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This paper shows that the phenomenon of multiple equilibria can be fragile to
the introduction of aggregate shocks. We examine a standard dynamic model of
sectoral choice with external increasing returns. Without shocks, the outcome is
indeterminate: there are multiple rational expectations equilibria. We then
introduce shocks in the form of a parameter that follows a Brownian motion and
affects relative productivity in the two sectors. We assume that the parameter can
reach values at which working in either sector becomes a dominant choice. A
unique equilibrium emerges; for any path of the random parameter, there is a
unique path that the economy must follow. There is no role for multiple,
self-ful�lling prophecies or sunspots.

I. INTRODUCTION

It has long been agreed that expectations play a crucial role in
determining economic outcomes. Many have also argued that
expectations are not uniquely determined by the state of the
economy. Perhaps the most celebrated example is John Maynard
Keynes’s view that economic �uctuations are driven by the
‘‘animal spirits’’ of entrepreneurs. In models with rational agents
this idea has been associated with the phenomenon of multiple
rational expectations equilibria: cases in which more than one
prophecy is self-ful�lling.

This paper shows that the phenomenon of multiple equilibria
can be fragile to the introduction of aggregate shocks. We consider
a standard dynamic model with multiple rational expectations
equilibria. When we introduce exogenous shocks with certain
properties, the multiplicity disappears: for any path of the exoge-
nous parameter, there is a unique path the economy must follow.
Agents’ expectations are no longer indeterminate; they are
uniquely determined by the current state of the dynamic system.

Our model is a simpli�cation of Matsuyama {1991}. Agents
can work in either of two export sectors. One (cottage production
or agriculture) has constant returns, while the other (manufactur-
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ing) has increasing returns that are external to the agent.
Consequently, an agent’s relative payoff from working in the
increasing returns sector is higher if more people do so. This
relative payoff is also increasing in an exogenous parameter,
which may re�ect energy costs, weather, technology, or terms of
trade. There are frictions: agents cannot switch sectors at will, but
rather must wait for random opportunities to arrive.

In line with the �ndings of Matsuyama {1991}, we �nd
multiple equilibria when the exogenous parameter is unchanging.
For a range of initial conditions, if all agents believe that either
sector will grow, then they will move there and thus make the
prophecy self-ful�lling.

We then consider what happens if the parameter changes
over time according to a Brownian motion. We assume that there
are dominance regions: if the parameter moves above (below)
some threshold, an agent will move into the increasing (constant)
returns sector regardless of what others do. For example, there
may be a chance that the soil will become so depleted that farmers
will move to the manufacturing sector regardless of the choices of
other agents. Conversely, higher energy costs could eventually
make cottage production or agriculture a dominant choice (if
manufacturing is more energy intensive).

The dominance regions may be very remote, making it
unlikely that they will be reached during the lock-in time of an
agent who chooses sectors now. However, the prospect that they
will be reached eventually, even long after the agent receives
another opportunity to change sectors, can have a large effect on
her current decision. To see this, let us take the price of oil as the
exogenous parameter, and suppose that cottage production be-
comes a dominant choice if oil reaches $1000 per barrel. Suppose
that the price of oil is $999. If oil had a �xed price, we would not be
able to draw any �rm conclusions: since cottage production is not
a dominant choice at $999, if all agents were initially in manufac-
turing they might simply stay there forever. But this is not the
case if there are shocks to the price of oil. With shocks an agent
cannot be sure that all others will stay in manufacturing until she
gets another chance to change sectors, since the price of oil could
easily reach $1000 during this period, drawing agents into cottage
production. Knowing this (and since the price of oil is already
quite high), at $999 agents will choose cottage production. But the
same argument can be repeated: at $998, they will choose cottage

QUARTERLY JOURNAL OF ECONOMICS286



production because they know other agents will do so if the price
reaches $999. And so on.

The same argument can be applied for low prices of oil.
Suppose that manufacturing becomes dominant if oil drops below
$1 per barrel. Then at $1.01 agents will move out of cottage
production, because of the chance that the price will drop below $1
before they get another chance to change sectors. But this means
that at $1.02 they will enter manufacturing, and so on.

If we continue this line of reasoning ad in�nitum, we end up
with two thresholds, say $10 and $50. When oil costs less than
$10, agents choose manufacturing regardless of the current sizes
of the two sectors. Above $50 they always choose cottage produc-
tion. One can also show that for oil prices between $10 and $50,
agents’ choices depend on the current sizes of the two sectors.
Agents will choose cottage production if this sector is sufficiently
large; otherwise, they will choose manufacturing. Importantly,
even between the two thresholds, agents’ choices are uniquely
determined by the current state (which includes both the price of
oil and the sectoral distribution of agents).

