose a credible threat to the group at large—a deviating coalition should also
employ self-enforcing arrangements. These embedded constraints characterize the concept of
self-enforcing risk-sharing agreements and stable coalitions that we define in this paper.

Despite their importance, issues of participation and group formation have been little dis-
cussed in the literature on informal risk-sharing. As we shall see, this criticism is not just one
of methodology, it has substantive implications. The most important of these is that the “indi-
vidual deviations” framework places no bound on group size. For instance, in a homogeneous
population, the larger the group the higher theper capitautility from risk-sharing. Barringother
impediments to group size, the theory implies that any efficient agreement has to be at the level
of the “community”. That is why most empirical tests of insurance (Deaton (1992), Townsend
(1994), Udry (1994), Grimard (1997), Jalan and Ravallion (1999), Gertler and Gruber (2002),
Ligon et al. (2002)) take the unit of analysis as exogenous and study the extent of insurance at
the level of the village or even larger groups.3 Of course, this is not to say that group limits are not
taken seriously. But other considerations—caste, kinship, or even the informational decay that
must ultimately affect large groups—must be brought in to complete the picture. One could, of
course, model this in several ways: for instance, by positing some cost of group formation which
increases with the size of the group (see,e.g.Murgai, Winters, Sadoulet and de Janvry (2002)).

We abstract from all such factors. We endogenize not just the extent of insurance within
given groups, but the process of group formation within a community. Without invoking any of
the additional considerations described in the previous paragraph, we show that there are limits
to group size (though at this time we have not obtained clear characterizations of these limits).
Indeed, we show that for any parametric configuration of the environment, only afinitenumber of
group sizes can be stable, even though—in principle—every potential group size is allowed for.

An important and paradoxical consequence of this observation is that an increase in the
need for insurance—stemming either from a change in the environment or in some behavioural
parameter such as the degree of risk aversion—candecreasethe extent of risk-sharing among
the population. Indeed, it can do so by reducing the maximal stable group size. It is important

3. These studies typically test for full insurance at the community (village) level in less developed countries,
many of them inspired by Townsend’s (1994) well-known study of risk and insurance in village India. In this study,
Townsend finds evidence consistent with substantial insurance but rejects full insurance. Similar conclusions have been
found by many authors such as Deaton (1992) in the context of Côte d’Ivoire, Ghana and Thailand, by Udry (1994)
for northern Nigeria, and Jalan and Ravallion (1999) in villages of rural China. Ligonet al. (2002) test the constrained
efficient or dynamic limited commitment model on the ICRISAT Indian households. Gertler and Gruber (2002) look at
consumption insurance in case of major illnesses in Indonesia. Grimard (1997) tests the full insurance model among even
larger groups defined along ethnic lines in Côte d’Ivoire. All the above reject complete risk-sharing at the level of the
community or even larger ethnic group, but provide significant evidence of partial insurance. From a related perspective,
Townsend (1994) and Chaudhuri and Ravallion (1997) find that the poor have only limited insurance against idiosyncratic
shocks. Rosenzweig (1988) studies the transfers themselves in the same data set and estimates these to typically be less
than 10% of the typical income shocks in bad periods. Morduch (1991) obtains similar results using the Indian ICRISAT
data. He finds evidence of risk-sharing within groups, but not across groups. He finds that the poor have only limited
insurance against idiosyncratic shocks. He also notes a caste effect. Cox and Jimenez (1991) find that just 40% of black
South African households and fewer than 10% of white South African either give or receive transfers.
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to note that such an observation cannot be obtained in a model with only individual deviations,
even if considerations of kinship or information are brought in to close off group size. With an
increase in output uncertainty, these considerations would be given somewhat less importance at
the margin, so equilibrium group size can only expand.4

We do not attempt, in this paper, to provide empirical support for the possibilities raised
here. But it is worth noting that the few papers actually addressing the issue of risk-sharing among
subgroups find convincing evidence for it; see Fafchamps and Lund (2001) and Murgaiet al.
(2002).5 Both these studies suggest that the explanation for the formation of these subgroups
must lie in the existence of “group costs” that increase with the number of participants in the
risk-sharing agreement. For instance, Murgaiet al. (2002) observe that: “if establishing and
maintaining partnerships is indeed costless, there is no reason for a mutual insurance group not to
be community-wide or world-wide. Real world limits to group size must therefore be the result
of costs relating to the formation and maintenance of partnerships”.

We suggest that there may be more fundamental reasons for group splintering. Naturally,
one can think of many reasons for which group size may be limited, and we have already
mentioned some of these. Individuals belonging to a certain religion, caste or ethnicity may
prefer not to transact with anyone outside their group. Asymmetries of information and the lack
of enforcement may be less pronounced among people living next to each other, sharing the
same relatives, having the same activities, etc. But although these motives may limit the number
of people one may consider sharing risk with, that generally leaves a significant group of people
still available.

Further theoretical and empirical investigation of risk-sharing agreements—with a sharp
focus on strategic group formation—would be very useful, especially given the potential
importance of the policy implications. From a theoretical perspective, a tighter characterization of
stable group sizes is much needed. Once these limits are well established for the homogeneous
case, heterogeneity among the agents can be better studied. For instance, the consequences of
endogenous matching—e.g. along wealth levels (Hoff, 1997) or risk characteristics (Ghatak
(1999), Sadoulet (1999))—may be investigated against this background.

2. THE FORMATION OF MUTUAL INSURANCE GROUPS

2.1. Introduction

A community ofn identical agents is engaged in the production and consumption of a perishable
good at each date. Each agent produces a random income which takes on two values:h with
probability p and ` with probability 1− p. The terminologyh and ` naturally suggests the
orderingh > ` > 0. Income realizations are independent and identical, over people as well as
dates.

Each agent has the same utility function, increasing, smooth and strictly concave in
consumption. We thus have an instance of a classical group insurance problem. The (symmetric)
Pareto optimal allocation is reached by dividing equally—and among all members of the
community—the aggregate available resources at each period. Naturally the larger the group
the smaller the dispersion ofper capitaoutput, and the larger the potential value of insurance.

4. It is logically possible that an increase in output uncertainty can simultaneously increase informational
asymmetries, so much so that equilibrium group size shrinks as a consequence. But one would need rather strong
assumptions to derive such a prediction.

5. Fafchamps and Lund (2001) examine—in the context of the rural Philippines—whether gifts and loans
circulate among networks of friends and relatives, or whether risk is efficiently shared at the village level. Murgaiet al.
(2002) investigate water transfers among households along a watercourse in Pakistan’s Punjab. They find that reciprocal
exchanges are localized in units smaller than the entire watercourse community. Unfortunately—these exceptions apart—
issues of participation and group formation have been little discussed in the literature on informal risk-sharing.
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As motivated and discussed in the Introduction, we focus on the theme that insurance
arrangements must be self-enforcing, and that this requirement constrains the form of such
arrangements. Briefly, the enforcement constraint refers to the possibility that at some date, an
individual who is called upon to make transfers to others in the community refuses to make those
transfers. The constraint is then modelled by supposing that the individual is excluded from the
insurance pool, so that he must bear stochastic fluctuations on his own (there may be additional
sanctions as well). If the power of such punishments is limited, then perfect insurance (which
calls for extensive transfers) may not be possible. The literature cited above concentrates on the
structure of “second-best” self-enforcing schemes.

In this paper, we extend the enforcement constraint in a natural way. There is no reason to
believe that only anindividual will deviate from an ongoing arrangement. An entire subset of
individuals—acoalition—may instigate a joint deviation by refusing to contribute to the wider
community and thereafter forming their own reciprocity “subgroup”. To be sure, the subgroup
itself may be vulnerable to further deviations and so may lack “credibility” in its threats (see Ray
(1989)). Thus we only permit credible coalitions—those that are stable in their own right—to
pose a threat to the community as a whole. We shall show that these threats have a dramatic
effect on our predictions concerning the extent of insurance, and especially on the way the need
for insurance varies with the amount of (exogenous) environmental risk.

Our insistence on immunity with respect to blocking coalitions is reminiscent of recent
literature on endogenous coalition formation (see,e.g.Bloch (1996, 1997), Ray and Vohra (1997,
1999, 2001)). However, there is a difference. In the cited literature, coalitions respond to a
proposedex antearrangement by blocking it, or by proposing alternatives, etc. In this case, a
tighter constraint must be observed; namely, that created by therealizationof income shocks at
every date. Thus, in contrast to the “participation constraints” of the literature on endogenous
coalition formation, these are truly “incentive constraints”. In this sense, our approach also bears
a close connection to coalition-proof Nash equilibrium (Bernheim, Peleg and Whinston, 1987)

In the main part of the paper, we develop the theory of group enforcement constraints under
the simplifying assumption that each coalition or group, once formed, attempts to implement
somesymmetric and stationaryrisk-sharing arrangement. This assumption allows us to make the
main points very cleanly. But it is not a critical assumption. In a later section, we point out how
the theory can be extended to the case in which coalitions implement arbitrary (nonsymmetric,
nonstationary, history-dependent) arrangements among their members.

