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Abstract

We characterize consistent random choice rules in terms of the optimality of
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standard deterministic law.
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1 Introduction

Choices are often stochastic. The strands of literature that in different disciplines
—such as economics, neuroscience and psychology —have dealt with stochasticity in
choices have mostly focused on pure choice behavior. Here we study how stochastic
choice may affect consumer behavior, the most basic economic choice problem.
We first characterize, in Theorem 1, random choice rules that satisfy the assump-

tion of consistency, which is a form of Luce’s choice axiom (see, Luce 1959). Differently
from Luce, we do not require that these rules have full support: a conceptually prob-
lematic assumption in a consumer theory framework where it is natural to assume that
dominated options will never be selected.
We then show that for this important class of stochastic choices, the law of demand

for normal goods —arguably the main result of traditional consumer theory —continues
to hold on average when strictly dominated alternatives are dismissed. A “certainty
equivalence”principle for stochastic consumer theory thus emerges from our analysis.
It ensures that choice stochasticity a la Luce does not alter qualitatively the findings
of traditional deterministic consumer theory —which is, indeed, a special case of our
analysis. All foundations of Luce’s rule proposed in the literature, be they behavioral
or neural, thus share this significant economic consequence.1

Finally, some relevant references are discussed as the analysis develops.

2 Preliminaries: random choice rules and optimal-
ity

Let A be the collection of all non-empty finite choice sets A of an all inclusive set of
alternatives X. Each choice set A represents a decision problem in which an agent has
to choose an alternative in A.2

Definition 1 A random choice rule is a function p : A → ∆ (X) such that p (·, A) ∈
∆ (A) for all A ∈ A.

We interpret p (a,A) as the probability that an agent chooses alternative a ∈ A

within the choice set A. In a (ergodic) long run setup, this probability can be viewed
as the long run frequency with which a is chosen across repetitions of the decision

1See, e.g., Woodford (2014) and Matejka and McKay (2015) for recent foundations of Luce’s rule,
as well as Krajbich and Dean (2015) for a recent overview.

2Throughout the paper, for each set E ⊆ X, finite or not, we denote by ∆ (E) the set of all finitely
supported probabilities on E. So, p (·, A) ∈ ∆ (A) if and only if p (·, A) : A→ [0, 1], with p (a,A) > 0

for finitely many a in A, and
∑

a∈A p (a,A) = 1. With a slight abuse of notation, we regard ∆ (A) as
included in ∆ (X), since the former is naturally embedded in the latter.
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problem represented by A. We regard p as a purely behavioral notion that accounts
for agent’s choices, a way to organize choice data without any mental interpretation
per se. Our analysis is thus in the spirit of Pareto (1900) and Samuelson (1938).

Definition 2 A random choice rule p is consistent if, for all a ∈ A ⊆ B,3

p (a,B) = p (a,A) p (A,B) (1)

This condition is a form of the classic Luce’s choice axiom (see Luce, 1959). It en-
sures that p (·, A) and p (·, B) are linked via conditioning a la Renyi (1955). We denote
by σp : A⇒ X the support correspondence defined by σp (A) = {a ∈ A : p (a,A) > 0}.

Example 1 (Luce) Given a function ϕ : X → (0,∞), define p : A → ∆ (X) by for
each A ∈ A

p (a,A) =
ϕ (a)∑
b∈A ϕ (b)

∀a ∈ A (2)

This function p is a consistent random choice rule with full support, i.e., σp (A) = A

for all A ∈ A. Luce (1959) proved that this is the general form of consistent random
choice rules that have full support. In particular, the uniform rule p (a,A) = 1/ |A| is
the special case with ϕ = 1. N

Example 2 (Optimization) A correspondence σ : A ⇒ X is a choice correspon-
dence if ∅ 6= σ (A) ⊆ A for all A ∈ A. By a classic result of Arrow (1959), σ is optimal
(or rational) —i.e., it represents alternatives that are optimal according to some weak
order —if and only if it satisfies the following version of WARP:

A ⊆ B and σ (B) ∩ A 6= ∅ =⇒ σ (B) ∩ A = σ (A) (C)

Given an optimal choice correspondence σ : A ⇒ X, the function p : A → ∆ (X)

defined by

p (a,A) =

{
1

|σ(A)| if a ∈ σ (A)

0 else
(3)

is easily seen to be a consistent random choice rule —without full support and not in
the Luce-Renyi form unless σ (A) = A for all A ∈ A. When σ is an optimal choice
function, so σ (A) is a singleton for all A ∈ A, this rule takes the deterministic form:4

p (a,A) = δσ(A) (a) ∀a ∈ A

Optimal choice functions can thus be viewed as special, deterministic, rules of the form
(3). N

3Given A ⊆ B, we denote by p (A,B) the quantity
∑

a∈A p (a,B) with the convention that
p (∅, B) = 0.

4Here δx denotes the (Dirac) probability at x ∈ X, that is, δx (a) = 1 if x = a and 0 otherwise.
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In view of the previous example, we say that a choice correspondence σ is optimal if
it satisfies (C). This example seems to provide a very specific rule, (3), where optimality
of σ implies consistency. The next result, proved in Appendix A, makes this observation
formal and much more general. Indeed, it characterizes consistent random choice rules
in terms of the optimality of their support correspondence.

Theorem 1 A function p : A → ∆ (X) is a consistent random choice rule if and only
if it has the form

p (a,A) =

{
ϕ(a)∑

b∈σ(A) ϕ(b)
if a ∈ σ (A)

0 else
(4)

where ϕ : X → (0,∞) and σ : A⇒ X is an optimal choice correspondence. Moreover,
σ is unique and coincides with σp.

This characterization shows that consistency of random choice rules is the stochastic
counterpart of the optimality behavior, characterized by WARP, for choice correspon-
dences. Moreover, Luce’s rule (2) corresponds to the special case σ (A) = A for all
A ∈ A (which is trivially optimal), while the optimization rule (3) is the special case
in which either ϕ = 1 or σ is single-valued. So, the two previous examples are both
special cases of the random choice rule (4).5 In light of Theorem 1, it is also immediate
to show that Luce’s rule is characterized by consistency plus the following weak form
of positivity: p (a, {a, b}) > 0 for all a, b ∈ X. In words, the agent must always select
with strictly positive probability each element from the set {a, b}.

