
Journal of Economic Theory 87, 379�415 (1999)

Conflict and Distribution*

Joan Esteban

Instituto de Ana� lisis Econo� mico (CSIC), 08193 Bellaterra, Barcelona, Spain
esteban�uab.es

and

Debraj Ray

Department of Economics, Boston University, 270 Bay State Road,
Boston, Massachusetts 02215, and

Instituto de Ana� lisis Econo� mico (CSIC), 08193 Bellaterra, Barcelona, Spain
debraj�bu.edu

Received June 10, 1998; revised April 27, 1999

We develop a behavioral model that links the level and pattern of social conflict
to the societywide distribution of individual characteristics. The model can be
applied to groups that differ in characteristics such as wealth, ethnicity, religion,
and political ideology. We settle questions of existence and uniqueness of conflict
equilibrium. Conflict is seen to be closely connected with the bimodality of the
underlying distribution of characteristics. However, in general, the conflict�distribu-
tion relationship is nonlinear and surprisingly complex. Our results on conflict pat-
terns also throw light on the phenomena of extremism and moderation. Journal of
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1. INTRODUCTION

The aim of this paper is to develop a behavioral model that links social
``conflict'' to the society-wide distribution of individual characteristics. We
study the changes in the equilibrium level and (inter-group) pattern of con-
flict generated by shifts in the distribution of individuals over the set of
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groups that favour different outcomes. Our question is, What sort of dis-
tributions are likely to be most highly correlated with conflict?

We conceive of conflict as a situation in which, in the absence of a collec-
tive decision rule, social groups with opposed interests incur losses in order
to increase the likelihood of obtaining their preferred outcomes. This
analytical core is fairly standard and simple and has been used in several
contexts.1 In contrast with most of the literature, however, we explicitly
allow for the possibility that groups may derive utility from the preferred
outcomes of other groups. This imparts, in many situations, a natural
``metric'' across groups, two groups being close if they value the preferred
outcomes of one another in terms similar to their own.

For tractability, we assume that all individuals preferring the same out-
come also coincide in their valuations of other outcomes. Therefore, there
are as many preference orderings as the number of available outcomes.
Individuals with the same ordering form an ``interest group'' and act in a
coordinated fashion.2 As constructed, the model can be applied to groups
that differ not only in their levels of income and wealth, but also in other
characteristics, such as ethnicity, religion, and political ideology.

The particular outcome is seen as the realization of a lottery, with out-
come probabilities related to the share of resources expended by each
group. Conflict is viewed simply as the equilibrium sum of resources that
are dissipated in the struggle for preferred outcomes.

With this abstract representation of a conflictual situation, we address
the questions that motivate our work. As already stated, our general con-
cern is the study of the relationship between equilibrium conflict and the
shape of the frequency distribution of agents over the given set of alter-
native preferences.

Preliminary questions arise. We settle the question of existence of a con-
flict equilibrium, and provide what we believe to be a general and new con-
dition for the uniqueness of equilibrium (counterexamples to uniqueness
are provided in the absence of this condition). See Section 3. In what
follows, we take it that uniqueness obtains, so that we can legitimately
assign to each parametric situation a unique level and pattern of conflict.
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1 Among the several contributions, see [1, 8�11, 23�25] (see also the recent edited volume
by Garfinkel and Skaperdas [7]). There are also a number of particular cases of conflict of
interests that have been the object of specific analyses, stemming from the rent-seeking
problem as formulated in [27]. It is beyond the scope of this paper to list the enormous num-
ber of contributions to the rent-seeking literature; many of these were published in the journal
Public Choice. The contributions include models of patent races, or of influence activities
within an organization (see [17, 18]). Our modeling of conflict is a direct heir of these pre-
vious works. There is also a recent literature that examines the connections between social
conflict and economic growth; see, e.g., [3, 14, 26]. For a survey, see [2].

2 In particular, we do not discuss here the important free-rider problem that is internal to
each group��more on this below.



Section 4 begins our study of the relationship between conflict and dis-
tribution. Our first observation, which is completely intuitive, is that an
increase in the ``utility distance'' between any pair of groups leads, ceterius
paribus, to an increase in societal conflict (Proposition 4.1). Our second
observation (Proposition 4.2) states that conflict is always maximized at
some symmetric bimodal distribution of the population, provided that
cross-group preferences satisfy a symmetry condition. Thus the emergence
of a ``twin-peaks property'' in distribution is related closely to rising con-
flict.3 It should be noted that this property is often at odds with the Pigou�
Dalton principle that underlies inequality measurement, but is closely
related to the notion of polarization [5, 28].4

Further probing of the conflict-distribution relationship yields sur-
prisingly complicated findings, even in special cases. We focus first on the
case of pure contests: a situation in which each group dislikes equally the
outcomes of all other groups. It turns out (Propositions 4.3 and 4.4) that
the uniform distribution of population over three groups is always a local
maximizer of conflict but never a global maximizer (that distinction belong-
ing, as already observed, to the bimodal distribution). The same may be
true (though not always) for uniform distributions over a larger number of
groups. This reveals, in particular, the highly nonlinear relationship
between conflict and distribution even in the special case of contests. One
way to see this is to conduct the thought experiment of moving population
mass, starting from the symmetric distribution over three groups and end-
ing at the symmetric distribution over two groups, and applying the results
stated above.

In Section 5, we take up the question, What is the pattern of conflict over
groups as a function of their population weights and their position in the
general structure of preferences? This question is difficult and we do not
have general answers. For contests matters are simple: it turns out that
larger groups are always more contentious (per capita) than their smaller
counterparts. In the more general case, however, population size cannot be
the only determinant: the ``spatial'' structure of preferences also counts. We
turn here to the analysis of another special case in which groups may be
visualized as being arranged on a ``line.'' This case yields interesting insight
into what might be called the phenomenon of extremism: with a uniform
distribution of population over groups, it turns out that the groups on the
``sides'' of the line are more conflictual: they put in a larger per capita share
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3 The twin-peaks phenomenon (in the terminology of Cowell) was particularly noticeable in
the United Kingdom during the 1980s. In the United States, Morris et al. [19] find signs of
polarization in the wage distribution. Quah [22] studies the twin-peaks property for income
distributions across countries. On related matters see [4, 12, 13].

4 In an extended version of the current paper [6] we discuss the relationship between con-
flict and polarization in detail.



of resources. But more can be said as we study the interplay between pop-
ulation distribution and preference structure: if these extremist groups
shrink in population size, there comes a point where they switch from con-
tributing more than the average level of conflict to less than the average
level: the situation changes from extremist to what might be called
``moderate'' (Proposition 5.3). This uncovers an interesting connection
betweem the distribution of population over various groups and the
prevalence of extremism. If the distribution of population is spread out to
start with, observable behavior appears to be more extremist than the true
distribution of opinion. This might be in line with patterns of behavior in
countries such as India, where the expression of interreligious conflict
might appear more extremist than the true distribution of views, the
relatively large moderate view failing to capture the headlines. On the other
hand, more homogeneous societies might appear to be more consensual
than they really are: this is the upshot of the second result (on moderation)
and may apply to, say, the Scandinavian countries. A corollary of this is
that the expression of views swings more widely than the underlying dis-
tribution of preferences across outcomes, which might explain why in some
circumstances, small changes in distribution may be give rise to relatively
large changes in observed patterns of social conflict.

Section 6 briefly describes some connections between the current work
and the measure of polarization developed in [5]. All proofs are relegated
to Section 7.

2. A MODEL OF CONFLICT

Consider a society composed of a unit measure of individuals, situated in
G groups. Let ni be the number of individuals in group i, so that �G

i=1 ni=1.
Society must choose one issue or outcome over G possible issues, and we

identify issue i as the outcome most preferred by group i. We will allow for
arbitrary preferences by members of group i over the other issues, but take
it that they strictly prefer their own outcome to any of these others.

In this paper, each outcome will be thought of as a pure public good for the
group members, so that per-capita utilities over the outcome are well-defined
irrespective of the membership distribution of the groups. Thus define uij to
be the utility derived by a member of group i if issue j is chosen by society. By
the assumption in the previous paragraph, uii>uij for all i, j with i{ j.

