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Abstract

When are economic interactions mediated by prices and transfers, and when are they mediated by varia-
tions in the continuation payoffs within a relationship? To address this question, we examine a relationship 
between two players who periodically face opportunities to undertake randomly generated “projects” that 
impose a cost on one player and a benefit on the other, as well as opportunities to make voluntary transfers 
to one another. We characterize the set of equilibria, with particular emphasis on the efficient frontier. In the 
absence of transfers, incentives are often created by adjusting the continuation values of the relationship, 
sometimes increasing player 1’s continuation payoff (to induce player 1 to accept a particularly costly cur-
rent project) and sometimes increasing player 2’s continuation payoff. In contrast, once transfers enter the 
picture, continuation payoffs maximize the sum of the two players’ payoffs, no matter how asymmetric the 
point on the Pareto frontier under consideration. However, transfers can also be relatively rare, and in par-
ticular can occur less often than the adjustments in continuation values that occur without transfers. Players 
thus rely on transfers to create incentives, but manage to do so while rarely making transfers.
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1. Introduction

1.1. Motivation: maintaining relationships

In many economic interactions, the incentives to take an action are created by contempora-
neous prices, contracts or mechanisms. Consumers purchase goods and pay for them. Firms pay 
their workers according to contracts specifying wages and commissions. Governments hold pro-
curement auctions and pay the winners. The participants in these encounters need neither know 
nor care whether they will meet again.

In many other economic encounters, the incentives are created by the shadow of future in-
teractions. A current benefit is countered not by an immediate payment but by offering more 
lucrative future terms. The compensation for incurring a current cost is not a contemporaneous 
payment, but more favorable treatment in future interactions. Here, it is important that the parties 
are engaged in a continuing relationship.

The literature suggests that such relationships are important. Firms in business-to-business 
relationships typically respond to shocks not by making compensating payments or by appealing 
to the terms of their contract, but by agreeing that “we’ll make it up next time” (e.g., Macaulay, 
1963 and Paley, 1985). For example, Bernstein (1992) and Richman (2006) describe how dia-
mond merchants rely on relationships rather than contracts or formal agreements to mediate their 
interactions, and how this in turn has shaped the nature of the diamond industry. The literature 
on “psychological contracts” (e.g., George, 2009 and Rousseau, 1995) argues that interactions 
within organizations, including notably terms of employment, are typically governed by infor-
mal relationships. Ellickson (1991) studies the residents of (primarily rural) Shasta County in 
California, as well as a variety of other interactions, finding that they rely on the incentives cre-
ated by their continuing relationships to coordinate their activities and settle disputes, rather than 
appealing to formal agreements or threats of legal action. More generally, the study of social 
capital catalysed by Putnam (1995, 2002) stresses the importance of relationships. For exam-
ple, DiPasquale and Glaeser (1998) present evidence that homeowners invest more than renters 
in externality-creating amenities, because the lower mobility of the former makes them more 
likely to enjoy the continued reciprocal benefits of their relationships, a consideration that an 
appeal to the Coase theorem and the corresponding payments would render irrelevant. Looking 
backward, Greif (e.g., Greif, 1997, 2005 and Greif et al., 1994) highlight the role of repeated 
interactions in making possible the trade upon which modern economies are built. Cosmides and 
Tooby (1992a, 1992b) suggest that monitoring relationships was at one point so crucial to our 
evolutionary success that our brains have developed specialized resources for sustaining relation-
ships.

It is a familiar finding that repeated interactions allow the creation of incentives that cannot be 
supported in isolated interactions. The well-developed literature on repeated games and reputa-
tions is built on this observation (see Mailath and Samuelson, 2006, 2013 and Samuelson, 2006
for introductions). This literature typically isolates the role of continuation values in creating 
incentives by working with a stage game that precludes transfers. We are interested in exam-
ining the interplay between transfers and continuation values—when are economic interactions 
mediated by prices and transfers, and when are they mediated by variations in the continuation 
payoffs within a relationship?

To address these questions, we study repeated interactions in which transfers are possible, but 
cannot be compelled by recourse to contracts or legal enforcement. Our emphasis on voluntary
transfers is motivated by the belief that in many interesting circumstances, it is impossible or 
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impractical to compel transfers (or other actions) via contractual or legal means. We discuss this 
belief at greater length in Section 5.2. Here, we note that medieval trade often proceeded in the 
presence of courts that were too weak for merchants to reliably count on contract enforcement. 
Enforcement was undoubtedly all the more problematic in our own evolutionary past. In modern 
settings, a variety of transactions costs may make formal enforcement impracticable. Richman 
(2006, p. 18) reports one of the subjects in his study commenting, “The truth is that if someone 
owes you money, there’s no real way to get it from him if he doesn’t want to pay you.”

There is again a well developed literature on such “relational contracts” or “relational in-
centive contracts” (e.g., Baker et al., 2002; Levin, 2003, and Pearce and Stacchetti, 1998). The 
standard result in this literature is that contractual payments are routinely supplemented by vol-
untary payments. In practice, however, transfers often appear to be used only under exceptional 
circumstances. For example, Ellickson (1991) describes the residents in his study as managing 
the incidents in which they impose costs and benefits on one another without recourse to formal 
agreements or threats of legal action and also typically without making transfers. Instead, their 
behavior follows an even up policy (Ellickson, 1991, pp. 225–229) built around the following 
principles:

– The participants in a relationship maintain a sense of the balance in their relationship. As 
long as this balance does not stray too far from even, the participants make no transfers and 
choose their actions so as to maximize joint welfare. Most notably, transfers are a relatively 
rare occurrence.

– If the balance strays too far from even, then one participant makes a transfer to the other that 
restores the balance, returning the relationship to the first point.

– Failures to perform the duties of a relationship prompt responses from the participants in the 
relationship, notably in the form of declining costly actions that would be of value to one’s 
partner.

– The responses to failures tend to be temporary, lasting until balance can be restored and the 
relationship brought back into balance.

Fiske (1992) refers to “equality matching,” in which people continually confer costs and benefits 
on one another without making transfers, as one of four basic forms of social interaction. The 
etiquette industry goes to great lengths to manage relationships without transfers. Our goal is thus 
to examine a relationship in which voluntary transfers are always feasible, but are in equilibrium 
only sparingly used.

1.2. Results: a preview

We examine the simplest possible interaction in which the creation of incentives gives rise 
to a tradeoff between voluntary transfers and continuation values. Two players periodically face 
opportunities to accept randomly generated “projects” that impose a cost on one player and a 
benefit on the other.

We set the stage in Section 3 by examining a repeated interaction without transfers. The stage 
game in this interaction has a unique equilibrium in which no projects are undertaken. The re-
peated interaction has a stationary-outcome equilibrium that yields higher payoffs—the players 
accept all projects that are not too costly, switching in the event of a deviation to an “autarky” 
equilibrium in which no projects are accepted. However, the players can achieve even higher 
payoffs in an equilibrium in which a player on the negative end of a particularly costly project is 
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rewarded with a higher continuation value. In this case, continuation payoffs are routinely varied 
along the equilibrium path to create incentives. The forces at work here are familiar from the 
theory of repeated games and more specifically from models of repeated risk sharing.

Section 4 turns to our case of primary interest, that in which the stage game of Section 3 is 
augmented by the opportunity to make voluntary transfers, though only after actions have been 
taken. We present an example showing that the Pareto frontier of payoffs can lie strictly outside 
the frontier without transfers. We find that no matter what weighted sum of payoffs for the two 
players is being maximized at a particular point on the frontier, the continuation value in every 
subsequent period maximizes the equally-weighted sum of payoffs. Hence, along the equilibrium 
path continuation values are never shifted to create incentives to undertake projects. Nonetheless, 
there are equilibria in which transfers are rare (in a sense we develop below), and come into play 
only when particularly expensive projects arise. Hence, despite the fact that continuation values 
are not shifted to create incentives, transfers may be rarely made.

This equilibrium captures the basic features of the even up strategy examined by Ellickson
(1991). First, under ordinary circumstances, in which the relationship is not too unbalanced, no 
transfers are made and the continuation payoffs that lie along the equilibrium path do not respond 
to current actions. Second, the relationship is thrown off balance when a particularly expensive 
project arises. The response here is an immediate transfer that puts the relationship back on 
track. Third, the failure to execute an equilibrium action, whether to undertake a project or make 
a transfer, causes the relationship to enter a punishment phase in which projects are declined that 
would otherwise have been undertaken. Finally, though we do not pay attention to this in the 
analysis, this punishment phase need not be permanent, so that the relationship can get back on 
track.

These two models together provide insight into the tradeoff between transfers and continu-
ation values. In the absence of transfers, continuation values are often adjusted, in the process 
giving rise to a tradeoff between current decisions and continuation values. Some current projects 
that would increase the target weighted sum of payoffs are rejected, even though one could create 
the incentives to accept them, because these incentives require too costly an adjustment in con-
tinuation payoffs. In contrast, once transfers enter the picture, continuation payoffs maximize the 
(unweighted) sum of the two players’ payoffs, no matter how asymmetric the point on the Pareto 
frontier under consideration. Moreover, the tradeoff between accepting current projects and con-
tinuation values disappears. Current projects are judged only in terms of their contribution to the 
current objective. Transfers are used to create incentives, but may be rare.

We conclude Section 4 by examining the case in which transfers can also be made before
actions are taken in each period. As is expected, one aspect of the analysis then becomes straight-
forward, in that the efficient frontier of payoffs is linear. However, the location of this frontier 
is not immediately obvious (in particular, it is not simply a tangent to the frontier without trans-
fers), and finding this location involves precisely the analysis carried out for the case in which 
transfers are made after actions. In addition, our characterization of equilibrium behavior remains 
unchanged, as does our interpretation of the interplay between continuation values and transfers 
in creating incentives.

Section 5 considers extensions designed to probe the robustness of our findings. Section 5.1
considers the case in which the marginal utility of receiving a transfer is diminishing in the size 
of the transfer, so that utility is not perfectly transferable. Perhaps paradoxically, the result of 
making transfers less effective in moving utility from one player to the other is that, in equilib-
rium, transfers occur in every period. Section 5.2 considers an example in which the players are 
initially uncertain about the distribution of possible projects. The interesting observation here is 
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that equilibrium has a “starting small” characteristic. Equilibrium play is initially characterized 
by the acceptance of only relatively inexpensive projects. Encouraging news about the distribu-
tion of such projects can lead the relationship to grow and embrace more expensive projects. 
Discouraging news may or may not reduce the scale of projects undertaken. Sections 5.3 and 5.4
turn to imperfect monitoring. As is familiar from theories of repeated games, imperfect moni-
toring blurs the line between equilibrium play and the supporting punishments. The basic forces 
and construction explored in Section 3 reappear, though with more complication.

2. Related literature

We have already noted that our work is connected to the (large) literatures on repeated games 
and relational contracts. We concentrate here on the papers in this literature whose structure is 
most similar to ours.

2.1. Risk sharing

We first examine the game without transfers, in which continuation values alone can be used 
to create incentives. Moving continuations payoffs along the payoff frontier entails an efficiency 
cost. Hence, whenever possible, incentives are created via the combination of an unchanging 
equilibrium continuation value and the threat of an out-of-equilibrium punishment, while con-
tinuation values are adjusted only when this combination does not suffice. A similar pattern 
emerges from a well-developed literature on dynamic risk sharing (e.g., Fuchs and Lippi, 2006;
Kocherlakota, 1996; Ligon et al., 2002; Thomas and Worrall, 1988, 1990). Our results here are 
thus familiar and intuitive, and serve as a point of comparison for our analysis of the game with 
transfers.

2.2. Favors

Bramoullé and Goyal (2013) examine a model in which people are divided into two groups. 
In each period, one individual is chosen to be the “principal” and another individual is chosen to 
be the “expert.” A unit surplus is created if the principal hires the expert to pursue a joint venture, 
and a smaller surplus is created if the principal hires any other individual for the joint venture. The 
efficient outcome calls for the principal to always hire the expert. In contrast, a group practices 
“favoritism” if principals from that group always hire agents from that group, in the process 
hiring the expert if (but only if) the latter happens to be drawn from the principal’s group. The 
basic result is that under certain conditions a group can gain from practicing favoritism (while 
the other group loses). Both groups lose if both practice favoritism.

Leo (2014) examines a “volunteer’s dilemma” in which two players face a task in each period 
that gives a payoff of 1 to each player if completed and a payoff of 0 if not completed. In each 
period each player independently draws a privately-observed cost of completing the task. Any 
function h : {0, 1, 2, . . .} → {1, 2} gives rise to an equilibrium in which player h(t) completes the 
task in period t , but such equilibria are inefficient because they make no use of the information 
about which player has the lower cost. Leo (2014) examines the extent to which the two players 
can reduce the average cost of performing the task by using messages to allocate responsibility 
for performing the task.

Bowen et al. (2013) examine a model in which the incentive to undertake randomly generated 
and costly favors are provided by community enforcement. The costs and benefits of the favor 
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are observed by the person bearing the cost and the recipient of the benefits, but not by the 
remainder of the community. Interest centers on the effects of allowing the recipient to either 
excuse (ex ante) the person incurring the cost from undertaking the favor, or to forgive (ex post) 
the person for not doing so.

Unlike Bramoullé and Goyal (2013), our setting involves no conception of a group and em-
phasizes the extent to which an interaction can bring mutual gains rather than achieving gains 
at the expense of the other group. The draws of the cost levels in Leo (2014) play a role quite 
similar to the randomly drawn projects of our paper. Unlike Bowen et al. (2013), we have no sur-
rounding community. The most important difference is that there are no transfers in Bramoullé 
and Goyal (2013), Leo (2014) and Bowen et al. (2013), and no sense of the tradeoff between 
transfers and continuation payoffs in creating incentives that lies at the center of our analysis.