In keeping with our behavioral approach, we do not give any mental interpretation
of Theorem 1. For us, it is a characterization of consistent random choice rules that,
in particular, shows that optimal choice functions are a special, deterministic, class of
such rules. Because of this remarkable property, our study of stochastic choice in a
consumer theory framework —our main object of interest —will be able to generalize
the standard deterministic theory.

A final remark. A random choice rule p is uniform if, given any A ∈ A, all
alternatives in A that have a chance to be chosen are equally likely. Formally, for
each a ∈ A, we have

p (a,A) =


1

|σp(A)| if a ∈ σp (A)

0 else

This uniform rule is close in spirit to the analysis of Becker (1962). By Theorem 1,
a uniform random choice rule p is consistent if and only if its support correspondence

5Theorem 1 also shows that consistent random choice rules are a special case of what Echenique and
Saito (2015) call general Luce rules. These rules, axiomatically characterized by Echenique and Saito
(2015), take the form (4) where ϕ : X → (0,∞) but the choice correspondence σ is not necessarily
optimal.
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σp is optimal. This equivalence completes the analysis of Example 2, in which the “if”
was considered.

3 Random consumption

Our aim here is to develop a behavioral (i.e., non-preferential, so “non-mental”) con-
sumer theory in a random choice setting that, inter alia, encompasses as a special
case the traditional deterministic behavioral consumer theory presented, for example,
in chapter 2 of Mas-Colell et al. (1995). A relevant related work is Mossin (1968),
which outlined a stochastic theory of consumption (with a different framework and
motivation). A less relevant related work is Halldin (1974). It proposes an alternative
theory which is a mixture of stochastic choice over pairs and choice over budget sets
via a propensity function.

3.1 Individual stochastic demand

Let X = Rn+ be the space of all bundles of goods and B : Rn++×R++ ⇒ X the budget
correspondence defined by B (q, w) = {x ∈ X : q · x ≤ w} for each price and wealth
pair (q, w). Now A is replaced with a larger class B that contains A and all budget
sets B (q, w). So, in this section B is the domain of our analysis.6

Definition 3 A function d : Rn++ × R++ → ∆ (X) is an (individual) stochastic de-
mand induced by a consistent random choice rule p : B → ∆ (X) if d (q, w) (x) =

p (x,B (q, w)).

We interpret d (q, w) (x) as the probability that bundle x ∈ B (q, w) is chosen at
price q with wealth w. In particular, the average cost function c : Rn++×R++ → R+ of
the bundle demanded is c (q, w) =

∑
x∈B(q,w) (q · x) d (q, w) (x), while the (individual)

average demand function d̄ : Rn++ × R++ → Rn+ is d̄ (q, w) =
∑

x∈B(q,w) xd (q, w) (x).7

Clearly, c (q, w) = q · d̄ (q, w). In what follows, we will consider only stochastic demands
d induced by consistent random choice rules p. For such a reason, we omit to mention
p.

The stochastic demand d (q, w) has finite support, i.e., only finitely many bundles
of the budget set B (q, w) can be selected with strictly positive probability. This as-
sumption eases our analysis, yet still substantially broadens the scope of the traditional
deterministic analysis that, typically, assumes unique optimal bundles to best carry out

6See Appendix B for more details on this richer domain. Theorem 1 can be easily extended to this
domain, as we show in Theorem 12 of Appendix C.

7Observe that x is a vector while d (q, w) (x) is a scalar. Thus, we slightly abuse notation by
denoting the scalar product of these two objects by inverting the role of scalars and vectors.
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comparative statistics exercises. In this regard, note that if p is the random choice rule
in (4), then

d (q, w) (x) =

{
ϕ(x)∑

y∈σ(B(q,w)) ϕ(y)
if x ∈ σ (B (q, w))

0 else
(5)

provided σ is an optimal choice correspondence that is finitely valued, i.e., σ (B) ∈ A
for all B ∈ B. This example is important for our analysis because it shows that
standard demand functions are included in our setup: when σ is a choice function, the
stochastic demand (5) becomes

d (q, w) (x) = δσ(B(q,w)) (x) ∀x ∈ B (q, w)

and so it is a classic Walrasian demand function. That said, if ϕ = 1 the stochastic
demand (5) takes a uniform form close in spirit to the analysis of Becker (1962), as
already remarked. Besides standard demand functions, also uniform demand functions
a la Becker (1962) are thus included in our setup.

3.2 Walras’law

Given a stochastic demand, by construction we have only c (q, w) ≤ w. So, in general
only the following weak form of Walras’law holds.

Proposition 2 Let d be a stochastic demand. If w < w′, then c (q, w) ≤ c (q, w′).

Equality, and more, holds under the following monotonicity condition.

Definition 4 A random choice rule p : B → ∆ (X) is stochastically monotone if
p (x, {x, y}) = 0 whenever x� y.8

Comparisons between two bundles of goods x and y are much easier to make when
one of them is strictly dominant, say x � y. Stochastic monotonicity captures this
comparative easiness.
Under stochastic monotonicity, only alternatives that are not strictly dominated

may have a chance to be selected. Specifically, for any choice set B ∈ B let

∂+B = {x ∈ B : @x′ ∈ B, x′ � x}

be the collection of all elements of B that are not strictly dominated.

Lemma 3 If a consistent random choice rule p : B → ∆ (X) is stochastically monotone,
then p (∂+B,B) = 1 for all B ∈ B.

8As usual, x� y means that xi < yi for all i = 1, ..., n.
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A stochastic demand d is stochastically monotone if it is induced by a stochastically
monotone consistent random choice rule p. Since ∂+B (q, w) = {x ∈ B (q, w) : q · x = w},
by the last lemma we have d (q, w) (x) > 0 only if x ∈ ∂+B (q, w). In turn, this implies
the following sharp Walras’law for stochastic choice: under stochastic monotonicity,
consumers always exhaust their budgets.9

Proposition 4 If the stochastic demand d is stochastically monotone, then c (q, w) =

w (so, w < w′ implies c (q, w) < c (q, w′)).