This is not to say that our analysis is entirely devoid of restrictive assumptions. The most
important of these is the assumption that only subsets of existing groups are permitted to deviate.
We discuss this and other issues in Section 4.

2.2. Stable groups

Because the stability of a group is threatened by subgroups of individuals, it is possible to define
group stability recursively. To this end, we begin with individuals (or singleton coalitions). The
lifetime utility of an individual in isolation (normalized by the discount factor to a per-period
equivalent) is simply

v∗(1) ≡ pu(h)+ (1 − p)u(`).

Because singleton groups have no proper subsets, this is the stable worth of an individual.
Recursively, having defined stable worths for allm = 1, . . . ,n−1, consider some coalition

of sizen. We first define a (symmetric and stationary)transfer scheme. This may be written as a
vectort ≡ (t1, . . . , tn−1), wheretk is to be interpreted as the (non-negative) transfer or payment
by a person in the event that his income ish and kindividuals drawh. We only consider nontrivial
schemes in whichtk > 0 for somek.
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With a transfer scheme in mind we can easily back out what a person receives if his income
draw is` andk individuals produceh. The total transfer is thenktk, to be divided equally among
then − k individuals who producel . Thus a transfer schemet implies the following: if there are
k high draws, then a person consumesh − tk if he producesh, and` +

ktk
n−k if he produces̀ . It

follows that the expected utility from a transfer schemet is given by

v(t,n) ≡ pnu(h)+ (1− p)nu(`)+
∑n−1

k=1
p(k,n)

[
k

n
u(h − tk)+

n − k

n
u

(
`+

ktk
n − k

)]
, (1)

where p(k,n) is just the probability ofk highs out ofn draws.6 Define a (nontrivial) transfer
scheme to bestableif for all k = 1, . . . ,n − 1,

(1 − δ)u(h − tk)+ δv(t,n) ≥ (1 − δ)u(h)+ δv∗(s) (2)

for every stables ≤ k.
The interpretation of stability is quite simple. We require that for all possible income

realizations, the stipulated transfers be actually carried out. If (2) fails for somek ands ≤ k,
this means that there is a stable coalition of sizes who can credibly refuse to pay what they are
required to pay (whenk individuals draw high). Such a transfer scheme will, sooner or later,
break down.7

Say thata group of size n is stableif a stable transfer scheme exists for a group of sizen.
Definev∗(n) to be the maximum possible value ofv(t,n), where the maximum is taken over the
set of all stable transfer schemes for a group of sizen. Otherwise,n is unstableandv∗(n) is not
defined.

3. GROUP STABILITY AND THE NEED FOR INSURANCE

Our main interest lies in examining the relationship between the “need for insurance” and the
“stability of insurance groups”. We begin by making these phrases more precise in our particular
context.

The need for insurance is, of course, a composite object: it will vary with the extent of
environmental uncertainty (proxied by the gap betweenh and`), and given the environment, it
will vary with the degree of risk aversion. For our purposes, it will turn out that a useful measure
of the need for insurance is the ratiou

′(`)−u′(h)
u′(h) , which we henceforth denote byθ . Keeping

everything else constant, notice that a mean preserving spread betweenh and ` increasesθ .
Moreover, for the same income distribution, a utility function that exhibits a higher risk aversion
throughout its domain will translate into a higher need for insurance. Hence, our measure
incorporates both environmental uncertainty and attitudes towards risk, albeit in summary form.

The “stability of insurance groups” is a more problematic concept. One might be interested,
for instance, in the entiresetof stable groups, which can behave in a complicated fashion. We
simply assume that there is some given population size in the community, and ask how close we
can get to this without forsaking stability. In other words, we are interested in the largest stable
group.

6. That is,p(k,n) =
n!

k!(n−k)! pk(1 − p)n−k.
7. It might be objected that this definition of stability is too stringent, in the sense that it requires the group of size

n to be immune toeverypossible realization of the random shocks, and not simply those which occur with “high enough”
probability. However, provided expected payoffs are calculated properly, it is easy enough to see that the two definitions
are equivalent. For suppose that a transfer scheme is stable under the weaker definition, noting that in the “unstable” low
probability states no transfers will be implemented. Then a new transfer scheme which is the same as the old except for
suitably chosen small transfers in the previously “unstable” states will be stable in our sense.
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3.1. The individual enforcement problem

It will be useful to begin by considering the well-known problem in which only the individual
enforcement constraint must be respected. Fix a population ofn individuals, and let̂v(n) denote
the maximum value of (1) when (2) is only invoked fors = 1. In other words,̂v(n) is the solution
to the following problem:

maxt v(t,n) (3)

subject to

(1 − δ)u(h − tk)+ δv(t,n) ≥ (1 − δ)u(h)+ δv∗(1) (4)

for all k = 1, . . . ,n − 1.
If there is some nontrivial transfer scheme that solves this problem, say that a group of size

n is individually stable, or i-stable for short.
The following proposition fully characterizes i-stability for symmetric stationary equilibria.

Proposition 1. A group size n isi-stableif and only if

θ >
1 − δ

δp(1 − pn−1)
. (5)

Proposition 1 states that some minimal need for insurance is required for a group to be
i-stable; indeed, when the need for insurance is very low no group is i-stable. To see this, note
that the R.H.S. of (5) is bounded below (uniformly inn) by the expression1−δ

δp , so that if the
need for insurance is lower than this valuenogroup size, however large, can be stable.

As the need for insurance increases above this absolute minimum, i-stable groups begin to
appear. Indeed, they appear in a particular order. An easy consequence of Proposition 1 is

Corollary 1. If n is i-stable, so is n′ for all n′ > n.

This tells us that larger groups do better in terms of i-stability than smaller groups do.

3.2. Low need for insurance

The preceding discussion has an immediate implication. Fix a community of sizen, and carry
out the thought experiment of raising the need for insurance (for instance by creating a mean-
preserving spread of the income distribution) from a value close to zero. By Proposition 1, a
group of two or more individuals must initially not be i-stable, anda fortiori, it must be unstable.
At some pointθ crosses the critical threshold given by the R.H.S. of (5).Justat this point, the
only i-stable group size isn itself (and all larger sizes, but these are irrelevant). It follows thatn
must be stable as well, because all smaller groups are unstable.

We may summarize this discussion in the following proposition, which is an obvious
corollary of Proposition 1.

Proposition 2. As the need for insurance increases, the first group to attain(full) stability
is the entire community.

3.3. High need for insurance

As the need for insurance continues to rise, smaller groups become i-stable. The question is: does
the newly acquired stability of these groups threaten to disrupt the stability of larger groups?
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TABLE 1

Stability for various values ofθ

θ 2 stable? 3 stable?

≤0·6096 × ×

0·7195 ×
√

0·9136
√ √

1·6375
√

×

2·6601
√ √

General arguments that apply to the comparison of any two i-stable groups are hard to
obtain, as the following example shows.

Example1. Set community sizen equal to 3, and assume that individuals have the CRRA
utility indicator

u(c) =
1

1 − ρ
c1−ρ

whereρ is the Arrow–Pratt coefficient of relative risk aversion.
The following parameters are set through the example:δ = 0·83, ρ = 1·6 and p = 0·4.

We consider several options for̀ and h, keeping mean income constant throughout,8 but
progressively raising the value ofθ . The results are reported in Table 1.

The table shows that stability is a complex object to check for. When the need for insurance
is low, the three-person community is stable, in line with Proposition 2. Thereafter, two-person
groups also acquire stability, but fail to generate enough insurance to threaten the community as
a whole. The situation changes, however, when the need for insurance is still larger. While both
two- and three-person groups gain in i-stability, the gain enjoyed by the former is large enough
to render the three-person community unstable. In contrast to the notion that more uncertainty
generates larger insurance groups, the maximal stable group sizefalls. Yet, as the final row of
Table 1 shows, the fall is not inevitable: forstill higher degrees of uncertainty, the three-person
community regains its stability.9

It should be clear from this example that general results regarding stability will be hard to
come by, though the possibility that stable group size responds perversely to greater uncertainty
is well illustrated even in this special case. In the remainder of this section, we outline some
general findings.

