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Abstract

The National Resident Matching program seeks a stable matching of medical stu-

dents to teaching hospitals. With couples, stable matchings need not exist. Neverthe-

less, for any student preferences, we show that each instance of a matching problem

has a ‘nearby’ instance with a stable matching. The nearby instance is obtained by

perturbing the capacities of the hospitals. Given a reported capacity kh for each hos-

pital h, we find a redistribution of the slot capacities, k∗h, satisfying |kh−k∗h| ≤ 3 for all

hospitals h and
∑

h kh ≤
∑

k∗h ≤
∑

h kh + 9, such that a stable matching exists with

respect to k∗.
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1 Introduction

Gale and Shapley [1962] introduced the problem of finding a stable matching and showed

how to find it via the elegant deferred acceptance algorithm (DA). Stability has now become

an important desiderata in the design of matching markets and the DA algorithm the main

device to find such matchings.1 However, when preferences exhibit complementarities, stable

matchings may fail to exist. The most well-known instance of this problem is the matching

∗Krannert School of Management, Purdue University, nguye161@purdue.edu
†University of Pennsylvania, rvohra@seas.upenn.edu
1See the works of (Fleiner [2003], Hatfield and Milgrom [2005], Ostrovsky [2008] and Hatfield and Kojima

[2010]) for the many settings in which the DA is applicable.
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of 20,000 medical school graduates to teaching hospitals in the US via the National Resi-

dent Match Program (NRMP).2 The NRMP allows couples to submit joint preference lists,

which is outside the framework of Gale and Shapley [1962] and rules out the existence of

stable matches in general (see Roth [1984]). Roth and Peranson [1999] propose a significant

modification of the DA algorithm to accommodate couples’ preferences. It has, without fail,

returned matches that are stable with respect to reported preferences. Kojima et al. [2013]

and Ashlagi et al. [2014] show that if the proportion of couples diminishes as the market gets

large then a modification of the DA algorithm will almost surely find a stable matching. But,

Ashlagi et al. [2014] shows that when the proportion of couples is positive, the probability

that no stable matching exists is bounded away from 0 even when the market’s size increases.

This leaves open the question of how to find a stable matching with a large number of

couples. This is important for two reasons. First, in the NRMP, the proportion of couples

is between 5% and 10%, but elsewhere, the proportion of couples is as high as 40% (see

Biró and Klijn [2013]). Moreover, Biró et al. [2013] show that with a large proportion of

couples, the Roth-Peranson algorithm frequently fails to terminate in a stable matching.

Resident matching is not the only matching setting with a “couples” problem. Biró et al.

[2013] points to the problem of assigning high school teachers in Hungary to majors, where

almost all teachers need to be assigned to two majors.

This paper proposes a new algorithm to deal with the nonexistence of stable matchings.

For each instance of the matching problem with couples, our algorithm identifies a nearby

instance that does have a stable matching and returns that matching. To formalize the notion

of nearby, we call a matching α-feasible if the number of slots allocated by each hospital to

doctors differs (up or down) from its actual capacity by at most α. Our algorithm returns

a 3-feasible stable matching that neither decreases the total number of slots nor increases it

by more than 9 (Theorem 2.1). This guarantee does not depend on any restriction in the

preferences of doctors (single or otherwise) and is independent of the size of the instance.

2http://www.nrmp.org/wp-content/uploads/2014/04/Main-Match-Results-and-Data-2014.pdf
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Adjusting the capacities of hospitals is in fact common in the NRMP. In particular, the

NRMP allows hospitals to choose if they wish to be matched with an even or odd number

of students. Thus, capacity constraints can be modified by at least 1. In fact, slots are

sometimes reallocated between hospitals.3 Regarding a possible increase of at most 9 slots

in total, every additional resident, according to the American Medical Association, costs

about $100,000 on average. The bulk of the funding for such positions comes from the US

Government via Medicaid. The US Government determines the distribution of residency

slots via formulae of various kinds. Currently, the total expenditure on resident training is

upward of $10 billions.4

A reduction of up to 3 slots in a small hospital’s capacity could be dramatic. The variation

in the number of slots between hospitals (as well as specialties) is large. In internal medicine,

for example, the number of slots can be as large as 30 and as small as 4.5 However, programs

with a small number of slots tend to be concentrated in rural areas. This matters for our

algorithm for two reasons. First, couples participating in the NRMP are usually advised to

apply to urban areas with many hospitals so as to increase their chances of obtaining positions

close to each other. Second, our algorithm has the property that if no couple applies to a

rural hospital, then that rural hospital’s capacities are unchanged (Theorem 5.1).

Our algorithm is flexible enough to allow for alternate specifications of the notion of

nearby. Here is an example. Partition the set of hospitals into disjointed regions depending

on their proximity to each other (e.g., New York, Chicago, San Francisco Bay area). Then,

our algorithm finds a stable matching such that each hospital’s capacity is not reduced by

more than 2 slots, and the total capacity in each region never declines or increases by more

than 10 (Theorem 5.2).

3https://www.acponline.org/advocacy/where_we_stand/assets/iii4-redistribution-

graduate-medica-education-slots.pdf
4These numbers are from an AMA pamphlet in support of the current approach to funding res-

idency programs. http://savegme.org/wp-content/uploads/2013/01/graduate-medical-education-

action-kit.2-3.pdf
5See http://www.nrmp.org/wp-content/uploads/2015/05/Main-Match-Results-and-Data-

2015_final.pdf.
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Unlike most of the current algorithms employed in matching problems, our algorithm

does not use the DA algorithm. It uses a combination of Scarf’s lemma (Scarf [1967]) and

the iterative rounding method (IRM), developed in Lau et al. [2011] and Nguyen et al.

[2014]. In the first stage, Scarf’s lemma is used to extend the notion of stability to fractional

matchings and as well as to identify a fractional matching that is stable. In the second stage,

this fractional matching is carefully rounded into an actual matching such that stability is

preserved.6

Below, we discuss the related literature. In Section 2, we define the stable matching

problem with couples. In Section 3, we state Scarf’s lemma and formulate the matching

problem in a way to invoke the lemma. Section 4 outlines the IRM in this context. Section 5

discusses extensions of our results. Section 6 concludes. Proofs are given in the Appendix.