It is obvious that one cannot describe how rational individuals will
behave under a potentially conflictual situation without first specifying a
mechanism that resolves conflict by making a choice over the space of
issues. We assume here that agents can (probabilistically) influence the
outcome of the decision process by allocating resources into lobbying
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activities. Specifically, we think of the decision process as a lottery, with the
probability of each of G possible outcomes depending on the vector of
resources provided by the G groups.

Denote by rij the resources expended by a typical individual of group i
in support of outcome j, so that the total amount spent by group i is
ni �G

j=1 rij=niri , where ri is the total amount of resources expended per
group member. Then the total resources devoted to lobbying by society is
R#�G

i=1 niri . We will use R as a measure of societal conflict.
Resources are acquired at a cost to each individual. We denote by c(r)

the individual cost of supplying r. Assume that

Assumption 1. c is continuous, increasing, and thrice continuously dif-
ferentiable, with c(0)=0, c$(r)>0, and c"(r)>0 for all r>0, and with
c$(0)#limr a 0 c$(r)=0.

Let pj be the probability that issue j will be chosen. Then the expected
utility of a member of group i who expends resources ri is given by

:
G

j=1

pju ij&c(ri). (1)

To determine the probabilities, we suppose that

pj=sj #
�G

i=1 ni rij

�G
k=1 nk rk

=
�G

i=1 ni rij

R
(2)

for all j=1, ..., G, provided that R>0.5 Thus the probability that group i
will win the lottery is taken to be exactly equal to the share of total
resources expended in support of alternative i.

To complete the specification of the model, we need to describe the out-
come when R=0. We take this to be an arbitrary probability vector
[ p� 1 , ..., p� G].6

This model is quite general. It covers, for instance, the case of pure con-
tests that has received extensive attention in the literature. This case is
characterized by group preferences that only place value on the most
preferred issue: uij=0 for all i, j, with i{ j, and uii=1 for all i.7
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5 We could just as well write w i=c(r i), so that pi=nic&1 (w i)��G
k=1 nkc&1 (wi). This expres-

sion is related to the class of ``conflict technologies'' proposed by Hirshleifer [11] and
axiomatized in [24].

6 There is, of course, no way to complete the specification of the model at R=0 while main-
taining continuity of payoffs for all groups. So the game thus defined must have discontinuous
payoffs. Fortunately, this does not create existence problems, as we show in Proposition 3.2
below.

7 To focus on group distribution, we deliberately neglect other asymmetries in the contest
case. These are easily incorporated, however.



Contests describe a situation where there is, in effect, no ``metric'' over
the different groups. Alternatively, each group might have natural ``posi-
tions'' that allow us to state if one group is close to or far away from
another. For instance, think of the issues (and groups) being arranged on
a political spectrum from right to left, or being specific to different income
groups but having repercussions for nearby groups, or simply arranged by
geography (e.g., the location of a facility such as a public university). A
simple case of a ``metric'' is induced by a line, which we may define as the
following submodel: There is an ordering of the groups (which we may call
1, 2, ..., G without loss of generality) such that for all i and j with i< j,
uij�ui, j+1 and u ij�u i+1, j .

We will return to these specifications below.
Our behavioral framework will embody two important assumptions that

are maintained through the paper. First, we assume that no group expends
resources on outcomes other than its preferred position. Second, we ignore
free-rider problems within each group.

Are these assumptions satisfactory? Not entirely. It may well be that a
group decides to support the lobbying activities of some other group. A
satisfactory treatment of this issue will have to depart from the present
model in one of two ways. One route is to look at ``nonconvex'' lobbying
technologies in which some threshold resource expenditure is needed to
influence the success probability at all.8 [With convex technologies, as
assumed in (2) below, groups would always lobby for their own best out-
come, so there is no internal inconsistency in the model as it stands.]
A second route is to build in an additional stage to the game in which
groups first precommit to positions and subsequently lobby for their com-
mitted positions. In this case, some groups may lobby for ``less radical''
positions simply to dilute the intensity of the opposition. We feel that each
extension would be interesting in its own right.

Our behavioral framework ignores free-rider problems within each
group. The free-rider problem is classical, one that lies at the heart of
the Olson thesis (see [20]) on the lobbying efficacy of small groups.9

However, there is little that we wish to add to this problem and so we
assume that external effects within a group are fully internalized by group
members.10
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8 We are indebted to an anonymous referee for pointing this out.
9 One might more accurately dub this the Pareto�Olson thesis, for Vilfredo Pareto [21],

p. 329] points to exactly the same argument.
10 It is not true, however, that allowance for free-rider effects will automatically resurrect the

Pareto�Olson argument,beacuse in this model we deal with outcomes that are public goods.
The dissipative power of large groups is thereby attenuated.



3. BASIC PROPERTIES

3.1. Existence

With the closing comments of the previous section in mind, the choice
problem faced by group i is easy to describe: given the vector of resources
expended by all other groups, choose ri to maximize (1), subject to (2).
This problem is well-defined provided that at least one other group
expends a positive quantity of resources, and its solution is completely
described by an interior first-order condition. We record this simple obser-
vation as

Proposition 3.1. Fix some group i. Suppose that Assumption 1 holds
and that rj>0 for some j{i. Define vkj #ukk&ukj for all k and j. Then the
amount spent by group i is strictly positive, and is completely described by
the condition

:
G

j=1

sisjvij=c$(r i) ri (3)

This first-order condition foreshadows certain features of equilibrium
conflict, even before we ``close'' the model. Specifically, conflict (and the
shares of the various groups) will depend, among other things, on the dis-
tribution of population over the different groups. Understanding this rela-
tionship between conflict and distribution forms the subject matter of the
paper. Notice from (3) that a priori, the number of individuals in a group
has ambiguous implications for conflict. Members of a larger group
generate larger externalities for one another, and as such may be cajoled,
inspired, or compelled by group leaders to put in more resources per capita.
This effect is captured (only partly, for the variable in question is
endogenous) by the share term si : it is associated with a higher value of ri .
On the other hand, for a given total population, larger numbers in one
group mean smaller numbers elsewhere. This is related (again imperfectly)
to smaller values of sj , for j{i. With a weaker opposition, the incentive to
put in lobbying resources comes down, and (3) captures this as well.11 The
net effects can take either sign. Just how complicated this apparently simple
model can become will become evident as we develop the analysis in the
sections ahead.

Say that a vector of resources (r1* , ..., r*G) is an equilibrium if for every i
the problem (1), subject to (2), is well-defined, and ri solves this problem.
Equilibrium conflict is then given by the quantity R*=�G

i=1 ri*ni . The
equilibrium resource shares are si*=ri*ni�R*.
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11 Note that this is quite different from the free-rider issue stressed in [20], which we
neglect here.



It is immediate from Proposition 3.1 that an equilibrium must involve
strictly positive contributions by every group. The existence of an equi-
librium is guaranteed in

Proposition 3.2. Suppose that Assumption 1 holds. Then an equilibrium
exists.

3.2. Uniqueness

Before moving on to the analysis of specific cases, it is of interest to
inquire whether the model, as it stands, is enough to yield a unique equi-
librium. The following proposition provides sufficient conditions that
guarantee uniqueness.

Proposition 3.3. Suppose that c$$$ (r)�0 for all r. Then there is a unique
equilibrium.

The condition in the proposition does have bite, as the following
example demonstrates.

Example 1. G=4, and ni=1�4 for all i. The values [vij] are described
as follows: vii=0 for all i, and for i{ j, vij=a if | j&i | is odd, and vij=b
if | j&i | is even. Suppose that the cost function c has constant elasticity :,
so that it is of the form c(r)=:&1r:. By the assumption of convex costs, :
must exceed 1. This model is perfectly symmetric, as the schematic depic-
tion in Fig. 1 reveals.

Consider possible equilibrium shares of the form s1*=s3*=s # (0, 1�2),
and s2*=s4*= 1

2&s. Using the first order conditions described by (3) for
groups 1 and 3, we see that

bs+2a( 1
2&s)=s:&1*, (4)

where *#(R�n):. Likewise, for groups 2 and 4,

b( 1
2&s)+2as=( 1

2&s):&1 *. (5)

One solution is, of course, the symmetric one where s= 1
2&s= 1

4 . In that
case, (4) or (5) yields an accompanying value of * equal to 4:&2 (b+2a).

