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Consider an environment with widespread externalities, and suppose that bind-
ing agreements can be written. We study coalition formation in such a setting. Our
analysis proceeds by defining on a partition function an extensive-form bargaining
game. We establish the existence of a stationary subgame perfect equilibrium for
such a game. Our main results are concerned with the characterization of equilib-

Žrium coalition structures. We develop an algorithm that generates under certain
.conditions an equilibrium coalition structure. Our characterization results are

especially sharp for symmetric partition functions. In particular, we provide a
uniqueness theorem and apply our results to a Cournot oligopoly. Journal of
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Ž .and group payoffs depend on the entire coalition structure that might
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form. A broader objective is to take a step toward the understanding of
coalitional influence in the negotiation process.

Of course, cooperative game theory has been much concerned with this
problem. But the major part of this theory is based on the characteristic
function, which by its very construction assumes away the interesting
strategic interactions.

The standard recipe for generating characteristic functions is a minimax
argument: if a coalition wishes to go off on its own, it is then presumed to
fear the worst, namely, that other coalitions will act in such a way as to
minimize the payoffs of the deviant group. This argument creates a set of
payoffs for each coalition, and therefore a characteristic function.1

Given the amount of energy that has been expended on cooperative
game theory from the characteristic function onwards, it is extraordinary
that this conversion has not been subject to serious scrutiny.2 Why would
a deviating coalition necessarily expect that the remaining set of players
would act in so malevolent a fashion, without regard to their own interests?

While this point is easy enough to make and appreciate, it is somewhat
less clear what one puts in its place. What one needs, in short, is a theory
of intercoalitional interaction. While no particular solution is perhaps fully
satisfactory, we proceed without further ado to out point of view on this

Ž .matter. Imagine that, for some reason to be endogenized later , we are
faced with a coalition structure, a partition of the set of players into disjoint
subsets. The partition means, by definition, that players within a subset are
free to write arbitrary binding agreements, while players across subsets are
not. In that case, we may consider the noncooperative game induced
across subcoalitions, by treating each subcoalition as a player with an
incomplete preference ordering. The set of all payoffs for a given coalition
would then be the set of all payoffs under the Nash equilibrium of this

Ž .game. See Ray and Vohra 1997 for details of this conversion, as well as
Ž . Ž .Ichiishi 1981 and Zhao 1992 in a different context.

Moreover, if the underlying strategic game has interpersonally compara-
ble utilities, and if side payments can be made across subsets of players,
without affecting the strategic choices of the other players, the set of all
payoffs to a coalition could then be identified with a single number, its
worth.

In this way, we arrive at a partition function, one that assigns to each
coalition, and each coalition structure of which that coalition is a member, a

1 This particular variant is called the a-characteristic function. There are other ways to get
to a characteristic function as well, with the same associated problems.

2 ŽOf course, the point has not passed unnoticed see Lucas, 1963; Thrall and Lucas, 1963;
.Rosenthal, 1972; among others . But these papers largely restrict themselves to studying the

analogs of well-known solution concepts for characteristic functions, and do not focus on
endogenous coalition formation in this context.
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worth, or, more generally, a set of payoffs. Given this function, we are then
faced with the question: which agreements will be written and which
coalition structure will form? We emphasize the simultaneous determina-
tion of coalition structure and payoff division among players.

1.2. Main Features

Partition functions permit us to get a handle on what might follow a
coalitional deviation, though there are limitations.3 To see this, consider
the following examples.

EXAMPLE 1.1. Three Cournot oligopolists produce output at a fixed
unit cost, c, in a homogeneous market with a linear demand curve;
p s A y bx. They are free to form coalitions among themselves, and this
includes the option of forming the grand coalition of all three players.
Recall that, by standard calculations, the Nash profit accruing to a single
firm in an n-player Cournot oligopoly is

2A y c KŽ .
s ,2 2b n q 1 n q 1Ž . Ž .

Ž .2where K ' A y c rb. Now suppose that the three firms in our example
are deciding whether or not to form a cartel. If they do, they will earn
monopoly profits, which from the expression above equals Kr4. Now it
must be the case that in the proposed agreement between the three at
least one of the firms is earning no more than Kr12. What should this
firm do?

The a-characteristic function tells us that if this firm breaks off, it
should anticipate whatever it is that the other firms can hold it down to.
But this last number is 0, for it is certainly the case that the other two
firms can flood the market and drive prices down to 0. So the a-character-
istic function predicts that our firm should not object to any nonnegative
return, however small. This is clearly absurd.

On the other hand, suppose that our firm anticipates that in the event of
its defection, the other two firms will play a best response to the defector’s

3 For instance, what if the game so constructed has not one Nash equilibrium but many?
Ž .For more discussion, See Ray and Vohra 1997 . Partition functions also fail to capture

Ž .‘‘network relationship’’ across players as in Jackson and Wolinsky 1996 and Dutta et al.
Ž .1995 . Finally, there is the questions of ‘‘separability’’: this approach would be invalid if the
outcomes leading up to the partition function were themselve conditioned in some way on the

Ž .process of coalition formation. Ray and Vohra 1997 discuss this issue as well.
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subsequent actions. This implies that following the deviation, we are in a
duopoly, where the deviant’s return, using the general expression above, is
Kr9. This exceeds Kr12.

Does this mean a deviation from the three-player coalition is then
justifiable? Not really: there are other considerations. Study the situation
facing the two remaining firms once our deviant leaves. Their total return
is Kr9 as well, which means, of course, that one of them can be earning
no more than Kr18. If this firm were to leave and induce the standard
three-person oligopoly, its return would be Kr16. So faced with the
irrevocable departure of one firm from the original agreement, the remain-
ing firms will split up as well. But in the case, the original deviant gets
Kr16 too! So each member of the three-firm coalition would anticipate
receiving Kr16 as a result of such a deviation. It follows that the grand

Žcoalition in this example is a stable coalition structure proposing the joint
.monopoly outcome with each firm getting at least Kr16 .

EXAMPLE 1.2. Consider the provision of a public good by three sym-
metric agents. Describe the partition function in the following intuitive
way. Assume that if the three players get together, they produce a
per-capita utility of 1. If one player leaves, assume that he would get 2 by
free-riding on the other players’ provisions, pro¨ided that the other two
players stay together. Thus far this is analogous to the Cournot model.
What is different is that we consider a case where the remaining two
players will indeed wish to stay together. Imagine that by doing so, they
can get a per-capita utility of 0.25. If all three players are on their own,
assume that no public good is produced and that each player gets 0.

In this case, and in contrast to Example 1.1, a single deviant can credibly
expect to get 2, simply because, faced with the deviation, the remaining
agents will find it in their best interest to cling together. Now we have a
problem, because it is clear that in the grand coalition, at least one player
must get strictly less than 2. We find it difficult, in this case, to avoid an
inefficient outcome.4

4 This statement is fraught with numerous complexities that we have found best to avoid, in
the interests of making some progress on the question of coalition formation. If any binding
agreement can, in principle, be renegotiated, then the outcome should be efficient. After all,
if as in the example above, one player is leaving, the other two can try to lure him back with
the promise of a better offer, as the grand coalition always enjoys the advantage of
superadditivity. But what gives this player a credible bargaining advantage in the first place,
unless he does exercise the option to leave? And what is to guarantee that once this
advantage is relinquished by his voluntary return to the grand coalition, that it will not indeed
pass to someone else? It turns out that these features are not easy to model, and they possibly
involve an explicit accounting for the underlying dynamics. Once these points are recognized,
it becomes clear that the particular approach we follow in this paper is only one of many.
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These examples illustrate two main features of our analysis. First, as
discussed above, there is the question of intercoalitional interaction that
characteristic functions neglect. This interaction is fundamental to our
discussion of coalition structure.5

The second feature is one of consistency or ‘‘farsightedness’’: a player or
group of players breaking off negotiations must do more than simply
presume that they will be engaged in a noncooperative game with the
resulting complementary coalition. They must attempt to predict the
coalition structure that arises and not just assume that the complement
will stay together. The two examples illustrate two entirely different
outcomes, one in which the ‘‘short-run’’ belief that the complement will be
unaffected is indeed vindicated, and another in which it is not.6 As

Ž .Aumann and Myerson 1988 observe,

When a player considers forming a link with another one, he does not simply
ask himself whether he may expect to be better off with this link than without
it, given the previously existing structure. Rather, he looks ahead and asks
himself ‘‘Suppose we form this new link, will other players be motivated to form
further new links that were not worthwhile for them before? Where will it all
lead? Is the end result good or bad for me?’’

1.3. A Summary

Ž .Our approach to interplayer negotiation is based on Rubinstein 1982
Ž . 7and Chatterjee et al. 1989, 1993 .

For us, the partition function is a primitive, with the idea that underlying
this function is a game in strategic form. On this partition function is
defined a noncooperative bargaining game. Proposers offer to form coali-
tions and to divide coalitional worth in particular ways. Responders agree
or disagree. Coalitions from through the course of this bargaining process.

We explicitly recognize that the problem of coalition formation is
intimately linked to the problem of which agreements will be written
among the members of the formed coalition.

5 Ž . Ž . Ž .In this respect, we follow Bloch 1996 , Chwe 1994 , and Ray and Vohra 1997 . For
Ž . Ž .other literature on coalition structure, see for example, Shenoy 1979 , Hart and Kurz 1983 ,

Ž . Ž .Jackson and Wolinsky 1996 , and Dutta 1995 . But the solution concepts here do not take
into account the entire chain of reactions that might follow the formation of a particular

Ž .coalition. This is the second main feature of our analysis see the main text . Ray and Vohra
Ž .1996 contains a more detailed discussion of related literature.

6 Ž .Related ‘‘consistency’’ or ‘‘prediction’’ issues are studied in Aumann and Myerson 1988 ,
Ž . Ž . Ž . Ž .Bloch 1996 , Chakravorti and Kahn 1991 , Chwe 1994 , Dutta et al. 1989 , Greenberg

Ž . Ž . Ž .1990 , Ray 1989 , and Ray and Vohra 1997 .
7 Ž . Ž .For related literature on bargaining, see Binmore 1985 , Hart and Mas-Colell 1996 ,

Ž . Ž . Ž . Ž .Krishna and Serrano 1996 , Moldovanu 1992 , Okada 1996 , Perry and Reny 1994 , Selten
Ž . Ž .1981 , and Winter 1993 .
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Ž .We consider the stationary or Markov subgame perfect equilibrium of
the bargaining game.8 We begin by establishing an existence theorem for

Ž .such equilibria Theorem 2.1 . Our theorem requires some mixing in
equilibrium, but at most in the choice of coalitions that a proposer might
propose to. The Appendix carefully studies the need for mixing, and shows
that mixing is closely related to unacceptable proposals being made in
equilibrium.

Our main results revolve around the fact that we unearth a particular
coalition structure, with the property that such a structure is predicted by a
broad class of equilibria. The analysis for general partition function games
is quite complex. We therefore first present these results for games

Ž .generated by symmetric partition functions Section 3 . The general model
is then studied in Section 4. But, in principle, it is possible to read Section
4 before Section 3.

In Section 3 we begin by developing an algorithm that generates a
Žparticular coalition structure from any symmetric partition function Sec-

.tion 3.1 . We then argue that under e¨ery equilibrium in which acceptable
Ž .proposals are made at each stage with positive probability , the coalition

Ž .structure given by the algorithm must result Theorem 3.1 . We provide an
example in which there is an equilibrium with unacceptable proposals
made, and the coalition structure of the algorithm does not emerge. In this
sense lack of delay turns out to be fundamental to our predictions.

We provide sufficient conditions for the existence of a no-delay equilib-
Ž .rium Theorem 3.2 . These are necessary as well for the existence of a

Ž .pure-strategy no-delay equilibrium Theorem 3.3 . We show by example,
Ž .however, that other equilibria with different coalition structures might

coexist. A strengthening of the existence condition gives us more: that the
coalition structure predicted by our algorithm is the only one that can arise

Ž .in equilibrium Theorem 3.4 . We apply these findings to the Cournot
oligopoly.

Section 4 takes up the general case. Our goal here is to develop a
parallel for the main result of Section 3: that no-delay equilibria predict a
class of coalition structures that can be computed in a finite number of
steps from the parameters of the model. While the predictions here are

Ž .not as sharp as in the symmetric case and we explain why , significant
Ž .progress can be made Theorem 4.1 .

8 The game, as described, has a plethora of subgame-perfect equilibria when there are
three or more players, and this is true even for the special case of characteristic functions
Ž .Chatterjee et al., 1993, Prop. 0 . There is no logically convincing way to rule out such

Ž .equilibria. Rather, we view Markov perfection as many other authors do as an interesting
and perhaps focal mode of behavior, of interest in its own right.
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Ž .We acknowledge the insights of Bloch 1996 , which is closely related to
the present exercise. His paper is motivated by very much the same
questions, and explicitly studies partition functions as well. Indeed, Bloch
makes use of some of the results presented in an earlier version of the

Ž .paper though his original work is quite independent of ours .
An important difference is that Bloch assumes that coalitional worths

are distributed among the members according to some fixed rule. In
contrast, we make no such assumption but try and deduce both coalitional
structure as well as intracoalitional allocation from the same game. Never-
theless, in the special case of symmetric games, our results can be viewed
as a vindication of Bloch’s assumptions, though we obtain a somewhat
sharper prediction regarding coalition structure. The general case yields
additional insights.