Related work. Roth [1984] establishes the non-existence of a stable matching when some

agents are couples. Subsequently, the more general problem of matching in the presence of

complementarities has become an important topic. See Biró and Klijn [2013] for a brief

survey. The literature has taken four approaches to circumventing the problem of non-

existence.

First, restrict preferences to ensure the existence of a stable matching. Examples are

Cantala [2004], Klaus and Klijn [2005], Pycia [2012], and Sethuraman et al. [2006]. Second,

argue that instances of non-existence are rare in large markets, recall our earlier discussion

(Kojima et al. [2013], Ashlagi et al. [2014] and Che et al. [2014]). Third, ignore the indi-

visibility of agents and provide interpretations of “fractional” stable matchings. Examples

are Dean et al. [2006], Aharoni and Holzman [1998], Aharoni and Fleiner [2003], Király and

Pap [2008], and Biro and Fleiner [2012]. Dean et al. [2006] is closest to this paper. It solves

a restricted instance of the stable matching problem with couples. In that instance, couples

6Our approach, while constructive, relies on Scarf’s lemma, which is PPAD complete, Kintali [2008].
Thus, it has a worst-case complexity equivalent to that of computing a fixed point. This is not a barrier
to implementation. For example, building on Budish [2011], a course allocation scheme that relies on a
fixed-point computation has been proposed and implemented at the Wharton School.
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prefer to be together, rather than apart, and a hospital must accept either both members of

the couple or none. This restriction considerably simplifies the problem because each block-

ing constraint only involves the preferences of a single hospital.7 Consequently, Dean et al.

[2006] are able to adapt the DA algorithm to identify a stable matching that is 2-feasible.

However, they are unable to provide a bound on the aggregate increase in capacity. Fourth,

modify the notion of stability. Examples are Klijn and Masso [2003] and Jiang and Tan

[2014].

2 Matching with Couples and Main Result

In this section we describe the standard matching model with couples, that is studied, for

example, in Roth [1984] and Kojima et al. [2013]. Let H be the set of hospitals, D1 the set

of single doctors, and D2 the set of couples. Each couple c ∈ D2 is denoted c = (f,m) where

fc and mc are the first and second member of c, respectively. The set of all doctors, D, is

given by D1 ∪ {mc|c ∈ D2} ∪ {fc|c ∈ D2}.

Each single doctor d ∈ D1 has a strict preference ordering �d over H ∪ {∅} where ∅

denotes the outside option for each doctor. If h �d ∅, we say that hospital h is acceptable

for d. Each couple c ∈ D2 has a strict preference ordering �c over H ∪ {∅} ×H ∪ {∅}–i.e.,

over pairs of hospitals, including the outside option.

Each hospital h ∈ H has a fixed capacity kh > 0. The preference of a hospital h over

subsets of D is summarized by h’s choice function chh(.) : 2D → 2D. While a choice function

can be associated with every strict preference ordering over subsets of D, the converse is

not true. The information contained in a choice function is sufficient to recover a partial

order, only, over the subsets of D. We assume, as is standard in the literature, that chh(.)

is responsive. This means that h has a strict priority ordering �h over elements of D ∪ {∅}.

If ∅ �h d, we say d is not feasible for h. For any set D∗ ⊂ D, hospital h’s choice from

7In fact, many sources explicitly advise couples not to apply to the same specialty at a hospital to avoid
being scheduled in such a way that they do not see each other.
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that subset, chh(D∗), consists of the (up to) kh highest priority doctors among the feasible

doctors in D∗. Formally, d ∈ chh(D∗) if and only if d ∈ D∗; d �h ∅ and there exists no set

D′ ⊂ D∗ \ {d}, such that |D′| = kh and d′ �h d for all d′ ∈ D′.

A matching µ is an assignment of each single doctor to a hospital or his/her outside

option, an assignment of couples to at most two positions (in the same or different hospitals)

or their outside option, such that the total number of doctors assigned to any hospital h does

not exceed its capacity kh. Given matching µ, let µh denote the subset of doctors matched

to h; µd and µfc , µmc denote the position(s) that the single doctor s, and the female and

male members of the couple c obtain in the matching, respectively.

We say µ is individually rational if chh(µh) = µh for any hospital h; µs �d ∅ for any

single doctor d and (µfc , µmc) �c (∅, µmc); (µfc , µmc) �c (µfc , ∅); (µfc , µmc) �c (∅, ∅) for any

couple c.

We list the the ways in which different small coalitions can block a matching µ.

1. A pair d ∈ D1 and h ∈ H can block µ if h �d µ(d) and d ∈ chh(µ(h) ∪ d).

2. A triple (c, h, h′) ∈ D2×(H∪{∅})×(H∪{∅}) with h 6= h′ can block µ if (h, h′) �c µ(c),

fc ∈ chh(µ(h) ∪ fc) when h 6= ∅ and mc ∈ chh′(µ(h′) ∪mc) when h′ 6= ∅.

3. A pair (c, h) ∈ D2 ×H can block µ if (h, h) �c µ(c) and (fc,mc) ⊆ chh(µ(h) ∪ c).

Restricting attention to blocking by the small coalitions listed above, is, as shown in Roth

and Sotomayor [1992], without loss when each hospital’s preferences are responsive.

Given preference orderings for single doctors and couples, a matching µ is stable with

respect to a capacity vector k if, under the responsive choice functions of hospitals

defined above, µ is individually rational and cannot be blocked in any of the three ways

listed above. Our main result is the following:

Theorem 2.1 Suppose each doctor in D1 has a strict preference ordering over the elements

of H∪{∅}, each couple in D2 has a strict preference ordering over H∪{∅}×H∪{∅}, and each
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hospital has responsive preferences. Then, for any reported capacity vector k, there exists a

k′ and a stable matching with respect to k∗, such that maxh∈H |kh − k∗h| ≤ 3. Furthermore,∑
h∈H kh ≤

∑
h∈H k

∗
h ≤

∑
h∈H kh + 9.

In Section 5, we extend this result to get other bounds on rural and urban hospitals.

3 Scarf’s Lemma and Fractional Stable Matching

To state Scarf’s lemma, we need the following definition which is closely related to the notion

of stability.