In what follows, it will initially be useful to fix the need for insurance and ask a preliminary
question: in agivenenvironment, are there an infinity of stable groups? To be sure, the answer
must be in the negative when the need for insurance is “small”; to be precise, whenθ < 1−δ

δp .
For we know from Proposition 1 that in this case there is no i-stable group (other than the
singletons), and consequently no stable group either. Once this critical bound is passed, however,
Corollary 1 tells us that an infinity of i-stable groups appear. The lowest i-stable size is the
smallest value ofn for which (5) holds, and every group size exceeding this bound is also i-stable.
The question of whether there is an infinite number ofstablegroups now becomes nontrivial, and
is answered in

8. We set mean income equal to 2·4 through the example.
9. The detailed numbers are available on request from the authors.
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FIGURE 1

An illustration of Proposition 3

Proposition 3. For each level of need for insuranceθ > 1−δ
δp , there are thresholds̄n(θ)

and n(θ) such that

2 ≤ n(θ) ≤ n ≤ n̄(θ) < ∞, (6)

for every stable group size n. Moreover,

n(θ) ↑ ∞ as θ ↓
1 − δ

δp
. (7)

Figure 1 provides a graphical description of the proposition. The lower boundn(θ) is easy
enough to obtain: it is simply the size of the smallest i-stable group and is therefore the smallest
value of n such that (5) holds. This immediately explains whyn(θ) ≥ 2 (onceθ lies above
the critical threshold1−δ

δp ), and why this threshold becomes infinitely high asθ descends to the
critical threshold.

The nontrivial part of the proposition asserts the existence of anupper bound on stable
groups. This observation, by the way, contrasts with the existence of infinitely many stable sizes
in the coalition formation literature (see,e.g.Bloch (1996), Ray and Vohra (1997) for results
on stable cartels in oligopoly, and Ray and Vohra (2001) for results on the efficient provision of
public goods). It is peculiar to the insurance problem.

To see why, consider this intuitive account of the proof. If the assertion were false, there
would be (for some need for insurance ) an infinity of stable sizes. But we do know that the
marginal “diversification gain” from an increase in size ultimately tends to zero. Therefore, we
may pick a stable sizen such that a coalition of sizen is able to reap most of the benefits
of sharing risk: a larger stable group improves theper capitautility of its members by only a
small amount. It follows from the enforcement constraint that in any larger stable coalition, the
transfers made whenever at leastn people have a good shock have to be close to 0. Because the
set of stable sizes is infinite, we can choose this stable coalition sufficiently large such that the
probability that at leastn people have a good shock is close to 1. Therefore the worth of such
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a coalition can be brought arbitrarily close to autarkic utility, but this contradicts the presumed
stability of that coalition.10

In addition Proposition 3 allows us to derive a general “nonmonotonicity” result akin to the
sort indicated in Example 1.

Proposition 4. There is an integer̃n with the following property. For every community
size n≥ ñ, there exist degrees of uncertaintyθ1 andθ2, with θ2 > θ1, such that n is stable under
θ1 but is unstable underθ2.

The proof follows immediately from an examination of Figure 1. The lower boundñ can
be taken to be any value that lies above the “stable correspondence” at some point. Then for any
n ≥ ñ, it is obvious that stability obtains at the value ofθ that corresponds to the inverse image
of n (evaluated atn)—θ1 in the figure—while stability fails oncēn(θ) falls belown — e.g.at θ2
in the figure.

These propositions are silent on just how restrictive coalition considerations can be.
Unfortunately, we have no general results to this effect. But an example may be illustrative.

Example2. Consider a community of 10 individuals with the same functional form for
utility as in Example 1;

u(c) =
1

1 − ρ
c1−ρ,

whereρ is the Arrow–Pratt coefficient of relative risk aversion. We also use the same specific
parameters as in Example 1:δ = 0·83,ρ = 1·6, p = 0·4, ` = 2 andh = 3.

We evaluate—for each group size ranging from 1 to 10—the return to informal insurance.
One natural way to do this is to look at the gain over and above autarky, compared to the
correspondingper capitagain that the first-best providesin the community of all10. If ṽ denotes
this latter value and̂v(n) is the i-stable value for a group of sizen, then the i-stable gain may be
reported as

v̂(n)− v(1)

ṽ − v(1)
× 100

in percentage terms. Similarly, ifv∗(n) is the stable value for a group of sizen, then the stable
gain is described as

v∗(n)− v(1)

ṽ − v(1)
× 100,

again in percentage terms. The results for this example are reported in Table 2.
It turns out that within this population of 10 and for the parameter values described, only

individuals and groups of size 2 and 3 are stable. The question arises then: which groups do we
expect to see and if there are groups of different sizes which payoffs do we look at? Since we are
looking at constrained efficient schemes among identical agents, a good contender is the partition
of the population into stable groups that maximizes the expected utility of an agent, under the
assumption that his probability to be in any given group is proportional to the size of the group.
In this example, this rule predicts that the population would break into three stable groups of
three and one individuals (which means a 90% chance to getv∗(3) and a 10% probability to get

10. The argument is much more subtle when history-dependent and asymmetric strategies are involved. The
subtlety arises from the fact that to prevent a group deviation byn individuals, only a subset of them (one, at best!) needs
be deterred. With general strategy spaces, the additional flexibility arising from unequal treatment becomes available. We
return to these issues below.
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TABLE 2

Stable gains are limited

n Stable? i-stable gain (%) Stable gain (%)

1
√

0 0
2

√
10 10

3
√

50 38
4 × 61 ∅

5 × 69 ∅

6 × 75 ∅

7 × 78 ∅

8 × 81 ∅

9 × 84 ∅

10 × 85 ∅

v(1)). That is, an individual’s stable payoff gain is 38% (see Table 2) with probability 9/10 and 0
otherwise. This implies a stable gain of only 34% which is less thanhalf the return (85%) were
we not to account for coalition formation.

Much has been written on “social capital” in the past few years. In the insurance context one
could measure the return to such capital very much as we have done here. Clearly, recognizing
the possibility of coalition deviations dramatically reduces the estimated return on social capital.

One might object that Example 2 is only described for a very special set of parameter
values. Computations for several parameter values11 reveal both robustness and sensitivity, in
the following sense.

Equilibrium group sizes and the need for insurance are very sensitive to the parameters. As
Coate and Ravallion (1993) observed in their computations, “[o]ne striking feature of the results
. . . is how sharply the performance varies. Even quite a successful risk-sharing arrangement may
vanish with certain seemingly modest perturbations to parameter values, such a small decline in
the participants’ aversion to risk”. These observations are compounded by an order of magnitude
in our model. Even anincreasein risk (or in the aversion to it) may destroy previously successful
insurance arrangements as previously non-viable subgroups now become viable, destroying the
viability of the larger community. In this example, for instance, increasing the need for insur-
anceθ from 0·91 to 1 causes a group of size 3 to become unstable. Several perturbations ofθ

and p cause the stable gain to fluctuate from 20% (a fifth of the corresponding i-stable gain) to
37% (45% of the corresponding i-stable value). This suggests a great deal of sensitivity in the
quantitative magnitudes. However, the results are surprisingly robust in the sense that potential
coalition deviations inevitably cause a large fraction of the potential benefits from insurance not
to be reaped.

4. LIMITATIONS AND POSSIBLE EXTENSIONS

We have made several assumptions in the analysis so far, some of them implicit. In this section,
we discuss the more important restrictions (several of them will be taken care of as we move on
to the nonstationary case in Section 5).12

11. The computations, conducted on MATLAB , are available on request from the authors, and are also available at
http://www.restud.com/supplements.htm.

12. Some of the obvious suspects are not crucial at all. For example, it is easy to generalize the ideas of this paper
to the case in which there are several income realizations, not just two, as well as to the case in which income shocks are
correlated across agents, as in Kocherlakota (1996).
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4.1. On group formation

An important restriction runs through the entire exercise, and it is unclear how crucial this is for
the results we obtain. This is the assumption that onlysubgroupsof existing groups can deviate.
In other words,when we consider further deviations from subgroups, we do not permit new
groups to form by putting together fragments from several existing groups, nor do we permit
wholesale mergers of existing groups. But the emphasized phrase in the previous sentence is
important: we certainly allow groups of any size to form at the outset; no restriction is imposed
at that stage.

The problem arises because it is unclear how to formalize arbitrary deviations, and not
because there is somea priori suspicion that this will invalidate our results. One issue is the
potential threat of “cyclical blocking chains”, which often frustrates the basic task of formulating
a satisfactory solution concept.13 Suppose that there are three agents. Consider all possible
groupings of two individuals each. At first blush, each such group is unstable: for instance, the
group {12} could disintegrate when person 1 gets a good shock: 1 could refuse to make any
transfers, team up with person 3, and replicate whatever it is that{12} planned to do in the future.
The same argument holds with each pair of individuals. But this approach is inconsistent: if all
pairs are known to lack viability, then a particular pair should be able to exploit the consequent
instability to attain viability on its own (under the credible threat that any alliance with an outside
agent will itself disintegrate).