Now let us explore the possibility of additional solutions to (4) and (5).
To do so, define for each s # (0, 1

2),

�(s)#s1&:[bs+2a( 1
2&s)].
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FIG. 1. Diagram to illustrate Example 1.

Obviously, �(s) solves for * as a function of s in (4). Noting the form of
(5), it should be obvious that all solutions in [0, 1] to the equation

�(s)=�( 1
2&s) (6)

correspond to equilibria in which groups 1 and 3 put in a common share
s, while groups 2 and 4 put in 1&s.

When do these additional solutions exist? Note that lims a 0 �(s)=�
(because :>1), lims A 1�2 �(s)<�, and that � is differentiable on (0, 1

2). It
follows right away that multiple solutions exist if �$( 1

4)>0.
Checking this condition is a matter of simple differentiation. We see that

�$( 1
4)=( 1

4)1&: [(1&:)(b+2a)+(b&2a)].

It is easy to see that the required condition can always be made to hold
provided : # (1, 2). Simply choose b and a such that

b&2a
b+2a

>:&1.

Thus for parameters satisfying this condition, there are multiple equilibria.
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Notice that uniqueness obtains when the (constant) elasticity of cost is
at least 2, but not otherwise. It is easy to check that this requirement is
equivalent to the condition that c$$$ (r)�0 in the class of all constant-
elasticity cost functions.12

Before leaving the section on uniqueness, it is worth noting that for spe-
cial classes of preferences, uniqueness can be achieved without any addi-
tional restrictions on the cost function. A leading example is the case of
pure contests, in which the equilibrium is always unique (the proof is
omitted).

3.3. Iso-Elastic Cost Functions

As an illustration of equilibrium, consider briefly the case of isoelastic
cost functions: say c(r)=:&1r: for some :>1. In that case, the first-order
condition (3) can be rewritten as

:
G

j=1

sisjvij=r:
i =s:

i \R
ni+

:

for each i. If we denote by W the G_G matrix with generic element
wij #n:

i vij , by s; the vector (s;
1 , ..., s;

G), and write *#R:, then the condition
above can be written in matrix form as

Ws=*s:&1. (7)

We know from Example 1 that the solution to this system is generally not
unique, but we also know from Proposition 3.3 that there is a unique solu-
tion provided :�2. For the case of :=2 this uniqueness result reduces to
a Frobenius theorem, as is apparent from ( 7). The equilibrium resource
shares are the entries in the positive (and in the unit simplex, unique)
eigenvector of the matrix

W=\
n2

1v11 n2
1v12 } } } n2

1v1G

+ ,
n2

2v21 n2
2v22 } } } n2

2v2G

b b . . . b
n2

GvG1 n2
G vG2 } } } n2

GvGG

while R2 is the (unique) positive eigenvalue of this matrix.
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c$(r)�r be nondecreasing in r��is really needed, but we use the slightly stronger version which
will help in obtaining other results later in the paper.



4. CONFLICT AND DISTRIBUTION: LEVELS

4.1. Introduction

The main purpose of this paper is to pursue a detailed study of the rela-
tionship between conflict and the distribution of population across different
groups. We divide this exercise into two main parts. In this section, we
study the relationship between distributional characteristics and the level of
conflict in a society. In Section 5, we address the relationship between
population distribution and the pattern of conflict across different groups.

Quite independently of these issues, there are two features in any model
of conflict that need to be highlighted. First, there is the feature of group
size, and the distribution of these sizes over the different groups in society.
This feature is best studied in a world of pure contests, where each group
loses equally from the success of any other group. Second, there is the
feature of group distances. Contests are inadequate in capturing variations
in these. There might be natural metrics over group positions that induce
groups to behave differently, even if they are all of similar size.

In the analysis that follows, we study the level and pattern of conflict by
paying particular attention to these two features of population distribution.

4.2. Two General Observations

We begin with two general observations, and then go on to a more
detailed analysis of contests. Consider, first, a situation in which some
group distances are increased, while for no two pair of groups is the group
distance decreased. Then conflict must increase. Formally

Proposition 4.1. Assume that c$$$ (r)�0 for all r�0. Consider two
societies that are identical in all respects except intergroup distances, which
are related as follows: v$ij�vij for all groups i and j, with strict inequality for
some i and j. Then R$>R.

We turn next to the question of population distribution over a given set
of groups and group distances. The central observation here is that of
bimodality: conflict has a tendency to increase when there are two similar-
sized, opposed groups in society. This result can be precisely established
under the assumption that inter-group antagonism is symmetric: that is,
assuming that vij=vji .

To begin the discussion of bimodality, let us first consider the case of
two groups: G=2. We may write the corresponding first order conditions as

ni njrjvij=c$(ri)R2
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for i, j=1, 2 and i{ j. This implies right away that

c$(r1) r1

c$(r2) r2

=
v12

v21

.

Loosely speaking, this equation tells us that the amount of individual effort
contributed by one group relative to the other depends on v12 �v21 and not
on the sizes of the respective groups. But this will not be true of the
absolute magnitude of the efforts, as we shall soon see.

In particular, if one imposes the symmetry condition that v12=v21 #v,
both groups will contribute the same level of per capita effort. Thus
r1=r2=R, so that equilibrium conflict R is given by the condition

Rc$(R)=vn1n2 .

It is immediate that R is maximal for n1=n2=1�2. We have thus shown
that for a given two-point support, the symmetric bimodal distribution
maximizes conflict over the set of all bimodal distributions with that
support.

We now show that under the symmetry condition vij=vji , equilibrium
conflict satisfies the bimodality property and so behaves in this respect as
polarization does.

Proposition 4.2. Suppose that c$$$ (r)�0 and that vij=vji for all i and j.
Then there exists a symmetric bimodal distribution which yields at least as
much conflict as any other distribution, and strictly more conflict than any
other distribution which is either not symmetric or not bimodal.

Note that apart from making the symmetry and uniqueness assumptions,
we impose no conditions at all on the structure of preferences. In par-
ticular, inter-group alienation (as measured by the collection [vij] need not
have a linear structure. Thus our behavioral model extends and (concep-
tually) generalizes Theorem 2 of Esteban and Ray [5], which proves the
analogous result for polarization, a concept developed for a ``linear
structure'' of preferences.

At the same time, it should be noted that the symmetry of preferences is
crucial to the conflict-maximality of bimodal distributions. This is shown
by

Example 2. Suppose that c(r)= 1
2r2, and v12=v23=v31=1, while

v13=v32=v21=16. It is easy to compute that if population is concentrated
in any two of these groups (say in the ratio n: (1&n), equilibrium conflict
is given by 2 - n(1&n), which cannot exceed 1. On the other hand,
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equilibrium conflict in the case of the uniform population distribution over
all three groups is given by - 17�9, which exceeds 1. It follows that no
bimodal distribution can exhibit maximal conflict.

It is easy enough to see how the example works. Preferences have been
chosen so that between any two groups, the effective degree of disagree-
ment is not high. It is true that one party dislikes the issue of the other, but
the dislike is not strongly reciprocated, so that equilibrium conflict ends up
being low. However, putting all three groups together has the effect of
pushing each party to expend more resources, for there is always some
other group that dislikes intensely the favored issue of this party.

4.3. Conflict and Distribution in Contests

Recall that for a group engaged in a pure contest, utility is derived only
from its most preferred issue, and no distinction is made, as far as this
group is concerned, between the remaining issues. Thus in the case of con-
tests there is no notion of ``distance'' across the different groups. Issues
other than one's own are all equally alien. So in what follows we set vii=0,
and vij=1 for all i and j such that j{i.

4.3.1. Shifting Population Weights and Nonmonotonicity

We begin by studying the effects of shifts in population weights across
groups.