Definition 3.1 Let Q be an n×m nonnegative matrix and q ∈ Rn
+. Associated with each

row i ∈ {1, .., n} of Q is a strict order �i over the set of columns j for which Qi,j > 0. A

vector x ≥ 0 satisfying Qx ≤ q dominates column j of Q if there exists a row i such that∑n
j=1Qijxj = qi and k �i j for all k ∈ {1, ..,m} such that Qi,k > 0 and xk > 0. In this

case, we also say x dominates column j at row i.

We use the following version of Scarf’s lemma, which can be found in Király and Pap

[2008] as well as an unpublished paper of Scarf [1965]:

Lemma 3.1 (Scarf [1967]) Let Q be an n × m nonnegative matrix and q ∈ Rn
+. Then,

there exists an extreme point of {x ∈ Rm
+ : Qx ≤ q} that dominates every column of Q.

To understand the connection of domination to stability, it is helpful to consider an

example.

Example 1 Consider an instance with two hospitals (h1, h2), each with capacity 1, two

single doctors (d1, d2), and no couples. This is the setting of Gale and Shapley [1962]. The

preferences are as follows: d1 �h1 d2; d1 �h2 d2; h2 �d1 h1;h2 �d2 h1.

Introduce variables x(di,hj) ∈ {0, 1} for i ∈ {1, 2}; j ∈ {1, 2} where x(di,hj) = 1 if and only

if di is assigned to hj and zero otherwise. In the 4×4 matrix, Q, below, each row corresponds
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to an agent (a hospital or a doctor), and each column corresponds to a doctor-hospital pair.

An entry Qij of the matrix Q is 1 if and only if the agent corresponding to row i is a member

of the coalition corresponding to column j. Otherwise, Qij = 0. Qx ≤ q models the capacity

constraints of the hospital and the constraints that each doctor can be assigned to at most

one hospital. In this example q = 1. For each row i of Q, the strict order on the set of

columns j for which Qij 6= 0 is the same as the preference ordering of agent i. Specifically,

we have the following system:



(d1,h1) (d1,h2) (d2,h1) (d2,h2)

h1 1 0 1 0

h2 0 1 0 1

d1 1 1 0 0

d2 0 0 1 1


· x ≤



1

1

1

1


; order :

column1 � column3

column2 � column4

column2 � column1

column3 � column4.

Every integer solution to Qx ≤ 1 corresponds to a matching and vice versa. Notice,

x = (1, 0, 0, 1)T corresponds to the matching (d1, h1); (d2, h2). It is not stable because it

is blocked by (d1, h2). In the language of Scarf ’s lemma, x = (1, 0, 0, 1)T is not a dominating

solution because x does not dominate the column corresponding to (d1, h2). The solution

x = (0, 1, 1, 0)T is a dominating solution and corresponds to a stable matching.

By the Birkhoff-von Neumann theorem, every non-negative extreme point of the system

Qx ≤ 1 is integral. Therefore, it follows by Scarf ’s lemma that a stable matching exists. It is

easy to see that the conclusion generalizes to more than two single doctors and unit-capacity

hospitals.

To apply Scarf’s lemma to the matching problem with couples, we give a linear inequality

description of the set of feasible matchings. For each single doctor d and hospital h, let

x(d,h) = 1 if d is assigned to h and zero otherwise. For each c ∈ D2 and distinct h, h′ ∈ H

let x(c,h,h′) = 1 if fc is assigned to h and mc is assigned to h′ and zero otherwise. Note that

x(c,h,h′) does not represent the same thing as x(c,h′,h). Finally, x(c,h,h) = 1 if both members of
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the couple are assigned to hospital h ∈ H and zero otherwise.

Every 0-1 solution to the following system is a feasible matching and vice versa.∑
d∈D1

x(d,h) +
∑
c∈D2

∑
h′ 6=h

x(c,h,h′) +
∑
c∈D2

∑
h′ 6=h

x(c,h′,h) +
∑
c∈D2

2x(c,h,h) ≤ kh ∀h ∈ H (1)

∑
h∈H

x(d,h) ≤ 1 ∀d ∈ D1 (2)

∑
h,h′∈H

x(c,h,h′) ≤ 1 ∀c ∈ D2 (3)

In (1-2-3), each single doctor, each couple and each hospital is represented by a single

row. Each column/variable corresponds to an assignment of a single doctor to a hospital or

a couple to a pair of hospital slots.

We need each of the rows in (1-2-3) to have an ordering over the columns that are in the

support of that row. This is clearly true for the rows associated with a single doctor and a

couple as we can just use their preference ordering over the hospitals (and pairs of hospitals in

the case of couples). Unlike example 2, an additional difficulty will be to represent a hospital

h’s priority ordering, �h, over individual doctors in terms of an ordering, �∗h, over columns

associated with coalitions involving either a single doctor or a couple and the hospital h.

This is captured in the following definition:

Definition 3.2 Hospital h’s priority ordering over the individual doctors, �h, and the pref-

erences of the couples {�c: c ∈ C} is used to construct a strict ordering, �∗h, over the vari-

ables representing the assignment of a doctor or a couple to at least one position at h–namely,

the variables of the form x(d,h), x(c,hh′), x(c,h′h), and x(c,hh). �∗h is defined as follows.

For each variable x, let d(x) be the doctor assigned to h. If x represents the assignment

of both doctors to h, let d(x) be the least preferred (by h) one. For x 6= x′, if d(x) �h d(x′),

then x �∗h x′. If d(x) = d(x′), then x and x′ represents two different assignments of a couple

c, in which case, x �∗h x′ if and only if x �c x
′.

Under the ordering �∗h , we obtain the following result. Its proof is given in Appendix A.
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Lemma 3.2 Let x∗ be a dominating solution of (1-2-3). If x∗ is integral, then x∗ is a stable

matching for the matching with a couple problem.

If the extreme points of (1-2-3) are integral, then, by Scarf’s lemma, one of these is

dominating. By Lemma 3.2, this matching will be stable. Unfortunately, (1-2-3) is not an

integral polytope. The example below from Roth [1984] shows that there need be no integral

dominating extreme point when couples are present. This explains the need for the rounding

step in our algorithm discussed in Section 4.

Example 2 We have two hospitals (h1, h2) each with capacity 1, one couple (d1, d2) and

one single doctor (d3). The preferences of each are listed below:

h1: d1 �h1� d3 �h1 ∅ �h1 d2 h2: d3 �h2� d2 �h2 ∅ �h2 d1

c = {d1, d2}: (h1, h2) �(d1,d2) ∅ d3: h1 � h2.