Cabral (2005) examines a version of the repeated game without transfers considered in this 
paper, with the projects in the stage game interpreted as proposed mergers that succeed only if 
both players, interpreted as countries, approve them. Cabral (2005) shows that there exist equilib-
ria of the repeated game that have stationary outcome paths and that provide higher payoffs than 
the repeated Nash equilibrium of the stage game. Our examination of the game without transfers 
shows that one can in general do yet better by allowing continuation payoffs to adjust so as to 
reward players who undertake particularly costly projects.

2.3. Private information

Mobius (2001) and Hauser and Hopenhayn (2005) examine somewhat different versions of a 
continuous-time model with two players. A pair of independent Poisson processes, one for each 
player, generate opportunities for the player in question to generate a favor. Favors are either 
fixed in size or divisible, in which case the player receiving the opportunity chooses the scale of 
the favor, with a favor of scale x produce a cost cx to the person granting the favor and benefit 
bx (with b > c) to the recipient.

If the arrival of favor opportunities were observed, then the efficient equilibrium in this game 
would be straightforward. Every favor would be granted at the maximum feasible scale, with 
deviations deterred by (for example) reversion to an autarkic outcome in which no subsequent 
favors are granted. Interest centers on the case in which the arrival of favor opportunities is 
privately observed. Mobius (2001) constructs a simple mechanism that relies on the running 
calculation of a state variable kt , defined as the number of times player 1 has granted a favor in 
the interval [0, t) minus the number of times player 2 has granted a favor. There is a constant K
such that player 1 grants a favor at time t (if given the opportunity) if and only if kt < K , and 
player 2 does so if and only if kt > −K .

The equilibrium examined by Mobius (2001) allows favors to often be granted, but does not 
in general lie on the Pareto frontier of equilibrium payoffs. Hauser and Hopenhayn (2005) char-
acterize this frontier. They first show that the frontier is self-generating. The equilibria they 
construct are conceptually similar to that of Mobius, but the counterpart of the state variable 
kt is now a continuation payoff drawn from the frontier of such payoffs. Each favor granted by 
player 2 pushes the continuation payoff upward and to the left on this frontier, increasing 2’s 
continuation payoff by just enough to create the incentive to grant the favor, while each favor 
granted by player 1 does the reverse. Favors are granted at the maximum feasible scale unless 
continuation payoffs cannot be moved far enough (because an axis intervenes) to create the req-
uisite incentive. Moreover, in the absence of favors, continuation payoffs drift back toward the 
center.
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Continuation payoffs take center stage in both Mobius (2001) and Hauser and Hopenhayn
(2005), while the key difficulty in the analysis arises out of the fact that an opportunity to confer 
a favor is private information. In contrast, the arrival of a favor is public information in our model, 
while interest centers on the ability to rely on transfers (or not) rather than continuation payoffs 
in creating incentives. We believe that private information about opportunities to generate gains 
from trade is often important, but we also believe that the familiarity created by a continuing 
relationship may often make it a good approximation to think of such opportunities as being 
commonly observed.

Abdulkadiroǧlu and Bagwell (2013) examine a repeated interaction between two players in 
which privately-observed opportunities again play a central role, but with a more complicated 
stage game. In each period, either one player is given an income of 1, the other player is given an 
income of 1, or neither player is given an income. The receipt of income is privately observed. If a 
player receives income, then that player may choose to exhibit trust by investing any amount x ∈
[0, 1] with the other player. The value of x is publicly observed. This investment succeeds with 
probability q < 1, in which case it produces an income of kx, or fails, in which case it produces 
nothing. The outcome of the investment is privately observed by the recipient of the investment. 
If the investment is successful, then the recipient can transfer some or all of the returns back 
to the investor, while keeping the remainder. The efficient outcome is for income to always be 
fully invested (since qk > 1). Given the complexity of the stage game, a characterization of 
the efficient frontier of equilibria in the repeated game is elusive. Abdulkadiroǧlu and Bagwell
(2013) construct equilibria in which players who receive income invest a portion of that income, 
the size of which is decreasing in the length of time since the opposing player last invested. Each 
investment shifts the continuation payoffs along a line in the direction of the player making the 
investment.

Once again, our model differs in that the arrival of a project (the counterpart of the receipt of 
income in Abdulkadiroǧlu and Bagwell, 2013) is commonly observed. While we concentrate on 
the case in which the costs and benefits of a project are also commonly observed, we consider 
extensions in which these are privately observed. One might suspect that this would pose obsta-
cles similar to those encountered by Abdulkadiroǧlu and Bagwell (2013), but even here we are 
able to characterize the efficient frontier. The ability to observe the existence of an opportunity 
(as in our model) thus appears to be more important than the ability to observe the details of 
these opportunities.

2.4. Transfers in repeated games

Miller (2009) examines a repeated game in which players in each period first receive (possibly 
correlated) private information, then communicate, then choose their actions, and then make 
monetary transfers. The central result of his paper is a folk theorem. His analysis proceeds by first 
viewing the choice of communication and actions in each period as a mechanism design problem, 
assuming that the designer can commit to the transfers that characterize the mechanism. Once 
this problem is solved, one must next confront the fact that in the repeated interaction, incentives 
must be created to ensure that the transfers emerging from the mechanism design stage are indeed 
carried out. Miller (2009) shows that these incentives are straightforward, as long as the stage 
games (and hence the induced mechanisms) are bounded and the players are allowed to become 
arbitrarily patient.

The analysis of our setting would similarly be straightforward if we assumed that the measure 
µ generating projects had bounded support, and that players are arbitrarily patient. In this case, 
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we could readily construct equilibria in which every profitable project is accepted, with incentives 
crated by the prospect of reversion to a continuation path in which no projects are accepted. There 
would be no need for transfers, nor for variations in continuation payoffs along the equilibrium 
path. The subtleties and the interest in our problem arises because we work with the reverse 
configuration of limits. We do not assume that µ has bounded support, while working with fixed 
discount factors rather than arbitrary patience.

Goldlücke and Kranz (2012) examine a repeated game of imperfect public monitoring in 
which players can make transfers at the beginning and end of each period. In contrast, we do 
not allow beginning-of-the-period transfers until Section 4.7. There we argue that, as is the case 
with Goldlücke and Kranz (2012), it is straightforward to verify that the frontier of efficient 
payoffs is linear, with slope −1. Moreover, every such payoff can be achieved by a class of 
strategies that differ only in the payments made at the beginning of the first period, with con-
tinuation payoffs that are never adjusted. In light of this, why do we examine the model with 
beginning-of-the-period transfers? Because this analysis is essential to determining the location 
of the payoff frontier. In addition, this analysis gives us our characterization of equilibrium be-
havior, including the characterization of the circumstances in which transfers are made. It is thus 
the key to our central result, namely that variations in continuation payoffs are no longer used to 
create incentives once transfers come into the picture, but transfers can nonetheless be relatively 
rare.

Athey and Bagwell (2001) examine a repeated duopoly game in which firms privately draw 
new cost levels each period. Collusion is more effective if high-cost firms relinquish market share 
to low-cost firms. In the absence of transfers, the incentives to do so are created by adjusting the 
future market-share allocation in favor of a firm that relinquishes market share. Upon extending 
the model to allow transfers, Athey and Bagwell (2001) find that transfers augment the set of 
continuation values, and hence enhance the ability to collude, but that adjustments in market 
share still occur in equilibrium.

3. The model

This section presents a preliminary model, distinguished by the absence of transfers, that 
illustrates many of our ideas in a simple setting and that allows us to subsequently isolate the 
role of transfers.

3.1. The stage game

There are two players, 1 and 2. The stage game has an extensive form. First, Nature chooses 
a project x ∈ R2 according to a probability measure µ. Players 1 and 2 observe Nature’s choice 
and then simultaneously choose (a1, a2) ∈ {0, 1}2. Player i’s utility function is given by

ui(x1, x2, a1, a2) = a1a2xi.

We think of a project as imposing a cost on one player and a benefit on the other. This may 
represent an opportunity for one player to grant a costly favor to the other player, or for one 
player to realize a benefit that imposes a cost on the other. Nature’s draw determines who bears 
the cost and who reaps the benefit of the project, as well as the magnitude of these costs and 
benefits. The project is accepted, and the payoffs (x1, x2) realized, if and only if both players 
choose to accept (i.e., if ai = 1, i = 1, 2). Otherwise, the project is rejected and both players 
receive payoff 0.
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Let X = supp (µ) denote the support of µ. We assume that X ⊂ {x ∈ R2 | x1x2 ≤ 0}, con-
sistent with our interpretation of a project as conferring a benefit on one player and imposing a 
cost on the other. We also assume that E[xi] > 0 and E[max{xi, 0}] < +∞ for i = 1, 2, and that 
µ({x | x1x2 = 0}) = 0. Expanding the set X to include “win–win” projects in which x1 and x2
are both positive would affect the calculations of equilibrium values but would change none of 
the formal results (all such projects will be accepted in an efficient equilibrium). The same is true 
for universally detrimental projects in which x1 and x2 are both negative, which will be rejected.

The stage game has a (essentially unique) Nash equilibrium with value (0, 0) in which all 
projects are rejected (except possibly those on the zero-measure set {x | x1x2 = 0}, which moti-
vates the “essentially unique”).

3.2. The repeated game

We consider an infinitely repeated game ! with perfect monitoring and public randomization. 
We model the latter by assuming that, in every period t , before the project xt is realized, the 
players publicly observe the value ζ t randomly drawn from a uniform distribution on [0, 1]. 
Without the random device, the set of equilibrium payoffs need not be convex. For example, 
in Example 3.5, the payoff (1/2, 25/22) cannot be achieved without the public randomization 
device.

The random project xt is independent of ζ t and {(ζ t , xt )}∞t=0 is a sequence of independent 
and identically distributed random variables. The actions at = (at

1, a
t
2) chosen by the players in 

period t are publicly observed at the end of the period. Given a sequence of projects and actions 
{(xt , at )}∞t=0, player i’s payoff is

(1 − δ)

∞∑

t=0

δt at
1a

t
2x

t
i ,

where δ ∈ (0, 1) is the common discount factor. Notice that each realization of ζ 0 leads to a 
distinct subgame !ζ 0 , but since ζ 0 has no effect on payoffs, the games !ζ 0 are identical.

A period-t history ht includes the outcome of the public randomization device, the project, 
and the choices of the players in periods 0, . . . t − 1 (a period-0 history is empty). A behavior 
strategy σi specifies a probability σi(h

t , ζ t , xt ) that player i accepts the period-t project xt after 
observing history ht and the period-t outcome ζ t of the public randomization device. A pure 
strategy σi is such that σi (h

t , ζ t , xt ) ∈ {0, 1} for each interim history (ht , ζ t , xt ). For any (be-
havior) strategy σi for player i and any period-t history ht , we denote by σi |ht the continuation 
strategy of σi after history ht . Note that because the subgame after history ht is identical to the 
original game, σi |ht is itself a strategy for the original game.

For a strategy profile σ = (σ1, σ2), let u(σ ) = (u1(σ ), u2(σ )) denote its expected value. That 
is,

ui(σ ) = Eσ

[
(1 − δ)

∞∑

t=0

δt at
1a

t
2x

t
i

]
, i = 1,2.

With a small abuse of notation, if σ is a strategy for the subgame !ζ , then we also denote its 
expected value by u(σ ). We also denote the interim history (∅, ζ, x) simply by (ζ, x).
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3.3. Equilibrium

Let V ⊂ R2 be the set of subgame perfect equilibrium payoffs of !. Notice that if σ is a 
subgame perfect equilibrium for !, then the continuation strategy σζ must be a subgame perfect 
equilibrium for !ζ for all ζ ∈ [0, 1].

Let σA denote the pure strategy where both players reject every project after every history. 
This strategy plays a stage-game Nash equilibrium in every period, and hence is trivially a sub-
game perfect equilibrium. It has payoffs (0, 0). We refer to σA as the autarky equilibrium and say 
that the players have terminated the relationship whenever they follow the subgame perfect equi-
librium σA. Each player can ensure a payoff of at least 0 by rejecting every project. Therefore, 
σA simultaneously delivers the worst equilibrium payoff of 0 to both players.

The existence of the autarchy equilibrium ensures that V is nonempty. For any strategy σ , we 
have

u(σ ) =
1∫

0

u(σζ )dζ.

This ensures the set of equilibrium payoffs V is the convex hull of the equilibrium payoffs of 
the (identical) games Vζ , and hence is convex. Standard arguments ensure that V is compact. We 
thus immediately have the following:

Proposition 1. The equilibrium value set V is nonempty, compact and convex.

3.4. Analytical tools

This section presents some preliminary results that simplify the analysis. Appendix A.1 shows 
that strategies can be “factorized” into a pair (α, w) identifying their current actions (α) and con-
tinuation payoffs (w), along the lines developed by Abreu et al. (1990). Sections 3.4.1 and 3.4.2
show that attention can be restricted to strategies that are pure and simple (in a sense to be made 
precise). We then show that the factorization of simple pure strategies can be further simplified, 
leading to a convenient characterization of the conditions for a subgame perfect equilibria.

3.4.1. Pure strategies suffice
Without loss of generality we can restrict our analysis to pure strategy subgame perfect equi-

libria. The idea behind this result is that, since each period begins with a draw from the public 
randomization device, no further mixtures are required. This is an expected but convenient result.