By construction, both the stochastic and the average demands are homogeneous of
degree zero, so there is no nominal illusion. In our analysis the consumer is always able
to assess correctly whether a bundle of goods is affordable.

3.3 Law of demand

We can now study wealth and price effects. As to wealth effects, say that a good k is
normal if its average demand increases as wealth increases:

w′ > w =⇒ d̄k (q, w′) ≥ d̄k (q, w) ∀q ∈ Rn++

By Proposition 4, under stochastic monotonicity, we have q · d̄ (q, w′) > q · d̄ (q, w) if
w′ > w. So, intuitively, some of the goods have to be normal, at least locally. As to
price effects, we have the following preliminary result.

Lemma 5 Let d be a stochastic demand. If q < q′, then d̄ (q′, w) 6> d̄ (q, w).

Next we show that a classic compensated law of demand continues to hold “on
average”.

Lemma 6 Let (q′, w′) and (q, w) be in Rn++ × R++ and let d be a stochastic demand.
If q′ · d̄ (q, w) = c (q′, w′) and d is stochastically monotone, then

(q′ − q) ·
(
d̄ (q′, w′)− d̄ (q, w)

)
≤ 0 (6)

When a sharp Walras’law holds, condition q′ · d̄ (q, w) = c (q′, w′) = w′ becomes a
standard Slutsky wealth compensation. In this case the (individual) law of demand for
normal goods —arguably the most important result of consumer theory —continues to
hold on average.

Theorem 7 (Law of Average Demand) Let the stochastic demand d be stochasti-
cally monotone. If wealth and other prices do not change, an increase (decrease) in the
price of a normal good k decreases (increases) its average demand d̄k.

9For instance, Gabaix (2014) assumes that the consumer he studies “is boundedly rational, but
smart enough to exhaust his budget.”
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Under consistency, on average the behavior of consumers continues to satisfy the
law of demand for normal goods provided they are able to select strictly dominant
alternatives. The standard consumer theory result for Walrasian demand functions,
first stated on p. 14 of Slutsky (1915), is the special case that corresponds to the
deterministic demand function d (q, w) = δσ(B(q,w)). Indeed, as previously remarked, in
this case its average demand is the Walrasian demand function, i.e., d̄ (q, w) = σ (q, w).
Our result thus generalizes the most important finding of classical behavioral consumer
theory. At the same time, it goes well beyond that. For instance, it includes the purely
random choice of Becker (1962) (viewed as the uniform case).

To sum up, choice stochasticity a la Luce, along with a monotonicity property,
leads to an individual demand that on average has the same qualitative properties of
the special, yet standard, deterministic case. A “certainty equivalence”principle for
stochastic consumer theory results.

A final remark. As we emphasized throughout the paper, our purely behavioral
analysis has abstracted from any preferential, so mental, notion. It is then natural to
close with a few words on a possible, complementary, preferential approach to stochas-
tic consumer theory that, instead, may generalize the classical preferential consumer
theory presented, for example, in chapter 3 of Mas-Colell et al. (1995). To this end, a
random utility interpretation of random choice rules can be adopted, in which there ex-
ists a probability measure π, a stochastic preference, defined on a class P of preference
relations on X such that p (a,B) = π (P ∈ P : ∀b ∈ A, aPb). Via this representation,
some results of classical preferential consumer theory that hold for elements of P may
have stochastic counterparts. An analysis along these lines is, however, beyond the
scope of the present paper and is left for future research.10

A Appendix: proof of Theorem 1

The main goal of this appendix is to prove Theorem 1. We start by introducing some
new notation and a preparatory result. Recall that for each a, b ∈ X

p (a, b) = p (a, {a, b}) and r (a, b) =
p (a, b)

p (b, a)

Lemma 8 If p : A → ∆ (X) is a consistent random choice rule, then σp is optimal.

10In this vein, Bandyopadhyay et al. (1999) study a stochastic demand which is generated by a
random utility model. This alternative approach might also have an intersection (mainly technical)
with the literature that studies average demand in a large economy (see, for a review, Jerison and
Quah, 2006).
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Proof Clearly, ∅ 6= σp (A) ⊆ A for all A ∈ A. Let A,B ∈ A such that A ⊆ B. Assume
that σp (B)∩A 6= ∅. We want to show that σp (B)∩A = σp (A). Since p is consistent,
if a ∈ σp (B) ∩ A, then 0 < p (a,B) = p (a,A) p (A,B). It follows that p (a,A) > 0,
that is, a ∈ σp (A). Thus, σp (B) ∩ A ⊆ σp (A). As to the converse inclusion, let
a ∈ σp (A) ⊆ A ⊆ B, that is, p (a,A) > 0. By contradiction, assume that a /∈ σp (B),
that is, p (a,B) = 0. Since p is consistent, we then have 0 = p (a,B) = p (a,A) p (A,B).
Since p (a,A) > 0, this implies that p (A,B) = 0, that is, σp (B) ∩ A = ∅. This
contradicts σp (B)∩A 6= ∅, proving the opposite inclusion and completing the proof.�

Proof of Theorem 1 “If”. Let p be given by (4) with σ optimal and ϕ : X → (0,∞).
Since ϕ is strictly positive and σ a choice correspondence, p is a well defined random
choice rule. Let A,B ∈ A such that A ⊆ B and a ∈ A. We have two cases:

1. σ (B)∩A 6= ∅. Since σ is optimal, σ (B)∩A = σ (A). On the one hand, by (4), if
a ∈ σ (A), then a ∈ σ (B) and p (a,A) = ϕ (a) /

∑
b∈σ(A) ϕ (b). We can conclude

that

p (a,B) =
ϕ (a)∑

b∈σ(B) ϕ (b)
=

ϕ (a)∑
b∈σ(A) ϕ (b)

∑
b∈σ(B)∩A ϕ (b)∑
b∈σ(B) ϕ (b)

= p (a,A) p (A,B)

On the other hand, if a /∈ σ (A), we have that a ∈ A\σ (B), so p (a,A) = 0 =

p (a,B). In both cases (1) holds.