These results show that once shocks are introduced, there is
always a unique equilibrium: the evolution of the economy
depends only on initial conditions and on the sequence of shocks.
There is no longer any room for multiple, self-ful�lling prophecies.
Variables such as sunspots, which do not directly affect agents’
payoffs, can play no role in the economy’s development.

These results hold for shocks of any size. In particular, the
shocks can be arbitrarily small. This case is perhaps the most
surprising, since it reveals a discontinuity: there are multiple
equilibria in a �xed environment, but not in a slightly stochastic
one.

Our �ndings depend on three critical properties of the
stochastic parameter. First, the existence of dominance regions is
crucial as it gives our uniqueness argument a place to start.
Second, Brownian motion is persistent: its current value reveals
something about future values. For example, the price of oil is
more likely to be above $1000 in the near future if it is currently
$999 than if it takes some lower value. Finally, Brownian motion
has shocks that come frequently. This ensures that an agent who
chooses sectors will see the oil price change before she gets
another chance to switch, and must take into account the effects of
these changes.

Some of our results use mathematical tools from Burdzy,
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Frankel, and Pauzner (hereinafter BFP) {1998}. These tools were
applied in BFP {2000} to models of pairwise random matching in
games with two actions. Support was found for the risk-
dominance selection criterion of Harsanyi and Selten {1988}. The
current paper uses the tools of BFP {1998} only to analyze the
limiting cases of small frictions and small shocks.1 Our main
result, which permits shocks and frictions of arbitrary sizes,
cannot be proved using these tools. Instead we use a new
approach, which has the side bene�t of being simpler and more
intuitive.

The rest of this paper is organized as follows. In Section II we
present the model. Section III analyzes the benchmark case of an
unchanging environment. In Section IV we show how things
change with shocks. Section V discusses related literature. Con-
cluding remarks appear in Section VI. Following Section VI is an
appendix that contains the more technical proofs.

II. THE MODEL

We consider a simpli�ed version of the model of Matsuyama
{1991}. There is a small, open economy with a continuum of
self-employed agents. Each agent can work in either of two
sectors, one (C) with constant returns and the other (X ) with
increasing returns that are external to the agent. Time t is
continuous. The economy has frictions: each agent receives oppor-
tunities to (costlessly) switch sectors according to an independent
Poisson process with common arrival rate d .

Agents are risk-neutral and live forever. The utility of an
agent equals the integral of her lifetime production, discounted at
the rate u . An agent in sector C produces a constant output �ow
whose value (at world prices) is normalized to one. An agent in
sector X produces a variable amount whose value p (LX,z) depends
positively on both the proportion LX of agents in the sector2 and an
exogenous parameter z.3 Both LX and z are commonly observed.
The parameter z can be interpreted as the state of technology,

1. Even in these limiting cases, the current paper differs technically from BFP
{1997} in that an agent’s payoff can depend nonlinearly on the sizes of the two
sectors. In BFP the assumption of pairwise interactions implies linearity.

2. Since the goods in both sectors are traded and the country is small, we take
prices as exogenous. In particular, a larger X sector does not lower the relative
price of goods produced in that sector.

3. In Matsuyama’s version, agents’ payoffs also depend on a random taste
parameter. This is essentially the only difference between Matsuyama’s model and
our case of constant z.
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weather, or the relative price of good X on the world market. If we
interpret p as the agent’s pro�ts, z may also re�ect the world
prices of nonlabor inputs in the two sectors. We assume that if z is
large enough, X becomes a dominant choice: an agent’s expected
payoff is higher in X than in C even if all agents are expected to
remain in C forever. Conversely, for small enough z, C becomes a
dominant choice.4 We also assume that p is continuously differen-
tiable in both arguments.

III. AN UNCHANGING ENVIRONMENT

We �rst analyze the benchmark case in which the environ-
ment does not change (z is constant over time). Suppose that C is a
dominant choice for z , z and X is a dominant choice for z . z.5 For
z between z and z, both all-X and all-C are steady state equilibria.
That is, if all agents are initially in one sector, it is an equilibrium
for them to stay there. However, whether a given steady state can
be reached depends on the initial value of LX.