System (1-2-3) for this example is shown below. Not all possible variables are included because

some assignments can be ruled out from the preferences alone. It is straightforward to verify

that every integer solution to the system below corresponds to a matching of doctors and

couples to hospitals.



(c,h1h2) (d3,h1) (d3,h2)

h1 1 1 0

h2 1 0 1

c=d1d2 1 0 0

d3 0 1 1


· x ≤



1

1

1

1


; order :

column1 � column2

column2 � column4

column2 � column1

column3 � column4

The preference list of hospitals, single doctors, and couples gives us an order for each row of

the matrix over the columns whose corresponding entries are positive.

It is straightforward to check that this system does not have an integral dominating solu-

tion. Its only dominating extreme point solution is (1/2, 1/2, 1/2)T .
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4 Iterative Rounding Method

This section introduces the iterative rounding method (IRM) used to obtain a near-feasible

stable matching from a fractional dominating solution. IRM starts from a dominating ex-

treme point (which may be fractional) and iteratively rounds it into a dominating integral

solution. This will produce a stable matching of doctors to hospitals that may violate the

capacity constraints of some of the hospitals. Our main result shows that the violation is

not too large.

Let x̄ be a dominating extreme point of (1-2-3). Under allocation x̄, some hospitals can

be under-demanded. However, we can, with the introduction of dummy doctors, assume

without loss that positions at every hospital are fully allocated.8 For the ease of exposition,

let H be the constraint matrix associated with hospital constraints (1). Then, (1) can be

expressed as Hx̄ = k.

The IRM will round x̄ into an integral x∗ such that Hx∗ = k∗, where k∗ is close to k.

For the matching corresponding to x∗ to be stable with respect to k∗, we need x∗ to satisfy

the properties in the following lemma whose proof is given in Appendix B.1.

Lemma 4.1 Let x̄ be a fractional dominating extreme point of (1-2-3) and x∗ ≥ 0 be an

integral solution satisfying:

(i). For a single doctor d and a hospital h, if x̄(d,h) = 0 then x∗(d,h) = 0. Similarly, for a

couple c and hospitals h, h′, if x̄(c,h,h′) = 0 then x∗(c,h,h′) = 0.

(ii). For a single doctor d, if
∑

h x̄(d,h) = 1, then
∑

h x
∗
(d,h) = 1. Similarly, for any couple c,

if
∑

h,h′ x̄(c,h,h′) = 1, then
∑

h,h′ x∗(c,h,h′) = 1.

Let k∗ = Hx∗; then, x∗ is a stable matching with respect to k∗.

Property (i) guarantees that the IRM never chooses an assignment that is dominated.

To see why, recall that a zero component of x̄ is dominated. Property (ii) ensures that if a

single doctor or couple is fully assigned under x̄, then they are fully assigned under x∗. Both

8See Appendix B.2.
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are needed to ensure that the rounded solution x∗ continues to be a dominating solution

with respect to the new hospital capacities. Recall that in the definition of domination, a

zero component of x̄ is dominated via a binding constraint. Property (ii) ensures that if a

constraint corresponding to a doctor or a couple binds under x̄, then it continues to bind

under x∗.

The Algorithm: To describe the IRM for our matching problem, let x̄ be a dominating

extreme point of (1-2-3), and let D0, D1 be the matrices that correspond to constraints of

(2)-(3) that are binding, slack under x̄, respectively. To maintain property (ii) of Lemma 4.1,

x̄ is iteratively rounded into x∗ so that all intermediate solutions satisfy

D0 · x = 1;D1 · x ≤ 1;x ≥ 0. (4)

To limit the aggregate capacity of hospitals we impose an additional constraint on aggregate

capacity:
∑

d,h x(d,h) +
∑

c,h,h′ 2x(c,h,h′) ≤
∑

h kh. We write this constraint in matrix form as

a · x ≤∑
h kh, where a(d,h) = 1; a(c,h,h′) = a(c,h,h) = 2.

Denote by Hh the row vector of H corresponding to h ∈ H. The IRM starts with x̄ that

satisfies (2)-(3) as well as the following:

Hh · x̄ = kh for all hospital h and a · x̄ ≤
∑
h

kh. (5)

The constraints of (5) will gradually be discarded during the execution of the algorithm.

Call a constraint in (5) active if it has not yet been eliminated.

The IRM is described in Figure 1 in which we use the following notation. For a vector x,

denote by dxe the vector whose ith component is dxie. Similarly, bxc is the vector whose ith

component is bxic. Thus, the ith component of dxe−bxc is 1 if the corresponding component

of x is fractional and 0 otherwise.

We use the instance from example 2 to illustrate the IRM.

Example 3 From example 2, we know that x̄ = (1/2, 1/2, 1/2)T is the only dominating

extreme point. The couple is assigned to (h1, h2) with weight 1/2 and the single doctor 3 is
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Step 0 Start from x := x̄ a dominating solution satisfying (4) and (5).
Initialize the active constraints to be all the constraints in (5).

Step 1 If x is integral, stop; otherwise, among the active constraints that bind at the solution
x, eliminate the following:

– either a hospital constraint Hh · x = kh if Hh · (dxe − bxc) ≤ 4

– or the aggregate constraint if a · dxe ≤∑
h kh + 9.

If there are multiple such binding constraints, arbitrarily choose one to eliminate.
After the elimination of one such constraint, let Ax ≤ b be the system of remaining
(active) constraints in (5).

Step 2 Find an extreme point z to maximize the number of jobs allocated:

max a · z : zi = xi if xi is either 0 or 1(fix the integral components)

D0 · z = 1;D1 · z ≤ 1; z ≥ 0 (doctor/couple constraints as in (4))

Az ≤ b (active hospital constraints).

Step 3 Update x to be the extreme point solution z found in step 2; return to step 1.

Figure 1: IRM

assigned to h1, h2 with weight 1/2, each.