It will be useful to restate the conditions describing equilibrium conflict
in a form most suitable for use here. The condition (3) that describes the
solution may be restated for contests as

:
j{i

sj=
c$(ri)R

ni
(8)

for all i, which on rewriting yields the requirement:

zi (1&si)=c$ \si

z i+ (9)

for all i, where zi #ni �R.
For the moment, regard zi as an exogenous variable in (9). In that case,

(9) uniquely defines si as some function h of zi (by Assumption 1). Note,
moreover, that h must be increasing and twice continuously differentiable
(by Assumption 1). The results that we shall describe depend crucially on
the shape of h.
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Now recall that (n1 , ..., nG) is really our set of exogenous variables, but
that (z1 , ..., zG) only differs from this set through a ``scaling factor'' R. With
the functional relationship h in place, R adjusts so that the shares si sum
to unity, yielding an equilibrium (which is unique, as we already know):

:
G

i=1

h \ni

R+=1. (10)

In principle, (10) contains all the information needed to solve for the equi-
librium level of conflict, and to relate it to the distribution of the popula-
tion among the different groups. Indeed, working backwards one might
imagine h as implicitly defining a ``conflict ordering'' on the population vec-
tor, whose contours we are supposed to understand. In practice, however,
finding a precise description of such an ordering turns out to be a com-
plicated task.

This complexity is perhaps to be expected. We have already commented
on the global and nonmonotonic nature of conflict. These persist for con-
tests as well, as we will see.

Consider the simplest of all possible worlds: the case of two groups.
Here, the analysis is just a special case of that immediately preceding
Proposition 4.2: conflict is always increased by shifting population from the
smaller to the larger group, and is therefore maximized when both groups
are of equal size.

This simple observation is related to the findings of Tullock [27],
provided that population weights are interpreted as the degree of bias
favoring one group over another. Thus interpret this model as one where
there are only two lobbyists, with the probability that lobbyist i wins the
contest being biased by a factor ni . Tullock argues that increased bias must
lower conflict. In the two-group case, which he considers, an increase in
bias is similar (though not identical) to making more unequal the popula-
tion weights.13 By the discussion above, this lowers conflict.

That the symmetric bimodal distribution maximizes conflict over the set
of distributions with G=2 follows from the result that shifting population
from a larger group to a smaller group increases conflict. In a more general
setting, with G�3, the repeated application of these population shifts
would ultimately produce the uniform distribution with ni=1�G for all i.
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Can we thus expect the uniform distribution to be a maximizer of conflict
for G�3? It turns out, however, that matters are more complex than this
simple conjecture.

We begin our study of the many-group model by considering a special
case. Suppose that the cost of effort supply is quadratic: c(r)= 1

2 r2. In that
case a little effort will show that

h(z)=
z2

1+z2 .

Suppose, furthermore, that there are only three groups. In that case, (10)
may be rewritten as

:
3

i=1

n2
i

n2
i +R2=1. (11)

With an equal division of population over the three groups, and using (9)
with the obvious equilibrium condition that si=1�3 for all i,14 we see that
the level of conflict is given by - 2�3. Denote this level by R

*
. Now recall

the LHS of (11) with R set equal to R
*

, and consider the problem

max :
3

i=1

n2
i

n2
i +R2

*
,

subject to the constraint

n1+n2+n3=1.

Suppose that we can show that a symmetric distribution of population is
a local strict maximum to this problem. In that case it follows that the sym-
metric distribution must also locally (strictly) maximize conflict. The
reason is that for distributions in a neighborhood around the uniform dis-
tribution, it must be the case that (11) must hold with strict inequality (<)
when R{R

*
. To restore equality in such cases, R must be lowered

downwards from R
*

. This establishes our claim.
Now, it is the case that a symmetric distribution does solve this maxi-

mization problem (simply set up the constrained problem and check first
and local second-order conditions). So we have arrived at the following
observation: the uniform distribution of population locally maximizes conflict
in the three-group case.
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FIG. 2. Conflict in the Three-Group Case.

So far, matters are analogous to our arguments for the two-group case.
But the similarity ends there, for the uniform distribution cannot be a
global maximum in the class of three-point distributions! One way to check
this is to see that with :=2, the maximal conflict in the two-group
case equals 1�2, but that R

*
<1�2. By continuity (this can be made

precise), there is a three-group distribution close to the uniform two
group distribution which exhibits greater conflict than that under
the uniform three-group distribution, even though the latter is a local
maximizer of conflict!

Figure 2 illustrates this by reproducing the exact behavior of conflict as
we move over distributions of the form (x, x, 1&2x). At x=1�3 we
encounter a local maximum of conflict. Thereafter, as x declines, conflict
falls, only to rise again to an even higher level as x approaches zero. This
shows that even in the simplest examples, the relationship between conflict
and population distribution is far from obvious.

Is this observation more general? It is. The next proposition sum-
marizes what we know about the uniform distribution for the three-
group case, under a wide class of cost functions. To state this proposition,
let ' denote the elasticity of the marginal cost function: i.e.,
'(r)#rc"(r)�c$(r) for all r>0. Note that by Assumption 1, '(r)>0 for all
r>0. We make the following technical regularity assumption on this
elasticity:
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Assumption 2. The elasticity '(r) is bounded, and there is $>0 such
that for all r>0,

&'(r)[1+'(r)]+$<r'$(r)<'(r)[1+'(r)]&$. (12)

This technical condition is satisfied under a large class of cost functions.
For instance, if the cost function exhibits constant elasticity so that
c(r)=(1�:) r: for :>1, then '(r)=:&1 for all r, so that Assumption 2 is
trivially satisfied.

Proposition 4.3. Suppose that Assumptions 1 and 2 hold. Then in the
three-group case, the uniform distribution of population is a strict local maxi-
mizer of conflict. However, there are always other three-point distributions
that dominate the uniform in terms of conflict, so that this uniform distribu-
tion can never be a global maximum.

Proposition 4.3 implies that the the creation of bias (via population
weights) does not, in general, serve to reduce conflict. It does, in a
neighborhood around the three-point uniform distribution, but certainly
not everywhere.

A more general result that subsumes Proposition 4.3, can be obtained
when there is an arbitrary number of groups. In this case, as the proposi-
tion below reveals, the possibility of complicated behavior (in the sense
outlined in the previous proposition) depends on the number of groups.

Proposition 4.4. Take as given any cost function satisfying Assumptions
1 and 2. Then

[1] There exists G� �3, such that for all G�G� , the uniform distribu-
tion of population on G groups is a strict local maximizer of conflict, but
(unless G=2) it is never a global maximizer. There also exists G� , such that
for all G�G� , the uniform distribution of population on G groups is a strict
local minimizer of conflict.

[2] For the special case of isoelastic cost functions c(r)=Ar: (:>1),
this characterization can be tightened. There exists a decreasing function g(:)
with g(:)>3 for all :>1 and g(:) A � as : a 1, such that the uniform pop-
ulation distribution is a strict local maximizer of conflict if and only if
G<g(:), and a strict local minimizer if and only if the opposite strict
inequality holds.15

[3] Provided that G�3, equilibrium conflict is strictly higher at the
uniform distribution over G&1 groups, rather than at the uniform distribu-
tion over G groups.
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Proposition 4.4 continues to counter the idea that an increase in ``bias''
(induced by unequal population weights) may be conflict-reducing. With
larger groups, it becomes more and more likely that the introduction of
bias will serve to increase conflict, not reduce it.16 But the point is that the
relationship is a complicated one. This will become even clearer when we
argue that whether or not a G-point uniform distribution is a local maxi-
mizer of conflict, it can never be a global maximizer, even in the class of
distributions with the same support (see below).

This result also bears on the nonmonotonic nature of the relationship
between conflict and distribution, and may be used to supplement Section
6 on the relationship between conflict and polarization. For instance, com-
bine parts [2] and [3] of the proposition. Consider G groups (G�3), and
any cost function such that conflict is locally maximized (the existence of
such a cost function is assured). It is then obvious that any ``local'' depar-
ture from the uniform distribution will entail a fall in equilibrium conflict.
On the other hand, there are local changes, which if continued in the same
vein, will finally lead to the uniform distribution over G&1 groups, and
therefore an increase in equilibrium conflict. Hence, some distributional
changes cannot be broken down in a series of ``steps in the same direction,''
with conflict changing in the same way throughout.