Figure I shows the set of long-run outcomes for each z and for
each initial value of LX. The size of the X sector is measured on the
vertical axis; the parameter z appears on the horizontal axis. In
the rightmost region all agents choose the X sector when they get
the chance. This means that the economy converges to all-X. In
the leftmost region everyone chooses C at his �rst opportunity, so
all-C is the only long-run outcome.

FIGURE I
A World without Shocks (Proposition 1)

4. X is a dominant choice if the average discounted wage in the X sector when
LX 0 exceeds the wage in the C sector: if E{(u 1 d ) t 5 0

` e 2 (u 1 d )t p (0,zt) dt z0 5 z} .

1.Analogously, C is a dominant choice if E{( u 1 d ) t5 0
` e 2 ( u 1 d )t p (1,zt) dt z0 5 z} , 1.

5. Since z is constant, z is de�ned by p (1, z) 5 1 and z is de�ned by p (0,z ) 5 1.
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In the region between Z and Z, there are multiple equilibria.
All agents may choose X; then the X sector will grow, raising
productivity there and making it indeed optimal to choose X. Or
they may all choose C, lowering productivity in the shrinking X
sector and making C the best choice. These results are summa-
rized in Proposition 1.

PROPOSITION 1. There are decreasing functions Z(LX) , Z(LX)
such that if z . Z(LX), there is a unique equilibrium, in which
agents always choose X. If z , Z(LX), agents always choose C.
For z between Z (LX) and Z(LX) there are multiple equilibria;
both all-X and all-C are long-run outcomes.

Proof. see the Appendix.

Note that Z(0) 5 z: if all agents are in the C sector, it is an
equilibrium to remain so long as X is not a dominant choice.
Likewise, Z(1) 5 z.

The dotted curve Z* in Figure I is the myopic indifference
line, given by p (LX,z) 5 1.6 On this curve, current productivity in
the two sectors is equal. As agents become more impatient relative
to the speed at which they can change sectors (i.e., as u /d grows),
they put more weight on current conditions and less weight on
their expectations for the future. Hence, the curves Z and Z both
converge to Z*: in the limit of complete myopia, the equilibrium
becomes unique. On the other hand, as agents become relatively
more patient (as u / d shrinks), the area of multiplicity grows.

IV. A WORLD WITH SHOCKS

We now examine what happens if z changes randomly. We
assume that z follows a Brownian motion. This is essentially the
continuous time version of a random walk. It is characterized by a
variance s 2 and a trend µ. The variance measures the size of the
random component; i.e., how fast z spreads out. The trend
captures the deterministic part of z; i.e., how its mean changes
over time.7 For example, a positive trend might re�ect steady
improvements in the technology of sector X. For now we assume
that the trend µ is a constant. We later relax this assumption in
analyzing the limiting cases of small noise and small frictions.

6. This curve is downward sloping since p is increasing in both arguments.
7. More precisely, the change in z over a brief period of length e is normal with

variance s 2 · e and mean µ · e .
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THEOREM 1. With shocks the equilibrium is unique. There is a
decreasing function Z(LX) such that agents choose X when-
ever z . Z(LX) and C whenever z , Z(LX).

Theorem 1 shows that there is a unique division line Z
(Figure II). This division line is downward sloping, so it divides
the z axis into three regions. If z exceeds Z(0), agents must choose
the X sector when they get chances to switch. If z is below Z(1),
they must pick C. In the intermediate region there is history
dependence: the agents’ choice depends on the current size of the
X sector. They must choose the X sector if it is sufficiently large;
otherwise, they must choose C.

Proof of Theorem 1. Recall our assumption that if z is
sufficiently high, the X sector is a dominant choice, while C is
dominant if z is low enough. These ‘‘dominance regions’’may be far
from the current value of z, making it very improbable that z will
reach one of these regions before an agent changes sectors again.
However, the mere existence of these regions starts an iterative
contagion effect that spreads throughout the parameter space.

Let Z0 be the boundary of the region where an agent will
choose the X sector even in the worst case for sector X: if she
expects all agents who choose after her to select the C sector. (See
Figure III.) If an agent receives an opportunity to switch sectors
when the current state is to the right of Z0, she will choose sector
X. Note that Z0 is the curve on which an agent is indifferent if she
believes that in the future, each agent will choose the C sector
when she gets the chance. Z0 is downward sloping since on this
belief, a higher initial value of LX makes the X sector larger at all
future dates. This makes the agent willing to choose X at lower
values of z.