2. A GENERAL MODEL

2.1. The Bargaining Game and Equilibrium

� 4N s 1, . . . , n is the set of players. A coalition structure of N is a
partition p of N. Let P denote the set of all coalition structures. A
partition function assigns to each coalition S in a coalition structures p a

Ž . Ž� 4 .worth ¨ S, p . Assume that ¨ i , p G 0 for all i g N and p g P with
� 4 � Ž . 4i g p . Let ¨ ' ¨ S, p .S gp p g P

In our model, players will make proposals to coalitions and respond to
proposals made to coalitions to which they belong. To each coalition S is

pŽ .assigned an initial proposer r S , in case S is the remaining set of players
rŽ . � 4in the game, and an order of respondents r S in case S l i is proposed

to by some player i. In the latter case r r is just a permutation of the
� pŽ . sŽ .4players of S. The collection r ' r S , r S will be referred to as aS : N

� 4protocol. A bargaining game is a collection N, ¨ , r .
pŽ .Interpret a bargaining game as follows. The initial proposer r N

Ž .starts the game. She chooses a coalition S of which he is a member , and
then makes a proposal to this coalition.

Loosely speaking, a proposal is the division of the worth of a coalition
among its members. But given a partition function, a worth is not well
defined until a coalition structure has formed in its entirety. Therefore a
proposal must consist of a set of conditional statements that describe how
the division of a coalition’s worth occurs in every contingency.

The notion of a contingency here is ambiguous: it could be as minimal
as the simple realization of the coalition’s worth, but, in principle, it could
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include information such as the process leading up to that worth}the
coalition structure formed, the order of coalition formation, and so on. In
this paper we study stationary strategies, those in which active players only

Žcondition their actions on the current payoff-relevant state a precise
.description will be provided below . In particular, we will adopt the

narrower view of a proposal simply as a description of worth allocation for
every conceivable coalition structure that finally forms. If some coalitions
have already left the game, then a proposal is conditioned only on those
coalition structures that are consistent with this fact.

Ž .To describe this precisely, let P S be the collection of all partitions of a
coalition S. If a collection of coalitions p has left the game, then a

Ž . � Ž .4 Ž .proposal is a pair S, y , where y ' y p 9 such that p 9 s p , S, p forˆp 9

Ž Ž .. Ž . sp g P N _ p j S , and, for every such p 9, y p 9 g R is feasible in theˆ
sense that

y p 9 s ¨ S, p 9 .Ž . Ž .Ý i
igS

Ž .Once a proposal S, y is made by a proposer i, attention shifts to the
rŽ . Žrespondents in S, the order of which is obtained from r S with i, the

.proposer, eliminated from the list . By a response we mean simply an
acceptance or rejection of the going proposal. If all respondents accept,
the players in S retire from bargaining, and the game shifts to the set of
players remaining in the game. If the set of remaining players is T , the

pŽ .next proposer is r T .
It remains to describe what occurs in the case of a rejection. In that

case, it is assumed that the first rejector gets to make the next proposal. In
Ž .addition, there is assumed to occur as in Rubinstein, 1982 the lapse of a

certain amount of time, which imposes a geometric cost on all players, and
Ž .is captured by a common discount factor d g 0, 1 . After the next pro-

posal is made, the game continues exactly as described above. A schematic
description of the extensive form is provided in Figure 1.

If and when all agreements are concluded, a coalition structure forms.
Each coalition in this structure is now required to allocate its worth among
its members as dictated by the proposals to which they were signatories. If
bargaining continues forever, it is assumed that all players receive a payoff
of 0.

Ž .A stationary strategy for a player requires her to make a proposal
Ž .whenever it is her turn to propose, where the possibly probabilistic

proposal is conditioned only on the current state of the game}the current
player set and the coalitions that have already formed. It also requires her
to accept or reject proposals at every node where she is supposed to

Ž .respond. Again we impose the restriction that this possibly probabilistic
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FIG. 1. A schematic description of the bargaining process.

decision not depend on anything else but the current set of players, the
coalitions that have already left, as well as the identity of the proposer and
the nature of the proposal that she is responding to.9

Ž .A stationary perfect equilibrium is defined to be a collection of station-
ary strategies such that there is no history at which a player benefits from a
deviation from her prescribed strategy.

2.2. Existence of Equilibrium

Ž .Note that our notion of equilibrium allows for mixed behavior strate-
Ž . Ž .gies in three ways: a the proposer may randomly choose a coalition, b

given the choice of a coalition, the proposer may randomly choose offers,
Ž .and c respondents may mix over accepting and rejecting a proposal.

But it turns our that an equilibrium exists with a minimal need to
randomize, as described in the theorem below.

THEOREM 2.1. There exists a stationary equilibrium where the only source
Ž .of mixing is in the possibly probabilistic choice of a coalition by each

proposer.

9 Of course, it is only fair to also let her condition her yes]no decision on the identity and
order of the other respondents, but this is already accounted for, because once the proposer
and proposal are given, the protocol fixes the order of respondents.
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Remark 2.1. In the Appendix, we show that this theorem cannot be
strengthened to assert the existence of a pure-strategy equilibrium without
additional assumptions.

ŽRemark 2.2. While the proof of this theorem as well as the proofs of
.all other results is postponed to Section 5, the argument may be of

intrinsic interest. The proof relies on an inductive fixed-point argument. At
Ž .every subgame, a suitable fixed point in payoff space is constructed, and

this fixed point replaces the relevant portion of the game, as we inductively
move to an earlier subgame. To complete the fixed-point argument for the
earlier subgame, we need an additional continuity argument for the
recursively constructed fixed points, which is where the possibility of
mixing makes an appearance.

Remark 2.3. The existence argument can be readily modified to include
NTU partition function games that are strictly comprehensive; see the
remark following the proof.

3. SYMMETRIC PARTITION FUNCTIONS

A partition function is symmetric if the worth of a particular coalition in
a given partition depends only on the number of individuals in each
coalition in that partition. The vector of integers that capture this informa-
tion may be referred to as a numerical coalition structure. More formally,

� 4let p s S , . . . , S be a coalition structure. With some abuse of notation,1 k
Ž . Ž Ž ..the worth of a coalition S g p , ¨ S , p , can be written as ¨ s , n p .i i i

Ž . Ž . < <Here n p ' s , . . . , s , where s s S for all j, is the numerical coali-1 k j j
tion structure associated with p .10

We begin the analysis by constructing a particular numerical coalition
structure.

3.1. An Algorithm

Our results make essential use of a simple recursive algorithm which we
now describe.

Ž . Ž .For a vector n s n of positive integers, define K n ' Ý n . Use thei i
notation f to refer to the ‘‘zero-dimensional’’ or null vector containing no

Ž .entries, and set K f s 0. Let FF be the family of all such vectors
Ž . Ž .including f satisfying the additional condition that K n - n.

10 Whenever we need to emphasize the difference between a coalition and the number of
players in the coalition, we will use uppercase letters to denote the coalition and lowercase
letters to denote the number of players in it.
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Ž .We are going to construct a rule t ? that assigns to each member of this
family a positive integer. By applying this rule repeatedly starting from f,
we will generate a particular numerical coalition structure, to be called n*.

Ž . Ž .Step 1. For all n such that K n s n y 1, define t n ' 1.

Ž .Step 2. Recursively, suppose that we have defined t n for all n such
Ž .that K n s m q 1, . . . , n y 1, for some m G 0. Suppose, moreover, that

Ž . Ž .K n q t n F n. For any such n, define

c n ' n ? t n ? t n ? t n ??? ,Ž . Ž . Ž .Ž .Ž .

Ž Ž ..so that K c n s n, where the notation n ? t , . . . , t simply refers to the1 k
numerical coalition structure obtained by concatenating n with the inte-
gers t , . . . , t .1 k

Ž . Ž .Step 3. For any n such that K n s m, define t n to be the largest
� 4integer in 1, . . . , n y m that maximizes the expression

¨ t , c n ? tŽ .Ž .
. 1Ž .

t

Step 4. Complete this recursive definition so that t is now defined on
all of FF. Define a numerical coalition structure of the entire set of players
N by

n* ' c f .Ž .

This completes the description of the algorithm.

A verbal description may be useful. Given any departed numerical
coalition structure n, which we may think of as a substructure, and a
remaining set of players, it is possible to conceive of some final coalition
structure that will form, for every coalition size that may be formed in this

Žsituation. This ‘‘final’’ structure requires a recursive argument, as de-
.scribed above.

With this scenario in mind, find those coalition sizes the maximize the
Ž .a¨erage worth of a coalition, as described in 1 . If there is more than one

size, choose the largest coalition that achieves the desired outcome.

3.2. Results

3.2.1. A Class of Equilibria That Yield n*

The departure of some given collection of coalitions induces a stage,
defined as the set of all subgames in which a proposal is to be made,
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following the departure of these coalitions. For a stage in which p is the
Ž .collection of coalitions that has left the game, we will denote by n p the

numerical coalition structure corresponding to p .
For each such stage with numerical structure n, define

¨ t n , c n ? t nŽ . Ž .Ž .Ž .
a n ' . 2Ž . Ž .

t nŽ .

The results of this section will depend on the following regularity
condition, which will be in force throughout:

Ž . Ž .For every n such that K n - n y 1, there exits s F n y K n such that
Ž . Ž .¨ s, n ? s ? n9 ) 0 for all n9 such that K n ? s ? n9 s n.

Ž . Ž .This condition implies that for all n such that K n - n y 1, a n ) 0.
This is the implication that needs to be kept in mind.11

Ž . Ž .THEOREM 3.1. There exists d * g 0, 1 such that for all d g d *, 1 , any
equilibrium in which an acceptable proposal is made with positï e probability
at any stage must be of the following form. At a stage in which p has left the

Ž . Ž .game and n s n p belongs to FF, the next coalition that forms is of size t n
and the payoff to a proposer is

¨ t n , c nŽ . Ž .Ž .
a n, d ' . 3Ž . Ž .

1 q d t n y 1Ž .

In particular, the numerical coalition structure corresponding to any such
equilibrium is n*.

ŽTheorem 3.1 shows that if acceptable offers are made with some
.positive probability at every stage, the equilibrium coalition structure of

the bargaining game must yield the same numerical coalition structure as
our algorithm.

Thus the possibility of delay seems to be important in singling out the
coalition structure that we identify. Delay is equivalent to the making of
absurd offers which the proposer knows will be rejected. Why would such
offers every be made? The answer is that a proposer may wish to pass the
buck to another player, and benefit from possibly higher payoffs in some
subgame. But even if this is so, can’t the theorem be extended to cover
such cases? To answer these questions, consider an example.

11 Ž .If we insist on accommodating games with a n s 0 for some n, the equilibria that we
identify in the main text continue to be equilibria for such games. However, the uniqueness of
equilibrium cannot be expected, for obvious reasons.
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The following five-player partition function will be used12 :

¨ 4, 1 s 6, 2 ¨ 3, 2 s 3, 8 ¨ 2, 1, 1, 1 s 0.1, 3, 3, 3 ,Ž . Ž . Ž . Ž . Ž . Ž .
¨ 3, 1, 1 s 10, 0, 0 ¨ p s 0 for all other p ,Ž . Ž . Ž .

where, to ensure that the regularity condition holds, 0 should be inter-
preted as some small positive number.

Ž .By applying the algorithm, it is easy to check that n* s 4, 1 .

EXAMPLE 3.1. For all discount factors sufficiently close to unity, there
Ž .is an equilibrium with coalition structure 4, 1 in which one player makes

Ž .an unacceptable proposal in the presence of all five players and the other
four make acceptable proposals to each other. Under the equilibrium, the
intransigent player receives 2d whenever it is his turn to propose to the

Ž .grand coalition. The other receive only 6r 1 q 3d in their roles as
proposer. We leave the details of equilibrium construction to the reader.

It follows that Theorem 3.1 can be strengthened somewhat.13 But it
cannot be strengthened free of charge:

EXAMPLE 3.2. There is also an equilibrium with coalition structure
Ž .3, 2 . It is constructed as follows. Players 1, 2, and 3 make acceptable
offers to each other and the other two make unacceptable offers to player
1. Let x , the equilibrium payoff to i if i starts the game, be defined asi

3
x s for i s 1, 2, 3,i 1 q 2d

8d
x s for j s 4, 5.j 1 q d

For d close to 1, players 1, 2, and 3 get approximately 1 while players 4 and
5 get approximately 4. Clearly, player i, i s 1, 2, 3, cannot do better by

Ž . Ž .including player 4 or 5, since ¨ 4, 1 s 6, 2 . Given the strategies of the
others, i cannot do better by making an unacceptable proposal. It is also
easy to see that players 4 and 5 do not have a profitable deviation. Thus,

Žthe above strategies together with obvious specification for nonequilib-
.rium subgames constitute an equilibrium.

12 This partition function does not satisfy grand-coalition superadditivity. But it is possible
to modify the example so that it does satisfy this property and so that all the examples to be
based on it are valid. Details are available from the authors upon request.

13 Ž .This possibility is taken further in Ray and Vohra 1996 , where a wider class of
equilibria is identified than in Theorem 3.1 here.
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Thus Theorem 3.1 requires some qualification, and this qualification is
associated with the possibility of delay. But this raises the following open
question: is there always some equilibrium that yields the coalition struc-
ture n*?14

3.2.2. No-Delay Equilibrium

The argument above suggests that it is worthwhile to study in more
detail those equilibria in which acceptable offers are made. Can we
describe conditions under which they exist? Can we rule out other equilib-
ria?

Define a no-delay equilibrium to be one in which, at every stage, every
proposal that is made is accepted.15

By Theorem 3.1, we know that for discount factors close to unity,
no-delay equilibria induce n*.

Recall that

¨ t n , c n ? t nŽ . Ž .Ž .Ž .
a n ' .Ž .

t nŽ .

Ž .The numbers a n can, of course, be directly computed from the primitives
of the model.

THEOREM 3.2. If

a n G a n ? t n for all n g F such that n ? t n g FF , 4Ž . Ž . Ž . Ž .Ž .

ˆ ˆŽ . Ž .then there is d g 0, 1 such that a no-delay equilibrium exists for all d g d , 1 .

Ž .Theorem 3.2 is useful for the following reason: if condition 4 of this
theorem holds, there is always an equilibrium under which the coalition
structure n* identified by the algorithm must form.