4.3.2. Group Mergers
Another implication of the preceding propositions is that a shift of pop-

ulation from larger to smaller groups does not necessarily increase conflict
for G�3. Is there some other partial ordering over the space of distribu-
tions which is accompanied by unidirectional changes in conflict? We
search, then, for a sequence of conflict-increasing moves that might lead
from any starting point to the symmetric distribution on just two groups.

One route to this is by considering group mergers. Recall Proposition
4.2, which implies (for contests) that equilibrium conflict is maximized at
any symmetric distribution over two groups. Recall also Proposition 4.4,
part [3], which states that the uniform distribution over G&1 groups is
always more conflictual than the uniform distribution over G groups, for
G�3. Both these observations suggest that starting from any initial situa-
tion, a merger of two groups should raise conflict.

Unfortunately, such an observation cannot be generally true. We show
in an earlier version of this paper [6, Propositions 14 and 15] that in the
case of a line, group mergers have ambiguous effects on conflict. The same
ambiguity persists in the case of contests. But some general results are
possible.
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Proposition 4.5. Suppose that G�4. Then a merger of any two smallest
groups must raise equilibrium conflict. This is also true for G=3, provided
that the unmerged group is strictly larger than one of the other groups.

Here, then, is a class of cases in which group mergers unambiguously
raise conflict. Of course, this result is requires an upper bound on the size
of the merging groups: if they are large, conflict will be reduced.

What about mergers involving a larger number of groups? If the merger
involves all but the largest group, conflict increases as well, as the following
proposition notes.

Proposition 4.6. Let G�3. Consider a distribution of the population
across G groups. Suppose that ni {nj for some i and j. Then equilibrium con-
flict is increased by a merger of any G&1 smallest groups into one. However,
if the initial distribution of population is uniform, equilibrium conflict is
unchanged.

These propositions have implications for the phenomenon of ``divide and
conquer,'' as can be easily seen by running them backwards. Specifically,
starting from the bimodal distribution, if one group is broken up into two
or more fragments, all smaller than the intact group, then conflict must go
down. It can also be checked that the expected payoff of the intact group
will rise.

These propositions also reinforce the nonmonotonicity of conflict.
Propositions 4.3 and 4.4 focussed on the absence of a monotonic rela-
tionship when population is redistributed across the same number of
groups. Here, in contrast, entire groups are merged into one. Imagine that
we decompose the merging of G&1 uniformly sized groups into a sequence
of steps in which we merge one group at a time with the already-formed
merger. By Proposition 4.5, the merging of the first two groups will strictly
increase conflict, provided that G�4. But the aggregate level of conflict
must return again to the initial level after the sequence of steps has been
completed, by the second part of Proposition 4.6.

5. CONFLICT AND DISTRIBUTION: PATTERNS

5.1. Introduction

When groups engage in lobbying, it is of interest to ask how the ``inten-
sity'' of lobbying by a particular group might vary with group size. We
have already noted that there are reasons to believe that this effect can go
either way. The purpose of this section is to provide a systematic analysis.

A natural question is what we mean by the ``intensity'' of lobbying. We
take as an index the share of resources contributed by a particular group
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relative to its numerical strength in the population. This ratio, s�n, is
obviously simply equal to r�R, the per capita contribution made by a group
relative to the mean.

Patterns of lobbying intensity are related closely to questions of
extremism or moderation within a society. To be sure, such concepts are
entirely without meaning unless some metric is assigned across groups, so
that extremism would then refer to a situation where ``radical'' groups (in
the sense of being outliers in the metric induced by preferences) lobby more
intensively for their preferred outcomes. Alternatively, a situation is
moderate if ``centrist groups'' are the most vocal (relative to group size).
These notions will be introduced more formally below, but it is worth not-
ing at the outset that such categories are useful in understanding situations
where the true distribution of societal characteristics may be exaggerated
(or hidden) by its publicly observed conflicts.

As noted above, in the absence of a metric across groups, concepts such
as extremism are meaningless. It is nevertheless possible to start with a
weaker concept: say that an equilibrium involves activism if there are at
least two groups i and j with distinct lobbying intensities: ri {rj . It is
obvious that the presence of activism, as defined here, is a necessary condi-
tion for sharper phenomena such as extremism.

The following proposition completely describes those situations in which
activism must be present.

Proposition 5.1. Equilibria with no activism exist if and only if

ni :
G

k=1

nk vik=n j :
G

k=1

nkvjk (13)

for every pair of groups i and j.

5.2. Activism in Contests

Proposition 5.1 yields the following straightforward characterization for
contests:

Proposition 5.2. Contests with two groups can never involve activism.
On the other hand, contests with more than two groups display activism
whenever all groups are not equal-sized, and larger groups always lobby more
intensively than smaller groups.

It may be worth putting Proposition 5.2 in some perspective. Since
Olson [20], there has been much debate regarding the effects of group size
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on collective action.17 The main point made by Olson has to do with the
possibility of free-riding within the group, something that is ignored here.
So our finding that larger groups lobby more intensively (in contests) does
not logically contradict Olson's assertion. However, it does demonstrate
that when the issue involved is a public good (rather than a private good
whose division is dissipated by size), there are other features of group size
that may need to be considered. Indeed, a priori it is not at all obvious that
larger groups will be activists in our model. The reason is that larger
groups are more likely to be confronted by smaller opponents, thus permit-
ting a relaxation of individual effort. The proposition shows that this effect
is more than counterbalanced in equilibrium. Nevertheless, a hint of this
remains in the statement of the proposition for two groups, where the two
effects exactly cancel each other, leading to an absence of activism.

There is another broad class of cases where the straightforward
monotonicity result of Proposition 5.2 breaks down. This is when there is
a metric over groups, induced by varying preferences for different out-
comes. Matters here are somewhat more complicated.

5.3. Activism on the Line
We will consider the simplest metric model, that described by a line. For

the sake of exposition we study symmetric population distributions on just
three groups. Groups are now to be thought of as points on a line segment,
identified with issues that are most preferred by the people ``located'' there.
Unlike the case of contests, we shall be assigning externalities to each of the
groups should some other group win their most preferred issue. Imagine,
then, that there are two groups (whom we shall call the radicals), each of
size n, situated on either side of a middle class of size 1&2n. Thus
n # [0, 1�2].

It is necessary to describe the losses to one group should another group
win. These are given by a (per capita) to the centrist group should either
of the radicals win, and by a to either of the radicals should the middle
class win. However, should a radical group win, the loss to the other
radical group is given by b, and we take b>a. See below, Figure 3, for an
illustration.

Observe that if b=a, we are in the case of pure contests. On the other
hand, if b=2a, we are in the case of ``linear alienation'' as studied in [5].

We know by Proposition 3.3 that there exists a unique equilibrium. It
follows from this observation and the assumed symmetry of the problem
that the two radicals must contribute equal shares (which we denote by s),
so that the centrist group contributes 1&2s.

The presence of a metric across groups (which is deliberately suggested
by the terms ``radicals'' and ``centrists'') permits us to go further than a
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definition of activism for this case. We may say that a situation is extremist
if the radicals are activists, and so contribute more than proportionately to
their numerical strength, i.e, if s>n. A situation is moderate if the opposite
inequality holds.

It is important to examine when situations might induce extremism or
moderation. This gives us an idea of when the true distribution of societal
characteristics may be exaggerated (or hidden) by its publicly observed
conflicts.

The following result characterizes these situations.

Proposition 5.3. Define

n*=
a

b+2a
. (14)

Then a situation is extremist if n>n*, but is moderate if n<n*. It involves
no activism if and only if n=n*.

The critical value n* lies in the interval (0, 1�3), and depends negatively on
the excess of b over a. It converges to 1�3 (the contest case) as b a a, and con-
verges to 0 as b�a � �.

In Fig. 3, the distribution of population is shown by the heavy vertical
lines, and the magnitude of the equilibrium shares by the lighter vertical
lines. The point worth noting is that an already equal society (with a
relatively small share of radical groups) will display an even greater degree
of moderation in its decision-making, compared to its population distribu-
tion. On the other hand, once the population share of the radicals crosses
a critical magnitude, then the radicals contribute more than their popula-
tion share, leading to a situation that looks more conflictual than the
underlying population distribution warrants.