FIGURE II
A World with Shocks (Theorem 1)
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Knowing that other agents must pick X to the right of Z0, an
agent actually wants to pick X slightly to the left of the curve as
well. Why? On Z0 she was indifferent in the worst case: if all
agents who choose after her were to pick C under any circum-
stances. But now she knows that they will actually choose X
when they are to the right of Z0. Since z changes stochastically,
it may spend some time to the right of Z0 while the agent
is committed to her choice. At such times other agents who
choose sectors will pick X. Since this raises her assessment of
the future size of the X sector, the agent is no longer indifferent
on Z0; she strictly prefers X. Therefore, there is a new boundary
Z1, to the left of Z0, such that agents must choose the X sector
when to the right of Z1 (Figure IV). Note that Z1 is the curve
on which an agent is indifferent between the two sectors on the
worst case belief consistent with agents choosing X to the right of
Z0. This is simply the belief that all future agents will play
according to Z0; that they will choose C to the left of Z0 and X to the
right.

FIGURE III

FIGURE IV
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This reasoning can be repeated, giving curves Z2, Z3, and so
on ad in�nitum. Let Z̀ be the limit of this sequence (Figure IV).
We know that agents must choose the X sector when to the right of
Z ` . We cannot yet say what they will do when to the left.

Note that Z ` is actually an equilibrium: if an agent expects all
others to play according to Z̀ , then it is optimal for her to do so as
well. This is because Z ` is the limit of the iterative process, and on
each Zn an agent is indifferent between the two sectors if she
expects all future agents to play according to Zn2 1.

We now start another iteration from the left side (Figure V).
This iteration is somewhat different: we use translations of Z ` .
(The reason will soon be apparent.) We begin with a translation Z 80
of Z ` that is far enough over that the C sector is a dominant choice
anywhere to the left of Z 80. We then construct Z 81 as the rightmost
translation of Z 80 such that an agent must choose C to the left of Z 81
if she believes that other agents will play according to Z 80. Let Z 8̀
be the limit; agents must choose C when to the left of Z 8̀ .

What does it mean that the limit is Z 8̀? Z 8̀ is not necessarily
an equilibrium, since we limited ourselves to translations of Z̀ .
However, if an agent expects all others to play according to Z 8̀ ,
then there must be at least one point A on Z 8̀ where she is
indifferent between the sectors. Otherwise, if she strictly pre-
ferred the C sector everywhere on Z 8̀ , then the iterations would
not have stopped at Z 8̀ .8 Let B be the point on Z̀ that is at the
same height as A (Figure VI).

8. This argument implicitly assumes that payoffs are continuous. This holds
since the behavior of the system (Lt

X,zt) t $ 0 changes continuously as either the
starting point (L0

X,z0) or the division line Z̀ is moved (see Lemma 2 in BFP {1998}).
Since p is also continuous in its two arguments, the relative payoff to choosing X is
a continuous function of (L0

X,z0) and of the division line. So as the division line is
shifted to the right, the payoffs at all points on the line must change continuously.

FIGURE V
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To show that the equilibrium is unique, we need to establish
that points A and B (and hence curves Z ` and Z 8̀ ) must coincide.
This implies that an agent’s choice is uniquely determined by the
current state, so that there is no scope for multiple outcomes that
depend on agents’ expectations.

The reasoning is as follows. Let us compare two players, one
(‘‘A ’’) choosing at point A and believing that others will play
according to Z 8̀ and the other (‘‘B’’) choosing at point B and
expecting others to play according to Z̀ . Since Z̀ and Z 8̀ have the
same shape, A and B expect the state (LX,z) to have the same
relative dynamics. That is, they expect the changes in the state,
relative to its starting point (A or B), to have the same distribu-
tion. Why? First, the changes in z follow the same distribution9 by
our assumption that the trend µ of z is a constant. But for any
given path of changes in z, the resulting path of LX is the same for
A as for B. It is the unique solution to the dynamical system
illustrated in Figure VII.10 When to the right of the curve (Z ` or
Z 8̀ ), LX rises at the rate LÇ X 5 d (1 2 LX): every agent who is still in
C leaves at her �rst chance, there are 1 2 LX such agents, and
chances to leave arrive at the rate d . When to the left of the curve,
agents switch from X to C. The proportion of X workers is LX, so
LÇ X 5 2 d LX.

Hence, if there were no point of indifference, we could continue the iteration
further.