Let VP be the set of values of all pure strategy subgame perfect equilibria.

Proposition 2. VP = V , i.e., any subgame perfect equilibrium payoff is the payoff of a pure 
strategy subgame perfect equilibrium.

The proof (presented in Appendix A.1) considers a subgame perfect equilibrium σ such that 
after some interim history at least one player randomizes between accepting and rejecting the 
current project. For convenience, suppose in fact that this randomization occurs in the first pe-
riod and let (α, w) be the factorization of the equilibrium σ . The proof first shows that we can 
replace the factorization (α, w) with a lottery over two pure factorizations that gives the same 
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expected payoff. We choose these two pure factorizations to ensure that each satisfies the incen-
tive constraints, so that each represents a subgame perfect equilibrium. This would complete the 
argument if, after every interim history, we could appeal to a public random variable to mediate 
the lottery over the two pure factorizations that we have just attached to that interim history. The 
final step of the proof shows that we can accomplish the same by linking these factorizations to 
the draw of the public randomization device that occurs at the beginning of the period. This gives 
us our pure strategy.

3.4.2. Simple strategies
We can further simplify the analysis of the set of equilibrium payoffs V by restricting attention 

to simple pure strategies. Let σ be a subgame perfect equilibrium in pure strategies. We can 
specify another pure strategy profile σ̂ that agrees with σ on the equilibrium path and that plays 
the autarky equilibrium after every out-of-equilibrium history. More precisely, the strategy σ̂ is 
obtained from σ as follows. After any history ht that includes a deviation from the (random, given 
the public randomization device) outcome path of σ in period t − 1, let σ̂ |ht = σA. For all other 
histories ht (including the empty history), let σ̂ (ht , ζ t , xt ) = σ (ht , ζ t , xt ) for all ζ t ∈ [0, 1] and 
xt ∈ X. Since σ̂ generates the same random outcome path as σ , we have u(σ̂ ) = u(σ ). Moreover, 
σ̂ is a subgame perfect equilibrium—intuitively, we have replaced any punishments in σ with the 
harshest punishment available (the autarky equilibrium).

Following Abreu (1988), we say that σ̂ is simple because it only uses the autarky equilibrium 
as punishment. Though simple strategies are used to simplify the characterization of a subgame 
perfect equilibria, we extend the definition to include any pure strategy: we say that any pure 
strategy is simple if any deviation from its outcome path is followed by autarky.

3.4.3. Factorizing simple pure strategies
We use the factorization of simple pure strategies to develop a convenient description of the 

conditions for an equilibrium. Let σ be a simple pure strategy for !ζ . For any project x ∈ X for 
period 0, let

αi (x) i = 1,2,

denote respectively the probabilities that each player approves the project. For any pair of choices 
a = (a1, a2) ∈ {0, 1}2, let

wa(x) = u(σ |(ζ,x,a))

denote the value of the continuation strategy after the players choose a in period 0. Hence, (α, w)

describes the current actions and the continuation payoffs induced by the behavior strategy. We 
can then write the resulting payoffs as

u(σ ) =
1∫

0

∫

X

[
α1α2[(1 − δ)x + δw1,1] + δ[α1(1 − α2)w

1,0

+ (1 − α1)α2w
0,1 + (1 − α1)(1 − α2)w

0,0]
]
dµ(x)dζ,

where, for simplicity, the argument (x) for αi (i = 1, 2) and wa (a ∈ {0, 1}2) is omitted here and 
below. We say that (α, w), where w = (w0,0, w0,1, w1,0, w1,1), factorizes σ .

Since α(x) ∈ {0, 1}2, the function α partitions X into two sets:

A = {x ∈ X | α(x) = (1,1)} and R = {x ∈ X | α(x) ≠ (1,1)}.
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The set A contains all projects that are accepted by σ in period 0 and R contains all projects 
that are rejected. Since σ is simple, wa(x) = (0, 0) for all x ∈ X and a ≠ α(x). In particular, 
wa(x) = (0, 0) for all x ∈ A and a ≠ (1, 1). Let ŵ(x) = wα(x)(x) for all x ∈ X. The function 
ŵ(x) specifies the continuation value when the players obey σ ’s recommendation in period 0. 
The triple (A, R, ŵ) provides a complete description of σ and thus it is an alternative representa-
tion of a factorization of σ . Hereafter, we drop the hat from w and simply write (A, R, w). The 
following characterization of equilibrium strategies is then immediate:

Lemma 1. Let (A, R, w) be the factorization of a simple pure strategy profile σ for !ζ . Then

u(σ ) =
∫

A

[(1 − δ)x + δw(x)]dµ(x) +
∫

R

δw(x)dµ(x).

Moreover, if σ is a subgame perfect equilibrium then w : X → V and

(1 − δ)xi + δwi(x) ≥ 0 for all x ∈ A and i = 1,2. (IC)

Conversely, if (A, R, w) satisfies (IC) and w : X → V , there exists a subgame perfect equilib-
rium σ̂ that has factorization (A, R, w).

The first equation again writes payoffs as a sum of current and continuation payoffs, while the 
second equation states the incentive constraints for current actions. Since V ⊂ R2

+, note that the 
incentive constraint (IC) is automatically satisfied for player i when x ∈ X is such that xi ≥ 0; 
players are happy to accept benefits, and the incentive constraints revolve around getting them to 
incur costs. We let

β = (1 − δ)/δ,

and note that when the incentive constraint is binding for player i for some x ∈ A, then wi(x) =
−βxi .

3.5. An example

Let X = {(7, −3), (11/3, −1), (−1, 11/3), (−3, 7)}, with µ(7, −3) = µ(−3, 7) = 1/8 and 
µ(11/3, −1) = µ(−1, 11/3) = 3/8, and δ = 1/2. We characterize the equilibrium set for this 
example. As we have noted, there is an autarkic equilibrium featuring payoffs (0, 0). Our task is 
to characterize the remainder of the equilibrium set.

We first argue that the projects (7, −3) and (−3, 7) are never accepted in equilibrium. In 
order to accept such a project, the player bearing the cost must receive a continuation payoff 
of 3. However, the largest possible continuation payoff for player 1 (for example) is obtained 
by always accepting projects (7, −3) and (11/3, −1) and always rejecting projects (−1, 11/3)

and (−3, 7), which gives an expected payoff of only 18/8. The projects (7, −3) and (−3, 7)

will play a role when we add transfers to the game, but at this point we may proceed as if we 
have the “restricted” game in which X = {(11/3, −1), (0, 0), (−1, 11/3)}, with µ(11/3, −1) =
µ(−1, 11/3) = 3/8 and µ(0, 0) = 1/4.

There are four pure strategy profiles in the stage game, consisting of (i) accepting neither 
project, (ii) accepting only (−1, 11/3), (iii) accepting only (11/3, −1), and (iv) accepting both 
projects. The set of feasible stage-game payoffs is the convex hull of the corresponding payoff 
profiles, given by

co {(0,0), (−3/8,11/8), (1,1)(11/8,−3/8)}.
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Fig. 1. Illustration of Example 3.5. The set of feasible payoffs in the restricted game (in which X = {(11/3, −1),

(0, 0), (−1, 11/3)}, µ(11/3, −1) = µ(−1, 11/3) = 3/8, and µ(0, 0) = 1/4) is the convex hull of {(0, 0), (−3/8, 11/8),

(1, 1), (11/8, −3/8)}. The set of equilibrium payoffs in the restricted game and the original game is the shaded region, 
namely the convex hull of {(0, 0), (14/11, 0), (1, 1)(0, 14/11)}.

Since the minmax payoff for each player is 0, the set of feasible and individually rational payoffs 
is (see Fig. 1):

co {(0,0), (14/11,0), (1,1), (0,14/11)}.

There is an equilibrium in which every project is accepted, with any history exhibiting a 
rejection giving rise to the autarky equilibrium. The expected payoff from this equilibrium, and 
from every continuation equilibrium along the equilibrium path, is (1, 1). We need verify only 
one incentive constraint to confirm that this strategy profile is an equilibrium, ensuring that a 
player who earns an immediate payoff of −1 from accepting a project is willing to do so. The 
relevant inequality is

(1 − δ)(−1) + δ ≥ 0,

which is obviously satisfied (since δ = 1/2). The left side is the payoff from accepting a project, 
coupling a current payoff of −1 with a continuation payoff of 1, while the right side is the payoff 
from rejecting, which couples a current payoff of 0 with a continuation payoff (from the autarchy 
equilibrium) of 0. This is the largest symmetric equilibrium payoff.

The equilibrium that maximizes player 2’s payoff gives payoffs (0, 14/11), and features strate-
gies in which (i) if (−1, 11/3) is drawn in the first period, then both players accept and the 
continuation payoff is (1, 1), with continuation payoff (0, 0) should either player reject, (ii) if 
(11/3, −1) or (0, 0) is drawn in the first period, then both players reject, and play continues 
in the next period just as it does after the null history. It is a straightforward application of 
Lemma 1 (confirming that (IC) holds) that these strategies constitute an equilibrium. It is clear 
that player 1 receives a zero payoff in this equilibrium, since the first project to be accepted is 
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of the form (−1, 11/3), followed by a continuation payoff of 1 for player 1. Player 2’s payoff 
solves

v2 = (3/8)[(1 − δ)(11/3) + δ1] + (5/8)[δv2],
which we can solve for v2 = 14/11.

The roles of player 1 and 2 in the preceding paragraph can obviously be reversed to obtain 
an equilibrium with payoffs (14/11, 0). We thus have equilibria with payoffs (0, 0), (14/11, 0), 
(0, 14/11), and (1, 1). The set V is the convex hull of these points, which is the set of feasible, 
individually rational stage-game payoffs. Fig. 1 illustrates.

3.6. The Pareto frontier

This section characterizes the Pareto frontier ∂V of the set V of equilibrium payoffs. It will 
be useful to have a parametric representation of the Pareto frontier ∂V . We denote the maximum 
equilibrium payoff to player i as

v̄i = max {vi | v ∈ V } i = 1,2,

and then define a pair of functions ϕj : [0, v̄i] → [0, v̄j ], j = 1, 2, describing the Pareto frontier: 
(vi, vj ) ∈ ∂V if and only if vi ∈ [0, v̄i] and vj = ϕj (vi).

For λ ∈ R2
+ \ {(0, 0)} define the set

∂V λ = argmax {λ · v | v ∈ V } ⊂ ∂V

of all equilibrium payoffs that maximize the weighted sum of payoffs λ1v1 + λ2v2. Any point 
on the frontier of efficient payoffs belongs to a set ∂V λ for some λ. The set ∂V λ may not be a 
singleton, and so we define v̄λ

i = max {vi | v ∈ ∂V λ}, i = 1, 2.
Since V = co (Vζ ), all extreme points of V are contained in Vζ . Moreover, ∂V λ = co (∂V λ

ζ )

for all λ ∈ R2
+ \ {(0, 0)}. Hence, one can achieve the extreme points of the Pareto frontier 

with equilibria that do not use the public randomization device in the first period. Obvi-
ously, if ∂V λ is a singleton {v}, then v is an extreme point of V and ∂V λ

ζ = {v}. In general, 
(v̄λ

1 , ϕ2(v̄
λ
1 )), (ϕ1(v̄

λ
2 ), v̄λ

2 ) ∈ ∂V λ
ζ for all λ ∈ R2

+ \ {(0, 0)}. It is possible that ∂V λ ≠ ∂V λ
ζ when 

∂V λ is a line segment, in which case, some v ∈ ∂V λ can only be attained with the use of the
public randomization device.

We can characterize the set of efficient equilibria with the following decomposition:

Proposition 3. Fix λ ∈ R2
+ \ {(0, 0)} and vλ ∈ ∂V λ

ζ , and assume σ is a simple pure subgame 
perfect equilibrium such that u(σ ) = vλ. Let (A, R, w) be σ ’s factorization. For i = 1, 2, define

Ui = {x ∈ X | −v̄λ
i ≤ βxi < 0 and λ · x > 0}

Ci = {x ∈ X | −vi ≤ βxi < −v̄λ
i and βλj xj > λ · vλ − λjϕj (−βxi)}.

Then,

(a) A = U1 ∪ U2 ∪ C1 ∪ C2 and R = X \ A.
(b) λ · w(x) = λ · vλ for all x ∈ R ∪ U .
(c) w(x) = (−βxi, ϕj (−βxi)) for all x ∈ Ci , i = 1, 2.
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Fig. 2. Acceptance regions without transfers, for an equilibrium that maximizes the weighted sum of equilibrium payoffs 
λ1v1 + λ2v2. Projects in the unconstrained region U (combining U1 and U2) are accepted, with continuation value 
vλ that maximizes λ1v1 + λ2v2. Projects in the constrained region C (combining C1 and C2) are accepted, but the 
continuation value is pushed away from vλ in favor of the player incurring the cost of the project. Projects for which 
λ1x1 + λ2x2 < 0 are rejected, since they reduce the value of the objective. Projects for which βxi < −vi for some i
are rejected, because continuation values are insufficient to motivate i to accept such projects. Some projects for which 
λ1x1 + λ2x2 > 0 and βxi > −vi are rejected, because the relatively small amount by which they increase the objective 
is overwhelmed by the loss in value incurred by the required adjustment of continuation values away from vλ .