Note that extremism manifests itself when each of the radical groups has
strictly lower population than the middle class: the underlying distribution
of characteristics is unimodal. We may record the critical value of n* for
another special case as well: linear alienation. When alienation becomes
``convex''��the case b>2a��extremism manifests itself even if the total
population of radicals is less than the middle class.

Linster [15] noted this result in the special case where n=1&2n=1�3,
arguing that extreme groups put in a proportionately larger share of lobby-
ing resources.18 Radicals have more to lose, so they engage in more conflict.
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FIG. 3. Extremism, Moderation, and Distribution.

Our results show that the possibilities are richer: relative group strengths
also matter. In particular, extremism breaks down when radical groups
become very small (a ``discouragement effect'' takes over).

This special case shows that non-contest situations are potentially more
fertile than contests in their implications for activism. We may return once
again to the Olson argument, which states that small groups may have
more efficacy than large groups. An additional dimension is revealed in the
particular scenario studied here. Very small groups are not activist, though
moderately small groups are. In contrast to the case of contests, this is
more in line with the Olson thesis, though for reasons that are entirely
different.

6. LINKS WITH POLARIZATION

We end the paper with some brief remarks on the relationship between
conflict and the concept of polarization developed in [5]. Readers who
wish to see the analysis in more detail are invited to study [6].

In [5], we introduced the notion of a ``polarized distribution'' and
argued that polarization, not inequality as it is commonly measured, holds
the key to our understanding of social tension and conflict. Briefly,
polarization is a feature of distributions that combines elements of equality
and inequality in a particular way. Specifically, we argued that intra-group
homogeneity, coupled with inter-group heterogeneity, lies at the heart of a
polarized society, and this feature is correlated with social conflict. At the
same time, measured inequality in such a society may be low. The reader
is referred to our paper, where the distinction is made clear in a series of
examples.
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It turns out that conflict, as developed in this paper, moves with dis-
tributional characteristics in the broad way suggested by distributional
polarization. Three features are worth mentioning.

Property 1: Bimodality. There is a two-point symmetric distribution of
population which globally maximizes conflict. This result is proved in
Proposition 4.2 of the paper. It turns out that bimodality also lies at the
heart of increased polarization (Theorem 2 in [5]).

Property 2: Globality. Consider the merging of any two groups in a G-
group distribution, where G�3. Then whether conflict goes up or down
depends on the sizes of the merging groups, as well as the distribution of
the population across non-merging groups. This result is formally estab-
lished for conflict in [6, Propositions 15, 16]. The corresponding discus-
sion for polarization is Example 4 and Section 3.4.2 in [5].

Property 3: Nonmonotonicity. Start with a uniform distribution of pop-
ulation across G groups, where G�4. Transfer population mass from one
of the groups to the others, until a uniform distribution over G&1 groups
is obtained. Then conflict is higher at the ``end'' of this process, but may go
down in the ``intermediate'' stages. The discussion in Section 4.3 culminat-
ing in Proposition 4.4 bears directly on this issue. For comparison with
polarization, see Example 5 and Section 3.4.3 in [5].

There are differences as well. The present model of conflict is more
general than the model used to characterize polarization, on two counts.
First, we allow for more general metrics over preferences (the analysis in
[5] is exclusively relevant for the line). Second and more fundamental, the
description of polarization is first and foremost a problem of measurement
(though it may be motivated, as it was in our case, by a desire to under-
stand conflict), while an analysis of conflict must of necessity rest on a
behavioural model.

As an implication of the latter, consider the per-capita effort ri put in by
a typical member of group i. Is this the same across all groups? The answer
is no. But a measurement theory, largely devoid of behavioral postulates,
will have difficulty predicting this variation. To see this more formally,
recall our measure of polarization, adapted here to use the notation [vij]
for alienation:

P=:
i

:
j

n1+#
i njvij , (15)

where # is strictly positive (additional assumptions place further restrictions
on # such as #�1). Recall that it is the strict positivity of # that dis-
tinguishes polarization from the traditional measures of inequality.
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Now let us write down a formula for conflict to compare with (15). This
will not be closed-form but nevertheless useful. To do so, assume that we
are in the constant-elasticity case: c(r)=:&1r: for some :>1. Then the
first-order conditions may be rewritten as

si :
j

sjvij=r:
i

for each group i. Multiplying both sides by n:
i s1&:

i and rearranging terms,
we obtain

\ni

si +
:

s2
i :

j

sjvij=si R:.

Adding over all groups i, and bearing in mind that �i si=1, we finally
have

R:=:
i

:
j \

ni

si+
:

s2
i sjvij . (16)

Now we can compare (15) and (16) in the light of our earlier discussion.
Recall that si is the equilibrium share of resources devoted to conflict by
group i, while ni is, of course, the population share. The divergence
between ni and si is thus a measure of the variation in individual lobbying
intensity over the different groups. Some of this variation is implicitly cap-
tured by the polarization measure, which weights each term by the aliena-
tion coefficient vij . But as recorded in the discussion above, this is not
enough.

Thus note that if si=ni for all i, R: is identical to the polarization
measure P for the specific case #=1. Thus we see that it is the behavioral
nature of conflict, which forces si {ni in specific circumstances, which
makes it depart from polarization in a significant way.

7. PROOFS

Proof. [Proposition 4] Using (2 ), the maximization of (1) reduces to
choosing ri to maximize

:
G

j=1

rjnj

�G
k=1 nkrk

uij&c(ri),
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an expression that is well-defined for all ri because rj>0 for some j{i, by
assumption. Using the end-point restriction on c in assumption 1, and the
fact that utility is bounded, it is clear that the solution to the problem is
interior, and that the first-order condition must hold. Simple manipulation
then reveals the required necessary condition to be precisely (3). The strict
concavity of the function to be maximized will show that (3) must be suf-
ficient as well. By Assumption 1, it will suffice to show that the function
�G

j=1 sj uij is strictly concave in ri , with all other rj held fixed. Verifying this
is a matter of simple differentiation.

Proof (Proposition 3.2). Denote by 2 the G&1-dimensional unit
simplex of resource shares, i.e., the set [s # RG | si # [0, 1] for all i and
�i si=1]. For each s # 2, group i, and R>0, define qi (R, s) by

:
G

j=1

sjvij=
c$(qi (R, s)R

n i
(17)

if (17) can be satisfied with equality; otherwise, set qi (R, s)=�.
For each s, there is always a group i such that qi (R, s)>0 for all R>0.

[This assertion is easily verified by recalling our assumption that vij>0
whenever i{ j.] For such a group, it follows from Assumption 1 that
qi (R, s) is continuous and strictly decreasing in R, with qi (R, s) � 0 as
R � � and qi (R, s) � � as R converges down to the minimum value for
which (17) can hold with equality.

On the other hand, if qi (R, s)=0 for some R>0, then it is easy to see
from (17) that qi (R, s)=0 for all R�0. Putting all these observations
together, we may conclude that for each s # 2, there exists a unique R(s)>0
such that

:
G

j=1

q j (R(s), s)n j=R(s) (18)

Now define the mapping ,: 2 � 2 by

,i (s)#
qi (R(s), s)ni

R(s)
. (19)

From the definition of R(s) (see (18)) and the properties of qi for all i, it
follows that , is continuous. By Brouwer's fixed point theorem, there exists
s* such that ,(s*)=s*. For each i, define ri* #q i (R(s*), s*). It is easy to
check, using (3), that the vector (r1* , ..., r*G) constitutes an equilibrium. K
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Proof. [Proposition 3.3] Suppose, contrary to the statement of the
proposition, that there are two equilibria. Let the share vectors under these
equilibria be s and ŝ, let R and R� denote the corresponding levels of con-
flict, and let r and r̂ denote the corresponding vectors of resources.

We observe first that s{ ŝ. For if this were not the case, it follows from
(3) that ri=r $

i for all i, which contradicts the supposition that the two equi-
libria are distinct.