9. More precisely, if the current value is zt, the distribution of paths of changes
(zv 2 zt)v . t is independent of zt.

10. The fact that the path of LX is unique given a path of z, while intuitively
obvious, requires a rather technical proof that is deferred to the Appendix
(Lemma 1).

FIGURE VI
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Now consider a given path of changes in z. Given this path,
agents A and B expect the same path of LX. If A and B were
different, the z that B expects would at all times exceed the z that
A expects by an amount equal to the initial difference in the z’s.
Since the relative payoff to being in the X sector is increasing in z,
B’s payoff from choosing X would be higher than A’s. But this
cannot be, since both A and B are indifferent between the two
sectors. Therefore, the curves coincide, and the equilibrium is
unique.

We conclude by showing that the division curve Z ` is down-
ward sloping. We do this by induction. On the assumption that all
agents will choose the C sector, an agent’s relative productivity in
the X sector is increasing in the initial values of both z and LX.
Hence, Z0 is downward sloping. Now, on the assumption that all
agents choose according to the downward sloping Zn 2 1, relative
productivity in the X sector is again increasing in both the initial
values of z and LX. To see why, consider any given path of changes
in z. If we raise the initial value of either z or LX, this can only lead
us to spend more time to the right of Zn 2 1 (since it is downward
sloping). Hence, raising either z0 or L0

X increases productivity in
the X sector at all future dates. Thus, Zn must also be downward
sloping.

QED

Limiting Cases: Small Shocks or Small Frictions

While Theorem 1 shows that there is a unique equilibrium,
the proof does not show how to calculate the division line Z ` . This
problem becomes tractable in two limiting cases: when either the
shocks or the frictions shrink to zero. Another bene�t of examin-
ing these cases is that we do not need to assume a constant trend.

FIGURE VII
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We now let the trend depend on t and z. The dependence on
time t permits us to capture phenomena such as seasonality.
Properties such as mean reversion can be captured through the
dependence on z. For example, if µ 5 2 cz for some positive c, the
trend always pulls z toward 0. We will see that the equilibrium is
unique even if c is arbitrarily large relative to the variance s 2.
This means that while the iterative procedure is driven by the
persistence of the shocks, arbitrarily little persistence is sufficient
when shocks or frictions are small.

We �rst consider the case of small shocks. Suppose that z has
variance s 2 and trend l · µ(t,z). Assume that µ(t,z) is continuously
differentiable and that for any given z, µ(t,z) is a bounded function
of t. Theorem 2 shows that in the limit as s 2 and l shrink, there is
again a unique division line. Importantly, the relative rate at
which s 2 and l shrink does not matter, so that the trend can
become very large relative to the variance.

The division line Z in this case is given by the following
formula. For any LX, Z(LX) is the value of z at which the weighted
average productivity in the two sectors is equal:

(1)
l 5 0

1
wl{ p (l,Z(LX)) 2 1} dl 5 0,

where the weight wl equals {l/LX} u /d if l # LX and {(1 2 l)/(1 2 LX )} u / d

if l $ LX. Note that the integral takes into account the productivity
differential for all possible proportions of agents in the X sector.
The weights are single peaked at LX, so that the current productiv-
ity differential has the most weight.

THEOREM 2. In the limit as the shocks shrink ( l 0 and s 2 0),
agents choose X whenever z . Z(LX) and C whenever z ,

Z(LX), where Z(LX) is given by (1).

Proof. See the Appendix.

Theorem 2 can be interpreted as a negative robustness result.
While there can be multiple equilibria in a completely static
world, the introduction of very small shocks leads to uniqueness.
These shocks must satisfy fairly mild assumptions. They must
come frequently.11 They must have some persistence, but there

11. More precisely, there need only be a component that changes frequently;
see Section VI.
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can be arbitrarily little since l can become very large relative to
s 2. The shocks must have the potential to make either sector a
dominant choice, but with small shocks this event is very remote.

Theorem 3 concerns the case of shrinking frictions. Again, a
unique outcome is obtained (Figure VIII). However, this outcome
has a new feature: there is no history dependence. The division
line is vertical at z*, de�ned by

l 5 0

1
p (l,z*) dl 5 1.

z* is the value of z at which productivity in the two sectors is the
same, on average, if LX is thought of as uniformly distributed
between 0 and 1.

Suppose that z has variance s 2 and trend µ(t,z), where µ(t,z)
satis�es the assumptions of Theorem 2.