Remark 3.1. It will be clear from the proof of Theorem 3.2 that when
Ž .4 holds a pure-strategy no-delay equilibrium exists. Indeed, there exists a

Žno-delay equilibrium corresponding to every strategy in which in every
.subgame following the departure of p player i randomizes across coali-

Ž Ž ..tions of size t n p , making an acceptable proposal in each case. How-
ever, the numerical coalition structure corresponding to any no-delay
equilibrium is n*.

14 Ž .Ray and Vohra 1996, p. 15 discuss this issue in more detail.
15 This is stronger than the class of equilibria identified in Theorem 3.1, but as we are after

existence and uniqueness here, our results will apply a fortiori to the broader class.
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Ž .As Theorem 3.3 indicates, condition 4 is fairly tight. It is necessary for
the existence of a no-delay equilibrium in pure strategies.

ˆ Ž .THEOREM 3.3. If there is d g 0, 1 such that a pure-strategy no-delay
ˆŽ . Ž .equilibrium exists for all d g d , 1 , then 4 holds.

Ž .To see how condition 4 works, consider

EXAMPLE 3.3. In the five-player partition function introduced earlier,
Ž . Ž . Ž Ž .. Ž .recall that n* s 4, 1 . So a f s 1.5 - 2 s a t f , so that 4 fails. By

Theorem 3.3, there is no pure-strategy no-delay equilibrium for discount
factors close to unity. Indeed, no-delay equilibria fail to exist as well. To
prove this, suppose, on the contrary, that such an equilibrium exists along
a sequence of discount factors tending to unity. Then, by Theorem 3.1, a

Ž .proposer receives 6r 1 q 3d , and makes an offer to some four-player
Ž .coalition. A responder receives 6dr 1 q 3d .

w xFix any d G d * such that d 0.5 q 6d ) 6. Now observe that there is
some pair of individuals i and j such that if it is j’s turn to propose, an
offer is made to i with probability no more than 3r4. If individual i
deviates by making an unacceptable offer to j, then the present value of i’s

wŽ . Ž . Ž . xpayoff is bounded below by d 3r4 6dr 1 q 3d q 1r4 2 , while by stick-
Ž .ing to equilibrium policy, he obtains 6r 1 q 3d . Comparing these two

expressions under the given restriction on d , it can easily be checked that
a deviation is profitable. This completes the argument.

Ž .At the same time, 4 does not exclude the possibility that there may be
other equilibria yielding entirely different coalition structures. To see this,
consider

Ž .EXAMPLE 3.4. Modify the five-player partition function so that ¨ 4, 1
Ž . Ž . Ž . Ž .s 6, 1 . Again, t f s 4. But now a 4 s 1 - a f and it is easy to see

Ž .that condition 4 holds. So there exists a no-delay equilibrium with the
Ž .coalition structure 4, 1 . However, the nonsymmetric equilibrium of Exam-

Ž .ple 3.2, with the coalition structure 3, 2 , is an equilibrium here as well.
Example 3.4 makes it clear that uniqueness needs more than condition

Ž . Ž .4 . In view of Remark 3.1 it is also clear that no such strengthening of 4
can rule out mixed strategy no-delay equilibria. To state this additional

Ž .requirement, we extend the definition of t n .
� Ž .4For each n g FF and each positive integer l g 1, . . . , n y K n , define

¨ t , c n ? tŽ .Ž .
t n ' arg max . 5Ž . Ž .l t� 4tg 1, . . . , l

Ž .In words, t g t n solves the same maximization problem as described inl
the algorithm, except that maximum size is restricted by l. Because of
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possible nonconvexities, this maximum restriction can be binding even if
Ž . 16l f t n . The utility of introducing this construction is brought out inl

THEOREM 3.4. Suppose that for each n g FF and each positï e integer
� Ž .4l g 1, . . . , n y K n ,

a n G a n ? t for all t g t n . 6Ž . Ž . Ž . Ž .l

ˆ ˆŽ . Ž .Then there is d g 0, 1 such that for all d g d , 1 , e¨ery equilibrium must be
no-delay, and therefore generate the numerical coalition structure n*.

Ž .Okada 1996 shows that in superadditive TU games, equilibria with
delay can be ruled out by modifying the bargaining game such that the
proposer is chosen at random. In the context of a partition function game,
superadditivity is a very restrictive assumption. However, it is easy to show
that it implies uniqueness of no-delay equilibria in the present context,
even without requiring proposers to be chosen at random.

A game is said to be superadditï e with respect to c if, for any coalition
Ž .structure p s t , . . . , t ,1 k

¨ t q t , c t ??? t ? t q tŽ .Ž .i j 1 iy1 i j

� 4G ¨ t , p q ¨ t , p for all i , j g 1, . . . , k , i - j.Ž . Ž .i i j

THEOREM 3.5. Suppose a game satisfies superadditï ity with respect to c.
ˆ ˆŽ . Ž .Then there exists d g 0, 1 such that for all d g d , 1 , e¨ery equilibrium

is a no-delay equilibrium, and therefore generates the numerical coalition
structure n*.

We end this section by observing that the conditions outlined in this
section can be check in models of economic interest. An example based on

Ž . Ž .the Cournot model satisfies 6 see below , and so is the public goods
Ž .model studied in Ray and Vohra 1996 .

3.3. A Cornot Oligopoly

We apply our results to an example of a symmetric Cournot oligopoly.
Suppose that n oligopolist produce a quantity x of a homogeneous
product, the price P of which is determined by a linear demand curve:
P s A y bx. Assume that there is a fixed unit cost of production, given
by c.

Ž .2Normalize the parameters to that A y c rb s 1. Using the formula
Ž .for Cournot]Nash equilibrium already presented in Example 1.1 , we may

16 Ž . Ž . Ž .Of course, t n g t n whenever l G t n .l
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construct a partition function for this symmetric game. Suppose that a
numerical coalition structure n forms. Consider a coalition structure of
size s in this structure. Then, using our normalization and denoting by q
the number of coalitions in n,

1
¨ s, n s .Ž . 2q q 1Ž .

The Cournot example is quite telling in one respect. Notice how the
partition function is independent of the coalition concerned, but depends
entirely on the overall coalition structure. This feature highlights how
partition functions might radically differ from characteristic functions,
where all the interesting action comes from variation in coalitional worth.

Ž .The calculations in this example will draw heavily on Bloch 1996 .
Assuming equal division for coalitional worth, Bloch constructed an equi-
librium coalition structure for this model. In doing so he used an algorithm

17 Ž . Žsimilar to ours, by applying Ray and Vohra 1996, Theorem 6.3 cur-
Ž . .rently condition 4 of Theorem 3.2 . As we shall see, much more can be

said about equilibria in this model by appealing to our results on symmet-
Ž .ric games. We will show that this model also satisfies condition 6 and,

therefore, our algorithm yields the only possible equilibrium coalition
Ž .structure. Moreover, approximately equal division for high discount fac-

tors is a result rather than an assumption.

Ž Ž ..THEOREM 3.6 Generalization of Bloch 1996 . All equilibria in a
Cournot oligopoly with n firms are no-delay equilibria. Moreo¨er, there is a
unique numerical equilibrium coalition structure. It consists of L singleton
firms and a single cartel of size n y L, where L is the smallest nonnegatï e
integer such that

2n y L - L q 2 q 1.Ž .
Thus our results predict full cartelization in this example whenever there
are four firms or less, and imperfect cartelization thereafter.

This observation can be quickly established using the algorithm of
Ž .Section 3.1, and then checking that the uniqueness condition 6 of

Theorem 3.4 is indeed satisfied. While the reader should consult the proof
for details, it is easy to provide some intuition. To do so, we invoke an

Ž .important observation due originally to Salant et al. 1983 : if several firms
are already out of a potential cartel, and the number of firms left is ‘‘small
enough,’’ then the remaining firms will not find it advantageous to form a
cartel. Intuitively, the gain in market concentration does not justify the

17 In some cases, he obtains two equilibrium coalition structures, whereas our algorithm
yields a unique numerical coalition structure.
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profit sharing that will be needed. Applying this idea recursively to the
remaining number of players, we can find a threshold at which the average
payoff to the remaining players, if they stay together, is approximately the
same as when a player quits, sparking off a cartel collapse.

Summarizing so far, we see that at this threshold, firms would rather stay
together than break up. But knowing this is so, those firms in excess of this
threshold will disagree to form a cartel as well, predicting correctly that
the remaining firms will stay together. This creates an equilibrium out-
come with one large cartel and several singleton firms.

4. THE GENERAL CASE

The focus of the analysis for symmetric games is the identification of a
Ž .particular numerical coalition structure, n*, which is generated by a

‘‘broad’’ class of equilibria. In particular, we showed that if an equilibrium
satisfies the no-delay requirement, then it must generate n* as the equilib-
rium coalition structure.

It is natural to ask if a corresponding observation applies in the general
case. That is, can we identify a particular coalition structure, or a class of
structures, such that a no-delay equilibrium will generate a coalition
structure within this class? This is the task to which we set ourselves in the
current section.18

wWe reiterate what we mean by the ‘‘identification of a particular class
x w xof coalition structure s .’’ It must be possible to take the parameters of the

Ž .model, and compute, in a finite number of steps, the relevant structure s .
The work then lies in proving that the structures are the outcome of
certain equilibria.

In attempting such a generalization, three points must be noted at the
very outset, and each of these stands in sharp contrast to the symmetric

Ž .case. First, there is no hope of finding, in general, a single numerical
coalition structure as the predicted outcome. Second, the predicted struc-
ture may well depend on the bargaining protocol. Third, the assumption of

Ž .equal division as in Bloch, 1996 may be unacceptably restrictive in
general models. All these points may be illustrated by means of a single
example.

EXAMPLE 4.1. We use the special case of characteristic function. N s
� 4 Ž� 4. Ž� 4.1, 2, 3 . Worths are given as follows: ¨ 12 s 3, ¨ 123 s 4, while
Ž .¨ S s 0 for all other S. Direct computation easily verifies that there is a

18 It should be pointed out that the analysis involves a number of subtle details, and the
results are not as clear-cut. It may be worth skipping this section at a first reading, and
absorbing the proofs for the symmetric case instead.
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unique stationary equilibrium, and it involves no delay. For the discount
factor close enough to unity, bargaining game started by player 1 or 2 will

Ž� 4 � 4.result in the formation of the coalition structure 12 , 3 , where players 1
and 2 ‘‘produce’’ and player 3 is left out. On the other hand, if player 3

� 4begins the game, the single coalition 123 will form, with players dividing
Ž .this worth unequally within this coalition even as d ª 1 . This observation

Ž .makes three points: 1 there may be more than one equilibrium coalition
Ž .structure; 2 the structure that arises may well depend on the protocol;

Ž .and 3 the assumption of equal division within formed coalitions may be
seriously restrictive in nonsymmetric cases. These new features are incor-
porated in the analysis that follows.

We begin, then by describing an algorithm that generates a class of
coalition structures. The main theorem then ties no-delay equilibrium to
the generation of these structures. Several steps are involved in the
description of the class.

4.1. A Class of Coalition Structures

4.1.1. Some Obser̈ ations on Characteristic Functions

It will be convenient to begin with some observations for characteristic
functions. The analysis in this subsection extends a construction introduc-

Ž .ing in Chatterjee et al. 1989 .
Ž .Let S be a finite set of players. A TU characteristic function w assigns a

Ž . Ž .number w T normalized to be nonnegative to every coalition T of S.
We continued to use lowercase letters s, t, t , . . . to denote the cardinal-k

ities of coalitions S, T , T , . . . .k
Our task in this subsection is to allocate, to each player i g S, a number
Ž . Ž . 19a w , as well as a set of coalitions, CC w .i i

Step 1. Consider the problem

w TŽ .
1A ' max . 7Ž .

tT:S

Ž .For each coalition T that solves 7 , let

t y 1
1D T ' yA ,Ž .

t

19 It is useful to note that analogous construction in the symmetric case, which was
embodied in the algorithm in Section 3.1. There each player was assigned the same number,

Žas well as the same set of coalitions those of maximal size among those maximizing ‘‘average
.worth’’ .
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Ž .and define SS to be the collection of all T that minimize D T , subject to1
Ž . 1the constraint that they solve 7 . If A ) 0, clearly, this means: include T
Ž . Ž .in SS if and only if it solves 7 and there is not other T 9 that solves 71

Ž .and is of larger size there is no need for T 9 to be a superset of T .
1 Ž .Let D be the value of D T is this class

Define U to be the union of all players who belong to coalitions that1
� < 4belong to S : i.e., U ' i g S i g T for some T g SS . Define1 1 1

a w ' A1 for all i g U , 8Ž . Ž .i 1

and a set of coalitions, for each i g U , by1

<CC w ' T g SS i g T . 9� 4Ž . Ž .i 1

If U s S, end here. Otherwise go on to Step 2.1

Ž 1 k 1 k .Step 2. Recursively, suppose that the values A , . . . , A ; D , . . . , D
Ž .and the coalitions U , . . . , U have been defined for some integer k G 1,1 k

and that S _ D k U ' S9 / B.js1 j
Consider the problem

w T y Ýk A jtŽ . js1 jkq1A ' max , 10Ž .
tT'T j? ? ?jT1 kq1 kq1

where the maximization takes place over coalitions of the form T j ??? j1
T , subject to the constraint that T : U for all j s 1, . . . , k, andkq1 j j
B / T : S9.kq1

Ž .For each coalition of the form T s T j ??? j T that solves 10 , let1 kq1

Ýk t D j q A j t y 1Ž .js1 j kq1kq1D T ' y y A .Ž .
t tkq1 kq1

Ž .Define SS to be the collection of all coalitions that minimize D T ,kq1
Ž .subject to the constraint that they solve 10 . As in Step 1, this implies a

Ž . Ž .selection based on size from the set of solutions to 10 , but has no direct
connection with maximal coalitions, as in that step.

kq1 Ž .Let D be the value of D T in this class.
Define

<U ' i g S9 i g T for some T g SS .� 4kq1 kq1

Let

a w ' Akq1 for all i g U , 11Ž . Ž .i kq1
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and define a set of coalitions, for each i g U , bykq1

<CC w ' T g SS i g T . 12� 4Ž . Ž .i kq1

If S _ D k U s B, end the recursion here. Otherwise repeat Step 2.js1 j

As already indicated, this construction assigns to each individual i in the
Ž . Ž .player set S, a number a w as well as a set of coalitions CC w , dependingi i

on the characteristic function w defined on S.