Without loss of generality, suppose that R� �R.
Let k be an index such that the ratio sk �ŝk is maximized. Observe that

this ratio is well-defined, because all equilibria must involve strictly positive
share vectors (by Proposition 4). We claim that rk> r̂k . To see this, note
that we must have sk>ŝk . The claim then follows from the definition of the
share vector and the fact that R� �R.

On the other hand, using the first-order conditions for k, we see that

c$(rk)
c$( r̂k)

=
R�
R

�G
j=1 sjvkj

�G
j=1 ŝj vkj

=
R�
R

�G
j=1 (sj �ŝj ) ŝj vkj

�G
j=1 ŝjvkj

<
R�
R

sk

ŝk

=\R�
R+

2 rk

r̂k

�
rk

r̂k
,

where the strict inequality in the chain above uses the fact that s{ ŝ.
Now this inequality, coupled with the observation that rk> r̂k , means that

c$(r)�r cannot be a nondecreasing function. Yet it is easy to see that c$$$ (r)�0
implies that c$(r)�r must be nondecreasing, and this is a contradiction. K

Proof (Proposition 4.1). We follow closely the argument establishing
uniqueness in Proposition 3.3. Suppose, contrary to the proposition, that
R$�R.

Let k be an index such that the ratio sk�s$k is maximized. Because R$�R,
it is obvious that rk�r$k .
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On the other hand, using the first-order conditions for k, we see that

c$(rk)
c$(r$k)

=
R$
R

�G
j=1 sjvkj

�G
j=1 s$jv$kj

=
R$
R

�G
j=1 (sj �s$j) s$j vkj

�G
j=1 s$j v$kj

�
R$
R

sk

s$k

�G
j=1 s$jvkj

�G
j=1 (sj �s$j ) s$j v$kj

<
R$
R

sk

s$k

=\R�
R+

2 rk

r̂k

�
rk

r̂k
,

where the strict inequality in the chain above uses the fact that s$>>0.
This inequality, coupled with the observation that rk�r$k , contradicts

the assumption that c$$$(r)�0. K

Proof (Proposition 4.2). Because c$$$ (r)�0, there is a unique equi-
librium for any population distribution, by virtue of Proposition 4. There-
fore equilibrium conflict is well-defined for any population distribution.

In the discussion leading up to the statement of the proposition, we
showed that for any population distribution over two groups i and j, con-
flict is maximal when ni=nj=1�2. Let R*ij denote the value of conflict
under this maximum. If we define f (r)#rc$(r), then R*ij satisfies the condi-
tion

f (R*ij)=
vij

4

for all i and j with i{ j (we use here vij=vji). For the case of G groups, first
note that there exist two groups (say 1 and G) such that v1G=vG1�vij for
all i and j.

Now consider an arbitrary population distribution over G groups. The
first-order conditions (3) tell us that

:
G

j=1

sisjvij= f (ri)
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for all i. Multiplying both sides of this equation by ni and adding over i,
we obtain

:
G

i=1

:
G

j=1

nisisj vij= :
G

i=1

ni f (ri). (20)

The assumption c$$$ (r)�0 implies that f is convex. By a well-known
property of convex functions, we may conclude that

:
G

i=1

ni f (ri)� f \ :
i=1

niri+= f (R), (21)

where R denotes equilibrium conflict for this distribution. Combining (20)
and (21), we see that

:
G

i=1

:
G

j=1

nisi sj vij� f (R). (22)

Now, observe that for each i,

si :
j

sjvij=si :
j{i

sjvij�si :
j{i

sjv1G=si (1&si)v1G�
v1G

4
, (23)

and combining this information with (22), we may conclude that

f (R*1G)=
v1G

4
� :

G

i=1

:
G

j=1

ni si sjvij� f (R). (24)

This proves the existence of a symmetric bimodal distribution which maxi-
mizes conflict. To complete the proof, it suffices to note that if any distribu-
tion has si {1�2 for some i, then the very last inequality in (23) must hold
strictly for that i. Consequently, (24) must hold strictly as well. K

Proposition 4.3 is a special case of Proposition 4.4, which is proved next.

Proof (Proposition 4.4). The following lemma, describing properties of
h, will be needed in the proof of this proposition.

Lemma 7.1. Suppose that Assumptions 1 and 2 are satisfied. Then h has
the following properties:

1. h is strictly increasing and twice continuously differentiable.

2. Define z*#h&1( 1
2). Then h(z)�z is strictly increasing in z for

z # (0, z*), and is strictly decreasing thereafter.

3. There is z� >0 such that h(z) is strictly convex on the interval [0, z� ],
and
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4. If z**#h&1 ( 1
3), then h"(z**)<0.

5. If (a, b)>>0 and h(a)+h(b)� 1
2 , then h(a+b)>h(a)+h(b).

Proof. Recall (see (9) that h is implicitly defined by the function

z(1&h(z))#c$ \h(z)
z + .

Differentiating this, and using s=h(z) and r=s�z as shorthand, we see that

h$(z)=
r(1+'(r))

s�(1&s)+'(r)
. (25)

It is clear from Assumption 1 that h$(z)>0 and is continuously differen-
tiable. So part 1 is established.

Next, observe using (25) that

d
dz _

h(z)
z &=

h(z)
z2 \z

s
h$(z)&1+=

h(z)
z2 \ 1+'(r)

s�(1&s)+'(r)
&1+ .

By using part 1 and the definition of z*, this expression shows that
d�dz [h(z)�z]>0 when z<z*, with the opposite inequality holding when
z>z*. So part 2 is established.

To establish part 3, let =(r) denote the elasticity of '(r): i.e.,
=(r)#r'$(r)�'(r) for all r>0. Under Assumption 1, = is well-defined. Now
differentiate (25) with respect to z to obtain, after substantial manipulation,

h"(z)=
h$(z)2

s(1&s)(1+')[s+(1&s)']

_{(1&4s+2s2)'&2s2&(1&2s)2 '
1+'

== , (26)

where '#'(r) and =#=(r).
Denote by A(z) the expression within curly brackets in (26). It will suf-

fice to prove that A(z)>0 for z sufficiently small. Using Assumption 2, and
recalling that s#h(z) and r#s�z, we see that

A(z)=(1&4s+2s2) '(r)&2s2&(1&2s)2 '(r)
1+'(r)

=(r)

=(1&4s+2s2) '(r)&2s2&(1&2s)2 r'$(r)
1+'(r)

>(1&4s+2s2) '(r)&2s2&(1&2s)2 '(r)+(1&2s)2 $

=(1&2s)2 $&2s2['(r)+1] (29)
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Now, by Assumption 2, ' is bounded, while $>0. Moreover, s=h(z) � 0
as z � 0. We may therefore conclude that A(z)>0 for z sufficiently small.

To establish part 4, recall that at z**, s=h(z**)=1�3. Putting s=1�3,
manipulating, setting r**=1�3z** and using Assumption 2,

A(z**)= &
'(r**)

9(1+'(r**)) {
(2+'(r**))(1+'(r**))

'(r**)+=(r**) =
= &

'(r**)
9'(r**)(1+'(r**)) {(2+'(r**))(1+'(r**))+r**'$(r**)=

> &
'(r**)

9'(r**)(1+'(r**)) {'(r**)(1+'(r**))+r**'$(r**)=
>0. (30)

Finally, to establish part 5, note that if h(a+b)> 1
2 , there is nothing to

prove. On the other hand, if h(a+b)� 1
2 , we see from part 2 that

h(a+b)�a+b>h(a)�a and h(a+b)�a+b>h(b)�b. It follows that

h(a+b)=a
h(a+b)

a+b
+b

h(a+b)
a+b

>a
h(a)

a
+b

h(b)
b

=h(a)+h(b),

as desired. K

We now return to the main proof. Recall from Proposition 4.2 (and the
fact that we are in the special case of contests) that any symmetric bimodal
is a global maximizer of conflict, so the first half of part [1] is equivalent
to Proposition 4.3. That is, it suffices to show that G� can be taken to be
equal to 3. To prove this, we will use part 4 of Lemma 7.1, which assures
us that under the conditions of the proposition, h"(z**)<0, where
z**#h&1 ( 1

3). It follows that h(.) is locally strictly concave in an open
neighborhood around the point z**.