THEOREM 3. In the limit as frictions shrink (as d ` ), agents
choose X whenever z . z* and C whenever z , z*.

Proof. see Appendix.

Remark. The division line becomes vertical at z* also in the
case of Theorem 2 (small shocks) as agents become very patient
( u 0), since then the weights wl converge to 1.

V. RELATED LITERATURE

Multiple equilibria often arise in models with strategic
complementarities, when an agent’s incentive to take an action is
stronger if others do so. In our model, these complementarities
come from sector-speci�c increasing returns, as in Chacoliades

FIGURE VIII
Small Frictions (Theorem 3)
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{1978}, Ethier {1982}, Helpman and Krugman {1985}, Krugman
{1991}, and Matsuyama {1991}. Other examples of strategic
complementarities include trade frictions {Diamond 1982}, knowl-
edge spillovers {Romer 1986}, and public goods such as infrastruc-
ture {Murphy, Shleifer, and Vishny 1989}.12

It is relatively straightforward to see how strategic comple-
mentarities can give rise to multiple steady state equilibria. There
may be more than one state such that, if the economy starts there,
it is an equilibrium to remain. However, a more interesting
question is whether for given initial conditions there is more than
one equilibrium path. Only if this is so can we say that extraneous
factors (such as sunspots) can in�uence the economy.

For this question to be nontrivial, the economy must have
some frictions that prevent it from jumping among steady states.
For example, agents may have to search for jobs or trading
opportunities. Or there might be state variables, such as capital,
that can change only gradually. Without frictions the dynamic
model would be just a sequence of disconnected static models, so
multiple steady states would translate automatically into mul-
tiple dynamic paths. Dynamic models with frictions have been
studied by many authors, including Benhabib and Farmer {1994},
Diamond and Fudenberg {1989}, Drazen {1988}, Drugeon and
Wigniolle {1996}, Krugman {1991}, Matsuyama {1991}, Weil {1989},
and Zilibotti {1995}. These models all �nd that from given initial
conditions, there can be multiple equilibria.

The above models assume a �xed environment. Our model
differs in that it has shocks, which lead to a unique equilibrium.
One property of our shocks that is crucial for this result is that the
shocks have the potential to make any action a dominant choice.
Without this assumption, one can still have multiple equilibria, as
shown, e.g., by Benhabib and Farmer {1996} and Farmer and Guo
{1994}.

VI. CONCLUDING REMARKS

Coordinating Agents’ Expectations

When a model has multiple equilibria, it is unclear how
agents’ expectations become coordinated. If we as economists

12. See also Ball and Romer {1991}, Bryant {1983}, Cooper and John {1988},
Diamond {1990}, Gali {1994}, Romer {1987}, and Shleifer {1986}. Caballero and
Lyons {1992} present evidence for the empirical importance of strategic complemen-
tarities.
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cannot predict what will happen, how do the agents know?
Instead, they may differ in their predictions or simply be confused.
If so, the outcome may not coincide with any equilibrium. Our
model shows how exogenous shocks can cause agents to coordi-
nate their expectations on a particular outcome. This solves the
coordination problem, but at a price. While our agents do not need
to be able to guess which equilibrium will be played, they must be
able make complicated calculations and trust others to do the
same. More importantly, they must agree on �ne details of the
economy, including the structure of the exogenous shocks.

Critical Properties of the Shocks

Our shocks have three key properties. The �rst is the
existence of dominance regions: extreme values of the random
parameter at which a given choice is optimal regardless of what
other agents do. We need such regions to start our iterative
process that determines how agents behave throughout the
parameter space.

The two other key features of the shocks come from our
assumption that z follows a Brownian motion. One is persistence:
the value of the parameter at one point in time is positively
correlated with its future values. As a result, an agent who
chooses sectors at some value of z cares about what others will do
at nearby values of z. The other property is that the shocks come
frequently. (With Brownian motion, z is constantly changing.)
These two properties imply that if the random parameter is close
to a region where we know how agents behave, the probability is
high that it will soon enter that region, at least temporarily.
Hence, an agent who chooses sectors when just to the left of an
area where all others choose the X sector must expect a nontrivial
proportion of others to pick X in the near future.