2. σ (B) ∩ A = ∅. It follows that a /∈ σ (B) and p (A,B) = 0 = p (a,B). Again, (1)
holds.

Cases 1 and 2 prove that p is consistent.

“Only if”. Let p : A → ∆ (X) be a consistent random choice rule and set

a % b ⇐⇒ a ∈ σp ({a, b}) (7)

By Lemma 8, σp is optimal. Since σp is optimal, % is a weak order and

a % b ⇐⇒ p (a, b) > 0

a � b ⇐⇒ p (a, b) = 1

a ∼ b ⇐⇒ p (a, b) ∈ (0, 1)

By Arrow (1959) and since σp is optimal, observe that

σp (A) = {a ∈ A : a % b ∀b ∈ A} ∀A ∈ A (8)

Let {Xi : i ∈ I} be the family of all equivalence classes of X with respect to ∼. For
each i ∈ I choose ai ∈ Xi. Define ϕ : X → (0,∞) to be such that

ϕ (x) = r (x, ai) =
p (x, ai)

p (ai, x)
∀x ∈ Xi,∀i ∈ I (9)
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Consider i ∈ I and let x ∼ ai, we have that p (x, ai) , p (ai, x) ∈ (0, 1). Since i and x
were arbitrarily chosen, it follows that ϕ is well defined. By (8), we have that

σp (S) = S ∀S ∈ A such that S ⊆ Xi for some i ∈ I (10)

Since p is consistent, this implies that for each S ∈ A such that S ⊆ Xi for some i ∈ I
and for each a, b ∈ S

p (a, S) = p (a, b) p ({a, b} , S) > 0

p (b, S) = p (b, a) p ({a, b} , S) > 0

yielding that
p (a, S)

p (b, S)
=
p (a, b)

p (b, a)
= r (a, b) (11)

Next, consider a, b ∈ X such that a ∼ b. We have that there exists i ∈ I such that
a ∼ b ∼ ai. By consistency and definition of ϕ, we can conclude that

p (a, {a, b, ai}) = p (a, ai) p ({a, ai} , {a, b, ai}) =
p (a, ai)

p (ai, a)
p (ai, a) p ({a, ai} , {a, b, ai})

=
p (a, ai)

p (ai, a)
p (ai, {a, b, ai}) = ϕ (a) p (ai, {a, b, ai})

p (b, {a, b, ai}) = p (b, ai) p ({b, ai} , {a, b, ai}) =
p (b, ai)

p (ai, b)
p (ai, b) p ({b, ai} , {a, b, ai})

=
p (b, ai)

p (ai, b)
p (ai, {a, b, ai}) = ϕ (b) p (ai, {a, b, ai})

By (10), we have that p (ai, {a, b, ai}) > 0 and p (b, {a, b, ai}) > 0. By applying (11)
twice, we can conclude that

p (a, S)

p (b, S)
= r (a, b) =

p (a, {a, b, ai})
p (b, {a, b, ai})

=
ϕ (a)

ϕ (b)
∀S ∈ A such that a, b ∈ S ⊆ Xi (12)

By consistency and since p (σp (A) , A) = 1, we also have that

p (a,A) = p (a, σp (A)) p (σp (A) , A) = p (a, σp (A)) ∀a ∈ σp (A)

We are ready to conclude our proof, that is, proving (4) where σ = σp. We have two
cases:

1. a /∈ σp (A). It trivially follows that p (a,A) = 0.

2. a ∈ σp (A). By (8), all the elements in σp (A) are equivalent with respect to
% and therefore they are equivalent to some ai with i ∈ I. It follows that
σp (A) ∪ {ai} ∈ A and it is such that σp (A) ∪ {ai} ⊆ Xi. By (10), we have that
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σp (σp (A) ∪ {ai}) = σp (A)∪{ai}. By consistency and (11) and since a ∈ σp (A),
we can conclude that

p (a,A) = p (a, σp (A)) =
p (a, σp (A) ∪ {ai})

p (σp (A) , σp (A) ∪ {ai})
=

p(a,σp(A)∪{ai})
p(ai,σp(A)∪{ai})

p(σp(A),σp(A)∪{ai})
p(ai,σp(A)∪{ai})

=
r (a, ai)∑

b∈σp(A)
p(b,σp(A)∪{ai})
p(ai,σp(A)∪{ai})

=
r (a, ai)∑

b∈σp(A) r (b, ai)
=

ϕ (a)∑
b∈σp(A) ϕ (b)

as wanted.

Uniqueness of σ trivially follows. �

B Appendix: mathematical tools

The class B denotes a collection of non-empty subsets of X that includes all finite sets,
that is, A ⊆ B. For example, B is in Section 3 the collection of all non-empty finite sets
as well as all the budget sets and X = Rn+. We denote by A and B generic elements of
B. Let p : B → ∆ (X) be a consistent random choice rule, that is, p (·, A) ∈ ∆ (A) for
all A ∈ B and

p (a,B) = p (a,A) p (A,B) ∀a ∈ A ⊆ B (13)

By σp : B ⇒ X, we denote the support correspondence. Note that σp (B) ∈ A for
all B ∈ B. Given B ∈ B, for ease of notation, we might alternatively denote by B̃
the support of p (·, B). By (13), p (a,B) = p(a, B̃) for all a ∈ B̃. In particular, given
C ∈ B such that C ⊆ B,

p (C,B) = p(C ∩ B̃, B̃) (14)

Lemma 9 Let A ⊆ B with A,B ∈ B. The following statements are true:

1. A ∩ B̃ = Ã ∩ B̃ and p (A,B) = p(Ã ∩ B̃, B̃);

2. p (A,B) > 0 if and only if A ∩ B̃ = Ã.