4.1.2. Rules of Coalition Formation

Let N be the player set of the original game. Denote by P8 the
collection of all coalition substructures of N; i.e., the collection of all
coalition structures of every strict subset of N.20 For each p g P8, let
Ž .TT p be the collection of all coalitions formed from the remaining set of

Ž .players not included in p .
Ž . Ž .A rule of coalition formation RCF is a map R: P8 ª TT p . In words,

given any substructure, R assigns a fresh coalition from the set of players
not in the substructure.

Given any RCF, a substructure can be ‘‘completed’’ into a full coalition
structure of N in the obvious way, by recursively applying the RCF starting
from that substructure until no players are left. This induces a completion

Ž .map from P8 to the set II of full coalition structures of N. Call this map
Ž .c ?, R ; it depends on the RCF R. It will be notationally used to define
Ž . Ž .c p , R ' p for all full coalition structures p .

4.1.3. Characteristic Functions Induced by an RCF

Consider a substructure p of P8 with the property that there is a
Ž .nonempty set of players S p not included in p . Given some RCF R, a

Ž .characteristic function v is induced on S p in the following way:Rp

w T ' ¨ T ; c p ? T , R 13Ž . Ž . Ž .Ž .Rp

Ž .for all nonempty T : S p .

4.1.4. Consistent Rules of Coalition Formation

Recall that for every characteristic function w defined on some set of
Ž .players S, we have assigned a number of a w and a set of coalitionsi

Ž .CC w to every player i g S.i

20 As in the symmetric case, the ‘‘empty structure’’ f is also an element of P8.
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Say that a rule of coalition formation R is consistent if, for every
substructure p g P8,

R p g CC w , 14Ž . Ž . Ž .j Rp

where j is the first proposer assigned by the bargaining protocol when the
Ž .set of active players is S p .

Ž .By simply working backwards from substructures p such that S p is a
singleton, it is elementary to check that a consistent RCF always exists.

It is important to note that our description of a consistent rule of
coalition formation depends only on the parameters of the model.21

Moreover, the description is finite, in the sense that, given any partition
function and a bargaining protocol, every consistent RCF can be identified
by using a bounded sequence of computations.

4.2. No-Delay Equilibrium and Consistent RCFs

Just as in the special case of symmetric games, a no-delay equilibrium is
one in which, at every stage, every proposal that is made is accepted.

Ž . Ž .THEOREM 4.1. There exists d * g 0, 1 such that if d g d *, 1 , e¨ery
no-delay equilibrium must generate a coalition structure gï en by some consis-
tent rule of coalition formation. Formally, gï en a no-delay equilibrium, there
exists a consistent RCF R such that e¨ery stage indexed by p g P8, with the
proposer gï en by the bargaining protocol, the coalition that is formed corre-

Ž .sponds to R p . In particular, the coalition structure that emerges in equilib-
Ž .rium is gï en by c f, R , where f corresponds to the null substructure.

Theorem 4.1 generalizes the corresponding results obtained for symmet-
ric games. To see this, it is sufficient to note that in symmetric games

Ž .satisfying the assumption that a n ) 0, e¨ery consistent RCF yields the
same numerical coalition structure, and that structure is precisely n*. We
leave the details of the argument to the reader.

In general, of course, there may well be several coalition structures
generated by the class of consistent RCFs. This is certainly true if we alter

Ž .bargaining protocols Example 4.1 , and may even be true for a given
protocol.

The careful reader will have noted that in the main building block of our
Ž .algorithm Section 4.1.1 on characteristic functions , not only is a maxi-

Ž Ž ..mization problem solved the problem described in 10 , but a further
Žrefinement of the set of maximizing coalitions is needed this is the

Ž .additional selection involved in minimizing D T ; see the discussion follow-

21 Unlike the case of symmetric games, we are forced here to include dependence on the
bargaining protocol as well.
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Ž .. Žing 10 . In symmetric games, there is not direct analog to this except
requiring that the coalition maximizing ‘‘average worth’’ be as large as

.possible . The following example is designed to explain this additional
restriction, as well as to point out that the choice of ‘‘largest’’ coalitions
does not carry through to the general case. Again, the example only needs
a characteristic function in order to make the point.

EXAMPLE 4.2. Consider the following four-person characteristic func-
� 4 Ž� 4. Ž� 4. Ž� 4. Ž� 4.tion: N s 1, 2, 3, 4 , ¨ 1 s 1, ¨ 12 s 2, ¨ 123 s 2.8, ¨ 1234 s

Ž . � 4 � 43.6, ¨ S s 0 for all other coalitions S. Let us compute a and CC fori i
this game. Because no partition function is involved, this is simple.

Begin with Step 1 in Section 4.1.1. We see that A1 s 1. Two coalitions
� 4 � 4 Ž .} 1 and 12 }achieve this outcome. The refinement following 7 dic-

tates that the smaller coalition be discarded. This is reminiscent of
� 4symmetric games. We thus see that U s 12 . For future use, note that1

D1 s y1r2.
Ž .Now we compute U . By carrying out the maximization problem in 10 ,2

Ž 1 . � 4with A , U given, we see that the maximizing coalitions are T ' 1231
� 4 2and T 9 ' 1234 . Moreover, A s 0.8. Now observe that

2 1 y 0.5 0Ž .
D T s y y 0.8 s y1,Ž .

1 1

while

2 1 y 0.5 1Ž .
D T 9 s y 0.8 s y0.9.Ž .

2 2

Our criterion of minimizing D therefore requires us to discard the larger
� 4 � 4 � 4coalition 1234 in favor of the smaller coalition 123 . Thus U s 3 . This2

� 4leaves the singleton, 4 , which must obviously solve the remaining prob-
Ž .lem nothing of interest to report here .

� 4Thus the algorithm predicts that the coalition 123 , and not the grand
coalition, will form if player 3 is to start the game, despite the fact that the
grand coalition also solves the relevant maximization problem.

Direct computation of the stationary equilibrium verifies that this is
indeed the case. It is easy enough to see that for d close enough to unity,
Ž . Ž . Ž . Ž . Ž . Ž .a d s a d s 2r 1 q d , a d s 2.8 y 4dr 1 q d , and a d s 3.61 2 3 4

Ž . Ž . Ž .y 2.8d y 4d 1 y d r 1 q d comprise the unique solution to 46 below.
Ž . � 4It can also be checked that CC d s T for d sufficiently close to unity.3

It might be argued that for ‘‘generic’’ games the maximization exercise
described in Section 4.1.1 will have unique solutions, and therefore the
additional restrictions will usually not be needed. If by genericity we mean

Ž .a random nonatomic draw from the space of partition functions, this is
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certainly the case: we do have a generically unique prediction of coalition
structure for any given bargaining protocol. At the same time, we hesitate
to impose such genericity concepts. For example, symmetric games form
an important special case, in our opinion. Yet are they ‘‘generic’’?

Indeed, with issues of ‘‘genericity’’ neglected, it should be pointed out
Žthat the description achieved in Theorem 4.1 is not strong enough in

.general . More delicate characterizations can be used to refine the pre-
dicted set even further. We omit the details.

5. PROOFS

Proof of Theorem 2.1. It will be useful to develop some additional
notation. Use of notation yS or yp to denote the set of players that are
left in N after the players in S or p have left. When a subcoalition S

Ž .leaves the game, this defines a new bargaining game yS, ¨ , r , where
� Ž Ž .. 4 4¨ s ¨ T , S, p and r is the restriction of r to N _ S. WeT gp p g P ŽN _ S .

Ž .will denote such games simply as yS, ¨ , r . In a similar manner we can
Ž .also define a game yp , ¨ , r corresponding to a situation in which

coalitions p have left the game.
Ž� 4 .Recall that we assume that ¨ i , p G 0 for all i g N and p g P such

� 4 Ž .that i g p . This implies that the equilibrium payoff if there is one to
every player is bounded above by a nonnegative number m s

Ž Ž . .max ¨ S, p . In our search for equilibrium payoffs, we may,sgp p g P

therefore, restrict the feasible payoff profiles to lie in X, the cube in R N
q

with vertex 0 and length m.
The proof is by induction on the number of players. Suppose an

equilibrium exists for every game with less than n players. For the
one-player model, this assumption is trivially satisfied.

In particular, the hypothesis implies that an equilibrium exists for every
Ž .subgame yS, ¨ , r for every nonempty coalition S. For each such sub-

game fix one equilibrium strategy profile for the players of that subgame.
Our goal is to describe equilibrium strategies for all the remaining nodes
in the larger game that will be grafted onto the fixed strategies for the
subgames.

We begin by invoking the assumption that the protocol assigns a unique
continuation to the game after S has formed, regardless of how S came to
be. By using the given equilibrium strategies after S forms, we may

Ž . S Ž .generate two objects: i a probability distribution b over P yS , and
Ž .ii a vector of expected equilibrium payoffs for all the players in yS, to be

Ž .denoted by u S , for j g yS.j
Now consider the overall game. Let NN be the set of all nonemptyi

coalitions containing player i and let D denote the set of probabilityi
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Ž Ž� 4. .distributions over A s NN , j . Recall that i can only makei i jg N _�i4
proposals to coalitions in NN . It can also make an unacceptable proposal toi

Žplayer j there is no loss of generality in assuming that it cannot make
.unacceptable proposals to other coalitions . Now a will denote player i’si

choice concerning coalitions to form or other players to whom an unac-
Ž .ceptable offer is made. More precisely, we will interpret a S to be thei

probability with which i chooses to make an acceptable proposal to S g NNi
Ž� 4.and a j to be the probability with which i chooses to make ani

unacceptable proposal to player j.
Define D ' Ł D . Fix a vector a g D, and a vector x g X, the latterig N i

to be interpreted below as the vector of expected equilibrium payoffs that
each player receives in the game, if i is the first proposer. Consider player
i. The following options are available.

Ž .First, i can name a coalition S in NN , and make a proposal y S, pi
Ž .conditioned on each p g P yS . This will be interpreted in the sequel as

an acceptable proposal. Consider the problem:

max b S p y S, p 15Ž . Ž . Ž .Ý i
y Ž .pgP yS

subject to the constraints

b S p y S, p G d x for all j g S, j / i , 16Ž . Ž . Ž .Ý j j
Ž .pgP yS

y S, p F ¨ S, S, p for each p g P yS . 17Ž . Ž . Ž . Ž .Ž .Ý j
jgS

Ž .Denote by g S, x the maximum value so attained. It is easy to see thati

g S, x s b S p ¨ S, S, p y d x ,Ž . Ž . Ž .Ž .Ý Ýi j
Ž . jgS ; j/ipgP yS

which is clearly a continuous function of x, and is independent of a .
Second, i might make an unacceptable proposal to j.
Both these cases can be considered together in the following way. What

we will do is compute a particular present value payoff to i, in a situation
Ž .where x, a g X = D is given. We will show thereafter that i’s attempt to

maximize this value, with respect to his choice of proposal probabilities,
yields an equilibrium response. For a fixed i, define a collection
� jŽ .4¨ x, a in the following way:i jg N

j j � 4 k¨ x , a s B q d a k ¨ x , aŽ . Ž .Ž .Ýi i j i
k/j
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for all j and k, where

Bi ' a S g S, x ,Ž . Ž .Ýi i i
Sg NNi

and, for j / i,

jB ' d x a S q a S u S .Ž . Ž . Ž .Ý Ýi i j j i
SgNN ; igS SgNN ; ifSj j

We may interpret ¨ j as the ¨alue that player i receives when player ji
proposes at this stage. Note, for future use, that the value is taken to

Ž .depend on i’s best payoff g S, x from making an acceptable proposal toi
each coalition S, as well as the entire vector a .

Ž j.The set of simultaneous equations defining the vector V s ¨ can bei i
Ž j.written in matrix form as CV s B , where B s B and C is the n = ni i i i

� 4matrix with 1’s on the diagonal and yda k as the jkth off-diagonalj
element. Note that the sum of the off-diagonal elements in any row lies in

Ž xthe half open interval y1, 0 and C is the nonsingular. It is now easy to
see that ¨ j is continuous in x and a for all j.i

Now define a function on X = D = D byi

X X X � 4 j¨ x , a , a ' a S g S, x q d a j ¨ x , a , 18Ž . Ž . Ž . Ž . Ž .Ž .Ý Ýi i i i i i
j/iSg NNi

and maximize this function with respect to a X g D .i i
1Ž .Let f x, a denote the maximum value of this problem, and leti

2Ž .f x, a denote the set of maximizers. It is easy to see, using thei
Ž X.maximum theorem and the fact that ¨ x, a , a is continuous, thati i

1Ž . 2Ž .f x, a is a continuous function and that f x, a is a convex-valued,i i
Ž� 4 .upper hemicontinuous correspondence. Since ¨ i , p G 0 for all i and

Ž . 1Ž . w xp g P, it follows that, for all x, a g X = D, f x, a g 0, m for all i.i
Thus Ł f1 maps from X = D into X. Therefore the correspondencei i

f ' f1 = f 2 : X = D ¬ X = DŁ Łi i
i i

satisfies all the conditions of Kakutani’s fixed-point theorem and has a
Ž .fixed point x, a .