To see this more clearly, consider an agent who chooses
sectors while just to the left of the downward sloping division
curve Z. If shocks are infrequent, then while waiting for a shock
all agents will choose C (see the dynamics in Figure VII). During
this time the state will move farther away from Z. It may even
move far enough that a shock, when it comes, will not be strong
enough to move the state into the X region. Hence, the agent need
not expect any others to choose the X sector in the foreseeable
future. With frequent shocks this cannot happen: LX does not have
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time to change much before the shocks move the state to the right,
into the X region.13

Discontinuous Stochastic Processes

Brownian motion has continuous sample paths. One may also
wonder about parameters that are usually continuous but jump
occasionally, such as the price of oil. To model this, consider a
process that is the sum of a Brownian motion and a process with
discrete jumps that occur at random times. All of our results hold
for any such process.14 This is because the continuous component
ensures the key properties (persistence and frequency) discussed
above.

Other Dynamics

We assume that agents receive chances to switch according to
Poisson processes. This leads to dynamics that are particularly
easy to analyze. However, there are other plausible dynamics. For
example, Krugman {1991} assumes that agents can switch sectors
at any time, but at a cost that is increasing in the overall
switching rate. The analysis of how other dynamics perform in the
presence of exogenous shocks remains an interesting open issue.

APPENDIX

Proof of Proposition 1. Let us take the initial proportion L0
X of

X workers as given. When is it an equilibrium for all agents in the
C sector to move to X? It suffices to check that an agent who
chooses at time zero gains from doing so if she expects all other
agents to follow. This is because the growth of the X sector raises
relative productivity in X, thereby strengthening the incentive to
choose X. Under these expectations, LX grows at the rate LÇ X 5

d (1 2 LX): every agent who is still in C leaves at her �rst chance,
there are 1 2 LX such agents, and chances to leave arrive at the

13. This is because the change in z over a short time interval e has a large
random component: its standard deviation is of order e . (Its variance must be of
order e for the variance of changes in z over a �xed, longer interval to be nontrivial;
this is just a consequence of z having independent increments.) Since LX changes
approximately linearly with time, its effect is only of order e and thus is swamped
by the shocks. Hence, the shocks govern the short-run behavior of the system.

14. For Theorem 1 the process must have i.i.d. increments. For Theorems 2
and 3 this is not needed, but for Theorem 2 we must explain how the shocks go to
zero. This can happen in two ways: the discrete jumps may become less and less
frequent, or they may retain their frequency but become smaller and smaller.
Theorem 2 holds in both cases.
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rate d . Therefore, choosing X rather than C raises an agent’s
payoff by the amount,

U(L0
X,z) 5

t 5 0

`

e 2 ( u 1 d )t( p (Lt,z) 2 1) dt,

where Lt 5 1 2 (1 2 L0
X)e 2 d t. (Note that the discount rate is the

product of e 2 u t, the agent’s pure discount rate, and e 2 d t, the
probability that she has not received another switching opportu-
nity.) Moving to X is an equilibrium iff U $ 0. Since U is increasing
in both arguments, there is decreasing function Z(LX) such that
moving to X is an equilibrium whenever z $ Z(LX). (Z satis�es
U(LX, Z(LX )) 5 0.) A similar argument shows that moving to C is
an equilibrium whenever

U(L0
X,z) 5

t5 0

`

e 2 ( u 1 d )t( p (Lt ,z) 2 1) dt # 0,

where Lt 5 L0
Xe 2 d t. De�ne Z by U(LX, Z(LX)) 5 0. Since Lt is always

below L0
X and Lt is always above, whenever U (which is propor-

tional to a weighted average of p (Lt,z) 2 1 for all t . 0) equals
zero, U (which is proportional to a weighted average of
p (Lt,z) 2 1) must be positive. This implies that Z(LX) , Z(LX).

QED

LEMMA 1 (used in the proof of Theorem 1). Suppose that agents
choose according to Z ` or Z 8̀ . For almost every path of z there
is a unique path of LX.

Proof. Let the curve according to which agents choose be
given by z 5 Z(LX). By Theorem 1 in BFP {1998}, there is a unique
path of LX if Z is a Lipschitz function: if there is a �nite constant c
such that for any l and l8, Z(l) 2 Z(l8) , c l 2 l8 . Every curve Zn

is contained in the compact set (LX,z) [ {0,1} 3 { z,z}. Hence, since
p is continuously differentiable and strictly increasing in both
arguments, there are �nite, positive constants a and b such that
 p / L X , a and  p /  z . b at all points on each Zn. We will show by
induction that all curves Zn (and hence the limit Z ` ) must be
Lipschitz with constant c 5 a/b , ` .