Proof 1. By definition of Ã, Ã ∩ B̃ ⊆ A ∩ B̃. Vice versa, consider a ∈ A ∩ B̃. By
contradiction, assume that a /∈ Ã∩B̃. This implies that a /∈ Ã, that is, p (a,A) = 0. By
(13), we can conclude that p (a,B) = 0, that is, a /∈ B̃ a contradiction with a ∈ A∩ B̃.
We conclude that A∩ B̃ ⊆ Ã∩ B̃, proving the equality between the two sets. Moreover,
by definition and since p (a,B) = p(a, B̃) for all a ∈ B̃, we have that

p (A,B) =
∑

a∈A∩B̃

p (a,B) =
∑

a∈A∩B̃

p(a, B̃) =
∑

a∈Ã∩B̃

p(a, B̃) = p(Ã ∩ B̃, B̃)

2. By (13), p (a,B) = p (a,A) p (A,B) for all a ∈ A ⊆ B. This implies that if
p (A,B) > 0 and a ∈ A, then p (a,B) > 0 if and only if p (a,A) > 0. It follows that
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A∩ B̃ = Ã. As to the converse, assume that A∩ B̃ = Ã. Since A, Ã 6= ∅, if A∩ B̃ = Ã,
then there exists a ∈ A which belongs to B̃. We can conclude that p (a,B) > 0 and,
in particular, p (A,B) > 0. �

Let f : X → V be a function that takes values on a vector space V . It can be
extended to B by defining φ : B → V as the average φ (B) =

∑
a∈B̃ f (a) p (a,B) of f

with respect to p. Since p (a,B) = p(a, B̃) for all a ∈ B̃ and σp (B) = σp(B̃), we have
that φ (B) = φ(B̃).

Proposition 10 If the sets {Bi}ni=1 ⊆ B are pairwise disjoint and B =

n⋃
i=1

Bi ∈ B,

then

φ (B) =
n∑
i=1

p (Bi, B)φ (Bi)

Proof By Lemma 9 and since Bi ⊆ B, it follows that Bi ∩ B̃ = B̃i ∩ B̃ ∈ A for all
i ∈ {1, ..., n}. This implies that:11 (a) B̃i ∩ B̃ are pairwise disjoint and (b)(

n⋃
i=1

B̃i

)
∩ B̃ =

n⋃
i=1

(B̃i ∩ B̃) =
n⋃
i=1

(Bi ∩ B̃) =

(
n⋃
i=1

Bi

)
∩ B̃ = B ∩ B̃ = B̃

Let I =
{
i : Bi ∩ B̃ 6= ∅

}
. By the previous equality, I is non-empty. On the one hand,

by Lemma 9 and since p (Bi, B) > 0 for all i ∈ I, we have that Bi ∩ B̃ = B̃i for all
i ∈ I. On the other hand, if i /∈ I then Bi ∩ B̃ = ∅, yielding that p (Bi, B) = 0 for all
i 6∈ I. Thus, if i 6∈ I there is no a ∈ Bi such that p (a,B) > 0. Moreover, by (14) we
can conclude that for each i ∈ I

0 < p (Bi, B) = p(Bi ∩ B̃, B̃) = p(B̃i ∩ B̃, B̃)

and by consistency and since B̃ ⊇ B̃i ∩ B̃ = B̃i = Bi ∩ B̃ 6= ∅ and B̃i ∩ B̃ ∈ A for all
i ∈ I, we have that

p(a, B̃) = p(a, B̃i ∩ B̃)p(B̃i ∩ B̃, B̃) = p(a, B̃i)p(B̃i ∩ B̃, B̃)

11To ease notation, we write B̃i in place of B̃i.
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for all a ∈ B̃i ∩ B̃ = B̃i and for all i ∈ I. By Lemma 9 and since the elements of{
B̃i ∩ B̃

}
i∈I
are non-empty, pairwise disjoint, and finite, we have

φ (B) = φ(B̃) =
∑
a∈B̃

f (a) p(a, B̃) =
∑

a∈

n⋃
i=1

(B̃i∩B̃)

f (a) p(a, B̃)

=
∑

a∈
⋃
i∈I

(B̃i∩B̃)

f (a) p(a, B̃) =
∑
i∈I

∑
a∈B̃i∩B̃

f (a) p(a, B̃)

=
∑
i∈I

∑
a∈B̃i

f (a) p(a, B̃) =
∑
i∈I

∑
a∈B̃i

f (a) p(a, B̃i)p(B̃i ∩ B̃, B̃)

=
∑
i∈I

p(B̃i ∩ B̃, B̃)
∑
a∈B̃i

f (a) p(a, B̃i) =
∑
i∈I

p(B̃i ∩ B̃, B̃)
∑
a∈B̃i

f (a) p (a,Bi)

=
∑
i∈I

p(Bi ∩ B̃, B̃)φ (Bi) =
∑
i∈I

p
(
Bi ∩ B̃, B

)
φ (Bi)

=
n∑
i=1

p(Bi ∩ B̃, B)φ (Bi) =
n∑
i=1

p (Bi, B)φ (Bi) ,

proving the statement. �

C Appendix: proofs and related analysis

Before starting the proofs, recall that X = Rn++ and that B is the collection of all non-
empty finite sets and all the possible budget sets. To be consistent with the standard
microeconomic literature, in this section we often denote alternatives in X —that is,
bundles of goods —by x and y instead of a and b. We start by providing an ancillary
fact.

Proposition 11 Let p : B → ∆ (X) be a consistent random choice rule. If % is the
weak order that rationalizes σp restricted to A,12 then

σp (B) = {x ∈ B : x % y ∀y ∈ B} ∀B ∈ B (15)

Proof Consider the random choice rule p restricted to A. By Lemma 8 and since p
is consistent on A, we have that σp restricted to A is optimal and is rationalized by
the weak order %, defined as in (7). Let B ∈ B. By the proof of Theorem 1, if B ∈ A
then (15) holds. If B 6∈ A, then B = B (q, w) for some (q, w) ∈ Rn++×R++. As before,
define B̃ = σp (B). We next prove (15) by proving both inclusions. By contradiction,
assume that σp (B) 6⊆ {x ∈ B : x % y ∀y ∈ B}. Since σp (B) ⊆ B, it follows that