Let R� be the equilibrium conflict under the three-point uniform distribu-
tion. Pick any nonuniform population distribution (n1 , n2 , n3) such that
ni �R� lies in the open neighborhood described above, for all i. By local strict
concavity of h, and the equilibrium condition,

1=3h \ 1

3R� +> :
3

i=1

h \ni

R� + .

Let R be the equilibrium conflict under (n1 , n2 , n3). Then from the fact that
h is strictly increasing (Lemma 7.1, part 1) and the above inequality, we see
that R<R� .
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We turn now to the second half of part [1]. Consider a uniform popula-
tion distribution over G groups. We know that the equilibrium distribution
in this case is symmetric, so that si=1�G for all i. Let R(G) denote
equilibrium conflict, and let z(G)#1�GR(G). Then, using the equilibrium
condition (9), we see that

z(G) \1&
1
G+=c$ \ 1

z(G)+ .

Because c$(0)=0, it follows immediately from the above expression that
z(G) � 0 as G � �. So we may choose G� such that for all G�G� , z(G)<z� ,
where z� is given by part 3 of Lemma 7.1. Let G�G� . Because h is locally
strictly convex in the region (0, z� ), we may find an open neighborhood
around z(G) such that for every population distribution n with ni �R(G) in
this neighborhood for all i,

1=Gh \ 1
GR(G)+� :

G

i=1

h \ ni

R(G)+ ,

with strict inequality holding for every such nonuniform distribution. If R
is the equilibrium conflict for any such distribution, then using the expres-
sion above and the fact that h is strictly increasing (part 1 of Lemma 7.1),
we see that R>R(G).

Next, we prove part [2], which addresses the case of isoelastic cost func-
tions of the form c(r)=Ar:. Observe that for such functions, '(r)=:&1
and =(r)=0 for all r, so that using (28),

sgn h"(z(G))=sgn[((G&2)2&2)(:&1)&2],

and this is trivially negative for G=2 and G=3. For G�4, we see that
h"(z(G))>0 if and only if

:>
(G&2)2

(G&2)2&2
. (27)

For each :>1, define g(:) as the value of G for which (27) holds with
equality (neglect integer restrictions on G). It is easy to see that g(:) is
strictly decreasing, that g(:) A � as : a 1, and that g(:) must strictly exceed
3 for all :>1. Using (27) and the discussion immediately preceding it, we
conclude that

h"(Z(G))<0 if and only if G<g(:),
(28)

h"(Z(G))<0 if and only if G<g(:).
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But note from earlier arguments that the sign of h"(z(G)) is precisely
what determines whether the uniform distribution on G groups is a local
maximizer or minimizer of conflict; the former in case h"(z(G))<0 and the
latter in case h"(z(G))>0. It follows that g(:) as defined above, and the
condition (28), mark the threshold.

To prove part [3], we use (8), and note that si=1�G and ri=R(G) for
all i to conclude that

G&1
G2 =R(G) c$(R(G)).

For G�2, the LHS of the above expression is strictly decreasing in G.
Because rc$(r) is an increasing function, it follows that R(G) is monotoni-
cally decreasing in G for all G�2, which completes the proof. K

Proof (Proposition 4.5). Let groups 1 and 2 be two smallest groups. As
usual, define zi=ni �R. Then z1�z2�zi for all i�3, so that using the
equilibrium condition (10) and G�4,

h(z1)+h(z2)�
2
G

�
2
4

=
1
2

.

So Lemma 7.1, part 2, applies and h(z1+z2)>h(z1)+h(z2). It follows that

h \n1+n2

R ++ :
G

i=3

h \n i

R+> :
G

i=1

h \ni

R+=1.

Consequently, if we denote by R$ the equilibrium level of conflict after the
merger, and use (10) and Lemma 7.1, part 1, we see that R$>R.

The case G=3 is established as a special case of Proposition 4.6
below. K

Proof (Proposition 4.6). Let group G be a group of maximal size, and
consider a merger of groups [1, 2, ..., G&1] into 1. Let R and R$ respec-
tively be equilibrium conflict before and after the merger. Using Eq. (10),
we see that

h \1&nG

R$ ++h \nG

R$+=1.

Therefore, R$>(=)R if and only if

h \1&nG

R ++h \nG

R +>(=)1. (29)
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To this end, recall that h is defined by the relationship (9), so that

h(z)[1&h(z)]=
h(z)

z
c$ \h(z)

z + (30)

Observe that h is strictly increasing (Lemma 7.1, part 1), so that the RHS
of (34) is strictly increasing in z. It follows that for every z>0, there exists
a unique z$ such that

h(z)=1&h(z$) and
h(z)

z
=

h(z$)
z$

. (31)

Combining the two observations in (31), we see that

z$=z
1&h(z)

h(z)
. (32)

Applying (31) and (32) to z=nG �R,

1&h \nG

R +=h \nG

R
1&h(nG �R)

h(nG�R) + . (33)

Combining (29) and (33), it follows that R$>(=)R if and only if

h \1&nG

R$ +>(=) h \nG

R
1&h(nG�R)

h(nG�R) + .

Using the fact that h is strictly increasing, this implies that R$>(=)R if
and only if

1&nG

nG
>(=)

1&h(nG�R)
h(nG�R)

,

which is equivalent to the condition

sG=h \nG

R +>(=)nG .

When all groups have the same population, the above relationship must
hold with equality (this follows from Proposition 5.1, proof below). When
some group has larger population than another; it must be the case that
sG>nG , so that the above relationship holds with strict inequality (this
follows from Proposition 5.2).19 K
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Proof (Proposition 5.1). Let (s, R) be an equilibrium. Then the first-
order conditions (3) characterize the solution. This equilibrium does not
involve activism if and only if

si :
G

j=1

sjvij=$ (34)

for some $>0 and every i. Lack of activism is also equivalent to si=ni for
all i. Using this observation in (34), we obtain (13).

Proof (Proposition 5.2). To verify that contests with two groups can
never involve activism, simply note that the condition (13) of Proposition
5.1 is always met in that case. With more than two groups, the requirement
(13) reduces to

ni (1&ni)=nj (1&nj)

for all groups i and j. Because G�3, it is only possible to satisfy this
equality if ni has the same value for all i.

Finally, we prove that larger groups lobby more intensively. To do so,
let us rewrite the first-order condition (8) as

g(si)=ri c$(ri), (35)

where g(s)#s(1&s).
Index groups such that s1�s2� } } } �sG . If sG�1�2, then, because g is

increasing on [0, 1�2], we have that g(si)�g(si+1) for all i, with strict
inequality holding if si<si+1 . On the other hand, if sG>1�2, then (because
G�3) we see that sG&1<1&sG<1�2, and hence that g(sG&1)<
g(1&sG)= g(sG). Therefore, in both cases we have established the fact that
si>sj if and only if g(si)>g(sj).

Using (39) and the fact that rc$(r) is strictly increasing in r, we may now
conclude that si>sj if and only if ri>rj .

Finally, note that si>sj if and only if ni>n j . This is easiest seen by
recalling that si=h(zi) (see the paragraph following (9)), and noting that
h is strictly increasing and zi=ni �R. K

Proof (Proposition 5.3). To establish (14), use Proposition 5.1 and
(13) for one of the radical groups and the centrist group to obtain

n*[(1&2n*)a+n*b]=(1&2n*)[2an*],

which simplifies right away to (14).
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Now suppose that n>n*, but that contrary to the statement of the
proposition,

s
n

�
1&2s
1&2n

. (36)

Then if r and r$ denotes the per capita contributions of the radicals and
middle class, respectively, r�r$. Using this information along with the first
order conditions (3), we see that

n[(1&2s)a+sb]�(1&2n)[2as].

Rearranging terms and using (36), we obtain

n
1&2n

�
2a

a(1&2s)�s+b
�

2a
a(1&2n)�n+b

. (37)

But simplification of (37) yields n�n*, a contradiction. The case n<n* is
proved in a parallel manner. K
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