Fig. 2 illustrates this result and Appendix A.2 contains the proof. To interpret this decomposi-
tion, recall that we are describing an equilibrium that maximizes (over the set of equilibrium 
payoffs) the weighted sum λ1v1 + λ2v2. As Fig. 2 illustrates, projects for which λ · x < 0
are rejected (lie outside A = U1 ∪ U2 ∪ C1 ∪ C2) since they reduce the value of the objective 
λ1v1 + λ2v2. Item (b) indicates that after a project x ∈ R is rejected, the continuation payoff is 
drawn from ∂V λ. There are no incentive constraints in the event of a rejection, and so the optimal 
continuation payoff maximizes the weighted sum λ · w(x).

A project for which λ · x > 0 increases the value of the objective function, but it may still be 
optimal to reject it. A project x should be accepted only if, together with proper continuation 
payoffs w(x) that ensure incentive compatibility, it would give a higher welfare than rejecting 
the project and continuing with continuation payoffs vλ, i.e., only if

λ · [(1 − δ)x + δw(x)] > δλ · vλ. (1)

The sets U1 and U2 (“Unconstrained”) identify projects with the property that the incentive 
constraints can be satisfied with a continuation payoff drawn from ∂V λ. Item (b) indicates that, in 
this case, it is optimal to choose a continuation payoff from ∂V λ. When w(x) ∈ ∂V λ, inequality 
(1) becomes

λ1x1 + λ2x2 > 0.

The sets C1 and C2 (“Constrained”) identify projects with the property that the incentive con-
straint for player i to accept the project can be satisfied only if i’s continuation payoff exceeds vλ

i . 
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Item (c) indicates that in this case, it is optimal to set a continuation payoff to exactly satisfy the 
incentive constraint for player i. In particular, pushing the continuation payoff away from vλ

reduces welfare, and so the strategy calls for the smallest departure from vλ consistent with sat-
isfying the incentive constraints. We thus have w(x) = ((−βxi, ϕj (−βxi))), and accepting the 
project has a higher welfare than rejecting it only if

βλj xj > λ · vλ − λjϕj (−βxi).

The sets Ui and Ci combine to comprise the acceptance set.
The function ϕj (−βxi) describing the Pareto frontier is concave and decreasing in xi ∈

[−v̄i , 0], and so λ · vλ − λjϕj (−βxi) is increasing and convex function of xi . Hence the ac-
ceptance set A is convex.

3.7. Interpretation

To interpret these equilibria, we can think of the agents as entering each period with an effi-
cient continuation value v ∈ ∂V λ

ζ (after public randomization) for some welfare weights λ. The 
welfare weights determine the projects that are accepted in the current period. For projects in-
volving a sufficiently small cost (i.e., x ∈ U ), the project is accepted and the welfare weights 
remain unchanged. Incentives are relatively easy to create here, and the threat of autarky suf-
fices, without adjusting continuation payoffs. For projects imposing larger costs, incentives are 
created by rewarding the person incurring the cost of the project with a larger continuation value. 
For example, player 2 is induced to approve a particularly costly project by a shift in continu-
ation values in favor of player 2. The corresponding welfare weights associated with the new 
efficient continuation value give rise to a larger set of projects in the second orthant that player 1 
is prescribed to accept next period, and a smaller set of projects in the fourth orthant that player 2 
is prescribed to accept next period, pushing continuation payoffs in favor of player 2. Play then 
continues with this new behavioral prescription, with continuation payoffs unchanged as long as 
projects are not too costly, and with the next especially costly project shifting the continuation 
payoffs in the favor the agent incurring the cost.

Projects with small costs thus have no effect on continuation play. The players keep track only 
of large costs, with each sufficiently costly project prompting a shift of the acceptable projects 
toward the person bearing the cost, with this shift remaining until the next large cost is incurred.

4. Transfers

We now modify the previous game by allowing the players to make transfers.

4.1. The game

In every period, after a project x has been either adopted or rejected, simultaneously each 
player i makes a voluntary transfer mi ≥ 0 to player j . A transfer mj from player j to player i

increases i’s utility by mj . Player i’s total payoff for the period is then xi − mi + mj when the 
project is accepted, and −mi + mj when a project is rejected.

With transfers, the autarky equilibrium σA prescribes that after every history both players 
reject every project and make no transfers. We say that a strategy σ is simple if in any period 
where the players do not follow its voting recommendation, the players then make no transfers, 
and after any history that involves a deviation, the players revert to autarky.
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We again restrict attention to simple strategies. The factorization of a simple strategy σ is now 
represented by a tuple (α, m, w), where α(ζ, x) ∈ [0, 1]2 specifies players’ accept/reject deci-
sions, m = (m0,0, m0,1, m1,0, m1,1) specifies the transfers and w = (w0,0, w0,1, w1,0, w1,1) spec-
ifies the continuation values. Hence, for each voting outcome a ∈ {0, 1}2, the vector ma(ζ, x) ∈
R2

+ specifies the pair of transfers after the players choose a, and wa(ζ, x) = u(σ |(ζ,x,a,ma(ζ,x))) is 
the continuation value after the players choose a and make the proper transfers. Since σ is sim-
ple, the factorization only specifies continuation values after the proper transfers ma(ζ, x) are 
made. By definition, when the transfers are different from ma(ζ, x), the players revert to autarky 
and the continuation value is (0, 0). Moreover, if a ∈ {0, 1}2 is not given positive probability by 
σ (ζ, x), then ma(ζ, x) = (0, 0) and σ |(ζ,x,a,m̂) = σA for all m̂ ∈ R2

+, i.e. transfers are zero and 
continuation play is given by autarky.

This factorization implicitly assumes that transfers are deterministic. More generally, for an 
arbitrary behavioral strategy σ , the transfers after (ζ, x, a) could be drawn randomly, in which 
case ma(ζ, x) would be a probability distribution over R2

+ instead of just a vector in R2
+. But, 

as we explain in the following subsection, it will suffice to consider behavioral strategies with 
deterministic transfers only.

We let T ∗ denote the maximal sum of equilibrium payoffs, and let VT ∗ denote the convex hull 
of {(0, 0), (0, T ∗), (T ∗, 0)}.

Remark 1 (Complementarity Condition). Without loss of generality, we can restrict attention to 
strategies σ that satisfy a complementarity condition that in every period and for any history, at 
most one player makes a positive transfer. In particular, let σ be a subgame perfect equilibrium 
with factorization (α, m, w). Suppose that for a given (ζ, x, a), ma

i (ζ, x) > 0 for both i = 1, 2. 
Since each player i only cares about the net transfer ma

j (ζ, x) − ma
i (ζ, x), we can reduce the 

players’ transfers while keeping constant the net transfers. If ma
j (ζ, x) − ma

i (ζ, x) > 0, for ex-
ample, then we let m̂a

i (ζ, x) = 0 and m̂a
j (ζ, x) = ma

j (ζ, x) − ma
i (ζ, x). Reducing the transfers 

relaxes incentive constraints and hence (a, m̂, w) also represents a subgame perfect equilibrium. 
Hereafter we will assume that every subgame perfect equilibrium satisfies the complementarity 
condition ma

1(ζ, x) · ma
2(ζ, x) = 0 for all (ζ, x, a).

4.2. Pure strategies suffice

Once again, it sacrifices no generality to restrict attention to pure strategies. An argument 
paralleling that of Proposition 2 (presented in Appendix A.3) establishes:

Proposition 4. With transfers, VP = V , i.e., any subgame perfect equilibrium payoff is the payoff 
of a pure subgame perfect equilibrium.

For a simple pure strategy σ , we adopt again the simpler factorization representation 
(A, R, m, w), where A, R ⊂ X are respectively the sets of projects accepted or rejected in the 
first period, and m and w specify the transfers and continuation values (on the outcome path) in 
the first period.

4.3. The importance of transfers: an example

To illustrate the potential importance of transfers, we return to the example of Section 3.5. We 
first argue that there exists an equilibrium in which all projects are accepted. In this equilibrium, 
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accepting either (11/3, −1) or (−1, 11/3) gives rise to no transfers, but accepting the project 
(7, −3) or (−3, 7) demands a transfer of 3/2 by the player receiving the benefit of the project to 
the player incurring the cost. As usual, any deviation from these strategies prompts a reversion 
to autarky. The continuation payoffs from this strategy are given by (3/2, 3/2). As we saw in 
Section 3.5, without transfers, projects (7, −3) and (−3, 7) are never accepted in equilibrium. 
But it is straightforward to verity that a transfer of 3/2 to the person bearing the cost of such a 
project just suffices to induce him to accept the project, while also just satisfying the incentive 
constraint for the player that makes the transfer.

This establishes (3/2, 3/2) is an equilibrium value and that the equilibrium value set with 
transfers is strictly larger than the equilibrium value set without transfers. We now construct the 
Pareto frontier of V , showing in the process that V is a strict subset of VT ∗ . We concentrate 
on that part of the frontier in which player 2 receives a payoff higher than 3/2, appealing to 
symmetry to complete the characterization of the frontier.

We first examine an equilibrium in which all projects are accepted in the first period. We 
assume that transfers are arranged so as to maximize the payoff of player 2 (subsequently noting 
that there exists a counterpart in which transfers are arranged to maximize the payoff of player 1). 
Projects (7, −3), (11/3, −1) and (−1, 11/3) are followed by a transfer of 3/2, 3/2 and 1/2, 
respectively, from player 1 to player 2. Project (−3, 7) is followed by a transfer of 3/2 from 
player 2 to player 1. In all cases, the continuation payoff is (3/2, 3/2), while any deviation 
prompts a switch to autarky. The payoff from this equilibrium is (9/8, 15/8). By symmetry, 
(15/8, 9/8) is also an equilibrium payoff. It is then straightforward that there exist equilibria 
exhibiting any payoff that is a convex combination of (9/8, 15/8) and (15/8, 9/8). The equilibria 
in this set differ in terms of the transfers made between the two agents, and include the special 
case of payoff (3/2, 3/2).

Next, we consider the case in which only the project (7, −3) is rejected in the first period and 
other projects are accepted, with transfers arranged to maximize the payoff of player 2. Even 
after project (7, −3) is rejected, a transfer from player 1 to player 2 is required. The transfers 
after each project are as follows. Projects (7, −3), (11/3, −1) and (−1, 11/3) are followed by a 
transfer from player 1 to player 2 of 3/2, 3/2 and 1/2 respectively. Project (−3, 7) is followed by 
a transfer of 3/2 from player 2 to player 1. Continuation payoffs are (3/2, 3/2) in each case. The 
payoff from this equilibrium is (11/16, 33/16). By symmetry, there is an equilibrium in which 
only project (−3, 7) is rejected with payoff (33/16, 11/16).

Finally, we consider the case in which the only projects accepted in the first period are those 
that provide positive payoffs to player 2, with transfers arranged so as to maximize the payoff 
of player 2. Again, even after projects (7, −3) and (11/3, −1) are rejected, a transfer of 3/2
from player 1 to player 2 is required. Project (−1, 11/3) is accepted, followed by a transfer of 
1/2 from player 1 to player 2. Project (−3, 7) is accepted, followed by a transfer of 3/2 from 
player 2 to player 1. The payoff from this equilibrium is (0, 9/4). By symmetry, (9/4, 0) is also 
an equilibrium payoff.

Fig. 3 illustrates the resulting equilibrium value set. Proposition 5 below ensures that its 
boundary is the Pareto frontier of V .

We have neglected one possibility, namely that in which only the project (11/3, −1) is rejected 
in the first period and other projects are accepted, with transfers arranged to maximize the payoff 
of player 2. In this equilibrium, projects (7, −3), (11/3, −1) and (−1, 11/3) are followed by a 
transfer from player 1 to player 2 of 3/2, 3/2 and 1/2 respectively. Project (−3, 7) is followed 
by a transfer of 3/2 from player 2 to player 1. In all cases, the continuation payoff is (3/2, 3/2). 
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Fig. 3. Illustration of Example 4.3. The set of equilibrium payoffs in the relationship without transfers is the convex hull of 
{(0, 0), (0, 14/11), (1, 1), (14/11, 0)}. With transfers, the set of equilibrium payoffs is the convex hull of {(0, 0), (0, 9/4), 
(11/16, 33/16), (9/8, 15/8), (3/2, 3/2), (15/8, 9/8), (33/16, 11/16), (9/4, 0)}. The set VT ∗ is given by the convex hull 
of {(0, 0), (0, 3), (3, 0)} (bounded by the dotted line and the axes). The set of equilibrium payoffs with transfers is a strict 
superset of the set without transfers, but a strict subset of the set VT ∗ .

The payoff from this equilibrium is (7/16, 33/16), and by symmetry, (33/16, 7/16) is also an 
equilibrium payoff. These payoffs lie inside the efficient frontier.

4.4. The Pareto frontier

We now characterize the Pareto frontier of the game with transfers. Let w∗ be a vector of 
continuation payoffs that achieve the (maximal) sum of equilibrium payoffs T ∗.

Fix a project x. If the project x is to be accepted, followed by transfers m(x), and continuation 
payoffs w(x), then the following incentive constraints must hold:

(1 − δ)[x1 − n] + δw1 ≥ 0

−(1 − δ)m1 + δw1 ≥ 0

(1 − δ)[x2 + n] + δw2 ≥ 0

−(1 − δ)m2 + δw2 ≥ 0,

where n = m1 −m2 is the net transfer from player 1 to player 2 (cf. Remark 1), and the argument 
x in transfers and continuation values has been omitted. The first and third constraints ensure 
that the project is undertaken, and the second and fourth ensure that transfers are made.

Each point on the Pareto frontier maximizes (over the set of equilibrium payoffs) a weighted 
sum of the players’ welfare. For a given λ ∈ R2

+\{(0, 0)}, the welfare to be maximized is

λ · [(1 − δ)x + δw] + (1 − δ)(λ2 − λ1)n. (2)
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We assume for this presentation that λ2 > λ1 (the case λ2 < λ1 is analogous), so that the 
welfare function puts more weight on 2’s payoffs, and characterize the frontier for such values. 
Notice that in this case, any transfer from player 1 to player 2 increases welfare, and everything 
else being equal, such transfers should be maximized.