12That is, x % y if and only if x ∈ σp ({x, y}).
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there exists x ∈ B such that x � y for some y ∈ σp (B). Since B̃ = σp (B) ∈ A and
p(y, B̃) = p (y,B) for all y ∈ B̃, we have B̃ = σp (B) = σp(B̃). By Theorem 1, we
can conclude that all the elements in σp(B̃) are indifferent according to the weak order
%, thus, x � y for all y ∈ B̃, as well as x 6∈ B̃. By Theorem 1 and its proof, if we
define A = B̃ ∪ {x} ⊆ B, then A ∈ A, p (x,A) = 1, and p (A,B) = 1. By consistency,
this implies that p (x,B) = p (x,A) p (A,B) = 1, a contradiction with x 6∈ B̃, proving
the “⊆”inclusion and that {x ∈ B : x % y ∀y ∈ B} is non-empty. Vice versa, assume
that x̄ ∈ B is such that x̄ % y for all y ∈ B. Define A = B̃ ∪{x̄} ∈ A. By the previous
part of the proof, we have that all the elements of A are indifferent according to %. By
Theorem 1 and consistency and since 1 ≤ p

(
B̃, B

)
≤ p (A,B) ≤ 1, we have that

p (x̄, B) = p (x̄, A) p (A,B) = p (x̄, A) > 0

proving that x̄ ∈ σp (B) and the opposite inclusion. �

Theorem 12 Theorem 1 holds true whenever we replace A with B and σ is further
assumed to be such that σ (B) ∈ A for all B ∈ B.

Proof “Only if”. Since p is consistent, p is consistent when restricted to A. By Theo-
rem 1, it follows that there exist ϕ : X → (0,∞) and an optimal choice correspondence
σ : A⇒ X such that for each A ∈ A

p (a,A) =

{
ϕ(a)∑

b∈σ(A) ϕ(b)
if a ∈ σ (A)

0 else
∀a ∈ A (16)

Clearly, σ (A) = σp (A) for all A ∈ A. Since p is consistent, we also have that p (a,A) =

p
(
a, Ã

)
for all a ∈ Ã and for all A ∈ B. Since Ã ∈ A and σp

(
Ã
)

= Ã = σp (A) for

all A ∈ B, we can conclude that for each A ∈ B if a ∈ σp (A) = σp

(
Ã
)

= Ã, then

p (a,A) = p
(
a, Ã

)
=

ϕ (a)∑
b∈σp(Ã) ϕ (b)

=
ϕ (a)∑

b∈σp(A) ϕ (b)

while if a ∈ A\σp (A), then p (a,A) = 0. This proves that (16) holds with σ re-
placed by σp and for all A ∈ B. By Lemma 11, we have that σp is an optimal choice
correspondence such that σp (B) ∈ A for all B ∈ B, proving the implication. “If”.
Assume that p can be represented as in (16) with ϕ : X → (0,∞) and σ : B ⇒ X

an optimal choice correspondence such that σ (B) ∈ A for all B ∈ B. It is imme-
diate to check that σ (B) = σp (B) for all B ∈ B. By Theorem 1 and since σ is
an optimal choice correspondence, p satisfies consistency on A. Since σ = σp is op-
timal and σp (A) ⊆ A as well as σp (A) ∩ σp (A) 6= ∅ for all A ∈ B, this implies
that σp (σp (A)) = σp (A) ∩ σp (A) = σp (A) = Ã and, in particular, this implies that

p (a,A) = p
(
a, Ã

)
for all a ∈ Ã. Let now A,B ∈ B be such that A ⊆ B. Let also

a ∈ A. We have three cases:
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1. p (A,B) > 0 and a ∈ Ã. This implies that σp (B) ∩ A 6= ∅. Since σp is optimal,
it follows that A ∩ B̃ = σp (B) ∩A = σp (A) = Ã. Since p is consistent on A, we
have that

p (a,A) p (A,B) = p
(
a, Ã

)
p(A∩ B̃, B̃) = p

(
a, Ã

)
p(Ã, B̃) = p

(
a, B̃

)
= p (a,B)

2. p (A,B) > 0 and a 6∈ Ã. By contradiction, assume that a ∈ σp (B) = B̃. Since
a ∈ A ⊆ B, we would have that A ⊆ B and σp (B) ∩A 6= ∅. Since σp is optimal,
it would follow that a ∈ σp (B) ∩ A = σp (A) = Ã, a contradiction. Thus, a 6∈ B̃
and

p (a,B) = 0 = p (a,A) p (A,B)

3. p (A,B) = 0. It follows that a 6∈ B̃, yielding that

p (a,B) = 0 = p (a,A) p (A,B)

Points 1, 2, and 3 prove the implication. �

Proof of Proposition 2 In Proposition 10, define f : X → R by f (x) = q · x for all
x ∈ X. Given a stochastic demand d, let p be such that d (q, w) (·) = p (·, B (q, w)).
Set also A = B (q, w) and B = B (q, w′). Clearly, we have that A ⊆ B and A,B ∈ B.
By Lemma 9, it follows A∩ B̃ = Ã∩ B̃. Note that B1 = Ã∩ B̃ and B2 = B̃\Ã belong
to A ⊆ B (provided they are non-empty), are pairwise disjoint, and B̃ = B1 ∪B2 ∈ A.
Moreover, B2 ⊆ Ac. Otherwise, there would exist x ∈ B2 ∩ A. Thus, we would have
that x ∈ B2 and x ∈ A. By consistency, we could conclude that x ∈ B̃, x 6∈ Ã, and

0 < p (x,B) = p (x,A) p (A,B) = 0

a contradiction. Observe also that

c (q, w′) =
∑

x∈B(q,w′)

(q · x) d (q, w′) (x) =
∑

x∈B(q,w′)

(q · x) p (x,B (q, w′)) (17)

=
∑

x∈B̃(q,w′)

(q · x) p (x,B (q, w′)) = φ (B (q, w′)) = φ (B) (18)

Similarly, we have that c (q, w) = φ (A) = φ(Ã). Finally, since B2 ⊆ Ac, if B2 6= ∅,
then we also have that B̃2 ⊆ B2 ⊆ Ac

φ (B2) =
∑
x∈B̃2

(q · x) p (x,B2) =
∑

x∈B̃2∩Ac
(q · x) p (x,B2)