There are two ways around this conceptual problem. First, symmetry may need to be broken:
coalition{12} may be deemed stable while all other pairwise groups are deemed unstable.14 (The
idea generalizes to communities with more agents.) This is consistent: groups{13} and{23} are
both unstable because of the perceived threat from{12}, while this last pair is stable because there
is no credible threat from the other pairs. Second, one might entertainsymmetricprobabilistic
solutions, in which deviations occur stochastically so that each pair has an uncertain lifetime.
This will require, of course, that a potential deviator be indifferent between remaining in the
group and joining hands with an outsider, and this indifference condition will pin down group
value (see Konishi and Ray (2002) for an approach to coalition formation along these lines).

Note that neither approach compromises our results in any qualitative sense, though it is
possible that the list of stable group sizes will be altered.

4.2. Who deviates?

Notice that in our definition, we consider potential deviations only by agents whose income
realizations are high. Might people with a bad shock never want to deviate? There are two
responses to this question. First, once we consider asymmetric or history-dependent equilibria
there is no reason to exclude low draws from the list of potential deviants: they may well be
called upon to make transfers. We take this fully into account in Section 5.

Second, it is possible that low draws may participate in group deviations even when we
consider symmetric, stationary equilibria. Our analysis makes an implicit—but, in our view,
reasonable—assumption that rules out this possibility. To clarify this, suppose that a subgroup of
two agents in a community of four receive a good shock. Suppose, moreover, that the two-person
enforcement constraint is satisfied, either because a two-person coalition is unstable and does not
pose a threat, or it is stable but the gains from deviation are not worth the cost of moving from
four to two persons. However, assume that athree-person group is indeed stable, and that our

13. The restriction to “internal deviations” is common ever since the possibility of cyclical chains of blocking was
raised by Shenoy (1979).

14. Bernheim and Ray (1989, p. 307) discuss this issue of asymmetric labelling in a related context.
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two high drawers would prefer to deviate and enjoy the benefits of a three-person arrangement
thereafter. Now, there is no apparent reason why a person with a low draw should join this group:
she is about toreceivemoney and she will thereafter stay with a four-person group, rather than
with three. But it still might happen: if each of the two low drawers were to believe that the
other would join if she didn’t, it might pay to agree. But this sort of behaviour depends crucially
on a coordination failure among the low drawers. If no agent with a low draw were to join the
deviants, then no such agent wouldwant to join.

The same reasoning applies for any number of agents. Given this equilibrium selection,
checking the enforcement constraints only for stable subsets of highs is necessary and sufficient
when considering symmetric stationary strategies.

4.3. Stability relative to some given scheme

The analysis so far goes some way towards explaining the role of group deviations in fully
bounding stable group size. It also explains why the extent of insurance might change in
paradoxical ways as the need for insurance changes. But the arguments we employ are limited,
in that we do not provide a tighter characterization of stable groups. We believe this is a very
difficult question, though certainly not an impossible one.15

One possible approach is to specify some insurance scheme, and then to attempt to describe
the set of stable groups relative to that scheme. An obvious candidate is full insurance, in
which individuals within a group must attempt to equalize their consumption in every period.
Such a scheme may be socially determined, for instance: it may be incumbent on all members,
conditional on being in the same community, to share their resources to the maximum extent. To
be sure, an insistence on such norms may ultimately cause the community to split up. Using a
notion of stability for equal sharing—first-best stability—it is possible to make some progress.

Let ṽ(n) denote the expected utility from a first-best transfer scheme.16 By definition,
individuals are first best stable and the worth of a singleton group isṽ(1). Recursively, having
assessed first-best stability for allm = 1, . . . ,n − 1, a coalition of sizen is said to be first-best
stable if, for allk = 1, . . . ,n − 1,

(1 − δ)

(
u(h)− u

(
k

n
h +

n − k

n
`

))
≤ δ(ṽ(n)− ṽ(s)) (8)

for every first-best stables ≤ k. If n is first-best stable then its worth is simplyṽ(n). Note that
for a given first-best stable sizes it actually suffices to check the constraint fork = s since the
L.H.S. is decreasing ink.

With quadratic preferences, it is possible to show that the set of first-best stable sizes is a
“connected” set of integers:

Observation 1. Let u have the special form u(x) = −(B − x)2 for some B> h. Then n
is stable if and only if for every1 ≤ k ≤ n − 1,

C

k
+

k

n
≥

2

θ
+ 1, (9)

where C=
δ

1−δ
p(1 − p) andθ =

h−`
B−h is the need for insurance, as defined earlier.

15. Yi (1996), Bloch (1997) and Ray and Vohra (2001) all contain applications in which characterizations of
stable groups are provided. These applications include Cournot oligopoly, public goods coalitions, and customs unions.
However, apart from the general methodology, the analysis is typically application-specific.

16. That isṽ(n) ≡
∑n

k=0 p(k,n)u( k
n h +

n−k
n `).
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In particular, if a group of size n is not first-best stable then a group of size n′ > n is not
first-best stable either.

Given (9), the reason for the set of first-best stable sizes being connected is simple: if
condition (9) fails for some group sizen and some subgroup sizek, then it must fail for the
very same subgroup size at all valuesn′ > n.

A corollary of this observation is that a necessary and sufficient condition for the existence
of somenontrivial first-best stable size is the same as the condition for atwo-person group to be
nonempty.17 A specialization of (9) to the case ofn = 2 andk = 1 reveals that the required
necessary and sufficient condition is

δθp(1 − p)

1 − δ
≥ 3/2. (10)

The condition (9) may also be used to obtain a tighter description of the maximal first-best
stable group. We illustrate this by neglecting integer constraints (which are easily accounted
for). Observe that the L.H.S. of (9) is minimized (ink) whenk =

√
nC, this condition being

applicable whenn > C. Solving for the minimum value, we see that the maximal group sizeM
is bounded above by the inequality

M ≤ max

{
C,

4C( 2
θ

+ 1
)2

}
. (11)

Note thatM is boundeduniformly in θ . Whether or not this is a general observation is an open
question (our proposition for stability establishes “pointwise” bounds).

4.4. Strong stability

One might wish to drop the requirement that blocking groups be credible. This is a “strong
equilibrium” notion. In our view, this is very restrictive. It places severe constraints on the
original group, but does nothing to subcoalitions. (The concept is not consistent in a very basic
sense.) It is true that if something survives strong blocking, it passes a big test, but we may be
throwing a lot out.

Briefly, one could define the concept as follows. Say that a (nontrivial) stationary transfer
schemet is strongly stableif for all k = 1, . . . ,n,

(1 − δ)u(h − tk)+ δv(t,n) ≥ (1 − δ)u(h)+ δṽ(s) (12)

for everys ≤ k.18

The set of nontrivial strongly stable sizes may or may not be empty. For instance, the
members of a two-person group can divide their income equally each period with no incentive
to deviate alone, given sufficient patience. Under those circumstances a two-person coalition
would be strongly stable. Less trivially, one can write down examples of three-person insurance
schemes which are immune to two-person deviationsthat employ the first-best insurance scheme
thereafter.

More generally, observe that ifn is strongly stable it has to exhibit perfect risk-sharing,
otherwise the peculiar logic of strong stability renders it vulnerable to a deviation byn itself!
So strong stability is very close to examining the stability of first-best schemes, as discussed in

17. With first-best stability, a two-person group reaches stability at a lower threshold ofθ than any group of
larger size (at least with quadratic preferences). While this superficially runs against the grain of Corollary 1, there is no
contradiction here. First-best stability is different from i-stability.

18. Recall that̃v(n) is the expected utility from a first-best transfer scheme.
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Section 4.3. In fact, when the set of stable sizes is connected (as in the quadratic case discussed
in Section 4.3), the two concepts can be shown to be equivalent.

The set of strongly stable sizes has a finite upper bound. Since first-best risk-sharing is
stationary and symmetric, the proof of this statement is very similar to the proof of Proposition 3
and is therefore not included.

4.5. Group deviations and asymmetric treatment

Our use of symmetric equilibrium may be criticized along the following lines. When group
deviations are important, symmetry necessitates that we must compensateall potential deviants
in a subgroup in order to prevent a deviation. If the symmetry is broken (perhaps stochastically),
then not all deviants need to be so treated. A subset will suffice, containing the minimal number
that must be compensated in order to avoid the deviation. It appears, then, that asymmetric
treatment is a conceivable reaction to group deviations, possibly widening the scope of stability
for a community.

As an illustration, consider an environment similar to Example 1. We solve this numerically
so specific parameters are involved: a population of three individuals with constant relative risk
aversion of 1·6 and a discount factor of 0·83 face an income distribution with mean 2·4 and a
probability p = 0·4 of a low income. It is easy enough to pick a level of insurance needθ = 1·13
(h = 3·1, ` = 1·9) such that, using symmetric and stationary agreements, the only (nontrivial)
stable group size is 2. The stability of groups of size 2 prevents the stability of the full community.