We shall now use this fixed point to construct an equilibrium. Let s
denote the strategy profile such that:

Ž .i When the player set is N, player i as a proposer makes propos-
Ž .als according to a . To every coalition S g NN such that a S ) 0, shei i i

Ž . Ž . Ž . Ž .proposes y S, p which solves the problem defined by 15 , 16 , and 17 .
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Ž� 4.To every j / i such that a j ) 0, she offers, for every possible partitioni
� 4 Ž .containing the coalition i, j , less than d x possibly negative . This yieldsj

player i a payoff of x .i
Ž .ii Suppose the player set is N, player i is a respondent to a

Ž .proposal y S, p , and every respondent j to follow i is offered an expected
SŽ . Ž .payoff at least d x , i.e., Ý b p y S, p G d x for all respondentsj p g P ŽyS . j j

j that follow i. Then i accepts the proposal if and only if

Sb p y S, p G d x .Ž . Ž .Ý i i
Ž .pgP yS

Ž .iii Suppose the player set is N, and player i is the respondent.
Ž .From ii we know that if there is exactly one respondent to follow i, say

player j, such that j is offered an expected value less than d x , then j willj
reject the proposal. Player i’s decision will now depend on the present
value of the payoff to i resulting from j rejecting the offer and making a

jŽ . Ž .proposal as in i . In fact, this values is precisely d ¨ x, a . Player i acceptsi
the proposal if and only if

jd ¨ x , a G d x .Ž .i i

Note that this inequality might hold even though we know from the
i jŽ . Ž .construction of ¨ and the fact that x, a is a fixed point, that d ¨ x, ai i

� 4F x . Now consider a proposal made to respondents 1, . . . , r , in the gï eni
order. Inductively, suppose we have computed in the decisions of all
respondents i q 1, . . . , r. Player i’s decision is then obtained by consider-
ing the decision of the next responder, say j, who rejects the proposal.

jŽ .Player i accepts the proposal if and only if d ¨ x, a G d x . In this way wei i
obtain a complete description of the actions of all respondents of a
proposal.

Ž .iv If the player set is not N, it must result from some collection of
coalitions p having left the game. The strategies of the remaining players

Ž .are defined according to the preselected equilibrium of the game yp , ¨ .

Ž . Ž .We can now show that a strategy profile s satisfying i ] iv is a
stationary equilibrium. Consider such a strategy and deviations that a

Ž .single player i can contemplate. By construction, x s ¨ x, a , a si i i
Ž .max ¨ x, a ,? . This means that it is not possible for i as a proposer toi

receive a higher payoff than x by making a one-shot deviation from a .i i
This implies that no other strategy can yield i a higher payoff than x . Thei

Ž .action prescribed in i achieves x and, therefore, cannot be improvedi
upon. Suppose i is a respondent and all respondents to follow i are offered
at least d x , which, by hypothesis, they will accept. By rejecting thej
proposal i gets a present value of d x . Clearly, then, the action prescribedi
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Ž .in ii cannot be improved upon. Suppose i is a respondent who is followed
by a respondent j who, based on s , will reject the proposal. Accepting the

jŽ .proposal yields d ¨ x, a to player i while rejecting it yields at most d x .i i
Ž .Thus the action described in iii cannot be improved upon. A similar

Ž .argument applies to the description in iii of i’s actions in the other cases
when i is a responder. Finally, note that when some players have left the

Ž .game, the actions in iv are obviously unimprovable. Thus, s is a station-
ary equilibrium. B

Remark. The existence argument can be modified to include NTU
Ž . Spartition function games that are strictly comprehensive. Let V S, p : R

denote the utility set of a coalition S, under the coalition structure p .
Ž .Condition 17 in the proof of Theorem 2.1 will now have to be changed to

y S, p g V S, S, p for each p g P yS .Ž . Ž . Ž .Ž .

Ž .If V S is closed and strictly comprehensive, it is easy to check that
Ž .g S, ? is well defined and, by the maximum theorem, a continuousi

Žfunction. Of course, it can no longer be written in the simpler form used
.in the proof of Theorem 2.1. The rest of the proof remains unchanged. It

is not possible to weaken strict comprehensiveness to comprehensiveness.
If the utility sets are not strictly comprehensive, it is possible that condi-

Ž . Ž .tions 16 and an appropriately modified version of 17 cannot simultane-
Ž .ously be satisfied; i.e., g S, x need not be well defined. Moreover, even ifi

Ž .the problem of maximizing the expression in 18 is defined only to cover
Ž .those cases in which g S, x is well defined, the maximum value need noti

be continuous. In fact, an equilibrium may not exist; see Example 2.6 of
Ž . 22Bloch 1996 .

To prove Theorem 3.1, our first task is to fix d *. This is done by the help
of the following result.

Ž . Ž .LEMMA 5.1. There exists d * g 0, 1 such that for any d g d *, 1 and
Ž . � Ž .4any n g FF, t n is the unique integer in the set 1, . . . , n y K n that

maximizes

¨ t , c n ? tŽ .Ž .
. 19Ž .w x1 q d t y 1

Ž .Proof. For n such that K n s n y 1, the statement is trivially true.
Ž .Fix, therefore, some n g FF such that K n - n y 1 and consider a se-

� q4 Ž . q Ž q.quence d in 0, 1 such that d ª 1. Let m n, d denote the set of

22 While Bloch considers only pure-strategy equilibria, it can be shown that in this example
there do not exist any mixed-strategy equilibria either.
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Ž . Ž . qmaximizers in t of the expression in 19 corresponding to d . By the
maximum theorem, this correspondence is upper hemicontinuous. Since

Žthe set of maximizers belongs to a finite set the integers between 1 and
Ž .. nn y K n , this implies that there exists d such that

m n, d q : m n, 1 for all d q G d n .Ž . Ž .

Since the number of players is finite, FF is a finite set. Therefore, we can
find d * such that, for e¨ery n g FF,

m n, d q : m n, 1 for all d q G d *.Ž . Ž .

Ž . Ž .Now observe that m n, 1 is precisely the set of integers that maximize 1
Ž .recall Step 3 of the algorithm . This means that if d G d *, then for every

Ž . Ž Ž ..n, if t* maximizes the expression in 19 i.e., t* g m n, d , then

¨ t*, c n ? t* ¨ t n , c n ? t nŽ . Ž . Ž .Ž . Ž .Ž .
s ' a n . 20Ž . Ž .

t* t nŽ .

Ž .That is, t* maximizes the expression in 1 as well.
Ž .It remains to be shown that if d G d *, then m n, d contains only one

Ž .such t*, and that it is the largest integer maximizing ‘‘average worth’’ in 1 ,
Ž . � Ž .4 Ž .i.e., m n, d s t n . Suppose not. From the construction of t n , this

Ž .means that for some d G d * and for some t* g m n, d , we have t* -
Ž . ˆt n ' t. Therefore

1 y d 1 y d
q d - q d .

t̂ t*

Ž .Using this and the fact that a n ) 0, we see that

t̂a n t*a nŽ . Ž .
) ,ˆw x w x1 q d t y 1 1 q d t* y 1

Ž . Ž .and recalling the definition of a n from 20 , we may conclude that

ˆ ˆ¨ t , c n ? t ¨ t*, c n ? t*Ž . Ž .Ž .Ž .
) .ˆw x w x1 q d t y 1 1 q d t* y 1

Ž .But this contradicts the fact that t* maximizes the expression in 19 . B

We now establish a lemma that is useful for proving subsequent results.

LEMMA 5.2. Consider the stage in which p has left the game and S is the
set of actï e players. Let n g FF denote the numerical coalition structure

Ž .corresponding to p , and let x denote the equilibrium payoffs to eachi ig S
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actï e player if he is the proposer at this stage. Suppose that for any t g
� Ž .4 Ž . Ž .1, . . . , n y K n the numerical coalition structure following n ? t is c n ? t .
Then, if i makes an acceptable proposal to coalition T* with positï e prob-
ability,

Ž .1 j g T*, j / i, and x - x implies k g T*,k j

Ž .2 x F x for all k g S.i k

Proof. Since i makes an acceptable proposal to T* with positive
Ž .probability and the resulting coalition structure is c n ? t* , it follows that

x s ¨ t*, c n ? t* q d xŽ .Ž . Ýi j
jgT *; j/i

G max ¨ t , c n ? t y d x . 21Ž . Ž .Ž . Ý j
T:S ; igT jgT ; j/i

Ž . Ž . Ž .Part 1 is an immediate consequence of 21 . Suppose part 2 is false, i.e.,
x - x for some k g S. Using the hypothesis that the coalition structurek i

Ž . Ž .following n ? t is c n ? t , it follows that if k f T*, then k can form the
Ž � 4. � 4coalition T* _ i j k and receive the same as x , a contradiction.i

Suppose k g T*. Then

x G ¨ t*, c n ? t* y d xŽ .Ž . Ýk j
jgT *; j/k

s ¨ t*, c n ? t* y d x q d x y d x ,Ž .Ž . Ý j k i
jgT *; j/i

Ž .which implies, using 21 , that x G x , but this is a contradiction. Bk i

PROOF OF THEOREM 3.1. Fix an equilibrium as described in the state-
Ž .ment of the theorem, and let d g d *, 1 , with d * as in Lemma 5.1. We

proceed by induction on the cardinality of the set of active players,
following the departure of any collection of players. If there is one active
player left, then there is nothing to prove. Inductively, suppose that the

Ž Ž ..theorem is valid at every stage with K n p s M q 1, . . . , n y 1 for some
m G 0.

Ž Ž ..Consider, now, a stage with K n p s m. Let S be the set of active
� 4players, and let x denote the vector of equilibrium payoffs to player jj jg S

if j is the proposer at this stage. Let T* be a coalition that forms at this
Ž .stage with cardinality t* , and let k be the proposer. We need to prove

that

t* s t n p . 22Ž . Ž .Ž .
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Since every player in S makes an acceptable proposal to some coalition
with positive probability, it follows immediately from the induction hypoth-

Ž .esis and Part 2 of Lemma 5.2 that x s x s x for all i, j g S. It followsj i
from the induction and the optimality of the proposal that

x s ¨ t*, c n p ? t* y d t* y 1 x G ¨ t , c n p ? t y d t y 1 xŽ . Ž . Ž . Ž .Ž . Ž .Ž . Ž .
� Ž Ž ..4for all t g 1, . . . , n y K n p .

But this observation implies that x must also be the maximum value of
Ž . � Ž Ž ..4the expression in 19 , as t varies over the set 1, . . . , n y K n p . Using

Ž .Lemma 5.1, we may conclude that t* s t n . Of course, the payoff to a
Ž .proposer is a n, d . B

ˆ Ž .LEMMA 5.3. There exists d g d *, 1 such that for all n g FF and positï e
integers t , . . . , t with n ? t ??? t g FF, the relationship1 k 1 k

a n G a n ? t ??? t 23Ž . Ž . Ž .1 k

implies the relationship

ˆa n, d ) d a n ? t ??? t , d for all d g d , 1 , 24Ž . Ž . Ž .Ž .1 k

Ž . Ž .where a n, d , it will be recalled, is defined in 3 .

Ž . Ž . Ž . Ž .Proof. Observe from 20 and 3 that, for each n g FF, a n, d ª a n
Ž .as d ª 1. It follows that for each n such that strict inequality holds in 23 ,

n Ž . Ž n . Ž .there exists d g 0, 1 such that for all d g d , 1 , 24 holds with a strict
Ž .inequality. We focus on the case where equality holds in 23 .

Ž .We proceed by differentiating both sides of 24 and examining their
comparative magnitudes at d s 1. If we can show that

d d
a n, d - d a n ? t ??? t , d , 25Ž . Ž . Ž .1 kdd ddds1 ds1

Ž .then, in light of the fact that equality holds in 23 , we will be able to
n Ž . Ž n . Ž .conclude that there exists d g 0, 1 such that for all d g d , 1 , 24

holds with strict inequality. The proof of the lemma is then complete by
ˆnoting that FF is a finite set, so that the required d can be obtained by

choosing the maximum of the values d n over n, and d *.
Ž . Ž .It remains, then, to establish 25 in the case where 23 holds with

Ž . Ž .equality. To simplify the notation, let t ' t n , t9 ' t n ? t ??? t , and1 k
Ž . Ž . Ž Ž .a ' a n s a n ? t ??? t ) 0 note that K n - n y 1 since n ? t ??? t g1 k 1 k

. Ž . Ž .FF . Then, recalling the definition of a n from 20 and noting that
Ž . Ž Ž ..c n s c n ? t n , it is clear that

at
a n, d s ,Ž .

1 q d t y 1Ž .
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while

d at9
d a n ? t ??? t , d s .Ž .1 k 1 q d t9 y 1Ž .

Simple computation now reveals that

d a t y 1Ž .
a n, d s y ,Ž .

dd tds1

while

d a t9 y 1Ž .
d a n ? t ??? t , d s a y .Ž .1 kdd t9ds1

Ž .Because a ) 0, it follows right away from these two expressions that 25
must hold.

The proof of the lemma is completed, as already described, by letting
ˆ n� }d s max d *, max d . Bn g FF

ˆ ˆŽ . Ž .Proof of Theorem 3.2. Assume 4 . Pick any d g d , 1 , where d is given
by Lemma 5.3.

Consider any stationary strategy s as follows: in every subgame follow-
ing the departure of p , player i makes a proposal to a coalition of size
Ž Ž .. Ž .t n p . He offers to each partner a payoff d a n, d in the event that the

Ž .numerical coalition structure c n is formed, and any other payoff division
Žotherwise. All such offers are accepted by respondents other responses

Ž . Ž .are described in the obvious way; for a description, see ii and iii in the
.proof of Theorem 2.1 . We will show that s is an equilibrium.