We further divide the analysis into two cases. We first consider projects in which x2 < 0, so 
that player 2 bears the cost of the project. In this case, since λ2 > λ1, it is optimal to set m2 = 0
and to maximize m1. Hence, the second incentive constraint binds and

(1 − δ)m1 = δw1.

Since x1 ≥ 0 and m2 = 0, the first and last constraints are slack, and after we substitute the 
optimal value of n (= m1), the third constraint becomes

(1 − δ)x2 + δ(w1 + w2) ≥ 0.

This constraint may be impossible to satisfy if |x2| is too large. Finally, substituting the (binding) 
second constraint into (2), the welfare to be maximized becomes

(1 − δ)λ · x + δλ2[w1 + w2]. (3)

If the project is rejected, then the welfare to be maximized (from (2)) is

(1 − δ)(λ2 − λ1)n + δλ · w.

In this case, we optimally set m2 = 0 and maximize m1. The constraint on m1 is that −(1 −
δ)m1 + δw1 ≥ 0, so (1 − δ)m1 = δw1 and the welfare upon rejecting x is

δλ2(w1 + w2). (4)

It is clear from (3)–(4) that whether the project is accepted or rejected, the continuation value 
should be chosen so as to maximize w1 + w2. The project should then be accepted if and only 
if λ · x > 0 and βx2 ≥ −T ∗. Notice that player 1’s payoff in this case is given by x1, since the 
binding incentive constraint (1 − δ)m1 = δw1 ensures that 1’s payoff in the continuation game 
starting with the period-1 transfer is 0.

Let us now consider the case in which λ2 > λ1, as before, but x1 < 0. Transfers now serve 
a dual role. Transfers from 1 to 2 again increase welfare, but now transfers from 2 to 1 may be 
necessary to create the incentives for 1 to endorse the project. Because λ2 > λ1, if the project x
is accepted, at an optimum the first incentive constraint is satisfied with equality, so

(1 − δ)n = (1 − δ)x1 + δw1,

and since x1 < 0, the second constraint is slack (if m1 = 0 the second constraint is clearly satis-
fied, and if m1 > 0 then n = m1). If m2 = 0 the last two constraints are satisfied, and if m2 > 0
then m2 = −n and the last constraint is more demanding than the third (because x2 ≥ 0) and can 
be written as

(1 − δ)x1 + δ(w1 + w2) ≥ 0.

Again, substituting the constraints into (2), we see that whether the project is accepted or rejected, 
w1 + w2 should be maximized, and the project should be accepted if and only if x1 + x2 > 0 and 
βx1 ≥ −T ∗. In this case, player 1’s payoff is 0.

Notice that there is an asymmetry here between the case x1 < 0 and x2 < 0. The asymmetry 
concerns the criterion for accepting the current project. When x2 < 0, current projects are ac-
cepted if and only if they are incentive compatible and increase the value λ1x1 + λ2x2. When 
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Fig. 4. Acceptance regions with transfers, for an equilibrium that maximizes the weighted sum of equilibrium payoffs 
λ1v1 + λ2v2, with λ2 > λ1. Regardless of the project accepted, continuation values maximize the unweighted sum 
w1 + w2. Projects are accepted only if the cost is less than the maximized (and normalized) value (w∗

1 + w∗
2 )/β of this 

unweighted sum. Within this constraint, projects with x2 < 0 are accepted if and only if λ1x1 +λ2x2 > 0, i.e., if and only 
if they increase the value of the objective. Projects with x1 > 0 are less valuable because they require directing surplus 
to player 1 in order to motivate him to accept the project, whereas the objective favors transferring surplus to player 2 
(since λ2 > λ1), and these projects are accepted only if x1 + x2 > 0.

x1 < 0, then current projects are accepted if and only if they are incentive compatible and increase 
the sum x1 + x2. Why the difference? Player 2 gets a larger weight in the welfare criterion, and 
there are two ways of increasing welfare. One is to make payments from player 1 to player 2, 
and the other is to accept current projects. When x2 < 0, accepting a current project places no re-
strictions on the amount of money 1 can transfer to 2, and so the criterion is to accept if and only 
if the current project increases the objective λ1x1 + λ2x2. When x1 < 0, accepting the current 
project reduces the net transfer that 1 can make to 2. As a result, the current project is accepted 
only if it increases the sum x1 + x2.

Using the fact that a similar analysis applies to the case λ1 < λ2, we have established:

Proposition 5. Fix λ ∈ R2
+ \{(0, 0} with λ2 > λ1 (with the reverse inequality analogous). Assume 

σ is a subgame perfect equilibrium such that u(σ ) = vλ. Let (A, R, w) be σ ’s factorization. 
Then,

(a) w(x) = w∗ for all x ∈ X.
(b) R = X\A, where A consists of those x ∈ X satisfying

(1 − δ)xi + δT ∗ ≥ 0 i = 1,2, and

{
λ1x1 + λ2x2 ≥ 0 if x2 < 0
x1 + x2 ≥ 0 if x1 < 0.

Fig. 4 illustrates this characterization of equilibrium strategies.
Once the first project is accepted in this equilibrium, the continuation equilibrium maximizes 

the sum of payoffs, and continues to do so after every subsequent history. Hence, there is no 



L. Samuelson, E. Stacchetti / Journal of Economic Theory 169 (2017) 170–217 191

memory of past projects. Any asymmetry in payoffs is accomplished by adjusting the acceptance 
region for the initial project and the transfers accompanying that project. Subsequently, the ac-
ceptance regions are symmetric and transfers are just enough to create the current incentives to 
undertake projects.

An interesting aspect of Proposition 5 is that there are multiple equilibria consistent with 
the (efficient) equilibrium payoffs. When projects arise so large that they cannot otherwise be 
carried out, then transfers must be made. These are projects that cost player i more than w∗

i /β

(falling in the lower or leftward part of the A region in Fig. 4). Transfers can also be made 
after small projects (that cost less than w∗

i /β)), but need not be made, as long as the transfer 
conventions are arranged so as to have the same expected payoffs. We could thus have equilibria 
in which transfers are always made, but there are also equilibria in which transfers only rarely 
are undertaken. This freedom in making transfers gives rise to the flat segment on the payoff 
frontier in Fig. 4. Different points along this flat segment correspond to equilibria with the same 
accept/reject decisions, but different transfer conventions. We see a specific example of such a 
flat segment in Example 4.3.

In interpreting our results, we focus on the equilibrium in which transfers are made only in 
the event of a project so large that it otherwise would not be carried out. This allows us to make 
the point that efficiency need not require frequent transfers. We also regard this equilibrium as 
the best explanation of relationships in which projects are frequently undertaken but transfers are 
relatively rare (cf. Section 4.6 below). We could isolate this as the unique equilibrium outcome 
in a game in which transfers give rise to arbitrarily small transactions costs (or, more precisely, 
it would be the limit of equilibria of a sequence of such games in which the transactions costs 
converge to zero).

4.5. Comparison

Without transfers, projects of moderate size are accepted without any effect on continuation 
values, while larger projects are accepted only at the cost of pushing continuation values away 
from the maximizer of the relevant weighted sum of continuation payoffs. In the presence of 
transfers, we focus on equilibria in which projects of moderate size are analogously accepted 
without transfers, while larger projects require transfers. What is the difference in the two situa-
tions, other than that “transfers” have been substituted for “continuation values?”

In the absence of transfers, every variation in continuation payoffs required to create incentives 
entails a sacrifice in the welfare value of continuation payoffs. In contrast, transfers involve no 
such sacrifice. As a result, relationships with transfers can typically support higher payoffs than 
those that do not (as in Example 4.3). However, this very ability to support larger payoffs pushes 
outward the boundary between “moderate” projects, that can be supported without transfers, and 
“large” projects that require transfers. The effectiveness of transfers in creating incentives ensures 
that we can expect to see less evidence of these very incentives. Instead, it will more often be the 
case that the ability to continue the relationship unaltered will suffice for the required incentives.

4.6. Interpretation

The equilibrium described in Proposition 5 captures the basic features of the even-up strategy 
examined by Ellickson (1991) and summarized in Section 1.1. First, under ordinary circum-
stances, no transfers are made and the continuation payoffs that lie along the equilibrium path do 
not respond to current actions. Actions and continuation payoffs are chosen to maximize the sum 



192 L. Samuelson, E. Stacchetti / Journal of Economic Theory 169 (2017) 170–217

of the players’ payoffs. This behavior continues until the relationship is thrown “out of balance” 
by the appearance of a project that is particularly costly for one player. Such a project pushes 
the burden imposed on that player beyond the bounds that can be sustained without recourse to 
either a transfer or an adjustment in continuation payoffs. Depending on the circumstances, this 
may entail a player who incurs exceptional cost in granting a favor to another, or it may involve a 
player who captures a benefit only by imposing a particularly large cost on the other. The equilib-
rium then gives us the second even-up characteristic, namely a transfer that (perhaps only partly) 
compensates the player incurring the cost. We then continue, with no further transfers and with 
continuation play continuing to maximize the sum of payoffs, until the next particularly costly 
project. Third, the incentives that lie behind these equilibrium actions arise out of the fact that, 
should one party fail in their equilibrium action, whether by failing to undertake a project or by 
failing to make a transfer, then the relationship enters a punishment phase. We have simplified 
the equilibrium analysis by considering simple strategies, exhibiting the harshest punishments 
possible. Ellickson (1991) notes that punishments are typically measured, being only as severe 
as called for by the relevant transaction, and typically are temporary. As is familiar from work in 
repeated games, our harsh punishments are a convenience only, and could easily be replaced by 
measured and temporary punishments.

4.7. Introductory transfers

Our assumption so far has been that the agents can make transfers at the end of a period, but 
not at the beginning. There is only one point at which this assumption is substantive, namely the 
missing possibility that a transfer can be made at the beginning of the first period. Given that 
transfers can be made at the end of period t , nothing is added by also allowing transfers at the 
beginning of period t + 1, with no intervening actions. But period 0 has no preceding period, 
and the ability to make a transfer here makes an important difference in the set of equilibrium 
payoffs. To allow for an “introductory transfer” in period 0 as the two agents encounter each 
other for the first time, we now modify the extensive form of the component game. In every 
period, the players first make simultaneous voluntary transfer to one another, then they publicly 
observe the project before they simultaneously choose to accept it or reject it.

Recall that V is the set of equilibrium payoffs in the repeated game we have examined in the 
sections 4.1–4.6. Let T ∗ denote the largest sum of equilibrium payoffs, or

T ∗ = max
v∈V

v1 + v2,

and define the set

VT ∗ = {v ∈ R2
+|v1 + v2 ≤ T ∗}.

Intuitive, VT ∗ is the set of all nonnegative payoffs whose sum is the maximum payoff available 
in the game with an initial first-period transfer. The following is immediate:

Proposition 6. If transfers can be made at the beginning of the first period, the set of equilibrium 
payoffs is given by VT ∗ .

Goldlücke and Kranz (2012) obtain an analogous result for a repeated game with a general 
stage game and imperfect public monitoring. The argument in both settings is straightforward. 
Let (v1, v2) ∈ R2

+ be such that v1 + v2 = T ∗. Then consider a strategy profile that calls for net 
transfer from agent 1 to agent 2, at the beginning of the first period, of
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m = T ∗

2
− v1,

with the continuation equilibrium payoff v∗ = (T ∗/2, T ∗/2) if this payment is made and au-
tarky otherwise. The incentive constraints for equilibrium behavior are then immediate, as is the 
verification that the resulting payoffs are (v1, v2).

Allowing introductory transfers thus gives us a simple argument that characterizes a simple 
equilibrium frontier. The reasons for devoting the bulk of Section 4 to the case without an intro-
ductory transfer are twofold. First, to characterize the payoff set VT ∗ , we need to identify T ∗. 
One’s first intuition might be that this is the maximum sum of payoffs that can be achieved in 
the game without transfers, but Section 4.3 shows that this is not the case. Instead, the presence 
of transfers in the continuation game (after any introductory transfers have been made) typically 
shifts the frontier of that game outward, and we need the analysis of Section 4 to characterize this 
frontier. Second, we are interested not just in the set of equilibrium payoffs, but in the behavior 
behind those payoffs. It is the characterization of this behavior that allows us to conclude that 
not only do transfers shift the efficient frontier outward, but they do so via equilibria in which 
transfers may be relatively rarely made. For this, we again need an analysis of the continuation 
game after introductory transfers have been made.

We can also comment on behavior in the presence of an introductory transfer. Our analysis of 
the game without introductory transfers characterizes play in all but the first period. Proposition 5
also immediately characterizes behavior corresponding to the point on the Pareto frontier that 
maximizes the sum of payoffs (i.e., maximizes in the direction (λ1, λ2) = (1, 1)). However, if 
we want to maximize any other weighted sum of payoffs, the result will be a corner solution 
in which one player (say player 2, because λ2 > λ1)) receives T ∗ and the other player receives 
nothing. Moreover, this equilibrium must begin with a suitably large transfer from player 1 to 
player. In particular, the application of Proposition 5 for the case in which λ2 > λ1 confirms that 
it is impossible to obtain such a payoff without a transfer.

5. Extensions

We sketch here some of the many possible extensions of this model.