Now we can show that a stable stationary insurance scheme exists for the entire community:
one that makes use ofasymmetrictransfers among the three agents. Defineτ1 = 0·33 and
τ2 = 0·13 and consider the following scheme. When only one individual draws high, he pays
τ1 which is divided equally among the two lows as before. The difference appears when two
members have high incomes. The scheme selects randomly one of the highs and requires him
to payτ1 to the agent with a low income. The other agent with a high draw is asked only to
transferτ2. Under this scheme, it is easy to see that the second agent will not want to deviate in a
group of 2 while the first (who makes the larger transfer) would not want to deviate alone. Hence,
the asymmetric scheme is stable. Clearly, different agents with the same income realization are
treated differently although the randomization ensures that symmetry is respectedex ante.

The points made here and in the previous subsections strongly suggest that an examination
of asymmetric and fully history-dependent schemes is called for as a robustness check on the
results. Fortunately, we are able to report some progress on this important question.

5. ON NONSTATIONARY INSURANCE ARRANGEMENTS

The reader familiar with the insurance literature might ask whether our results extend to non-
stationary schemes. As we have already noted, Section 4 provides additional motivation for such
a query. To this it must be added that history-dependent schemes are of interest even in the case
of individual deviations. Indeed, as Fafchamps (1996), Kocherlakota (1996), Kletzer and Wright
(2000), Ligonet al. (2002) and others have observed, second-best i-stable schemes are generally
history dependent once the first-best fails to be self-enforcing.

In addition, as several authors have argued, history-dependent schemes appear to receive
considerable empirical support. Numerous studies in the economic and anthropological literature
provide evidence that informal risk-sharing agreements and informal credit arrangements are
not clearly separated (see, for instance, Evans-Pritchard (1940), Platteau and Abraham (1987),
Udry (1994)). These studies report a large reliance on what is observationally equivalent to
informal loans with an implicit repayment scheme contingent on the lender’s needs and the
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borrower’s ability to repay. This is actually well reflected in the structure of history-dependent
schemes. Ligonet al. (2002), in their analysis of ICRISAT data, observe that the history-
dependent “dynamic commitment model does better than any of several alternatives in explaining
actual consumption allocations. It provides a better explanation than the benchmark of perfect
risk-pooling; it also performs better than the (stationary) limited commitment model”. Foster
and Rosenzweig (2001) extend this framework to include altruism:19 this permits them to
uncover variations in history dependence as a function of, say, within-family vs. cross-family
arrangements. Such variation is borne out in their analysis, lending further credence to the
view that history dependence is an outcome of lowered commitment ability (proxied here by
altruism). Fafchamps and Lund (2001) also obtain evidence that the “quasi-credit” nature of
insurance appear to fit the data best.20 They conclude that “(the) bulk of the evidence appears
in agreement with the theoretical predictions of (limited commitment) models: risk sharing
takes place through repeated informal transactions based on reciprocity; mutual insurance
takes place through a mix of gifts and no interest loans; and informal indebtedness reduces
borrowing”.

5.1. Insurance arrangements

We first define general insurance arrangements. For a group of sizen, lety be a vector ofrealized
incomes; that is, yi is eitherh or ` for eachi = 1, . . . ,n. Let c be a non-negative vector of
consumptions. Say thatc is feasible(undery) if

∑
i ci =

∑
i yi . For any dates, ans-history—

call it Hs—is a list of all past income realizations and (feasible) consumption vectors. (Ats = 0,
simply use any singleton to denote the 0-history.)

DefineM(y) to be the set of all probability measures over consumption vectorsc such that
c is feasible fory. An insurance arrangementis a list of functionsσ = {σs}

∞

s=0 such that for
all s ≥ 0, σs maps the product ofs-histories and current income realizationsy to lotteries in
M(y). We will say that an insurance arrangement isnontrivial if it places positive probability on
schemes that involve nonzero transfers for some states.

Observe that an insurance arrangement generates a vector of expected payoffs following
every s-history Hs: call this vectorv(Hs, σ,n). (These are discounted normalized expected
payoffs for each individual in the group,beforethe realization of current incomes and, of course,
the consumption lottery.) Also observe that by standard dynamic programming arguments, an
insurance scheme may be viewed as a lottery overcurrentconsumption schemes, followed by a
vector of continuation payoffs, all contingent on the realization of the income state.

Notice that this general definition allows for history-dependence, asymmetries and
randomization. Note that nothing is to be gained from randomization when individual deviations
alone are considered (the set of stable payoffs from deterministic schemes is convex in any case).
However, as discussed in Section 4.5, randomization makes an appearance when group deviations
pose a threat.

5.2. Stability

Just as in the stationary case, we proceed recursively. Individuals (or singleton coalitions) are
automatically branded stable. Indeed, there is only one stable payoff for an “individual coalition”,

19. They use three different data sets, all from South Asia: the ICRISAT village level studies (VLS) survey, the
Additional Rural Income Survey of the National Council of Applied Economic Research (India), and the IFPRI’s Pakistan
Food Security Survey.

20. They study transfers in a panel of Philippine rice farmers.
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which is just the no-insurance payoff at every date. That is, if we define

v∗(1) ≡ pu(h)+ (1 − p)u(`), (13)

then the set of stable payoffs is justV∗(1) ≡ {v∗(1)}.
Now suppose that we have defined stable payoff setsV∗(m) for all m = 1, . . . ,n−1 (some

of these may be empty). Pick a group of sizen and a nontrivial insurance arrangementσ for this
group. Say thatσ is stableif the following two conditions are satisfied:

[PARTICIPATION]. For nos-history Hs is there a subgroup of individuals (of sizem < n) and
a stable payoff vectorv ∈ V∗(m) such thatvi (Hs, σ,n) < vi for all i = 1, . . . ,m.

[ENFORCEMENT]. The following is a zero-probability event underσ : there is ans-history Hs,
an income realizationy, and a prescribed consumption allocationc such that for some subgroup
of individuals (of sizem< n) and some stable payoff vectorv ∈ V∗(m),

(1 − δ)u(yi )+ δvi > (1 − δ)u(ci )+ δvi (Hs+1, σ,n), (14)

whereHs+1 is the(s + 1)-history obtained by concatenatingHs with y andc.

If σ is stable, then say thatv(h0, σ,n) is astable payoff vectorfor n. If no such vector exists, we
say thatn is unstableand setV∗(n) to the empty set.

Observe that our recursion yields stable payoff sets that only depend on group size, and
that such stable payoff sets must be symmetric (if a payoff vectorv is in the set, then so are all
permutations ofv).

Next, with these definitions in hand it is easy enough to put the usual enforcement con-
straints in perspective. Say that an insurance scheme (or group) isindividually stable, or i-stable
for short, if the participation and enforcement constraints are satisfied for singleton subgroups.
In fact, in this case, we can ignore the participation constraint because it will be implied by the
enforcement constraint. Moreover, as already discussed, no randomization will be necessary.

5.3. General results

The following proposition extends our main result to the general case.

Proposition 5. For every value ofθ such that some stable group exists, the maximal stable
group size is finite.

This proposition is the key result that establishes the finiteness of stable groups without
taking recourse to parameters such as the cost of group formation. It is a considerably more
complex result than its counterpart for the stationary case. There are two reasons for the
increased complexity: equilibria make possible use of history and of asymmetric strategies
in subgames. The two, acting in concert, significantly reduce the bite of the no-deviation
constraint for groups. Recall that in a symmetric and stationary equilibrium,every member
of a potentially deviant subgroup must besimultaneouslycompensated for staying with the
ambient group. Such compensations become impossible because the marginal gains to group
size vanish, while deviation gains are bounded away from zero, precipitating the boundedness
result in the stationary case. In the general case, it is possible to carefully switch to asymmetric
strategies following appropriate histories of good and bad draws. With these asymmetries, it is no
longer necessary to compensateeverymember of every potential subgroup; it is only necessary
to compensatesomemember of every potential subgroup. The question is: does this effective
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relaxation of the constraints permit very large groups to form? The answer is still no (which is
the substance of the proposition).

The main idea of the proof (see Section 6 for details) is the construction of a particular set
of average payoffs. For each stable sizen andv ∈ V∗(n), let a denote theaveragepayoff under
v, and leta∗(n) stand for the maximum value ofa overV∗(n). Now for each integerk (stable or
not), consider the maximum stable size no larger thank—call it m(k)—and consider the value
a(m(k)). The point is this: ifv = (v1, v2, . . . , vn) is a payoff vector in a group of sizen, arranged
in increasing order of payoffs, thek-th entryvk must exceeda∗(m(k)). Otherwise such a payoff
would surely be “blocked” (see the proof of Lemma 6). In other words, this construction limits
the extent of asymmetric treatment that can be generated in equilibrium.