To this end, consider any stage described by p . Along the proposed
Ž Ž . .strategy profile s , a proposer receives a n p , d . Therefore, the only way

that a proposer can possibly deviate gainfully is by making an unacceptable
proposal. Given the strategies of the other players, this will result in the

Ž . Ž Ž ..formation of coalitions of cardinalities t n , t n ? t n , and so on. Thus the
deviant proposer will ultimately receive a payoff that is is bounded above

Ž . Ž . Žby d a n ? t ??? t , d , where t ??? t is a finite string of the form t n ? t n ?1 k 1 k
Ž .. Ž .t n ??? . Applying 4 repeatedly, we see that

a n G a n ? t ??? t .Ž . Ž .1 k

ˆ Ž .But, then, by Lemma 5.3 and the fact that d ) d , we conclude that 24
holds. This means that the derivation cannot be profitable.

It is now easy to see that as a responder, a player cannot gainfully
deviate from s . Consequently, s is an equilibrium. B
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ˆ Ž .Proof of Theorem 3.3. Suppose, on the contrary, that there is d g 0, 1
ˆŽ .such that for all d g d , 1 there exists a pure-strategy no-delay equilib-

Ž . Ž .rium but 4 fails. This means that there exists n g FF such that n ? t n g FF

Ž Ž .. Ž .as well, and such that a n ? t n ) a n . It follows that there exists d g
Ž .0, 1 such that

d a n ? t n , d ) a n, d for all d g d , 1 . 26Ž . Ž . Ž . Ž .Ž .

ˆ� 4Consider any d ) max d , d , and fix a pure-strategy no-delay equilibrium
Ž .s . Consider any subgame where p has left, where n p s n. Let i be the

first proposer in this subgame. Since s is a pure-strategy no-delay equilib-
ˆrium and d G d G d *, i makes an acceptable proposal to some determi-

Ž . Ž .nate coalition of size t n . Because n ? t n g FF, there must exist a player j
who is not included in the proposal by player i, and thereafter picks up a

Ž Ž . .present value of a n ? t n , d in the very next stage.
Ž .Now consider another subgame in the same stage so that exactly the

Ž .same set of players has left and in the same structure , but j is the first
proposer instead of i. Because s is a pure-strategy no-delay equilibrium, j

Ž .is also supposed to make an acceptable proposal to a coalition of size t n ,
Ž .picking up a n, d . However, suppose that he deviates by making an

unacceptable offer to i. By stationarity, we are then in the precise situation
of the preceding paragraph, with a delay of one unit of time. Thus, by
making an unacceptable proposal to player i, j receives a present value of

Ž Ž . . Ž .d a n ? t n , d . By 26 this deviation is profitable. This contradicts the fact
that we have an equilibrium. B

ˆProof of Theorem 3.4. Fix d as given in Lemma 5.3, and any equilib-
rium. We will show that it must be no-delay. The proof is by induction on
the cardinality of the set of active players. At every stage when there is
only one active player left, the subgame equilibrium is trivially no-delay.

Ž Ž ..Now suppose that for any p such that K n p G m q 1, . . . , n y 1, for
some m G 0, the subgame equilibrium is no-delay. Consider a stage
described by a structure of departed players, p , with the property that
Ž Ž .. Ž . � 4K n p s m. Let n ' n p . Let S be the set of active players. Let xi ig S

denote the vector of equilibrium payoffs to each player, if he is the
proposer at this stage. Without loss of generality, number of players such
that x F ??? F x .1 s

Ž .Because of the regularity condition that guarantees a n ) 0, some
player must make an acceptable proposal with positive probability. From
Lemma 5.2 it follows that there is no loss of generality in assuming that

� 4player 1 does so to coalition T* s 1, . . . , t* .
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Since player 1 makes an acceptable proposal to T*, it must be the case
that, for any t F n y m,

t*

x s ¨ t*, c n ? t* y d xŽ .Ž . Ý1 j
js1

t

G ¨ t , c n ? t y d x for all j g S. 27Ž . Ž .Ž . Ý j
js2

We claim that

¨ t , c n ? t ¨ t*, c n ? t*Ž . Ž .Ž . Ž .
F for all t F t*. 28Ž .

t t*

ˆSuppose not. Then there exists t - t* such that

ˆ¨ t , c n ? t ¨ t*, c n ? t*Ž . Ž .Ž .Ž .
) .

t̂ t*

From Lemma 5.3, and given our choice of d , it follows that

ˆ ˆ¨ t , c n ? t ¨ t*, c n, t*Ž . Ž .Ž .Ž .
a ' ) a* 'ˆ ˆ1 q d t y 1 1 q d t* y 1Ž . Ž .

or

ˆ ˆ ˆ¨ t , c n ? t y d t y 1 a ) ¨ t*, c n ? t* y d t* y 1 a*.Ž . Ž . Ž . Ž .Ž .ˆŽ .
Ž .Since a ) a*, we may combine this inequality with 27 and rearrangeˆ

terms to see that

t*

ˆt* y t a ) x ,Ž . ˆ Ý j
ˆjstq1

which permits us to conclude that

ˆa ) x for all j s 1, . . . , t . 29Ž .ˆ j

Ž .However, 29 implies that

t̂

ˆ ˆ ˆ ˆ ˆ¨ t , c n ? t y d x ) ¨ t , c n ? t y d t y 1 a s a ) x ,Ž . Ž . Ž . ˆ ˆŽ . Ž .Ý j 1
js2

Ž . Ž .a contradiction to 27 . This completes the proof of 28 .
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Suppose, now, that the theorem is false; i.e., there exists a player who
makes an unacceptable offer. By Lemma 5.2, there is no loss of generality,
in assuming that this is player s. Notice that s g T*, otherwise his
expected payoff would be d x rather than x . By the induction hypothesis,s s

Ž . Ž .the coalition structure following t* is c n ? t* s n ? t* ? t ??? t . Suppose2 m
s belongs to T , where 2 F k F m. Applying the induction hypothesisk
again,

x F d a n ? t* ??? t , d . 30Ž . Ž .s ky1

Ž . Ž . Ž . Ž .Using 28 and condition 6 , it follows that a n ? t* ??? t F a n .ky1
Ž .Combining this observation with Lemma 5.3 and 30 , we conclude that

x F d a n ? t ??? t , d - a n, d s a. 31Ž . Ž . Ž .s ky1

Ž Ž . . Ž Ž . Ž .. Ž .Since a q d t n y 1 a s ¨ t n , c n , 31 implies that

Ž .t n

¨ t n , c n y d x ) x ,Ž . Ž .Ž . Ý j 1
js2

Ž .which contradicts 27 . B

Proof of Theorem 3.5. Suppose the theorem is false. Proceed, by
induction, exactly as in the proof of Theorem 3.4, using the same notation,

Ž .leading up to condition 30 , i.e.,

x F ??? F x F d a n ? t* ??? t , d .Ž .1 s ky1

Ž . Ž Ž ..Of course d t a n ? t* ??? t , d - ¨ t , c n ? t* , which implies thatk ky1 k

d t x - ¨ t , c n ? t* . 32Ž . Ž .Ž .k s k

By superadditivity, we know that a coalition of t* q t can obtain at leastk
the sum of the worths of coalitions t* and t , i.e.,k

¨ t* q t , c n ? t* q t G ¨ t*, c n ? t* q ¨ t , c n ? t* ,Ž . Ž . Ž .Ž .Ž . Ž .k k k

which means that

t*qtk

¨ t* q t , c n ? t* q t y d xŽ .Ž . Ýk k j
js2

t*qtt* k

G ¨ t*, c n ? t* y d x q ¨ t , c n ? t* y d x .Ž . Ž .Ž . Ž .Ý Ýj k j
js2 jst*q1
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Ž .Since x F x for all j, it follows from 32 that the last term is positive.j s
But, then, we have

t*qt t*k

¨ t* q t , c n ? t* q t y d x ) ¨ t*, c n ? t* y d x ,Ž . Ž .Ž .Ž . Ý Ýk k j j
js2 js2

which implies that player 1 receives more than x by making an acceptable1
offer to players 2, . . . , t* q t , a contradiction. Bk

Ž .Proof of Theorem 3.6. We begin with a description of the function t ? .
Ž .For each n g FF, let R n denote the number of coalitions in n and let

Ž . Ž . Ž .m n ' n y K n . Following the arguments in Bloch 1996 it can be
shown that

2¡1 if m n - R n q 1 ,Ž . Ž .Ž .
2 2~t n s 33Ž . Ž .m n if R n q 1 F m n - R n q 2 q 1,Ž . Ž . Ž . Ž .Ž . Ž .

2¢1 if m n G R n q 2 q 1.Ž . Ž .Ž .

Ž .Given this description of t ? , we first verify that n* is of the form
Ž .described in the statement of the theorem. Starting at f, t ? dictates that

Ž Ž . Ž .singletons must form so that t n s 1 and R n equals the number of
.elements of n for all such n until we reach the first nonnegative integer L

such that

2n y L - L q 2 q 1. 34Ž . Ž .

Ž .Given 33 , it remains to show that L also satisfies the inequality

2n y L G L q 1 .Ž .

Ž .2Suppose not. Then n y L - L q 1 . This means that L is a positive
integer, so that L9 ' L y 1 is a nonnegative integer. But, then, n y L9 )
Ž .2 Ž .L9 q 1 q 2, which contradicts the definition of L in 34 .

Ž .To complete the proof, we verify that condition 6 holds. To do so, we
Ž .note that starting from any n, 33 guarantees that larger coalitions always

Ž .form later than smaller coalitions. It immediately follows that 4 of
Theorem 3.2 is met.

Ž . Ž . Ž .Now suppose t n s 1. Then it is clear that t n s 1 and 6 is the samel
Ž .as 4 of Theorem 3.2, which we know is satisfied.

Ž . Ž .It remains to consider the case in which t n s m n ) 1. In this case,
Ž . Ž . Ž Ž . .2 Žwe may conclude from 33 that m n - R n q 2 q 1. Because as a
. Ž . Ž� Ž . 4 .2result of this inequality we have m n y 1 - R n q 1 q 1 , we may

Ž .infer that, for any n9 with n ; n9, t n9 s 1.
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Ž .It follows that, for any alternative choice t9 - t n ,

c n ? t9 s n ? t9 ? 1 ? ??? ? 1 .Ž . Ž .

Moreover, the same logic tells us that if we consider the structure n0
Ž . Ž .derived from c n ? t9 with t9 removed, t n0 s 1 as well. This implies, in

Ž .particular, that, for all t9 - t n ,

¨ t9, c n ? t9 ¨ t9, n ? t9 ? 1 ? ??? ? 1Ž . Ž .Ž . Ž .
s

t9 t9

- ¨ 1, n ? 1 ? ??? ? 1 s ¨ 1, c n ? 1 35Ž . Ž . Ž .Ž . Ž .

Ž . Ž . Ž .and this tells us right away that t n s 1 for any l - t n . Equation 35l
also contains the information that

a n ? t n s ¨ 1, c n ? 1 . 36Ž . Ž . Ž .Ž .Ž .l

On the other hand, we know that

¨ t , c n ? tŽ .Ž .
a n s G ¨ 1, c n ? 1 . 37Ž . Ž . Ž .Ž .

t

Ž . Ž . Ž .Combining 36 and 37 , we see that 6 is verified. The result that n* is
the unique numerical coalition structure now follows from Theorem 3.4.

B

PROOF OF THEOREM 4.1. The proof is broken up into several steps. Fix
any characteristic function w on a player set S and recall the construction

Ž Ž . Ž ..in Section 4.1.1 see 7 ] 12 . Our first observation is

LEMMA 5.4. Ak G Akq1 for all k.

Proof. Suppose not. Consider the first integer k for which the inequal-
Ž .ity is violated. Using 10 , we see that if T s T j ??? j T solves the1 kq1

maximization problem there, then

ky1
kq1 k jt A q t A s w T y A tŽ . Ýkq1 k j

js1

Ž .where the empty sum by convention is assumed to give zero value . But
because Ak - Akq1 and t ) 0, this implies thatkq1

w T y Ýky1 A jtŽ . js1 jkA - ,
t q tk kq1
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which contradicts the construction of Ak, since T is certainly an admissible
set of the maximization problem defining Ak. B

� Ž .4LEMMA 5.5. For any characteristic function w on a player set S, a wi ig S
is a solution to the following two requirements:

a w s max ¨ T y a w . 38Ž . Ž . Ž . Ž .Ýi j
T:S ; igT � 4jgT_ i

and, for e¨ery i g S,

For some T that sol̈ es 38 , a w G a w for all j g T . 39Ž . Ž . Ž . Ž .i j i i

Ž . Ž .Moreo¨er, there are no other solutions satisfying 38 and 39 .

� Ž .4 ŽProof. Use Lemma 5.4 along with the definitions of a w given byi
Ž . Ž ..8 and 11 to see that

a w s max ¨ T y a w , 40Ž . Ž . Ž . Ž .Ýi j
� 4jgT_ i

where the maximum is taken over only those sets T such that T : S, i g T ,
Ž . Ž .and j g T implies a w G a w for all i. We need the stronger implica-j i

Ž .tion 38 , which imposes less restrictions on the maximizing set T. To see
that this is automatically implied, suppose, on the contrary, that there is a
coalition T such that

a w - ¨ T y a w . 41Ž . Ž . Ž . Ž .Ýi j
� 4jgT_ i

Ž .Given the property 40 , this can only be the case if, for some y g T ,
Ž . Ž . Ž .a w - a w . Let k be the index in T such that a w is the smallest.j i k

Ž .Then, rearranging 41 , we see that

a w - ¨ T q a w .Ž . Ž . Ž .Ýk j
� 4jgT_ k

Ž . Ž .But this contradicts the property 40 for the index k, because a w Gj
Ž . Ž . Ž . Ž .a w for all j g T. So 28 is established, and 40 assumes us that 39 isk

satisfied as well.
Ž . Ž .Finally, we must show that there are no other solutions to 38 and 39 .