> w
∑

x∈B̃2∩Ac
p (x,B2) = w

∑
x∈B̃2

p (x,B2) = w
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By Proposition 10 and since B1 and B2 are disjoint, if B1, B2 6= ∅ then we conclude
that

c (q, w′) = φ (B) = φ(B̃) = φ (B1 ∪B2) = p(B1, B̃)φ (B1) + p(B2, B̃)φ (B2) (19)

We have two cases:

1. p (A,B) > 0. By Lemma 9, it follows that B1 = Ã ∩ B̃ = Ã 6= ∅. On the one
hand, by (19), if B2 6= ∅, then we have

c (q, w′) = φ (B) = φ(B̃) = φ (B1 ∪B2) = p(B1, B̃)φ (B1) + p(B2, B̃)φ (B2)

= p(B1, B̃)φ(Ã) + p(B2, B̃)φ (B2) ≥ p(B1, B̃)c (q, w) + p(B2, B̃)w

≥ p(B1, B̃)c (q, w) + p(B2, B̃)c (q, w) = c (q, w)

On the other hand, if B2 = ∅, then Ã = Ã∩B̃ = B1 = B1∪B2 = B̃. This implies
that

c (q, w′) = φ (B) = φ(B̃) = φ(Ã) = φ (A) = c (q, w)

2. p (A,B) = 0. By (14) and Lemma 9, it follows that

p(B1, B̃) = p
(
Ã ∩ B̃, B̃

)
= p

(
A ∩ B̃, B̃

)
= p (A,B) = 0

that is, B1 = ∅ and ∅ 6= B̃ = B2 ⊆ Ac, which immediately yields that

c (q, w′) = φ (B) = φ(B̃) = φ (B2) > w ≥ c (q, w)

Points 1 and 2 prove the statement. �

Proof of Lemma 3 Assume that p is stochastically monotone. We want to show that
σp (B) ⊆ ∂+B. By contradiction, assume that there exists x ∈ σp (B) that does not
belong to ∂+B. Then, there exists z ∈ B such that x� z. By stochastic monotonicity,
we have that p (x, {x, z}) = 0, and so

0 < p (x,B) = p (x, {x, z}) p ({x, z} , B) = 0

which is a contradiction. �

Proof of Proposition 4 Since d is stochastically monotone, p is stochastically monotone.
Consider ∂+B (q, w). Note that it is equal to {x ∈ B (q, w) : q · x = w}. By Lemma 3,
p (∂+B (q, w) , B (q, w)) = 1. So, the support of d (q, w) is contained in ∂+B (q, w). �

Proof of Lemma 5 Clearly, since q < q′, B (q′, w) ⊆ B (q, w). Set A = B (q′, w)

and B = B (q, w). In Proposition 10, let f (x) = x. Given a stochastic demand d, let
p be the consistent random choice rule such that d (q, w) (·) = p (·, B (q, w)). Clearly,
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we have that A ⊆ B and A,B ∈ B. By Lemma 9, it follows A ∩ B̃ = Ã ∩ B̃. Note
that B1 = Ã ∩ B̃ and B2 = B̃\Ã belong to A ⊆ B (provided they are not empty), are
pairwise disjoint, and B̃ = B1 ∪B2. Moreover, B2 ⊆ Ac. Otherwise, there would exist
x ∈ B2 ∩ A. Thus, we would have that x ∈ B2 and x ∈ A. By consistency, we could
conclude that x ∈ B̃, x 6∈ Ã, and x ∈ A ⊆ B

0 < p (x,B) = p (x,A) p (A,B) = 0

a contradiction. Observe that

d̄ (q, w) =
∑

x∈B(q,w)

xd (q, w) (x) =
∑

x∈B(q,w)

xp (x,B (q, w))

=
∑

x∈B̃(q,w)

xp (x,B (q, w)) = φ (B (q, w)) = φ (B)

Similarly, we have that d̄ (q′, w) = φ (A) = φ(Ã). Finally, since B2 ⊆ Ac, if B2 6= ∅,
then we also have that B̃2 ⊆ B2 ⊆ Ac

φ (B2) =
∑
x∈B̃2

xp (x,B2) =
∑

x∈B̃2∩Ac
xp (x,B2) and q′·φ (B2) =

∑
x∈B̃2∩Ac

(q′ · x) p (x,B2) > w

By Proposition 10 and since B1 and B2 are disjoint, if B1, B2 6= ∅, then we have that

d̄ (q, w) = φ (B) = φ(B̃) = φ (B1 ∪B2) = p(B1, B̃)φ (B1) + p(B2, B̃)φ (B2) (20)

By (14) and Lemma 9 and since A ⊆ B, recall that

p (A,B) = p
(
A ∩ B̃, B̃

)
= p

(
Ã ∩ B̃, B̃

)
= p(B1, B̃) (21)

By contradiction, assume that d̄ (q′, w) > d̄ (q, w). We have three cases:

1. p(B2, B̃) = 0. This implies that p(B1, B̃) = 1. By Lemma 9 and (21), it follows
that B1 = Ã ∩ B̃ = A ∩ B̃ = Ã as well as B2 = ∅, that is, B̃ = B1 = Ã. We can
conclude that

d̄ (q, w) = φ (B) = φ(B̃) = φ(Ã) = d̄ (q′, w)

a contradiction.

2. 1 > p(B2, B̃) > 0. This implies that 1 > p(B1, B̃) > 0. In particular, we have
that B1, B2 6= ∅. By Lemma 9 and (21), it follows that B1 = Ã ∩ B̃ = Ã. By
(20), we have that

d̄ (q, w) = p(B1, B̃)φ (B1) + p(B2, B̃)φ (B2)

= p(B1, B̃)φ(Ã) + p(B2, B̃)φ (B2)

= p(B1, B̃)d̄ (q′, w) + p(B2, B̃)φ (B2)
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This yields that

0 > d̄ (q, w)− d̄ (q′, w) = p(B2, B̃)

∑
x∈B̃2

xp (x,B2)− d̄ (q′, w)


that is,

0 >
∑
x∈B̃2

xp (x,B2)− d̄ (q′, w) =⇒ d̄ (q′, w) >
∑
x∈B̃2

xp (x,B2)

In turn, since B̃2 ⊆ B2 ⊆ Ac, this yields that

w ≥ q′ · d̄ (q′, w) ≥ q′ ·

∑
x∈B̃2

xp (x,B2)

 =
∑

x∈B̃2∩Ac
(q′ · x) p (x,B2) > w

a contradiction.