Once these limits are set, there are bounds on the average payoffs that can be generated
for any subgroup of a larger group of sizen. The average value of these sub-payoffs cannot
exceeda∗(n) by “too much” because then the remainder would have to suffer enough asymmetric
treatment so that they necessarily block the outcome. To be sure, small groups can be still treated
asymmetrically but the degree of asymmetric treatment shrinks with relative subgroup size. (This
is the subject of Lemma 9.)

Once this hurdle is cleared, the rest of the proof is relatively straightforward, and follows
a modified version of the stationary case. This is the remainder of the formal argument starting
with Lemma 10, and continuing through the end of the proof for the proposition.

Can this proposition be employed—as it was in the stationary case—to establish the
nonmonotonicity of maximal stable groups in the need for insurance? To a large extent, it can,
but unfortunately it is not enough to settle the question. It would be, if we could show that the
minimum i-stable group size becomes unboundedly large as the need for insuranceθ descends to
the minimum level necessary for viability (forsomegroup size). In turn, all this means is that (on
the grounds of single-person deviations alone) larger groups should do better than smaller ones,
in the sense that they should exhibit lower thresholds (inθ) for i-stability. Then larger groups
would be i-stable strictly “before” any of their smaller counterparts, and would consequently be
(fully) stable in our sense.

We believe that this observation is true. (Itis true for stationary equilibria; see
Proposition 1.) But we have not been able to prove it,21 and so leave matters open in the form of
the following conjecture.

Conjecture. The minimum i-stable group size goes to infinity as the need for insurance
descends to its critical lower bound for whichsomegroup is stable.

6. PROOFS

6.1. The stationary case

Lemma 1. Suppose that a transfer schemet satisfies(4). Then so does the transfer
schemeλt for everyλ ∈ (0,1).

21. It is not enough to prove that larger groups are viable whenever smaller groups are. This leaves open the
possibility that the threshold viability conditions are exactly the same. Once this is the case, however, there is no
guarantee that the minimumstablegroup size becomes unboundedly large asθ descends to the minimum threshold.
Indeed, all this discussion motivates the search for anecessary and sufficientcondition that guarantees the viability
of a given group of sizen. This is a hard question. Some new results are reported in the supplementary material: see
http://www.restud.com/supplements.htm.
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Proof. It is easy to see, using (1), thatv(t,n) is concave int. Becauseu(h− tk) is concave
in tk (and therefore in the vectort), the expression

(1 − δ)u(h − tk)+ δv(t,n)

is concave int for eachk = 1, . . . ,n − 1. Finally, note thatv∗(1) is simplyv(0·t,n). Using all
this information, we see that (4) must hold forλt if it holds for t. ‖

Let t(t) denote the (symmetric stationary) transfer scheme in whichtk is set equal to a
constantt ≥ 0, for all k = 1, . . . ,n − 1. Define, fort ≥ 0 and small,

d(t,n) ≡ (1 − δ)u(h − t)+ δv(t(t),n). (15)

We denote byd′(t,n) the partial derivative oft with respect tot .

Lemma 2. A nontrivial transfer scheme satisfying the individual enforcement
constraint(4) exists if and only if d′(0,n) > 0.

Proof. [Necessity] Suppose that there is some nontrivial transfer schemet̂ satisfying (4).
Chooseλ > 0 such thatλt̂k ≤ [h−`]/n for all k. By Lemma 1,λt̂ satisfies (4). Now observe that
v(t,n) is increasing in any componenttk as long astk < [h − `]/n; it follows that the constant
schemet(t) in which t is set equal to the maximum value ofλt̂k (overk) also satisfies (4). Noting
thatv∗(1) is justv(t(0),n), we have therefore shown that

d(t,n) ≥ d(0,n).

To complete the proof of necessity, observe thatd is strictly concave int .
[Sufficiency] If d′(0,n) > 0, then for small positivet we haved(t,n) > d(0,n). But this

means that we have found a nontrivial transfer scheme (withtk = t for all k = 1, . . . ,n − 1)
such that

(1 − δ)u(h − t)+ δv(t(t),n) ≥ (1 − δ)u(h)+ δv∗(1),

so that (4) is satisfied. ‖

Proof of Proposition1. By Lemma 2, a necessary and sufficient condition for the
i-stability of n is d′(0,n) > 0. Using the definition ofd and (1), simply unpack this condition. It
is equivalent to the requirement that

−(1 − δ)u′(h)+ δ[u′(`)− u′(h)]
∑n−1

k=1
p(k,n)

k

n
> 0,

which, on rearrangement, yields (5).‖

Proof of Corollary1. Simply note that if (5) is satisfied for somen, then it is satisfied for
all n′ > n. ‖

Proof of Proposition2. Let m be the size of the community. Pickθ such that (5) is satisfied
atn = m but fails atn = m−1. Then every (nonsingleton) group belowm fails to be i-stable and
is therefore unstable. Thus the stability ofm is only to be assessed using individual deviations,
and its i-stability implies stability. ‖

We now prepare for the proof of Proposition 3.

Lemma 3. If n and n′ are both stable and n′ < n, thenv∗(n) ≥ v∗(n′).
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Proof. Simply use the constraint (2) fors = k = n′ when the group size isn, and the fact
thattn′ ≥ 0. ‖

Lemma 4. For anyε > 0, define t(ε) by

u(h)− u(h − t (ε)) ≡
δ

1 − δ
ε, (16)

and let

t (ε, x) ≡ min{t (ε), (1 − x)(h − `)} (17)

for ε > 0 and x∈ [0,1]. For ε > 0 and each positive integer n define

v(ε,n) ≡

∑n

k=0
p(k,n)

[
k

n
u(h − t (ε, k/n))+

n − k

n
u

(
`+

kt(ε, k/n)

n − k

)]
. (18)

Then there existsψ(ε) withψ(ε) → 0 asε → 0, such that

lim supn∈N |v(ε,n)− v∗(1)| ≤ ψ(ε). (19)

Proof. Consider any sequence of integers inN . By a simple large-numbers argument for
Bernoulli trials (see,e.g.Feller (1968, p. 152, equation (4.1))), it must be the case that for fixedε,

limn v(ε,n) = pu(h − t (ε, p))+ (1 − p)u

(
`+

pt(ε, p)

1 − p

)
.

It is easy to check from (16) and (17) thatt (ε, p) → 0 asε → 0. It follows that

limn v(ε,n) → v∗(1) asε → 0,

which proves the lemma. ‖

Proof of Proposition3. The only nontrivial part of this proposition (given the previous
propositions) is the assertion thatn̄(θ) is finite. Suppose that Proposition 3 is false. Then there
exists an infinite setN such that for alln ∈ N , n is stable. By Lemma 3, ifn andn′ are both in
N andn < n′, thenv∗(n) ≤ v∗(n′). Moreover,{v∗(n)}n∈N is bounded. It follows that for any
ε > 0, there existsn(ε) ∈ N such that for alln ∈ N with n > n(ε),

v∗(n)− v∗(n(ε)) < ε. (20)

Moreover, it is easy enough to choosen(ε) satisfying both (20) and the requirement that

v∗(n(ε)) ≥ v∗(1)+ A (21)

for someA > 0 and independent ofε.
Now consider some stablen > n(ε), and lettk be the optimal transfer in this coalition when

there arek successes. Applying the constraint (2) whenk ≥ n(ε), we see that

(1 − δ)u(h − tk)+ δv∗(n) ≥ (1 − δ)u(h)+ δv∗(n(ε)),

so that—rearranging terms—

(1 − δ)[u(h)− u(h − tk)] ≤ δ[v∗(n)− v∗(n(ε))] ≤ δε,

using (20). It follows (using (16)) thattk ≤ t (ε). Consequently, applying the definition oft (ε, x),
we can conclude that∑n

k=n(ε)
p(k,n)

[
k

n
u(h − tk)+

n − k

n
u

(
`+

ktk
n − k

)]



106 REVIEW OF ECONOMIC STUDIES

≤

∑n

k=n(ε)
p(k,n)

[
k

n
u(h − t (ε, k/n))+

n − k

n
u

(
`+

kt(ε, k/n)

n − k

)]
·

It follows that for some finite constantB,

v∗(n) ≤ v(ε,n)+ Pr{k < n(ε)}B. (22)

Now it is obvious that asn → ∞, Pr{k < n(ε)} → 0. That is, we may use (22) to conclude that
there exists a functionh(n) such thath(n) → 0 asn → ∞ (in N ) and such that

v∗(n) ≤ v(n, ε)+ h(n). (23)

Combining (23) with the conclusion—see (19)—of Lemma 4, we see that

lim supn∈N [v∗(n)− v∗(1)] ≤ ψ(ε)+ h(n).