5.1. Imperfectly transferable utility

Let f : R → R be a strictly decreasing, concave function with f (0) = 0. The interpretation is 
that if m is a transfer from player 2 to player 1, then f (m) is the cost of this transfer to player 2. 
The function f takes the entire real line as its domain. If m < 0, money is flowing from 1 to 2 
with benefit to 2 of f (m) > 0. The previous sections examined the case of perfectly transferable 
utility, or f (m) = −m. When f is strictly concave, we have imperfectly transferable utility.

To characterize the efficient frontier, we consider welfare weights λ ∈ R2
+\{(0, 0)}. Suppose 

that a transfer m and continuation payoffs (w1, w2) are to be chosen so as to maximize the 
weighted sum

λ1[(1 − δ)m + δw1] + λ2[(1 − δ)f (m) + δw2].
The solution satisfies (unless no such m∗ exists, in which case we set ϕ′

2(w
∗
1) = −λ1/λ2 and 

m∗ = −∞)

f ′(m∗) = ϕ′
2(w

∗
1) = −λ1/λ2.
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Fig. 5. Configuration (m∗,w∗
1 ,w∗

2 ) that maximizes the expected value λ1[(1 − δ)m + δw1] + λ2[(1 − δ)f (m) + δw2].

Fig. 5 illustrates this solution. The transfers (m∗, f (m∗)) and the continuation payoffs
(w∗

1, ϕ2(w2)) are chosen from the curve f and the frontier ϕ2 at points where the slopes equal 
−λ1/λ2, maximizing (respectively) λ1m + λ2f (m) and λ1w1 + λ2w2.

To interpret this result, suppose that m∗ < 0, so that a transfer is made from player 1 to 
player 2. This will be the case if f ′(0) < −λ1/λ2, as illustrated in Fig. 5. Then the transfer is set 
so that the player-1 and player-2 payoffs trade off at the same rate via transfers as they do via 
continuation payoffs.

Now, continuing with our choice of λ, consider a subgame perfect equilibrium σ such that 
u(σ ) ∈ ∂V λ. Suppose a project (x1, x2) has been drawn and equilibrium actions are taken, and 
we must determine the corresponding transfer and continuation values (m, w1, w2) provided 
by σ . These values will be given by (m∗, w∗

1, w∗
2), as illustrated in Fig. 5, unless a constraint 

intervenes. How could a constraint intervene? We consider two possibilities. The first includes 
the following related scenarios:

– Project (x1, x2) is (in equilibrium) rejected and m∗ + w∗
1 < 0.

– Project (x1, x2) is (in equilibrium) accepted, x2 < 0, and m∗ + w∗
1 < 0.

– Project (x1, x2) is (in equilibrium) accepted, x1 < 0, and x1 + m∗ + w∗
1 < 0.

In these scenarios, the incentives for player 1 to either make a transfer as large as |m∗| or 
to accept x1 if x1 < 0 are insufficient. In equilibrium, the transfer from player 1 to player 2 
is necessarily smaller than |m∗|, that is m > m∗, and accordingly, the continuation value w1
satisfies (as long as w1 remains interior) ϕ′

2(w1) = f ′(m) < −λ1/λ2, so w1 > w∗
1 and w2 =

ϕ2(w1) < w∗
2 . Alternatively, we may have:

– Project (x1, x2) is (in equilibrium) accepted, x2 < 0, and x2 + f (m∗) + w∗
2 < 0.
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In this case, the configuration (m∗, w∗
1, w∗

2) provides inadequate incentives for player 2 to 
accept the project. To strengthen these incentives, the equilibrium increases the transfer from 
player 1 to player 2 and decreases the continuation value for player 1 (increases the continuation 
value for player 2) until x2 + f (m) + ϕ2(w1) = 0 and (as long as ϕ2(w1) remains interior) 
f ′(m) = ϕ′

2(w1) (> −λ1/λ2). Note that under either possibility, barring corner solutions the 
equality f ′(m) = ϕ′

2(w1) must hold.
The relevant observation is that in general, every period will exhibit a transfer. Fix a pair of 

welfare weights (λ1, λ2). If this pair of weights does not satisfy f ′(0) = −λ1/λ2, then a trans-
fer occurs, and indeed we can expect (barring knife-edge cases) a transfer in every subsequent 
period. Hence, perhaps paradoxically, under imperfectly transferrable utility, transfers are used 
pervasively, despite being relatively inefficient in transferring utility from one player to another. 
Under perfectly transferable utility, transfers are used more rarely. Behind this difference lies the 
fact that under imperfectly transferrable utility, the utility exchange rate between the two players 
deteriorates as the size of the transfer grows (because f is strictly concave). There is then an 
incentive to break any transfer into a succession of smaller transfers in subsequent periods. The 
players will then constantly make transfers, in order to avoid any single especially large transfer. 
No such force arises under perfectly transferrable utility.

5.2. Imperfect information

We now suppose that there is uncertainty concerning the measure µ that governs the distri-
bution of projects. Players 1 and 2 begin the game with a common prior over the measure µ, 
and update their beliefs as they observe the series of projects drawn by Nature. Their beliefs 
remain symmetric throughout. We confine our analysis to an example, and keep things simple by 
assuming there are no transfers.

5.2.1. An example
Suppose there are four possible projects, given by (−1, 10), (−6, 22), (10, −1) and (22, −6). 

There is an underlying state of the world that is either high, in which case the probability distri-
bution over projects is

f ((−1,10)) = f ((10,−1)) = 1
2
(1 − p)

f ((−6,22)) = f ((22,−6)) = p

2
or low, in which case the distribution is

f ((−1,10)) = f ((10,−1)) = p

2

f ((−6,22)) = f ((22,−6)) = 1
2
(1 − p).

To match the names given to the states, we assume p > 1/2. Hence, the outcomes (−1, 10) and 
(10, −1) are equally likely in either state, as are the outcomes (−6, 22) and (22, −6), but the 
latter are more likely in the high state. Let us refer to the former as the low pair and the latter as 
the high pair. For our calculations, we take p = 3/4. To keep the calculations simple, we assume 
δ = 1/2.

Let q0 be the prior probability that the state is high. Then the posterior probability that the 
state is high depends only on the number of projects that have been drawn from the low pair and 
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the number that have been drawn from the high pair. If the difference in the number of draws 
from the high pair and the low pair is given by k, then we denote the posterior probability of the 
high state by qk , where

qk = q0

q0 + (1 − q0)((1 − p)/p)k
.

We will refer to k as the state of the relationship.
There is obviously an autarky equilibrium in which no projects are accepted. There is also 

an equilibrium outcome in which the low pair of projects is always accepted, and the high pair 
always rejected. To confirm that this is an equilibrium outcome, we need to show that for any 
state k,

(1 − δ) ≤ δV (k − 1),

where the left side is the cost that one of the players pays for accepting a low project, and we 
define V (k − 1) to be the continuation value of an equilibrium in which (only) low projects are 
accepted, given that the state is k − 1. The continuation value V (k − 1) is lower the higher is k
(and hence qk), indicating that in this equilibrium it is bad news to find that the state is high, since 
low projects are then less plentiful. To confirm that we have an equilibrium, it then suffices to 
verify that this inequality holds in the limit as k becomes arbitrarily large. As k → ∞ and hence 
qk−1 → 1, V k−1 approaches (1 − p)(9/2), and (recalling that 1 − δ = δ = 1/2 and p = 3/4) the 
desired inequality holds.

We now note that it is not an equilibrium outcome for players to accept every project in every 
state. If this were to be an equilibrium outcome, we need to show that for any state k,

(1 − δ)6 ≤ δV (k + 1),

where the left side is the cost that one of the players pays for accepting a low project, and we 
define V (k + 1) to be the continuation value of an equilibrium in which all projects are accepted, 
given that the state is k + 1. The continuation value V (k + 1) is lower the lower is k + 1 (and 
hence qk+1), since high projects are then less plentiful. To confirm that this is not an equilibrium, 
it suffices to note that As k → −∞, V k+1 approaches p(9/2) + (1 −p)(16/2), and hence (again 
recalling that 1 − δ = δ = 1/2 and p = 3/4) the required inequality fails.

We now argue that there exists an equilibrium featuring a value k∗ with the property that only 
low projects are accepted for values k < k∗, while all projects are accepted for values k ≥ k∗. 
Indeed, there are many such equilibria, with varying values of k∗. However, the fact that it is not 
an equilibrium to always accept all projects ensures that there is a lower bound of the value of k∗.

Let V (k, k∗) be the value of this equilibrium in state k. Then, for k ≥ k∗,

V (k, k∗) = 1
2

[
[qk(1 − p) + (1 − qk)p]

[9
2

+ V (k − 1, k∗)
]

+ [qkp + (1 − qk)(1 − p)]
[16

2
+ V (k + 1, k∗)

]]
.

It is clear that qk is increasing in k and that V (k, k∗) is increasing in k for k ≥ k∗. Moreover, 
V (k, k∗) ≥ 9/2 for all k. It is immediate that in the proposed equilibrium the players prefer to 
accept low projects, and to reject high projects for values k < k∗. We need only verify that the 
players prefer to accept high projects in every state k ≥ k∗. That is,

(1 − δ)6 ≤ δV (k + 1, k∗) for all k ≥ k∗.
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Since V (k, k∗) is increasing in k, it suffices to verify that 6 ≤ V (k∗ + 1, k∗). We now show that 
if k∗ is chosen large enough, this is the case.

Since V (k, k∗) ≥ 9/2 and V (k + 1, k∗) > V (k, k∗) for k ≥ k∗, we have that for all k ≥ k∗

V (k, k∗) > [qk(1 − p) + (1 − qk)p]9
2

+ 1
2
[qkp + (1 − qk)(1 − p)][16

2
+ V (k, k∗)].

This implies that

V (k, k∗) >
35 − 2qk

7 − 2qk
for all k ≥ k∗,

and hence V (k∗ + 1, k∗) ≥ 6 if qk∗+1 ≥ 7/10. Since qk → 1, there exists k∗ such that qk∗+1 ≥
7/10, and for this k∗ the proposed strategy is indeed an equilibrium. Our analysis also shows that 
if the proposed strategy is an equilibrium for a particular threshold k∗, then a similar strategy 
with a higher threshold k∗∗ is also an equilibrium.

5.2.2. Starting small
An interesting aspect of the preceding example is that for relatively small priors, the rela-

tionship has a “starting small” pattern. Initially, the relationship is small in the sense that only 
relatively small projects (in the example, (−1, 10) and (10, −1)) are accepted. If the state is low, 
the posterior probability of a high state will tend to remain low, and the relationship will remain 
small. If the state is high, the posterior will grow until larger projects are also accepted.

It is intuitive that relationships should start small and build as the participants build trust. One 
may be happy to loan a new neighbor one’s power tool, but the loan of a car or the use of one’s 
house may come only after the relationship has developed. A new employee in an investment 
firm may initially manage small accounts and face trading limits, before being given a no-limits 
access to the largest funds. Countries may begin with cultural exchanges, working up to trade 
agreements, political cooperation, joint military exercises and finally a demilitarized border.

Watson (1999, 2002) offers one interesting perspective on this “starting small” phenomenon, 
based on incomplete information about the rate at which players discount future interactions. In 
our case, the players undertake larger (i.e., more costly) projects as they receive encouraging in-
formation about the distribution µ. It is no surprise that players might find it optimal to adjust the 
size of a relationship as they learn valuable information about that relationship. However, it ap-
pears as if this would cause relationships to shrink as readily as grow, whereas the starting small 
literature emphasizes growth. One possibility, appearing in Watson (1999, 2002), is that declin-
ing relationships may fall below a viability threshold and disappear, so that what we primarily 
observe are growing relationships. If there is some cost of maintaining a relationship, perhaps 
because it requires monitoring, then this would be the case in our setting. However, the example 
of the preceding section shows that the uncertainty concerning µ may be such that relatively 
small projects are profitable no matter what, while encouraging news is required to support large 
projects. Then the typical observed behavior will be that relationships start small, as indicated by 
the scale of projects that are undertaken, and (if anything) grow.

5.3. Imperfect monitoring

We now consider a game with imperfect monitoring and (linear) transfers. At the beginning 
of each period t , one of the two players is chosen randomly, with probability 1/2 each. If player i

is chosen, the project xt = (xt
i , x

t
j ) is drawn randomly from a distribution µi with support in 
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Xi ⊂ [0, ∞) × (−∞, 0]. That is, in project xt ∈ Xi , player i is the beneficiary and player j is 
the benefactor. The benefit xt

i > 0 is publicly observed, but the cost xt
j ≤ 0 is only observed 

by player j . However, after observing his cost, player j voluntarily reports a cost to player i. 
Of course, player j can lie and report x̂t

j ≠ xt
j . Moreover, the true cost xt

j is never revealed to 
player i (neither this period, nor later). As in the perfect monitoring case, after j sends his report, 
the players simultaneously vote whether to accept or reject the project. If the project is adopted, 
the players privately collect their current period payoffs (xt

1, x
t
2). Then, whether the project is 

adopted or not, at the end of the period the players simultaneously send each other voluntary 
(linear) transfers.

We study subgame perfect equilibria that do not make use of the public randomization device. 
They will suffice to characterize the extreme points of the Pareto efficient frontier of the equi-
librium value set. Without loss of generality we restrict attention to subgame perfect equilibria 
where benefactors always report their costs honestly. As before, let V denote the equilibrium 
value set.

There are two steps to characterizing an equilibrium—explaining how an acceptance set is 
described and how acceptance incentives are created for a given such set, and identifying the 
equilibrium acceptance sets. The new issues surrounding imperfect monitoring arise out of the 
former, and we defer the latter to an appendix.