Beginning with x̄, we see that the constraint corresponding to doctor d3 binds. The con-

straints corresponding to h1, h2 and the aggregate constraint all bind and all satisfy the elim-

ination criteria. Eliminate the capacity constraint associated with h1. The active constraints

now consist of the aggregate constraint and the constraint of h2. None of the variables is

integral. Thus, in Step 2, we solve the following linear program to get a new extreme point.

max 2x(c,h1h2) + x(d3,h1) + x(d3,h2)

st : x(d3,h1) + x(d3,h2) = 1 (doctor d3’s constraint to maintain (ii) in Lemma 4.1)

x(c,h1h2) ≤ 1 (constraint for couple c)

x(c, h1h2) + x(d3, h2) = 1 (constraint for hospital h2)

2x(c,h1h2) + x(d3,h1) + x(d3,h2) ≤ 2 (aggregate constraint)

This solution is x(c,h1h2) = 1
2
; x(d3,h1) = 1; x(d3,h2) = 0.

13



With this solution, the IRM goes to the next iteration. The aggregate constraint is the only

active constraint to bind, and it satisfies the elimination criteria. Eliminate this constraint.

Now, variables x(d3,h1) and x(d3,h2) are integral and fixed. x(c,h1h2) is the only variable, and

x(c,h1h2) ≤ 1 is the only constraint. Solving this, we obtain the final solution x(c,h1h2) =

x(d3,h1) = 1; x(d3,h2) = 0. While integral, it violates the discarded constraint associated with

hospital h1 by exactly 1.

Remark. The decision to eliminate the capacity constraint associated with h1 was arbitrary.

We could have eliminated the constraint corresponding to h2 instead. The resulting solution

would have violated hospital 2’s capacity constraint instead. This flexibility allows one

to prioritize one hospital over another based on the relative “softness” of their capacity

constraints.

The IRM can also prioritize hospitals through the choice of objective function in Step 2

of the algorithm. See Appendix D.3 for a more detailed discussion.

Proof of Theorem 2.1. We show that the IRM generates x∗ satisfying Lemma 4.1 and

that the new hospital capacity vector k∗ is not too far from k. First, in Step 2, a variable of

x̄ at zero remains at zero throughout the algorithm. Hence, the first property in Lemma 4.1

is maintained. Second, in Step 2, we always maintain the doctor/couple constraints (4), so

the second property in Lemma 4.1 is also satisfied.

At Step 2, because the current vector x is feasible for this linear program, the optimal

solution z satisfies a · z ≥ a · x. This guarantees that we never reduce the number of slots

available. Because of the elimination step, when the algorithm terminates, it satisfies the

desired error bound of 9 for the aggregate constraint.

The error bound for the hospitals is at most 3 because when we eliminate a hospital

constraint h: Hhx = kh and Hh · (dxe − bxc) ≤ 4. This implies

Hh · (dxe − x) +Hh · (x− bxc) ≤ 4. (6)

We have two cases. First, if either Hh · (dxe− x) or Hh · (x−bxc) is 0, then all the variables
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affecting this constraint are integral. According to the algorithm, these variables will be fixed.

Thus, the constraint will never be violated. Second, both Hh · (dxe − x) and Hh · (x− bxc)

are strictly greater than 0. Because Hh · x = kh is integral and both Hh · dxe,Hh · bxc are

integral, Hh · (dxe − x) ≥ 1 and Hh · (x − bxc) ≥ 1. But because of (6), this would imply

that Hh · (dxe − x) = Hh · dxe − kh ≤ 3 and Hh · (x− bxc) = kh −Hh · bxc ≤ 3. Thus, after

eliminating this constraint, at worst, we might violate it by at most 3.

To verify that the algorithm terminates, we must show that at Step 1, if no integral

solution is found, there is a binding constraint to be eliminated. Suppose the current solution

is x, and the algorithm has not yet terminated. If no binding hospital constraints remain,

x is an extreme point of (4) (equivalently (2), (3)). As the corresponding constraint matrix

is totally unimodular (see Vohra [2005] for a definition) x is integral. Hence, because the

algorithm has not terminated, there must be at least one active binding constraint in (1) that

satisfies the condition for elimination. If none, we use a counting argument to show that this

would contradict the extreme point property of x. This argument is given in Appendix C.

5 Rural and Urban Hospitals

The theorem below is motivated by the observation that couples participating in the NRMP

are usually advised to apply to urban areas with many hospitals so as to increase their

chances of obtaining positions close to each other.

Theorem 5.1 Let HR be the set of hospitals that receives no applications from couples, then

the IRM can be modified so that in addition to the guarantees in Theorem 2.1, k∗h = kh for

all h ∈ HR.

The next theorem is motivated by a concern to limit the number of slots that are shuffled

between hospitals. Suppose hospitals are partitioned into disjointed regions H1, H2, . . . , HP .

We may shuffle slots between hospitals in the same region but not across regions.
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Theorem 5.2 The IRM can be modified so that k∗h ≥ kh − 2 for all h ∈ H and for every

region i: |∑h∈Hi k∗h −
∑

h∈Hi kh| ≤ 10 ∀i ≤ P .

In Theorem 5.2, we do not assume that couples must apply for positions in the same region.

The proofs of both theorems may be found in Appendix D.

6 Conclusion

A key goal in the design of centralized matching markets is to eliminate the incentive for par-

ticipants to contract outside of the market. This is formalized as stability and is considered

crucial for the long-term sustainability of a market. In the presence of complementarities,

stable matchings need not exist. Others have responded to this challenge by restricting pref-

erences or weakening the notion of stability. We, instead, weaken “feasibility” and establish

the existence of near-feasible stable matchings in the presence of complementarities.
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Appendix

A Proof of Lemma 3.2

Example of �∗h in Definition 3.2

Example 4 There are two hospitals h, h′, one couple c = (d1, d2), and a single doctor, d3.

The priority ordering of h is d1 �h d3 �h d2.

Consider the order of hospital h for the columns x(c,h,h′);x(c,h′,h);x(d3,h). In x(c,h,h′), d1

is assigned to h; in x(c, h′, h), d2 is assigned to h; in x(d3,h), d3 is assigned to h; in x(c,h,h)

both d1 and d2 are assigned to h. We order the columns/variables according to the worst

member according to �h, which is d2. Since both (c, h′, h) and (c, h, h) are evaluated by d2,

we get a tie; therefore, using the priority order �h, we obtain the following: (c, h, h′) �∗h
(d3, h) �∗h (c, h′, h) ∼ (c, h, h). To break the tie between (c1, h

′, h) and (c1, h, h), we will use

the preference ordering of c1. Namely, (c, h′, h) �∗h (c, h, h) iff (h, h′) �c (h, h).