Ž .We adapt an argument from Chatterjee et al. 1993, proof of Prop. 1 .
� 4Suppose, contrary to the claim, that there are distinct solutions a andi

� 4 Ž . Ž . � < 4b to 38 and 39 . Let V ' i g S a / b . Choose k g V such thati i i
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Ž .without loss of generality

<a s max z z s a or z s b for i g V . 42� 4 Ž .k i i

Ž .Using 39 , we may pick a coalition T such thatk

a s ¨ T y a 43Ž . Ž .Ýk k j
� 4jgT _ kk

and such that

a G a for every j g T . 44Ž .j k k

� 4 Ž .Because b satisfies 38 , we havei

b G ¨ T y b . 45Ž . Ž .Ýk k j
� 4jgT _ kk

Ž . Ž .Because of 42 and 44 , it must be the case that b F a for all j g T .j j k
Ž . Ž .But, then, combining this information with 43 and 45 , we see that

Ž .b G a . This contradicts 42 . Bk k

LEMMA 5.6. For each characteristic function w with player set S and each
Ž . � Ž .4d g 0, 1 , there exists a unique ¨ector of numbers a w, d such that, fori ig S

e¨ery i g S,

a w , d s ¨ T y d a w , d . 46Ž . Ž . Ž . Ž .Ý Ýi j
T:S ; igT � 4jgT_ i

Moreo¨er,

lim a w , d s a w , 47Ž . Ž . Ž .i i
dª1

� Ž .4 Ž . Ž .where a w is defined in 8 and 11 .i ig S

Proof. The first part of the lemma, which establishes the uniqueness of
� Ž .4 Ž .the vector a w, d , is proved in Chatterjee et al. 1993, Prop. 1 . Toi ig S

prove the limit result asserted in the second part, consider any limit point
� 4 � Ž .4 Ž .a of a w, d . Choose a subsequence of d such that a w, d ª a fori i i i

Ž .all i as d ª 1 along this subsequence. By passing to the limit in 46 , we
� 4 Ž .see that a must satisfy 38 .i

Ž . Ž .Next, consider any coalition T d that attains the maximum in 46 . Byi
Ž . Ž . Ž .Lemma 2 in Chatterjee et al. 1993 , we have a w, d G a w, d for allj i

Ž . Ž .j g T d . Let T be some limit point of T d as d ª 1 along thei i i
subsequence of the previous paragraph. Then T solves the maximizationi
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Ž .problem implicit in 38 . And, certainly, a G a for all j g T . We havej i i
� Ž .4 Ž .therefore proved that e¨ery limit point of a w, d as d ª 1 must satisfyi

Ž . Ž .38 and 39 .
� Ž .4 Ž . Ž .However, Lemma 5.5 tells us that a w , as defined by 8 and 11 , isi

Ž . Ž .the only solution to 38 and 39 . B

Our next step contains the heart of the argument. We first construct a
finite collection of characteristic functions as follows. For each coalition T

Ž .in the given player set, consider the finite set of real numbers f T given
by

<f T ' ¨ T , p p is a coalition structure of N and T g p .� 4Ž . Ž .

Now let WW be the collection of characteristic functions with the property
Ž . Ž .that the player set is S : N and, for each coalition T of S, w T g f T .

Observe that WW is a finite set.

Ž .LEMMA 5.7. Pick any characteristic function w in WW with player set S
Ž . � Ž .4and d g 0, 1 . By Lemma 5.6, there exists a unique ¨ector a w, di
Ž . Ž .satisfying 46 . For each i, define CC w, d by the collection of coalitions thati

Ž .achië e the maximum in 46 .
Ž . Ž .Then there exists d * g 0, 1 such that, for all d g d *, 1 and all w g WW ,

CC w , d : CC w , 48Ž . Ž . Ž .i i

Ž . Ž . Ž .where CC w is defined in 9 and 12 .i

Ž .Proof. Pick any characteristic function w in WW with player set S .
Ž .Define CC w, d for each i as in the statement of the lemma. Because thei

set WW is finite, it will be sufficient to show that there exists a threshold
Ž . Ž . Ž Ž . . Ž . Ž .d w g 0, 1 such that, for all d g d w , 1 , CC w, d : CC w . The resulti i

Ž .then follows by considering the maximum threshold d w , over w g WW .
Suppose, on the contrary, that there is some i, a subsequence d m

Ž m.converging to 1, and a coalition T such that T g CC w, d for all m, buti
Ž . ŽT f CC w . Let i g U for some k G 0 see the construction in Sec-i kq1

.tion 4.1.1 . Indeed, take the smallest value of k for which this is so.
Now, there are two cases to consider.

Case 1. T is not a solution to the maximization problem defining Akq1

Ž .in 10 . Write T in the form T l ??? l T , where T : U for all1 kq1 l l
l s 1, . . . , k, and T : S _ D k U . Note that T is nonempty, be-kq1 ls1 l kq1
cause i g T and i g U by assumption. It follows thatkq1

w T y Ýk Al tŽ . ls1 lkq1A G ,
tkq1
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or, equivalently, that

k
kq1 l kq1A ) w T y A t y t y 1 A . 49Ž . Ž . Ž .Ý l kq1

ls1

Ž m.Because T g CC w, d for all m, we havei

a w , d m s w T y d m a w , d mŽ . Ž . Ž .Ýi j
� 4jgT_ i

for all m. Using the decomposition T j ??? j T introduced above, this1 kq1
is the same as stating that

k
m m m ma w , d s w T y d a w , d q a w , d .Ž . Ž . Ž . Ž .Ý Ý Ýi j j

ls1 jgT � 4jgT _ il kq1

50Ž .

ŽNow we make four observations. First, note that by Lemma 5.6 see
Ž .. Ž m. Ž .47 , lim a w, d s a w for all j g S. Second, if 1 F l F k andmª` j j

Ž . lj g T , then a w s A by construction. Third, because i g U , it is alsol j kq1
Ž . kq1 Ž .true that a w s A . Finally, by Lemma 2 in Chatterjee et al. 1993 ,i

Ž m. Ž m. � 4 Ž m.a w, d G a w, d for all j g T _ i . So lim a w, d Gj i kq1 mª` j
Ž . kq1lim a w, d s A . However, this last inequality cannot hold strictly,mª` i

because T : S _ D k U , and because of Lemma 5.4. Thuskq1 ls1 l
Ž m. kq1 � 4lim a w, d s A for all j g T _ i . Combining these fourmª` j kq1

Ž .observations and passing to the limit as m ª ` in 50 , we conclude that

k
kq1 l kq1A s w T y A t y t y 1 A .Ž . Ž .Ý l kq1

ls1

Ž .But this last equality directly contradicts 49 . This means that Case 1 is
impossible. This leaves as the only remaining possibility

Case 2. T s T j ??? j T is a solution to the maximization problem1 kq1
kq1 Ž . Ž .defining A in 10 , but fails to minimize D T j ??? j T .1 kq1

Ž x Ž Ž .. Ž Ž . Ž .. Ž .For any function f : 0, 1 ¬ R, define h f d ' f d y f 1 r d y 1
Ž .for d g 0, 1 . If f possesses a left-hand derivative at d s 1, denote this by

Ž Ž ..f 9 ' lim h f d . We make the followingd ª 1

Ž .CLAIM. Suppose that there exists some d g 0, 1 such that, for all
kŽ . Ž . Ž .d g d , 1 and for all i g D U , CC w, d : CC w . Then, for all suchss1 s i i

Ž . X Ž . si, a w, d has a left-hand derï atï e at d s 1, a w s D , where i g U .i i s
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Proof. The proof is by induction on s. Begin with the inductive step,
assuming that the lemma is true for all indices s s 1, . . . , l, for some l - k.
Pick any i g U . Suppose d G d . Pick some sequence d 1 and alq1

Ž . Ž .coalition T g CC w, d : CC w along this sequence. Let T be the formi i
T j ??? j T , where T : U for all s s 1, . . . , l q 1, and i g T . Then1 lq1 s s lq1

l

a w , d s w T y d a w , d y d a w , d .Ž . Ž . Ž . Ž .Ý Ý Ýi j j
ss1 jgT � 4jgT _ is lq1

This can be rewritten as

l

a w , d s w T y d a w , dŽ . Ž . Ž .Ý Ý Ýj j
jgT ss1 jgTlq1 s

y d y 1 a w , d .Ž . Ž .Ý j
� 4jgT _ ilq1

Subtracting from both sides of this equation the corresponding expression
Ž . sevaluated at d s 1 and using the fact that a w, 1 s A for i g T , we geti s

l l
lq1 sa w , d y A s y a w , d y t AŽ . Ž .Ý Ý Ý Ýj j s

jgT ss1 jgT ss1lq1 s

l

y d y 1 a w , dŽ . Ž .Ý Ý j
ss1 jgTs

y d y 1 a w , d .Ž . Ž .Ý j
� 4jgT _ ilq1

Ž .Dividing both sides by d y 1 t , we havely1

h Ý a w , d h Ýl Ý a w , dŽ . Ž .Ž . Ž .jg T j ss1 jg T jlq 1 ss y
t tlq1 lq1

l Ý a w , dŽ .Ý Ý a w , dŽ . jg T jss1 jg T j lq 1_�i4sy y .
t tlq1 lq1

51Ž .

By the induction hypothesis, the limit of the first term on the right-hand
Ž . l sside of 51 is yÝ t D rt . The limit of the second term is clearlyss1 s lq1

l s Ž . lq1yÝ t A rt and that of the third term is y t y 1 A rt .ss1 s lq1 lq1 lq1
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Ž .Thus the limit, as d ª 1, of the left-hand side of 51 is well defined and

h Ý a w , dŽ .Ž .jg T jlq 1lim
tdª1 lq1

l w s s x lq1Ý t A q D q t y 1 AŽ .ss1 s lq1 lq1s y s D . 52Ž .
tlq1

Ž . Ž . Ž .By Lemma 1 of Chatterjee et al. 1993 , a w, d G a w, d for all d andj i
Ž . Ž .for all j g T . Moreover, a w, d and a w, d converge to the samelq1 i j

limit Alq1. It follows that

h Ý a w , dŽ .Ž .jg T jlq 1h a w , d G for all d - 1.Ž .Ž .i tlq1

Ž .This, along with 52 , yield

h Ý a w , dŽ .Ž .jg T jlq 1 lq1lim inf h a w , d G lim s D . 53Ž . Ž .Ž .i tdª1 dª1 lq1

Ž .Since i g U was arbitrary and T : U , we may conclude that 53lq1 lq1 lq1
holds for every j g T , i.e.,lq1

h Ý a w , dŽ .Ž .jg T jlq 1lim inf h a w , d G limŽ .Ž .j tdª1 dª1 lq1

s Dlq1 for all j g T . 54Ž .lq1

Ž .But this must mean that, for every j g T , the left-hand side of 54 islq1
Ž Ž ..the limit of h a w, d as d ª 1, i.e.,i

aX w ' lim h a w , d s Dlq1 for all j g T .Ž . Ž .Ž .i i lq1
dª1

This completes the inductive step of the proof.
ŽThe first step which may be identified with l s 0 in the argument

.above is proved in exactly the same way. Note that all sums of the form
Ýl are 0, so that all reliance on induction can be dispensed with in thisss1
step. B

Now return to the main proof. Recall that we presumed that the desired
result was false, and that k is the smallest index such that there is
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Ž .i g U where the result fails. Therefore in case k G 1 , the conditionskq1
X Ž . sof the Claim apply, and we may take it that a w s D for all i g U andi s

s F k. If k s 1, then no such restriction is needed in the argument below.
Because T solves i’s problem for d m, we see that

k
m m ma w , d s w T y d a w , dŽ . Ž . Ž .Ý Ýi j

ss1 jgTs

y d m a w , d m .Ž .Ý j
jgTkq1_�i4

This can be written as

k
m m ma w , d s w T y d a w , dŽ . Ž . Ž .Ý Ý Ýj j

jgT ss1 jgTkq1 s

y d m y 1 a w , d m .Ž . Ž .Ý j
� 4jgT _ ikq1

By the Claim and the kind of argument used in its proof, it is now easy to
see that

h Ý a w , dŽ .Ž .jg T jkq 1lim
tdª1 kq1

k w s s x kq1Ý t A q D q t y 1 AŽ .ss1 s kq1s y
tkq1

s D T G Dkq1 ,Ž .

where the last inequality holds by assumption, because we are in Case 2.
Ž m. Ž m. � 4Using the fact that a w, d G a w, d for all j g T _ i , we canj i kq1

assert that

lim inf h a w , d G D T ) Dkq1.Ž . Ž .Ž .i
dª1

As Case 1 has been shown to be impossible, a similar agreement can be
used to show that

lim inf h a w , d ) Dkq1 for every j g U . 55Ž . Ž .Ž .j kq1
dª1
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U U Ž .Now pick any coalition T* s T j ??? j T in CC w . Define1 kq1 i

k

b w , d ' w T* y d a w , d y d a w , d .Ž . Ž . Ž . Ž .Ý Ý Ýi j j
U Uss1 jgT � 4jgT _ is kq1

Clearly, for all m,

a w , d m G b w , d m .Ž . Ž .i i

Ž m. Ž .On the other hand, note that both a w, d and b w, d converge to thei i
same limit Akq1. Combining these two pieces of information, we may
conclude that

lim inf h b w , d G lim inf h a w , d . 56Ž . Ž . Ž .Ž . Ž .i i
dª1 dª1

Ž .Now return to the expression that defines b w, d , and construct thei
expressions used in defining the derivative, using the Claim and the fact

X Ž . sthat a w q D for all s F k. This yieldsi

lim inf h b w , dŽ .Ž .i
dª1

k
U Us s kq1w xs y t A q D y t y 1 AŽ .Ý s kq1

ss1

y lim sup h a w , dŽ .Ž .Ý j
Udª1 � 4jgT _ ikq1

s tU Dkq1 y lim sup h a w , dŽ .Ž .Ýkq1 j
Udª1 � 4jgT _ ikq1

- tU Dkq1 y tU y 1 Dkq1 ,Ž .kq1 kq1

Ž .where the last inequality follows that 55 . Thus

lim inf h b w , d - Dkq1. 57Ž . Ž .Ž .i
dª1

Ž . Ž . Ž .But 55 , 56 , and 57 are mutually contradictory, so that Case 2 is
impossible as well. B

The proof of the theorem can be completed with the use of a simple
inductive argument. Fix d * as given by the previous lemma, consider any

Ž .discount factor d g d *, 1 , and a no-delay equilibrium at that discount
factor.