Let σ be a simple pure subgame perfect equilibrium without public randomization. Then, 
its factorization is given by (α, m, w), where α(i, x) represents the vote in period 0 when the 
beneficiary is i and the observed/reported project is x, and for each vote outcome a, ma(i, x) and 
wa(i, x) represent the corresponding transfers and continuations value.

Suppose player i is the beneficiary and the project is x. Since the benefactor’s cost xj is never 
observed, ma(i, x) and wa(i, x) can depend on xj only in irrelevant ways. Suppose for example 
that for some x̂j ≠ xj , α(i, x) = α(i, xi, x̂j ) = (1, 1) and

(1 − δ)[m1,1
i (i, x) − m1,1

j (i, x)] + δw1,1
j (i, x)

< (1 − δ)[m1,1
i (i, xi, x̂j ) − m1,1

j (i, xi, x̂j )] + δw1,1
j (i, xi, x̂j ).

Then player j would rather report x̂j even if his true cost were xj . We will also see that 
player i (the beneficiary) always prefers to accept the project. Thus, we can restrict attention 
to “delegation” subgame perfect equilibria, where player i approves all projects (xi, xj ). That is, 
αi (i, xi, xj ) = 1 for all (xi, xj ). This gives player j (the benefactor) veto power to decide whether 
a project is accepted or rejected. To simplify notation, the factorization of a delegation subgame 
perfect equilibrium σ is given by (α, m, w), where now m = (mR, mA) and w = (wR, wA): 
mR(i, xi) and wR(i, xi) are respectively the transfers and continuation value when player j re-
jects the project, and mA(i, xi) and wA(i, xi) are the corresponding vectors when player j accepts 
the project. If player i rejects the project, by assumption this triggers the punishment where no 
transfers are made followed by autarky.

It is easy to see that if player j accepts project (xi, xj ) in equilibrium, then he should also 
accept any project (xi, x′

j ) with 0 ≥ x′
j > xj . Hence, for each xi , there exists x̄j (xi) such that 

player j accepts a project with benefit xi if and only if his payoff is greater or equal to x̄j (xi).
As usual, we assume that transfers satisfy the complementarity condition mA

1 (i, xi) ·
mA

2 (i, xi) = 0 and mR
1 (i, xi) · mR

2 (i, xi) = 0. Hereafter the arguments (i, xi) in transfers and 
continuation values will be omitted. Continuation values wA(i, xi) and wR(i, xi) must belong 
to V , and together with the transfers m = (mA, mR) must satisfy the incentive constraints
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− (1 − δ)[mA
i − mA

j ] + δwA
i ≥ 0 and − (1 − δ)[mR

i − mR
j ] + δwR

i ≥ 0 (T ICi)

− (1 − δ)[mA
j − mA

i ] + δwA
j ≥ 0 and − (1 − δ)[mR

j − mR
i ] + δwR

j ≥ 0 (T ICj )

since transfers are voluntary and simultaneous. Let *A = mA
i − mA

j and *R = mR
i − mR

j be 
the net transfers from i to j (these net transfers can be positive or negative). Then (T ICi) and 
(T ICj ) are equivalent to

−wA
j ≤ β*A ≤ wA

i and − wR
j ≤ β*R ≤ wR

i . (T IC)

Let Fj (x̄j |xi) = P[xj ≤ x̄j | xi]. For player i to accept the project after he learns the benefit xi

the following incentive constraint must be satisfied:

F̄j (x̄j (xi)|xi)[−(1 − δ)*R + δwR
i ] + (1 − F̄j (x̄j (xi)|xi))[(1 − δ)(x1 − *A) + δwA

i ] ≥ 0.

But this incentive constraint is superfluous since it is implied by the upper bounds for *A and 
*R included in (T IC). This shows that player i always prefers to accept the project, as claimed 
earlier.

Finally, player j will vote to approve a project with cost xj if and only if

xj ≥ [*R + wR
j /β] − [*A + wA

j /β] = x̄j (xi). (V IC)

That is, −x̄j (xi) is the largest cost that player j will accept.
Let T R = wR

1 + wR
2 , T A = wA

1 + wA
2 and T ∗ = max {v1 + v2 | v ∈ V }, and for any T > 0

define

D(T ) = {v ∈ R2
+ | v1 + v2 = δT }.

It is easy to see that the set of feasible interim continuation values that can be attained with 
transfers that satisfy (T IC) are

{(vR
i , vR

j ) = (1 − δ)(−*R,*R) + δ(wR
i ,wR

j ) | −wR
j ≤ β*R ≤ wR

i } = D(T R)

{(vA
i , vA

j ) = (1 − δ)(−*A,*A) + δ(wA
i ,wA

j ) | −wA
j ≤ β*A ≤ wA

i } = D(T A).

Clearly, given (wR, wA), there is a one-to-one map between (vA, vR) and (*R, *A). Moreover, 
(V IC) is equivalent to xj ≥ vR

2 − vA
2 = (1 − δ)x̄2(x1).

For any welfare weights λ ∈ R2
++ (avoiding some straightforward special cases by requiring 

both weights to be positive), the conditional expected welfare of σ given xi > 0 is

W = Fj (x̄j |xi)[λ · vR] + (1 − Fj (x̄j |xi)[λ · vA] + (1 − δ)

0∫

x̄j

λ · x dFj (xj |xi).

The following proposition characterizes equilibria for given acceptance regions. Appendix A.4
proves:

Proposition 7. For any pair of functions x̄1, x̄2 : (0, ∞) → [−T ∗/β, 0] there exists a simple 
delegation subgame perfect equilibrium σ such that a project (i, x) is accepted in period 0
if and only if xj ≥ x̄j (xi). Moreover, let λ ∈ R2

++ and σ be such a delegation subgame per-
fect equilibrium with factorization (α, m, w) and acceptance regions given by x̄1 and x̄2. Then, 
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σ maximizes λ · u(σ ) among all such subgame perfect equilibria if and only if almost surely for 
xi > 0 (i = 1, 2), wR(i, xi), wA(i, xi) ∈ V (1,1) and

*R =
{

−wR
j /β if λi > λj

x̄j (xi) + wR
i /β if λi < λj

*A =
{

−x̄j (xi) − wA
j /β if λi > λj

wA
i /β if λi < λj .

Two familiar features emerge from this proposition. First, regardless of the point on the 
Pareto frontier being characterized, and the corresponding weighted sum of payoffs to be maxi-
mized, continuation values maximize the sum of payoffs w1 + w2 (i.e., are drawn from V (1,1)). 
Second, the net transfers *R and *A are spread far enough apart to create the appropriate 
accept/reject decision, and consistent with this difference, are pushed as far as possible in the 
direction of transferring surplus to the player with the larger welfare weight (the displayed equa-
tions). Note that by complementarity (mR, mA) are uniquely defined by (*R, *A): if *A > 0
then (mA

i , mA
j ) = (*A, 0) and otherwise (mA

i , mA
j ) = (0, −*A). Similarly, if *R > 0 then 

(mR
i , mR

j ) = (*R, 0) and otherwise (mR
i , mR

j ) = (0, −*R).
Proposition 7 takes the acceptance regions (that is, the functions x̄1 and x̄2) as fixed and fills 

in the remaining details of the equilibrium. It remains to characterize the acceptance regions for 
an efficient subgame perfect equilibrium σ , which we do in Appendix A.5.

5.4. Two-sided imperfect monitoring

In this section we assume that whenever a project is generated, neither player can observe 
the value of the project to the other player. Hence, the players may know (for example) that the 
project confers a benefit on player 1 and imposes a cost on player 2, but neither players knows 
the magnitude of the effect on the other players.

A key result running through all of our previous analysis is that in the presence of transfers, 
the continuation values of an efficient equilibrium must invariably maximize total surplus. Our 
primary purpose in this section is to show that with two-sided imperfect monitoring, efficient 
equilibria may necessarily involve inefficient continuation values.

We first construct an example. Let δ = 1/2, to simplify the calculations. With probability half, 
each player is chosen to be the beneficiary of the project. The beneficiary’s benefit is equally 
likely to be 2 or 9 and independently the benefactor’s cost is equally likely to be 2 or 9. Thus, 
conditional on player 1 being the beneficiary, the project is equally likely to be one of

(2,−2), (9,−2), (2,−9), (9,−9),

and conditional on player 2 being the beneficiary, the project is equally likely to be one of

(−2,2), (−2,9), (−9,2), (−9,9).

We first construct an equilibrium σ in which only projects (9, −2) and (−2, 9) are accepted 
in the first period. Using notation developed in the previous section, we describe the equilibrium 
in terms of the factorization (α, m, w). Here, α(i, x) = (α1(i, x1), α2(i, x2)) specifies how the 
players vote when player i is the beneficiary and the current project is x. This notation reflects 
the fact that, by assumption, player j only observes xj , j = 1, 2. Let ma(i) = (ma

1(i), ma
2(i)) and 

wa(i) = (wa
1 (i), wa

2 (i)) be the transfers and continuation values when player i is the beneficiary 
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and a ∈ {0, 1}2 is the vote outcome in the first period. Also let va(i) = (1 − δ)ma(i) + δwa(i) be 
the interim continuation values.

Our candidate equilibrium calls for the beneficiary to accept the project if the benefit is 9 and 
reject if it is 2, while the benefactor accepts the project if the cost is 2 and reject it if the cost is 9. 
For the players to vote this way, if player 1 is the beneficiary the following incentives constraints 
must be satisfied:

1
2
[(1 − δ)2 + v1,1

1 (1)] + 1
2
v1,0

1 (1) ≤ 1
2
[v0,1

1 (1) + v0,0
1 (1)]

≤ 1
2
[(1 − δ)17 + v1,1

1 (1)] + 1
2
v1,0

1 (1)

1
2
[−(1 − δ)17 + v1,1

2 (1)] + 1
2
v0,1

2 (1) ≤ 1
2
[v1,0

2 (1) + v0,0
2 (1)]

≤ 1
2
[−(1 − δ)2 + v1,1

2 (1)] + 1
2
v0,1

2 (1).

Let T = u1(σ ) + u2(σ ) and let the continuation values be given by

v0,0(1) =
(

T/2
0

)
, v0,1(1) =

(
T/4
T/4

)
, v1,0(1) =

(
0
0

)
, v1,1(1) =

(
0

T/2

)
.

Similar incentive constraints must be satisfied when player 2 is the beneficiary, and in that case 
we symmetrically set

v0,0(2) =
(

0
T/2

)
, v0,1(2) =

(
0
0

)
, v1,0(2) =

(
T/4
T/4

)
, v1,1(2) =

(
T/2

0

)
.

In this factorization, with probability 1/4 the players capture a total surplus of 9 − 2 = 7 in the 
first period and with probability 3/4 the total value va

1(i) +va
2 (i) of the interim continuation value 

is T/2. Therefore

T = u1(σ ) + u2(σ ) = 1
4

7
2

+ 3
4

T

2
.

Thus, T = 7/5 and the incentive constraints above are indeed satisfied.
Conditional on player 1 being the beneficiary, the interim continuation values above are de-

livered by the following transfers and continuation values:

m0,0(1) =
(

0
T/2

)
, m0,1(1) = m1,0(1) =

(
0
0

)
, m1,1(1) =

(
T/2

0

)

w0,0(1) = w0,1(1) = w1,1(1) =
(

T/2
T/2

)
, w1,0(1) =

(
0
0

)
.

The corresponding transfers and continuation values when player 2 is the beneficiary are sym-
metrically constructed.

In equilibrium σ , the players cooperate until a period in which either player 1 is the beneficiary 
and the vote outcome is a = (1, 0) or player 2 is the beneficiary and the vote outcome is a =
(0, 1). While the players are cooperating, the benefactor accepts a project if the cost is 2 and 
rejects it if the cost is 9 while the beneficiary accepts a project if the benefit is 9 and rejects it if 
the benefit is 2, and a transfer of T/2 is made by the benefactor if both players reject the project 
and by the beneficiary if both players accept the project.
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We thus have an equilibrium σ with payoffs u(σ ) = (T /2, T/2) = (7/10, 7/10). However, 
one of the continuation payoffs in this equilibrium does not maximize total surplus, since contin-
uation payoffs following an outcome in which the beneficiary accepts and the benefactor rejects 
are (0, 0).

We now show that this example is not pathological—the surplus-maximizing equilibrium 
necessarily contains some continuation values that do not maximize surplus. Let σ ∗ be an equi-
librium such that u(σ ∗) ∈ ∂V (1,1). That is, σ ∗ is an equilibrium that maximizes total surplus: 
u1(σ

∗) + u2(σ
∗) = T ∗. Let (α, m, w) be its corresponding factorization. We show that not all 

continuation values wa(i) can maximize total surplus. That is, for some (i, a) it must be that 
wa(i) /∈ ∂V (1,1).

By definition, wa
1(i) + wa

2 (i) ≤ T ∗ (so vA
1 (i) + vA

2 (i) ≤ δT ∗ = T ∗/2) and the maximal ex-
pected total surplus in period 1 is 7/4 (which is attained when only projects (9, −2) and (−2, 9)

are adopted in the first period). Therefore an upper bound for T ∗ is given by

T ∗ = u1(σ
∗) + u2(σ

∗) ≤ (1 − δ)
7
4

+ δT ∗ = 7
8

+ T ∗

2
.

That is, T ∗ ≤ 7/4.
Since T ∗ > 0 (since we have exhibited an equilibrium with a positive payoff), it must be that 

σ ∗ approves projects (9, −2) and (−2, 9) in the first period. Moreover, it must also reject all 
other projects. To see the latter, suppose (for example) that the beneficiary accepts all projects. 
Then, when the beneficiary is player 1, for player 2 to accept a project with cost 2 it must be 
that

v1,0
2 (1) ≤ −2(1 − δ) + v1,1

2 (1).