Proof of Lemma 3.2

The proof is by contradiction. Let x∗ be an integral dominating solution of (1-2-3), and

assume that the corresponding assignment µ in the residency matching with couples is not

stable. This means that at least one of the three items below is true.

1. A pair d ∈ D1 and h ∈ H blocks µ because h �d µ(s) and d ∈ chh(µ(h) ∪ d).

2. A triple (c, h, h′) ∈ D2 × H × H with h 6= h′ blocks µ because (h, h′) �c µ(c), fc ∈
chh(µ(h) ∪ fc) and mc ∈ chh′(µ(h′) ∪mc).

3. A pair (c, h) ∈ D2 × H blocks µ because (h, h) �c µ(c) and (fc,mc) ⊆ chh(µ(h) ∪
{fc,mc}).

The first type of blocking coalition corresponds to the column associated with variable (d, h).

Now, because chh(.) is a responsive choice function over individual doctors, d ∈ chh(µ(h)∪d)

implies that d is among the best kh candidates among µ(h) ∪ d. Therefore, x∗ does not

dominate column (d, h): this is a contradiction because x∗ is a dominating solution.
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The second type of blocking coalition corresponds to column (c, h, h′). Following the

same argument, the blocking coalition implies that fc is among the best kh candidates among

µ(h)∪fc (similar for mc and h′.) Together with the tie-breaking rule of �∗h This implies that

x∗ does not dominate the column (c, h, h′).

In the third type of blocking coalition, the pair (fc,mc) and a hospital h correspond to

a column (c, h, h). Because (fc,mc) ⊆ chh(µ(h) ∪ c), both fc and mc are among the kh best

candidates, even when we consider the order �∗ for the columns, because both members

are still ranked highly among µh ∪ {fc,mc}. Together with the tie-breaking rule of �∗h, this

implies that x∗ does not block column (c, h, h).

B Maintaining Stability in Rounding

B.1 Proof of Lemma 4.1

First of all, x∗ is a feasible matching with respect to k∗. Using the fact that x̄ dominates

all columns of Q, we show that under the new capacity vector k∗, x∗ dominates all columns

of Q.

Consider the column associated with the assignment of couple c0 to hospital h1 and h2,

(c0, h1, h2). (A similar argument will apply to the other columns). x̄ dominates (c0, h1, h2)

either at the constraint corresponding to c0 or at h1 ∈ H or at h2 ∈ H.

Suppose first x̄ dominates (c0, h1, h2) at c0. Then
∑

h,h′ x̄(c0,h,h′) = 1, and couple c0 does

not like the allocation h1, h2 strictly more than any of the assignments that they obtained

under x̄. Now because x∗ is a 0− 1 vector rounded from x̄ that satisfies Lemma 4.1:

(i.) x∗(c0,h,h′) > 0 ⇒ x̄(c0,h,h′) > 0

(ii.)
∑

h,h′ x̄(c0,h,h′) = 1 ⇒ ∑
h,h′ x∗(c0,h,h′) = 1.

These imply that c0 (weakly) prefers the assignments that they gets in x∗ more than (h1, h2).

(We only use “weakly prefers” because it is possible that x∗(c0,h1,h2)
= 1.)

Next, suppose x̄ dominates (c0, h1, h2) at h1 (a similar argument will apply to h2). This

implies that the capacity of hospital h1 binds: Hh1x̄ = kh1 . Furthermore, h1 weakly prefers
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all columns in which the corresponding component of x̄ is positive to (c0, h1, h2). Now

because of property (i) in Lemma 4.1, a component of x∗ can be positive only when the

corresponding component of x̄ is positive. Thus, x̄ dominates (c0, h1, h2) when we change

the capacity at h1 to be k∗h1
:= Hh1x

∗.

B.2 When a hospital’s capacity constraints do not bind

Given a fractional dominating solution x̄, let H0 be the set of hospitals for which (1) does

not bind. Denote the total slack in these non-binding constraints by K (not necessarily

integral).

Introduce dKe dummy single doctors d1, ..., ddKe. Choose a strict ordering over the hos-

pitals in H0, and assign it to each of the dummy doctors. The remaining hospitals will be

ranked below ∅ by all the dummy doctors. Augment the priority ordering of hospitals in H0

by appending d1 � .. � ddKe to the bottom of these hospitals’ orderings but above ∅. The

priority ordering of hospitals not in H0 is augmented by appending d1 � .. � ddKe to the

bottom of these hospitals’ preference above ∅.
Extend x̄ to include the dummy doctors so that all slots in H0 are filled. We can do this

by going through the list of dummy doctors from d1 to ddKe and assigning each doctor to the

best position available. Because we are working with a fractional assignment, a doctor can

be split between different positions. Let ¯̄x be the resulting assignment. It is straightforward

to see that ¯̄x is a dominating solution of the instance with dummy doctors, and this solution

fully allocates all positions. Let x∗∗ be an integral solution obtained by rounding ¯̄x according

to the IRM. Let k∗∗ be the new capacity of the hospitals–that is, k∗∗ := H · x∗∗. According

to Lemma 4.1, x∗∗ is a stable solution with respect to k∗∗, and our algorithm bounds the

difference between k∗∗ and k.

We show that after eliminating the variables corresponding to dummy doctors from x∗∗,

the resulting assignment, x∗, is stable with respect to k∗∗. This is true because under x̄,

the constraints (1) corresponding to hospitals in H0 do not bind. Hence, x̄ dominates all

columns of the constraint matrix Q either at a couple/doctor constraint or at a hospital h
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constraint where h /∈ H0. As dummy doctors are not assigned to hospitals not in H0,

k∗∗h = Hh · x∗∗ = Hh · x∗ = k∗ for h /∈ H0.

With these observations, and following the same argument as in Section B.1, we obtain that

x∗ is stable with respect to k∗∗.

C Termination of IRM

To show that the IRM terminates and returns an integral solution, we show that provided

the IRM has not terminated, we can always eliminate a constraint. The main idea uses the

following well-known linear algebraic characterization of extreme points (Vohra [2005]).

Lemma C.1 Let x be an extreme point of Qx = q, 0 ≤ x ≤ 1. Let J be the index set of non-

integral components of x. Let Q|J be the submatrix of Q consisting of the columns indexed

by J . Then, the number of non-integral components of x, |J |, is equal to the maximum

number of linearly independent rows of Q|J .