This shows, in particular, that for large enoughn and small enoughε,

v∗(n)− v∗(1) < A. (24)

Combining (21) and (24), we see that

v∗(n) < v∗(n(ε)),

which contradicts Lemma (3). ‖

6.2. Observations in Section4.3

Proof of Observation1. With u(x) = −(B − x)2, it is easy to see that̃v(n) = −(B −

µ)2 −
p(1−p)

n (h − `)2. It follows that

δ(ṽ(n)− ṽ(k)) = δ
p(1 − p)(n − k)

nk
(h − `)2,

while routine computation reveals the L.H.S. of (8) to be

(1 − δ)
n − k

n

[
2B(h − `)−

k + n

n
h2

+
n − k

n
`2

+ 2
k

n
h`

]
.

Recall that to check stability, it is necessary and sufficient to putk = s in (8). Combining the
expressions above with this observation, we see that the required condition is

(1 − δ)

[
2B(h − `)−

k + n

n
h2

+
n − k

n
`2

+ 2
k

n
h`

]
≤ δ

p(1 − p)

k
(h − `)2

for all 1 ≤ k ≤ n − 1. Some tedious simplification shows this to be equivalent to (9).
Clearly, for any givenk the L.H.S. of (9) is decreasing inn. It follows that if (9) is violated

for somen andk, will be violated for a group of sizen′ > n and the samek. This proves the
observation. ‖

6.3. The nonstationary case

Before we proceed to a proof of Proposition 5, the following preliminary lemma is useful.

Lemma 5. For anyζ > 0, define t(ζ ) by

u(h)− u(h − t (ζ )) ≡
δ

1 − δ
ζ . (25)
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For ζ > 0 and each positive integer n, define a(n, ζ ) to be the maximum value of average
expected utility(in one period, and neglecting any incentive constraints) over a group of size n,
assuming that in no event can a total transfer exceeding t(ζ )n be made. Then there existsψ(ζ )
withψ(ζ ) → 0 asζ → 0, such that

lim supn→∞[a(n, ζ )− v∗(1)] ≤ ψ(ζ ). (26)

Proof. By symmetry and strict concavity ofu, and because no incentive constraints are
involved, it must be the case that for each state, consumption should be equalized over successes,
consumption should be equalized over failures, and the transfer between success and failure
individuals should aim at equality of consumptionacrossboth types of persons, subject to the
constraint that the total transfer not exceedt (ζ )n. That is, an optimalper capitatransfer from
any successful individual, defined for eachn and each number of successesk, is given by

t (k,n) = min

{
n

k
t (ζ ),

n − k

n
1

}
, (27)

where1 ≡ h − `. Moreover,

a(n, ζ ) =

∑n

k=0
p(k,n)

[
k

n
u(h − t (k,n))+

n − k

n
u

(
`+

k

n − k
t (k,n)

)]
. (28)

By the same large-numbers argument as in the proof of Lemma 4, it must be the case that if
ζ > 0 and small enough,

limn a(ζ,n) = pu

(
h −

t (ζ )

p

)
+ (1 − p)u

(
`+

t (ζ )

1 − p

)
.

Becauset (ζ ) → 0 asζ → 0,

limn a(ζ,n) → v∗(1) asζ → 0,

which proves the lemma. ‖

Proof of Proposition5. Suppose that the proposition is false. Then there exists an infinite
subset of indicesM such that for alln ∈ M , n is stable. We will employ the following notation.
For any integern, we let m(n) stand for the maximum stable size not exceedingn. For each
stable sizen andv ∈ V∗(n), let a denote theaveragepayoff underv, and leta∗(n) stand for the
maximum value ofa over V∗(n). (This is well defined becauseV∗(n) is compact by standard
arguments.) Also, define for eachn (stable or not),

ã(n) ≡
1

n

∑n

k=1
a∗(m(k)). (29)

Lemma 6. For every stable n> 1,

a∗(n) ≥ ã(n), (30)

and in particular, the sequence{ã(n)} is nondecreasing in n.

Proof. Let n > 1 be stable. Now, there exists astablepayoff vectorv in V∗(n) with
average value precisely equal toa∗(n). Without loss of generalityvk ≤ vk+1 for all k =

1, . . . ,n − 1. We claim that

vk ≥ a∗(m(k)) (31)
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for all k = 1, . . . ,n. Suppose not. Then there is some first indexk such that (31) fails. That is,

(v1, . . . , vk) � {a∗(m(k)), . . . ,a∗(m(k))} (32)

where there arek entries on the R.H.S. (Note that ifk = n, m(k)mustbe less thann.) If the equal
payoffa∗(m(k)) is stable form(k), (32) immediately contradicts the stability ofv. Therefore the
equal payoff must be unstable.

Notice that—by the symmetry ofV∗(m(k))—the equal payoffa∗(m(k)) canbe generated
as a convex combination of vectors inV∗(m(k)). Therefore, if the equal payoff is unstable, this
can only be because of the participation constraint. Randomization cannot affect theex post
enforcement constraint, which appliesex postand would be satisfied by every vector making up
the required convex combination. Consequently, there is somen′ < m(k) and a stable payoff
v′

∈ V∗(n′) such that

{a∗(m(k)), . . . ,a∗(m(k))} � v′ (33)

(where there aren′ entries on the L.H.S.). Combining (32) and (33), we contradict the stability
of v. Therefore our claim is true, and (31) holds. Averaging this inequality overk = 1, . . . ,n,
we conclude that

a∗(n) =
1

n

∑n

k=1
vk ≥

1

n

∑n

k=1
a∗(m(k)) = ã(n − 1),

which is (30).
Now notice from (29) that for anyn,

ã(n + 1) =
1

n + 1
a∗(m(n + 1))+

n

n + 1
ã(n). (34)

If m(n + 1) = n + 1, then—using (30)—it follows immediately from (34) thatã(n) is
nondecreasing. Otherwisem(n + 1) = K for some stableK ≤ n. Then it is easy to see that
ã(n) = λa∗(K ) + (1 − λ)ã(K ) for some convex combinationλ. Applying (30) again, we may
conclude that

a∗(m(n + 1)) = a∗(K ) ≥ λa∗(K )+ (1 − λ)ã(K ) = ã(n),

and using this information in (34), we conclude thatã(n) must be nondecreasing.‖

Lemma 7. There exists A> 0 such that for all n∈ M with n> 1,

a∗(n) ≥ v∗(1)+ A. (35)

Proof. For any stablen > 1, a stable payoff vector must be supported by transfer
schemes that are nonzero for some states: consequently, by the enforcement and participation
constraints applied to singleton deviations, the average payoff under a stable vector in any stable
(nonsingleton) group muststrictly exceedv∗(1).

To establish that this excess isuniformover the set of stable groups, observe thatã(n) (being
a convex combination of thea∗’s) is also strictly in excess ofv∗(1), as long asn exceeds some
stable group size that exceeds unity. Becauseã(n) is nondecreasing (Lemma 6), the excess is
uniform. Now (30) of the same lemma yields the desired result.‖

Lemma 8. For eachε > 0, there exists a stable n(ε) and an infinite subsequence of stable
sizes exceeding n(ε)—call the set M(ε)—such that for all n∈ M(ε),

a∗(n)− a∗(n(ε)) < ε. (36)
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Proof. By Lemma 6,ã(n) is nondecreasing inn. Obviously it is bounded. So it converges.
Moreover, it is easy to verify (see,e.g.Knopp (1956, Exercise 2.4.1.2)) that

limn ã(n) ≥ lim infn∈M a∗(n).

So for eachε > 0, there is a stable sizen(ε) and a subsequenceM(ε) such that

a∗(n)− ã(n(ε)) < ε

for all n ∈ M(ε). By Lemma 6, the desired property (36) follows immediately.‖

Lemma 9. Letε > 0 and x∈ (0,1) be given. Then there exists an integer m(x, ε) > n(ε)
(the latter given by Lemma8) such that for any stable group n≥ m(x, ε), any subgroup of
players of size k≥ xn and any vector of continuation payoffsv(n) ∈ V∗(n), the average payoff
to the subgroup cannot exceed a∗(n)+ ε/x.

Proof. First we describem(x, ε). To this end, leta∗ denote the supremum ofa∗(n) over
stablen, and letm(x, ε) be any positive integer no smaller thann(ε)[a∗

+ ε]/xε.
Consider anyn ≥ m(x, ε), and letv(n) ∈ V∗(n). Let the average payoff under this vector

be denoted bya(n). Of course,a(n) ≤ a∗(n).
Consider any subgroup ofk people, wherek ≥ nx. Let a(k) denote the average payoff they

receive underv(n). Now consider two cases. First, suppose thatk ≥ n − n(ε). Note that

a(k)k ≤ na(n) ≤ na∗(n).