Ž .First, consider all substructures p g P8 such that S p is a singleton. In
this case, the subgame equilibrium must entail the formation of the
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Ž . Ž .singleton coalition. It is also clear that, for any RCF R, R p s S p in
this case, so that, in particular, equilibrium coalition formation is in
agreement with some consistent RCF.

Inductively, suppose that the result is true for all substructures p such
Ž .that S p is of cardinality k or less for some k G 1. That is, on this

subspace is defined an RCF R, the coalitions prescribed by which corre-
spond to the equilibrium formation of coalitions. Pick some substructure

< Ž . <p g P8 such that S p s k q 1. At this stage, denote by x the equilib-i
Ž .rium payoff to player i g S p , were he to be the proposer.

Ž .Define a characteristic function w with player set S p , just as we didRp

Ž .in 13 :

w T ' ¨ T ; c p ? T , RŽ . Ž .Ž .Rp

Ž .for all nonempty T : S p . Now follow the line of reasoning in the proof
� 4of Theorem 2.1. It is clear that, given the valuations x defined in thej

previous paragraph, the maximum payoff that i can hope to achieve by
making an acceptable offer is

x s max w T y d x . 58Ž . Ž .Ýi Rp j
Ž .T:S p ; igT � 4jgT_ i

Ž . Ž .By Lemma 5.6, this simply means that x s a w , d for all i g S p .i i Rp

Ž .Moreover, i will make the offer to the coalition T in CC w , d . Byi i Rp

Ž .Lemma 5.7, T must lie in the set CC w as well.i i Rp

Ž .Now pick the first proposer assigned by the bargaining protocol to S p ,
say individual j. Pick the coalition T , and repeat this process for everyj

< Ž . <substructure p such that S p s k q 1. This extends the RCF R to the
Ž .set of all substructures p with S p of cardinality at least k q 1, and

completes the inductive step.
Once the induction is completed, we indeed have a consistent RCF that

Ž .corresponds to equilibrium coalition formation at every stage for R p '
Ž .T g CC w , as shown above. Bj j Rp

APPENDIX: NONEXISTENCE OF A PURE-STRATEGY
EQUILIBRIUM

The purpose of this section is to show that Theorem 2.1 cannot be
strengthened to assert the existence of a pure-strategy equilibrium. To this
end, we construct an example of the three-player game in which there is
no pure-strategy equilibrium. The mixed-strategy equilibrium of this game
will also serve to illustrate the notion of the mixed-strategy equilibrium
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used in Theorem 2.1. Finally, this example also makes the point that every
equilibrium might involve a delay with positive probability.

Consider a three-player game in partition function form. We will denote
Ž .by ¨ p the aggregate payoff to each of the coalitions in p . Thus

Ž . Ž . Ž .¨ S, S9 s x, y means that if the coalition structure is S, S9 , then
coalition S gets an aggregate payoff of x and coalition S9 gets y. Consider
the specific description:

� 4 � 4 � 4 � 4 � 4¨ N s 0 ¨ 1 , 2 , 3 s 0.9, 0, 0 ¨ 1, 2 , 3 s 0, 0 ,Ž . Ž . Ž .Ž . Ž .
� 4 � 4 � 4 � 4¨ 1 , 2, 3 s 0, 0.3 ¨ 1, 3 , 2 s 1, 0.1 .Ž . Ž .Ž . Ž .

Ž .1r3PROPOSITION A.1. Suppose 1 ) d ) 8r9 . Consider any protocol such
Žthat if player 2 lea¨es the game, then the next proposer is player 3 if still

.actï e . Then there is no pure-strategy, stationary equilibrium in this game.
ŽHowe¨er, there does exist a mixed-strategy equilibrium which also follows

.from Theorem 2.1 .

Proof. It will be useful to begin by making a couple of observations.

Ž .1 Suppose there is an equilibrium in which x is the equilibriumi
payoff to i when i begins the game. Then, if in equilibrium, player i makes
an acceptable proposal to a coalition containing player j, it follows that

Ž .x G x ; see Lemma 2 of Chatterjee et al. 1993 .j i

Ž .2 If, in equilibrium, player i makes an unacceptable proposal to
player j, then this must result in player j’s leaving the game with a
coalition that does not contain i. Clearly, in equilibrium, player i will not
make an unacceptable proposal to player j only to then accept a proposal
form j. The claim then follows from the fact that, in equilibrium, there
cannot be a chain of unacceptable proposals from i to i . . . to i to i .1 2 k 1
Moreover, if i makes an unacceptable proposal to j who makes an
unacceptable proposal to k, then i / j, k is better off saving one unit of
time and making an unacceptable proposal to k rather than to j.

Let x be the expected equilibrium payoff to i if i starts as the firsti
proposer. Clearly 0 F x F 1 for all i. Since the protocol calls for 3 to makei
a proposal if 2 leaves, it follows that if player 2 leaves the game, then
player 3 will offer 0.9d to player 1, which will be accepted and, therefore,
player 2 can obtain 0.1 by leaving the game. Thus x G 0.1. However, it is2
easy to see that players 1 and 3 will get 0 if either one of them leaves the

Žgame unilaterally if player 1 leaves the game, players 2 and 3 will form a
.two-person coalition .

CLAIM A.1. As a proposer, player 2 will either lea¨e the game or make an
Ž .acceptable proposal to player 3, i.e., x s max 0.1, 0.3 y d x .2 3
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Proof. As we have just observed, player 2 can receive 0.1 by leaving the
game. If he makes an unacceptable proposal to player 1, by observation
Ž .2 , it must be the case that player 1 will leave either alone or with player
3. In fact, player 1 will not leave alone since making an acceptable
proposal to player 3 will yield 1 y d x G 1 y x G 0, and one of these3 3
inequalities must be strict, whereas leaving alone will yield 0. But if 1
leaves with 3, player 2 gets 0.1d . Thus player 2 will not make an unaccept-
able proposal to player 1. Making an unacceptable proposal to 3, by

Ž .observation 2 , will mean that player 2 gets 0 or 0.1d , both which are
dominated by 0.1. Clearly, leaving alone dominates making an acceptable
proposal to player 1. The only other possibility is to make an acceptable

Ž .offer to player 3 and receive 0.3 y d x . Thus x s max 0.1, 0.3 y d x and3 2 3
player 2 will leave only if d x G 0.2 and will make an acceptable offer to 33
only if d x F 0.2.3

CLAIM A.2. As a proposer, player 1 will either make an acceptable
proposal to player 3 or make an unacceptable proposal to player 2, i.e.,

Ž 2 .x s max 1 y d x , 0.9d a , where a is the probability with which player 21 3
lea¨es the game.

ŽProof. If player 1 leaves the game, he gets 0 because 2 and 3 will then
.form a two-person coalition . If he makes an unacceptable offer to player

Ž .3, by observation 2 , either 3 leaves the game followed by 2, or 3 leaves
with 2. Clearly, then, 3 must leave with 2, which will result in player 1
getting 0. If 1 makes an acceptable proposal to player 2, he cannot get
more than 0. He can make an acceptable offer to player 3 and get
1 y d x ) 0, which dominates all the other possibilities considered so far.3
The only remaining possibility is for him to make an unacceptable offer to
player 2 and get 0.9d 2a .

Step 1. Suppose that a s 1. It follows from Claim A.1 that d x G 0.23
Ž .1r3and x s 0.1. Consider player 1’s equilibrium strategy. Since d G 8r9 ,2

we have 0.9d 2 ) 0.8 G 1 y d x . From Claim A.2, it now follows that3
player 1 will make an unacceptable offer to player 2 and x s 0.9d 2. Now1
consider player 3’s strategy. If he leaves the game, he gets 0. By observa-

Ž .tion 1 , it cannot be the case that he makes an acceptable offer to player 2
Ž .since x ) 0.2 ) 0.1 . Since player 1 makes an unacceptable offer to3

Ž .player 2, by observation 2 , player 3 will not make an unacceptable offer
to player 1. If he makes an unacceptable offer to player 2, he gets
Ž . 3d 1 y 0.9d . If he makes an acceptable offer to player 1, he gets 1 y 0.9d

Ž .) d 1 y 0.9d . Thus player 3’s equilibrium strategy is to make an accept-
able offer to player 1 and get x s 1 y 0.9d 3 - 0.2. But this contradicts3
the presumption that d x G 0.2.3
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Step 2. Suppose that a s 0. Then, by Claim A.1, it follows that
d x F 0.2 and x s 0.3 y d x . Since a s 0, Claim A.2 implies that player3 2 3
1 will make an acceptable offer to player 3 and get 1 y d x ) 0. Now3
consider player 3’s strategy. Since players 1 and 2 are making acceptable

Ž .proposals to player 3, it follows from observation 2 that player 3 will
Ž .either make an acceptable proposal to player 1 to receive 1r 1 q d or

Ž .make an acceptable proposal to player 2 and receive 0.3r 1 q d . Clearly,
Ž . Ž . Ž .1r3then, x s 1r 1 q d and d x s 1r 1 q 1rd . Since d ) 8r9 , we get3 3

ŽŽ .1r3 .d x ) 1r 9r8 q 1 ) 0.2, a contradiction.3

Ž .Step 3. From Steps 1 and 2 it follows that a g 0, 1 . This proves that
there is no pure-strategy equilibrium in this game. Moreover a mixed-
strategy equilibrium, with 0 - a - 1, much be such that x s 0.1 and2

Žx s 0.2rd. Consider player 1’s strategy. By Claim A.2, x s max 1 y3 1
2 . Ž 2 . Ž Ž .1r3.d x , 0.9d a s max 0.8, 0.9d a . Thus x G 0.8 ) x since d ) 8r9 .3 1 3

Ž .But now observation 1 implies that player 1 will not, in equilibrium, be
making an offer to player 3. Thus player 1 will make an unacceptable offer
to player 2 and x s 0.9d 2a . Finally, consider player 3’s strategy. From the1
arguments in Step 2 it follows that player 3 must make an acceptable offer
to player 1 and x s 1 y 0.9d 3a . Since d x s 0.2, this yields3 3

d y 0.2
a s .40.9d

To summarize, then, a mixed-strategy equilibrium must be one in which
x s 0.9d 2a , x s 0.1, x s 0.2rd , where player 2 leaves with probability1 2 3

Ž . 4a s d y 0.2 r0.9d and makes an acceptable offer to player 3 with
probability 1 y a . Player 1 always makes an unacceptable offer to player 2
and player 3 always makes an acceptable offer to player 1. It can be
checked that this is, in fact, an equilibrium. B

We shall end this section by showing that the conclusions derived from
the above example remain valid even with a natural, weak form of
superaddivity. When we consider a game in partition function form, our
motivation comes from the supposition that such partition functions are
‘‘reduced versions’’ of game in strategic form. One of the most important
restrictions that this imposes is the requirement of grand-coalition super-
additivity. This means that the grand coalition should be able to achieve, in
terms of aggregate worth, at least the sum of what is achievable under any
coalition structure.

It turns out that one cannot impose, in general, any more than this final
requirement on the grand coalition. That is, the superadditivity of sub-
coalitions is not implied by games in strategic form.23 To verify this

23 This is not to say that further restrictions are not implied; only that it is not obvious what
they are.
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Ž .assertion, consider the Cournot example Example 1.1 from the Introduc-
tion. The two-person coalition, confronted with a single opponent, can
achieve strictly less than the sum of what two individuals can achieve in
the three-person game.

So, in what follows, we will impose superadditivity at the level of the
grand coalition but nowhere else. It should be emphasized, however, that
our general results do not depend on making this assumption.

Consider a four-person version of this example, where the idea is that
players 1 and 4 are interchangeable in the game. The partition function is
as follows:

� 4 � 4 � 4 � 4¨ 1 , 2 , 3 , 4 s 0.9, 0, 0, 0.9 ,Ž .Ž .
� 4 � 4 � 4 � 4 � 4 � 4¨ 42 , 3 , 1 s ¨ 12 , 3 , 4 s 0, 0, 1 ,Ž .Ž . Ž .
� 4 � 4 � 4 � 4 � 4 � 4¨ 13 , 2 , 4 s ¨ 43 , 2 , 1 s 1, 0.1, 5 ,Ž .Ž . Ž .
� 4 � 4 � 4 � 4¨ 1 , 23 , 4 s 0, 0.3, 0 ¨ 1234 s 7,Ž .Ž . Ž .

and all other partitions have a zero vector of worths.
The protocol is as follows. Player 1 and 4 begins the game, but if there is

any other player set S left with 3 g S, then player 3 is the first proposer in
that set.

Ž .Notice that if player 1 or 4 chooses to leave the game, then, according
to the unique mixed-strategy equilibrium derived in the earlier version of

Ž� 4 � 4. Žthe example, the remaining coalition structure will be 34 , 2 or
Ž� 4 � 4. .13 , 2 if player 4 leaves , which yields the first leaving player a payoff of

Ž .5. On the other hand, if player 1 or 4 does not leave and does anything
else, then, in no equilibrium, can she get any return that is at least as high
as 5. Therefore she will leave in equilibrium. This means that the equilib-

Žrium must involve some mixing though the mixing is not observed on the
.equilibrium path .
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