To see why this holds for Z0, consider two distinct points on Z0,
(l,z) and (l8,z8), where l8 . l and z8 , z. We will compare payoffs at
the two points path by path. That is, for any path of the Brownian
motion (zv)v$ t starting at zt 5 z, we will compare the payoff at (l,z)
with the payoff at (l8,z8) when the Brownian motion follows the
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path (zv 1 z8 2 z)v$ t. Since Z0 is computed assuming that agents
always choose C, the difference in future values of LX is no greater
than l8 2 l. (In particular, it equals (l8 2 l)e 2 d (v2 t).) The difference
in the payoff parameter is constant at z8 2 z. Hence, the difference
in X sector payoffs at any future date when starting at (l,z) versus
(l8,z8) is always greater than 2 (l8 2 l)a 1 (z 2 z8)b. So the only
way an agent can be indifferent at both points is if 2 (l8 2 l)a 1

(z 2 z8)b # 0, or if (z 2 z8)/(l8 2 l) # a/b 5 c. This shows that Z0 is
Lipschitz with constant c.

Now suppose that Zn2 1 is Lipschitz with constant c. We prove
that Zn has the same property. Otherwise there would be two
points (l,z) and (l8,z8) on Zn with l8 . l and z8 , z, satisfying
(z8 2 z)/(l8 2 l) . c. We again compare payoffs at the two points
path by path. The key is noticing that the difference in future
values of LX is still no greater than l8 2 l. The difference could
grow only if there were a time at which the state (Lv

X,zv) on the
path that started at (l,z) was to the left of Zn2 1 while the state
(Lv

X8,z8v) on the other path was to the right. But this cannot be: up
until the �rst such time v at which this were to happen, the
difference in LX could only shrink while the difference in the payoff
parameter would remain constant. Hence, the ratio (zv 2 z8v)/
(Lv

X8 2 Lv
X) would have to be greater than c while the slope of Zn2 1

is less than c. Knowing that the difference in LX can only shrink,
we can apply the same calculation as in the case of Z0.

QED

Proof of Theorem 2. To show this, we perform the iterative
procedure from the right using translations of the curve Z de�ned
in equation (1). Let Z ` be the limit. As in the proof of Theorem 1,
there must be a point on Z̀ at which an agent is indifferent
between X and C if she expects all other agents to pick X to the
right and C to the left.

Now let us consider an agent who chooses sectors at the
indifference point (LX,Z ` (LX)). She expects the dynamics shown in
Figure VII. These dynamics are unstable, since the movement in
LX always pulls the state away from Z ` . (With a bit of algebra, one
can verify that Z and hence Z ` is strictly downward sloping if
u . 0.) When the trend and the variance in z are small, the
movement in LX is fast relative to the movement in z, so the
system very quickly bifurcates, either upward (sending all agents
to the X sector) or downward (sending them all to C).
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By Theorem 2 and Corollary 1 in BFP {1998}, as the variance
and trend of z shrink to zero, the amount of time that passes
before a bifurcation occurs goes to zero. Moreover, the chance of
bifurcating up (to X ) converges to 1 2 LX, while the chance of
bifurcating down (to C) goes to LX. Hence, the agent’s relative
payoff from choosing X is approximately

(1 2 LX) ·
t 5 0

`

e 2 ( u 1 d )t( p (Lt,Z̀ (LX)) 2 1) dt

1 LX
t5 0

`

e 2 ( u 1 d )t( p (L t,Z ` (LX)) 2 1) dt,

where Lt 5 1 2 (1 2 LX)e 2 d t and Lt 5 LXe 2 d t. This must equal zero
since the agent is indifferent. By performing the changes of
variables l 5 Lt and l 5 Lt , one can verify that Z ` (LX) Z(LX).
Since the two curves have the same shape, in the limit X must be
chosen to the right of Z. An analogous argument shows that C
must be selected to the left of Z.

QED

Proof of Theorem 3. This is proved by a simple rescaling of
time that permits us to apply Theorem 2. The new time unit is t̃ 5

t/ d . In the new time units the parameters are d˜ 5 1, u˜ 5 u / d , s ˜ 2 5

s 2/d , and µ̃(t̃,z) 5 µ(t,z). By Theorem 2, in the limit as d ` ,
agents choose X whenever z . Z(LX) and C whenever z , Z(LX).
Moreover, since u˜ 5 u /d 0, the weights wl converge to 1, which
implies that Z(LX) z* for all LX.

QED
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