Rearranging and using the fact thatk ≥ n − n(ε),

a(k) ≤ a∗(n)+
n(ε)

n − n(ε)
a∗

≤ a∗(n)+ ε,

where the last inequality uses the fact thatn ≥ m(x, ε). Becausex ∈ (0,1), we are done in this
case.

Otherwise,k < n− n(ε). Now, by the stability of the payoff vectorv(n), no more thann(ε)
individuals can receive strictly less thana∗(n(ε)).22 Since we are proving an upper bound on
average payoffs, we can suppose without loss of generality that our subgroup ofk is drawn from
the remaining individuals (who receive at leasta∗(n(ε)) each). In this case,

a(k)k + [n − n(ε)− k]a∗(n(ε)) ≤ na(n) ≤ na∗(n).

Combining this inequality with the fact thata∗(n(ε)) ≥ a∗(n) − ε (see Lemma 8), we can
conclude that

a(k) ≤
εn

k
+

n(ε)[a∗(n)− ε]

k
+ a∗(n)− ε

≤
ε

x
+

n(ε)[a∗(n)− ε]

nx
+ a∗(n)− ε

≤ a∗(n)+
ε

x
,

where the second inequality uses the fact thatk ≥ nx, and the third inequality uses the fact that
n ≥ m(x, ε). Thus in both cases, the proof is complete.‖

22. The proof is very similar to the argument used to establish (31). Ifa∗(n(ε)) is a stable (constant) payoff for
n(ε), the assertion is obviously true. Ifa∗(n(ε)) is not stable, this can only happen because of the participation constraint.
But then there is a still smaller group—sayn′—and a stable payoff vectorv′ for n′ such thatv′ dominatesa∗(n(ε)) in
every component. The existence of this vector now establishes the assertion.
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Lemma 10. For anyε > 0 and x ∈ (0, p), suppose that n≥ m(x, ε) (where m(x, ε) is
given by Lemma9) and n ∈ M(ε), where M(ε) is given by Lemma8. Consider the supporting
insurance scheme for anyv(n) ∈ V∗(n). Then the total transfer T made across agents in any
realization must be bounded as follows:

T ≤ max{t (ε(1 + x)/x)n, xhn} (37)

where the function t(·) is defined by(25).

Proof. Let K be a group of people called upon to make transfers. Suppose first that
|K | ≡ k < nx. Then the total transfer in this case can obviously not exceedxhn, so the lemma
is trivially true in this case.

Now suppose thatk ≥ nx. Recalling howm(x, ε) was defined in the proof of Lemma 9 and
noting thatn ≥ m(x, ε), we see thatk ≥ n(ε), wheren(ε) is given by Lemma 8. Therefore all
stable subcoalitions ofK of sizen(ε) or less arepotentialdeviants.

Arrange the members ofK in decreasing order of the transferti that they make, so that
ti ≥ ti +1. Recall that by familiar dynamic programming arguments, the associated transfer
scheme (once the state is realized and all lotteries have been resolved) can be described by a
set of current consumptions and a set of continuation payoff vectors. In this particular state, let
v′

i stand for the continuation utilities of members ofK .
We claim that for everyi ∈ K ,

u(h)− u(h − ti ) ≤
δ

1 − δ
[v′

i − a∗(m(i ))], (38)

wherem(i ), it will be recalled, is defined as the largest stable group sizenotexceeding the integer
i . The proof of this claim is easy (and is similar to the proof of (31)): if it were to fail for some
integeri , then by the ordering of the group members by transfer size, we have forevery j ∈ K ,
j ≤ i , that

u(`)− u(`− t j ) ≥ u(h)− u(h − ti ) >
δ

1 − δ
[v′

i − a∗(m(i ))].

Thus, if a∗(m(i )) is stable for groupm(i ), this is an immediate violation of the enforcement
constraint: a group of sizen(i ) can now profitably form and deviate. Otherwise, if it is not stable,
this canonly be due to the participation constraint (recall our discussion of randomization). But
then a subgroup smaller thanm(i ) will deviate.

So (38) must be true.
Let us add (38) over all individuals inK , and divide by the group sizek. We then have

u(h)−
1

k

∑
j ∈K

u(h − t j ) ≤
δ

1 − δ
[a(n, K )− ã(k)], (39)

wherea(n, K ) simply stands for the average continuation payoff accorded to members ofK , and
ã(k) is the moving average defined in (29). Now by the concavity ofu,

1

k

∑
j ∈K

u(h − t j ) ≤ u(h − tK ),

wheretK is the average transfer made byK . Moreover,a(n, K ) ≤ a∗(n) + ε/x, by Lemma 9.
Finally, becausek ≥ n(ε) andn ∈ M(ε), we know from (36) that̃v(k) ≥ a∗(n) − ε. Using all
these three inequalities in (39), we may conclude that

u(h)− u(h − tK ) ≤
δ

1 − δ

ε(1 + x)

x
.
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Invoking (25), we see that

tK ≤ t

(
ε(1 + x)

x

)
,

and recalling that the total transferT equalsktK ≤ ntK , the lemma is established.‖

Lemma 11. For some stablev(n) ∈ V∗(n) and some supporting insurance scheme, let
w(n) denote the expected current utility averaged across all agents associated with that scheme.
Then, if a(n) is the average payoff underv(n), we have

a(n) ≤ (1 − δ)w(n)+ δa∗(n). (40)

Proof. Recall that the supporting insurance arrangement is expressible as a randomization
over various current consumption schemes and continuation payoffs, both contingent on
realizations of the income state. Fix any such scheme in the support of the arrangement. For
each individuali , let ci (n, S) describe his current consumption andvi (n, S) his continuation
payoff, whereS is the set of currently successful people. Then

vi (n) = (1 − δ)
∑

S
Pr(S)u(ci (n, S))+ δ

∑
S

Pr(S)vi (n, S).

If we average this over all individuals, we see that, by definition,

a′(n) = (1 − δ)w′(n)+ δ
∑

S
Pr(S)

[
1

n

∑n

i =1
vi (n, S)

]
,

wherea′(n) is average payoff after the lottery is realized (but not the state) andw′(n) is average
current payoff evaluated under exactly the same conditions. However,(1/n)

∑n
i =1 vi (n, S) ≤

a∗(n) for everyS. Using this in the equation above, we see that

a′(n) ≤ (1 − δ)w′(n)+ δa∗(n).

Finally, take expectations over all schemes in the support of the insurance arrangement to
establish the lemma. ‖

We now complete the proof of the proposition. To this end, fix a small positive numberε,
and then choosex ∈ (0,1) small enough so thatxh < t (ε), wheret (·) is defined in (25). Now
recall M(ε) from Lemma 8,n(ε) from Lemma 8 and the consequent definition ofm(x, ε) in the
proof of Lemma 9. Pick anyn in M(ε) with n ≥ m(x, ε).

Consider any stablev(n) ∈ V∗(n), and some insurance arrangement associated with it. By
Lemma 10, the total transferT under any realization cannot exceed

max{t (ε(1 + x)/x)n, xhn}.

But our choice ofx guarantees that the first of the two terms above always binds, so that

T ≤ t (ε(1 + x)/x)n

for any total transferT under any realization. It follows that any scheme in the support of
the insurance arrangement is afeasiblescheme over which maximization occurs in Lemma 5.
Consequently, (current) expected utility averaged across all agents and over all schemes in the
support of the insurance arrangement—call itw(n)—must satisfy the inequality

w(n) ≤ a(n, ε(1 + x)/x). (41)
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Now consider any sequence of stablen such thatn ≥ m(x, ε) andn ∈ M(ε), and any sequence
v(n) ∈ V∗(n) such that the associated average value

a(n) = a∗(n). (42)

Lemma 5 and (41) together tell us that for any associated sequence of current consumption
schemes,

lim supn∈M(ε);n→∞w(n) ≤ lim supn∈M(ε);n→∞ a(n, ε(1 + x)/x) ≤ v∗(1)+ ψ(ε(1 + x)/x).
(43)

Now chooseε and thenx such that the R.H.S. of (43) is smaller thanv∗(1)+ A, whereA is given
by (35). We may then conclude that for large enoughn ∈ M(ε),

w(n) < a∗(1)+ A.

Combining this inequality with (40) of Lemma 11, we see that

a(n) ≤ (1 − δ)[v∗(1)+ A] + δa∗(n),

wherea(n) is the (lifetime) expected utility averaged over all agents under the scheme. But we
have chosen this so thata(n) = a∗(n) (see (42)). Consequently, we may conclude that for large
enoughn ∈ M(ε),

a∗(n) < v∗(1)+ A,

but this inequality contradicts (35) of Lemma 7 and completes the proof of the proposition.
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