To see how to use this lemma in our proof, let D∗,A∗ be the submatrices of D and

A, respectively, corresponding to the binding constraints of the linear program in Step

2. Thus, x is an extreme solution of


D∗
A∗

x =

 1

b∗

 ; 0 ≤ x ≤ 1

 . Let J be the index

of a non-integral component of x. Assume, for a contradiction, that we cannot eliminate

any binding constraints. Credit every component of x|J with one token. Subsequently,

we redistribute these tokens to the constraints (rows) of

D∗|J
A∗|J

 in such a way that each

constraint will get at least 1 token. We show this to be possible because this matrix is

sparse. This redistribution shows that the number of binding constraints is at most the

number of non-integral components. Furthermore, we show that equality arises only when

the binding constraints are linearly dependent. This implies that the maximum number of

linearly independent constraints is less than the number of non-integral components, which

contradicts Lemma C.1.
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Token distribution

Assume none of the binding active constraint can be eliminated. This imples that Hh ·(dxe−
bxc) ≥ 5 for all h ∈ H and a · (dxe − x) ≥ 10. Endow each fractional component of x|J with

1 token and redistribute the tokens as follows:

• If the variable is x(c,h,h′), assign 1
5

tokens to the constraint Hh · x = kh and 1
5

tokens

to Hh′ · x = kh′ . (If h = h′, then Hh · x = kh gets 2
5

tokens.) Of the remaining 3
5

tokens, 1
5
(1−x(c,h,h′)) tokens are allotted to the aggregate constraint a ·x ≤∑

h kh and

2
5

+ 1
5
x(c,h,h′) tokens are given to the couple c constraint–that is,

∑
h,h′ x(c,h,h′) ≤ 1.

• If the variable is x(d,h), assign 1
5

tokens to the constraints Hh · x = kh; 1
10

(1 − x(d,h))
tokens are allotted to the aggregate constraint, the remaining 7

10
+ 1

10
x(d,h) are allotted

to the doctor d constraint–that is,
∑

h x(d,h) ≤ 1.

Notice that dxie− bxic = 1 if xi is non-integral, and 0 otherwise. According to the token

distribution scheme, a non-integral variable x gives a hospital constraint Hh
1
5

or 2
5

tokens

if the corresponding assignment requires 1 or 2 jobs from h, respectively. Thus, the number

of tokens constraint Hh gets is
1

5
Hh · (dxe − bxc).

Therefore, this constraint gets at least 1 token if Hh · (dxe − bxc) ≥ 5.

Similarly, because dxie − xi = 1− xi if xi is non-integral, and 0 otherwise, and given the

way we distribute tokens, the number of tokens that the aggregate constraint receives is

1

10
a · (dxe − x).

Therefore, this constraint gets at least 1 token if a · (dxe − x) ≥ 10.

Next, the number of tokens the constraint corresponding to couple c obtains is

∑
h,h′

(
2

5
+

1

5
x(c,h,h′)).
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If this constraint binds–that is,
∑

h,h′ x(c,h,h′) = 1–and it contains at least 1 non-integral

variable, it must contains at least 2. In this case, the number of tokens it gets is at least

2× 2

5
+
∑
h,h′

1

5
x(c,h,h′) =

4

5
+

1

5
= 1.

The number of tokens the constraint corresponding to single doctor d obtains is

∑
h

(
7

10
+

1

10
x(c,h)).

If this constraint binds–that is,
∑

h x(d,h) = 1–and it contains at least 1 non-integral variable

it must contains at least 2. In this case, the number of tokens it gets is at least

2× 7

10
+
∑
h

1

10
x(d,h) =

15

10
> 1.

The argument above shows that if we cannot delete any binding Hh nor the aggregate

constraint, then, the number of non-zero rows vector in the matrix

D∗|J
A∗|J

 is at most the

number of non-integral components of x, |J |. Equality can only occur if no variable xd,h

is non-integral and A∗ contains all the hospitals and the aggregate constraint that contains

the non-integral variables. But these vectors are not independent because the aggregate

constraint is equal to the sum of all the constraints in (1).

D Additional Results

D.1 Proof of Theorem 5.1

Let HR be the set of rural hospitals, to which we assume no couple applies. Let HU be

the remaining (urban) hospitals. The main change in the IRM is that we never drop any

constraint corresponding to h ∈ HR. Thus, at each iteration

Hhx = kh for all h ∈ HR.
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The modified version of the IRM, called IRM1, is described in Figure 2.

Step 0 Start from x := x̄ a dominating solution satisfying (4) and (5).
Initialize the active constraints to be the constraints:
Hh · x = kh for h ∈ HU and the aggregate constraint a · x ≤∑

kh

Step 1 If x is integral, stop; otherwise, among the active constraints that bind at the solution
x, eliminate the following:

– either a hospital constraint Hh · x = kh, h ∈ HU if Hh · (dxe − bxc) ≤ 4

– or the aggregate constraint if a · dxe ≤∑
h kh + 9.

If there are multiple such binding constraints, arbitrarily choose one to eliminate.
After the elimination of one such constraint, let Ax ≤ b be the system of remaining
(active) constraints in (5).

Step 2 Find an extreme point z to maximize the number of jobs allocated:

max a · z : zi = xi if xi is either 0 or 1(fix the integral components)

D0 · z = 1;D1 · z ≤ 1; z ≥ 0 (doctor/couple constraints as in (4))

Hhx = kh for all h ∈ HR(rural hospital constraints)

Az ≤ b (active hospital constraints.)

Step 3 Update x to be the extreme point solution z found in step 2; return to step 1.

Figure 2: IRM1

To show that IRM1 returns a near-feasible stable matching that does not violate the

capacity of h ∈ HR, we follow the proof of Theorem 2.1. It is enough to show that if IRM1

has not terminated, we can always find an active constraint to delete.

First, because IRM1 always maintains a solution satisfying the capacity constraints of

rural hospitals, the aggregate constraint can be rewritten in terms of urban hospitals only.

Namely, ∑
d,h:h∈HU

x(d,h) +
∑

c,h,h′:h,h′∈HU

2x(c,h,h′) ≤
∑
h∈HU

kh.

Absent from this constraint is any variable xc,hh′ where among the pair (h, h′), one is urban

and the other is rural because of our assumption that only single doctors apply to rural

hospitals.