3. p(B2, B̃) = 1. This implies that p(B1, B̃) = 0. In particular, we have that B1 = ∅
and ∅ 6= B̃ = B2. This implies that

d̄ (q, w) = φ (B) = φ(B̃) = φ (B2)

yielding that

w ≥ q′ · d̄ (q′, w) ≥ q′ · d̄ (q, w) = q′ · φ (B2) > w

a contradiction.

Points 1, 2, and 3 prove the statement. �

Proof of Lemma 6 We first prove an ancillary claim:

Claim Let B̄ = B (q̄, w̄) and B̂ = B (q̂, ŵ). If p(B̄ ∩ B̂, B̂) = 0, then

q̄ · d̄ (q̂, ŵ) > w̄

Proof of the Claim By assumption, the support of p
(
·, B̂
)
is contained in B̂ ∩ B̄c, in

particular, ˜̂B ⊆ B̄c. It follows that

q̄ · d̄ (q̂, ŵ) =
∑
x∈ ˜̂B

(q̄ · x) p(x, B̂) >
∑
x∈ ˜̂B

w̄p(x, B̂) = w̄

proving the claim. �
Consider (q, w) and (q′, w′) in Rn++×R++. Define B = B (q, w) and B′ = B (q′, w′).

By the previous claim and setting B̄ = B′ and B̂ = B, it follows that p (B′ ∩B,B) > 0.
Otherwise, we would have that w′ < q′ · d̄ (q, w) = c (q′, w′) ≤ w′, a contradiction. Since
p (B′ ∩B,B) > 0, denote by x̄ ∈ σp (B)∩B′. By Proposition 11 and since x̄ ∈ σp (B),
we have that B 3 x̄ % y for all y ∈ B. We have two cases:
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1. p (B′ ∩B,B′) = 0. By the previous claim and setting B̄ = B and B̂ = B′, it
follows that q · d̄ (q′, w′) > w.

2. p (B′ ∩B,B′) > 0. This implies that

q · d̄ (q′, w′) =
∑
x∈B̃′

(q · x) p (x,B′) =
∑

x∈B̃′∩B

(q · x) p (x,B′)+
∑

x∈B̃′∩Bc

(q · x) p (x,B′)

(22)
Given x ∈ B̃′, we have two subcases:

(a) x ∈ B̃′ ∩Bc. In this case, q · x > w.

(b) x ∈ B̃′ ∩ B = σp (B′) ∩ B. By Proposition 11, it follows that x % y for all
y ∈ B′. In particular, since x̄ ∈ B′, this implies that x % x̄. At the same
time, since x̄ ∈ B is such that x̄ % y for all y ∈ B, we have that x % y for
all y ∈ B. By Proposition 11 and since x ∈ B, this yields that x ∈ σp (B).
By stochastic monotonicity, we can conclude that q · x = w.

To sum up, by (22) and points a and b, we can conclude that

q · d̄ (q′, w′) ≥
∑

x∈B̃′∩B

wp (x,B′) +
∑

x∈B̃′∩Bc

wp (x,B′) = w (23)

By (23) as well as points 1 and 2, we have that

(q′ − q) ·
(
d̄ (q′, w′)− d̄ (q, w)

)
= q′ ·

(
d̄ (q′, w′)− d̄ (q, w)

)
− q ·

(
d̄ (q′, w′)− d̄ (q, w)

)
= q′ · d̄ (q′, w′)− q′ · d̄ (q, w)− q ·

(
d̄ (q′, w′)− d̄ (q, w)

)
= w′ − w′ + w − q · d̄ (q′, w′) = w − q · d̄ (q′, w′)

proving the main statement. �

Proof of the Law of Demand Consider an initial price and wealth pair (q, w). Let
q′ ∈ Rn++ be such that q′k > qk and q′i = qi for all i 6= k. Let w′ = w′ (q′) be such that
w′ = q′ · d̄ (q, w) ≥ q · d̄ (q, w) = w, since p is stochastically monotone. By Lemma
4 and since p is stochastically monotone, it follows that q′ · d̄ (q, w) = w′ = c (q′, w′).
In view of Lemma 6, the difference d̄ (q′, w′) − d̄ (q, w) quantifies a substitution effect
on the goods’average demand due only to the price change q′ − q. This suggests the
following decomposition:

d̄ (q′, w)− d̄ (q, w) = d̄ (q′, w)− d̄ (q′, w′)︸ ︷︷ ︸
wealth effect

+ d̄ (q′, w′)− d̄ (q, w)︸ ︷︷ ︸
substitution effect

(24)

in which the r.h.s. accounts for, respectively, the wealth and substitution effects on the
goods’demand. Note that the elements in (24) are vectors. Thus, the equality holds
componentwise. Since good k is normal and w ≤ w′, we have

d̄k (q′, w) ≤ d̄k (q′, w′) (25)
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By Lemma 6 and the choice of q and q′ and since q′ · d̄ (q, w) = w′ = c (q′, w′), we have
that

(q′k − qk)
(
d̄k (q′, w′)− d̄k (q, w)

)
= (q′ − q) ·

(
d̄ (q′, w′)− d̄ (q, w)

)
≤ 0

Since q′k − qk > 0, it follows that d̄k (q′, w′) − d̄k (q, w) ≤ 0. By (24) and (25), this
implies that

d̄k (q′, w)− d̄k (q, w) =
[
d̄k (q′, w)− d̄k (q′, w′)

]
+
[
d̄k (q′, w′)− d̄k (q, w)

]
≤ 0

proving the statement. For, d̄k (q′, w) ≤ d̄k (q, w) where in q′ only the price of k
increased, while the other prices did not change and wealth remained constant. A
similar argument holds if we consider a decrease in price, that is q′k < qk, rather than
an increase. In that case, we would have that d̄k (q′, w) ≥ d̄k (q, w). �
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