Next, we modify the token distribution scheme by changing how the token associated

with xd,h for h ∈ HR is allocated. Namely, assign 1
2

tokens to the constraints Hh · x = kh;

the 1/2 is given to the doctor d constraint–that is,
∑

h x(d,h) ≤ 1. For the other variables,
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the token distribution remains the same as in Section C.

Each hospital constraint gets at least 1 token. To see why, observe that if a hospital

constraint contains a non-integral variable, it must contain at least two of them. Each non-

integral variable contributes 1/2 a token to the constraint. Thus, the constraint obtains at

least 1 token.

Similarly, each doctor constraint contains at least two non-integral variables or none.

When none, we can ignore this constraint because it does not affect any non-integral vari-

ables. Notice, for a non-integral variable xd,h, where h is an urban hospital, it contributes

7
10

+ 1
10
x(d,h) > 1/2 tokens to the doctor constraint. Thus, the doctor constraint also receives

at least 1 token.

Thus, by an analogous argument to the one in Section C, we can always eliminate one

active constraint if IRM1 has not terminated. When there are no active constraints left, the

remaining constraints are the constraints of doctors and rural hospitals. These correspond

to the linear program of a many-to-one matching without couples. An extreme point of this

linear program is integral.

D.2 Proof of Theorem 5.2

Given the partition of the hospitals into regions H = H1 ∪ .. ∪ HP , let ap · x =
∑

h∈Hp kh

be the aggregate constraint for the region p ∈ {1, . . . , P}. The modification of IRM for this

case is described in Figure 3.

The proof that establishes the bounds on capacities is similar to Section C. It remains to

show that IRM2 terminates. Consider the following token distribution scheme.

• If variable x(c,h,h′) is fractional, assign 1
3
x(c,h,h′) tokens to each of the constraintsHh ·x =

kh andHh′ ·x = kh′ . (If h = h′, thenHh ·x = kh gets 2
3
x(c,h,h′) tokens.). Assign 1

12
tokens

to each of the aggregate constraints of the partition containing h and h′, respectively.

(If h, h′ are in the same partition, then the constraint gets 1
6

tokens.) The remaining

5
6
− 2

3
x(c,h,h′) tokens, are given to the couple c constraint–that is,

∑
h,h′ x(c,h,h′) ≤ 1.

• If the variable x(d,h) is fractional, assign 1
3
x(d,h) tokens to the constraints Hh · x =

kh; assign 1
12

tokens to the aggregate constraints of the partition containing h. The
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Step 0 Start from x := x̄ a dominating solution satisfying (4) and (5).
Initialize the active constraints to be all the constraints in (5).

Step 1 If x is integral, stop; otherwise, among the active constraints that bind at the solution
x, eliminate the following:

– either a hospital constraint Hh · x = kh if Hh · bxc ≥ kh − 2

– or the aggregate constraint ap · x =
∑

h∈Hp kh if ap · (dxe − bxc) ≤ 11.

If there are multiple such binding constraints, arbitrarily choose one to eliminate.
After the elimination of one such constraint, let Ax ≤ b be the system of remaining
(active) constraints in (5).

Step 2 Find an extreme point z to maximize the number of jobs allocated:

max a · z : zi = xi if xi is either 0 or 1(fix the integral components)

D0 · z = 1;D1 · z ≤ 1; z ≥ 0 (doctor/couple constraints as in (4))

Az ≤ b (active hospital constraints.)

Step 3 Update x to be the extreme point solution z found in step 2; return to step 1.

Figure 3: IRM2

remainder is given to the doctor d constraint–that is,
∑

h x(d,h) ≤ 1.

To prove the correctness of IRM2, we prove that if none of the constraints can be elimi-

nated, the extreme point found in step 2 has to be integral. It will be done by contradiction.

We show that the quantity of tokens allocated to each constraint is at least 1. Therefore, the

number of constraints is at most the number of fractional components of an extreme point

solution. Furthermore, equality can only be obtained when these constraints are linearly

independent. This argument is analogous to the proof in Section C. Here we show that each

constraint get at least 1 token.

Clearly, if Hh · bxc < kh − 2, then, when the constraint h binds–that is, Hh · x = kh,

Hh · (x− bxc) = kh −Hh · bxc ≥ 3.

Hence the quantity of tokens that the hospital h constraint gets is 1
3
Hh · (x− bxc) ≥ 1.
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For the aggregate constraint of a region p ∈ {1, .., P}, the quantity of tokens obtained is

1

12
ap · (dxe − bxc).

Thus, if we cannot eliminate this constraint, it will get at least 1 token. Notice, that when

an aggregate constraint is eliminated,

ap · (dxe − bxc) ≤ 11 and ap · x =
∑
h∈Hp

kh.

This implies that ap · (dxe − x) + ap · (x − bxc) ≤ 11. Observe that both ap · (dxe − x) and

ap · (x− bxc) are at least 1. Thus, we obtain the desired bound:

ap · dxe ≤
∑
h∈Hp

kh + 10 and ap · bxc ≥
∑
h∈Hp

kh − 10.

D.3 Using different objective functions to prioritize hospitals

The IRM described in Figure 1 uses an objective function, a · x, to maximize the number of

jobs allocated. Termination of the IRM does not depend on this specific choice of objective

function. The IRM works for any linear objective function, c · x. This can be used to reflect

the fact that assigning extra slots to one hospital may be cheaper than allocating them to

another.

In particular, replacing max a · x with any linear objective function c · x, the IRM in

Figure 1, starting from the fractional stable matchingx̄, will terminate in a 3-feasible stable

matching in which the aggregate capacity does not increase by more than 9. Furthermore,

c · x∗ ≥ c · x̄.

Because the choice of the linear objective function, c is arbitrary, we can round x̄ in any

“direction”. This implies the following result. (See Figure 4 for an illustration.)

Claim D.1 The fractional stable matching x̄ can be expressed as a lottery over 3-feasible

stable matchings that do not violate the aggregate constraint by more than 9.

Claim D.1 is true because otherwise, x̄ lies outside the convex hull of the near-feasible

stable matchings, and therefore we can separate x̄ from these near-feasible stable matchings
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c

x̄

x∗

Figure 4: Fractional stable matching can be expressed as a lottery over near-feasible stable
matchings

with a linear function.

Claim D.1 provides a randomized algorithm to round x̄ so that it is ex-ante feasible (but

ex-post is 3-feasible).
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