But even if we choose v1,0
2 (1) = 0 and v1,1

2 (1) = T ∗/2 ≤ 7/8, the constraint is violated. That is, 
if the beneficiary accepts all projects, it is not possible to provide incentives for the benefactor 
to accept a project with cost 2 (and hence surely not to accept a project with cost 9). In a similar 
fashion, one can easily see it is not possible to provide incentives for player 2 to accept a project 
with cost 9.

Assume player 1 is the beneficiary. For player 1 to reject a project with benefit 2 and for 
player 2 to accept a project with cost 2, the following incentives must be satisfied:

(1 − δ)2 + v1,1
1 (1) + v1,0

1 (1) ≤ v0,1
1 (1) + v0,0

1 (1)

v1,0
2 (1) + v0,0

2 (1) ≤ −(1 − δ)2 + v1,1
2 (1) + v0,1

2 (1).

Clearly setting v1,1(1) = (0, T ∗/2) and v0,0(1) = (T ∗/2, 0) helps with incentives and the ob-
jective of maximizing total surplus. With these choices, v1,0(1) and v0,1(1) must satisfy the 
constraints

v0,1
1 (1) − v1,0

1 (1) ≥ 1 − T ∗

2
≥ 1

8
and v0,1

1 (1) − v1,0
1 (1) ≥ 1 − T ∗

2
≥ 1

8
.

But then, v0,1(1) − v1,0(1) ≥ (1/8, 1/8), which implies that w1,0(1) /∈ ∂V (1,1). Continuation 
payoffs after the benefactor rejects a project and the beneficiary accepts are strictly Pareto dom-
inated.

Appendix A.6 establishes conditions under which all equilibrium continuation payoffs are ef-
ficient. The key ingredient in these sufficient conditions is that the players be sufficiently patient. 
In contrast, we have not made a similar appeal patience in the previous settings we have consid-
ered, because doing so is ineffective in those settings. With no information on either side as to 
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the size of the project, equilibrium play in the current setting is quite simple, revolving around 
a pair of cutoff values. Moreover, there is an upper bound on the range of such values that one 
might want to implement, arising out of the technology that generates projects and requiring only 
that this technology generate finite expected values. We then need only make agents sufficiently 
patient that this upper bound can be implemented. In all of our previous settings, the value of 
the project on at least one side is known, and we must implement a cutoff on the other side. 
However, the value of the cutoff to be implemented is conditioned on the realized value on the 
observed side, and may be arbitrarily large. No amount of patience will then suffice to ensure that 
we do not sometimes encounter a desired cutoff that is simply too large to implement. Putting 
these observations together, we can achieve a folk-theorem type of result only if monitoring is 
sufficiently (i.e., two-sided) imperfect.

6. Discussion

6.1. Maintaining relationships: summary

Section 4 presents our workhorse model, featuring transfers and complete information. This 
gives us a relationship in which the players routinely adopt projects, to the cost of one and the 
benefit of the other. Projects that are not out of the ordinary require no adjustment in continuation 
play and need not be remembered, with the players simply confirming that the relationship is on 
track. Larger projects prompt transfers to push the relationship back on track. Depending on the 
distribution of projects, transfers may seldom be observed, and indeed may be rarer than would 
be adjustments in continuation values in the absence of transfers, and yet may also be important 
in supporting the equilibrium.

6.2. Why transfer?

An important feature of the transfers in our model is that they are voluntary. At the end of 
each period, player i is welcome to make a transfer to player j , but need not do so, and any 
incentives to do so must be created by the appropriate conditioning of continuation payoffs on 
current actions.

Three approaches to transfers appear in the literature. First, and at one extreme, many applica-
tions in game theory assume that transfers are simply impossible. Von Neumann and Morgenstern
(1944) take this as their point of departure for the study of noncooperative games, commenting 
that they will begin with “no mention of coalitions between players and the compensations they 
can pay to each other” (Von Neumann and Morgenstern, 1944, p. 46). In this view, any exchange 
involving a transfer effectively requires some enforcement mechanism, since otherwise there is 
no way to ensure the transfer will be made, and hence transfers are out of place in a noncooper-
ative theory.

This argument may motivate one to omit transfers from many static models, but it is less 
obvious that transfers should be omitted from the study of repeated games. Here, the prospect 
of future interactions may well create incentives for making transfers. Indeed, some work on 
repeated games stresses that continuation payoffs can often be viewed as transfers in a current 
mechanism design problem (e.g., Athey and Bagwell, 2001; Athey et al., 2004). Then why do 
repeated games typically preclude transfers? One possibility is that much of the motivation for 
work in repeated games come from models of repeated oligopoly (e.g., Friedman, 1971), where 
transfers presumably give rise to potential legal problems.
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Second, and in contrast, it is standard in many economic models to simply assume that trans-
fers are mandatory and will be made, with scant mention of the incentives to do so. We typically 
assume that firms can hire inputs in exchange for appropriate remuneration, but we do not con-
sider the possibility that the firm consumes the input and then declines payment. This is the case 
even in models that otherwise view the firms as engaged in an noncooperative game with one an-
other. In models of competitive markets we typically assume that a consumer can either purchase 
a good at the market price or choose not to purchase the good, but we do not allow the possibility 
that the consumer can take delivery of the good and decline the corresponding transfer. Once 
again, this often occurs in the context of an otherwise noncooperative model.

Why not simplify our model by similarly making transfers mandatory? We believe that at 
the basic level, all transfers are voluntary, and will be made only if people find it in their best 
interests to make them. In many cases, however, it is sufficiently obvious that in equilibrium 
the transfers will be made that we can conveniently omit the mechanism creating the attendant 
incentives from our model. Firms pay their workers because failure to pay risks a lawsuit. People 
pay for their purchase after it has been packaged and handed to them in the store because they 
do not relish the thought of running through a crowded mall with their arms full of packages and 
mall security at their heels. Little is typically lost by omitting the legal system and mall security 
from the resulting models and simply assuming transfers are mandatory.

In other circumstances the enforcement mechanism behind transfers is perhaps less obvious. 
Suppose one comes to the end of a taxi journey to find no one around. Why pay the fare? The 
driver has no opportunity to sue if you do not. One possibility is that if you do not, the driver will 
pursue you and compel payment, much like the mall security guards of the preceding paragraph. 
But if the driver can do this, why doesn’t he do so after you have paid, extracting a second fare? 
And if you could successfully resist this second attempt, why not resist the first? Indeed, if either 
side has the ability to force an outcome, it is not clear why this side does not always exercise this 
ability, and even exercise it repeatedly.

Basu (1983) explores these questions (using the case of a taxi ride as his motivating example), 
and concludes that conventional models can explain outcomes in which no payment is made, 
or outcomes in which multiple payments are extorted, but not an outcome in which a single 
payment is made. Basu (1983) then hypothesizes that people pay the fare at the end of the taxi 
journey because they prefer to do so. He extends this point to argue that a similar preference to 
pay plays an essential role in making economic transactions possible. Far from the stereotypical 
complaint that economists assume that people are inherently selfish, Basu argues that it is a 
pervasive desire to part with money under the appropriate circumstances that makes economic 
activity possible.

We find this appeal to preferences unconvincing as an explanation for transfers. At the end 
of the taxi journey, the driver can attempt to compel payment and the passenger can attempt to 
avoid payment. We think of the resulting interaction as a war of attrition. The war of attrition has 
an inefficient symmetric equilibrium, and two efficient asymmetric equilibria, one in which the 
passenger makes the payment without a fuss, and one in which the driver foregoes payment, again 
without a fuss. The circumstances of the interaction allow the participants to coordinate on one of 
these asymmetric equilibria. At the end of the ride, convention selects the equilibrium in which 
the passenger pays. Should the driver attempt to extort a second payment, convention selects the 
equilibrium in which the passenger does not pay. We thus have no difficulty accounting for an 
interaction that successfully elicits one and only one payment. We believe that there are many 
similar situations in which the mechanism for enforcing transfers is hidden, but is nonetheless 
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effective, and in which it is reasonable to assume that transfers are essentially mandatory, while 
omitting the underlying war of attrition from the model.

In the current setting, however, we are uncomfortable with simply assuming that transfers 
are mandatory, enforced by either formal or informal means. A theme of the descriptive studies 
motivating our research is that the participants deliberately eschew an appeal to contracts, legal 
measures, or formal institutions as a means of governing their interactions. We regard the war of 
attrition as a compelling explanation for many of the more mundane transactions in which people 
engage, but less convincing in many other circumstances.

This brings us to the third approach, commonly gathered under the heading of relational con-
tracts and incorporated in our model. Interactions are repeated, the players can make transfers, 
but the equilibrium strategies must ensure the incentives to do so.

6.3. What to transfer?

We have said little about the form of transfers. Ellickson (1991) reports that the subjects of his 
study exhibited a very strong preference to make transfers in kind rather than in cash. A farmer 
whose crops had been damaged by another’s trespassing cattle might be invited to “come down 
and take some hay” (Ellickson, 1991, p. 56), or someone who has financed a disproportionate 
share of joint fencing may claim the use of his neighbor’s bulldozer (Ellickson, 1991, p. 80), but 
money would typically not change hands. Our model is silent on the form taken by transfers. 
Transfers are less efficient the more curvature there is in the function f in Section 4.1, and so we 
would expect transfers to be made in a currency for which this function does not exhibit too much 
curvature. However, we have no reason to believe that hay is inferior to money in this respect.

The aversion to monetary transfers described by Ellickson (1991) appears to go beyond a 
simple efficiency comparison. Instead, the decision to make transfers in cash or in kind appears 
to contain a signaling component absent from our model. Interactions in relationships are carried 
out in kind, while arms-length interactions are carried out in cash. Offering hay to someone 
whose crops your cattle have damaged is a confirmation that your relationship is intact; while 
offering cash is an indication that incentives are to be created and resolved contemporaneously 
rather than intertemporally, putting the relationship at risk.

Appendix A

A.1. Proof of Proposition 2

We begin with two preliminary observations. We first develop a convenient description of the 
conditions for an equilibrium. Let σ be a behavior strategy. For any outcome ζ ∈ [0, 1] of the 
public randomization device and any project x ∈ X for period 0, let

αi (ζ, x) i = 1,2,

denote respectively the probabilities that each player approves the project. For any pair of choices 
a = (a1, a2) ∈ {0, 1}2, let

wa(ζ, x) = u(σ |(ζ,x,a))

denote the value of the continuation strategy after the players choose a in period 0. Hence, (α, w)

describes the current actions and the continuation payoffs induced by the behavior strategy. We 
can then write the resulting payoffs as
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u(σ ) =
1∫

0

∫

X

[
α1α2[(1 − δ)x + δw1,1] + δ[α1(1 − α2)w

1,0

+ (1 − α1)α2w
0,1 + (1 − α1)(1 − α2)w

0,0]
]
dµ(x)dζ,

where, for simplicity, the argument (ζ, x) for αi (i = 1, 2) and wa (a ∈ {0, 1}2) is omitted here 
and below. We say that (α, w), where w = (w0,0, w0,1, w1,0, w1,1), factorizes σ .

A factorization of the strategy σ expresses the payoffs induced by σ as a sum of current 
and continuation payoffs. This gives us our description of the conditions for equilibrium—the 
behavior strategy σ factorized by (α, w) is a subgame perfect equilibrium if and only if for all 
ζ ∈ [0, 1] and x ∈ X,

(i) σ |(ζ,x,a) is a subgame perfect equilibrium for each a ∈ {0, 1}2,
(ii)

(1 − δ)x1 + δ[α2w
1,1
1 + (1 − α2)w

1,0
1 ]

⎧
⎨

⎩

≥
=
≤

⎫
⎬

⎭ δ[α2w
0,1
1 + (1 − α2)w

0,0
1 ] (IC1)

(1 − δ)x2 + δ[α1w
1,1
2 + (1 − α1)w

0,1
2 ]

⎧
⎨

⎩

≥
=
≤

⎫
⎬

⎭ δ[α1w
1,0
2 + (1 − α1)w

0,0
2 ] (IC2)

where the relevant inequalities are
⎧
⎪⎨

⎪⎩

≥ if αi = 1
= if αi ∈ (0,1)

≤ if αi = 0.

Condition (i) requires that continuation strategies are themselves equilibria, ensuring that contin-
uation values wa are in V (for all a ∈ {0, 1}2), while condition (ii) ensures that current actions are 
incentive compatible. Conversely, if αi : [0, 1] ×X → [0, 1] for i = 1, 2 and wa : [0, 1] ×X → V

for a ∈ {0, 1}2 satisfy (ICi) for i = 1, 2, then (α, w) is the factorization of a subgame perfect 
equilibrium.

Second, let Vζ denote the equilibrium value set of the subgame !ζ , i.e. the subgame after a 
draw has been taken from the public randomization device. Notice that Vζ does not depend on ζ , 
and that if σ is a subgame perfect equilibrium for !, then the continuation strategy σζ must be a 
subgame perfect equilibrium for !ζ for all ζ ∈ [0, 1]. Since Vζ ⊂ R2, by Caratheodory’s theorem 
(Aliprantis and Border, 2006, p. 184), any value in V can be expressed as the convex combination 
of at most three points in Vζ . That is, for any v ∈ V there exist vk ∈ Vζ and λk ∈ [0, 1], k = 1, 2, 3, 
such that

v =
3∑

k−1

λkv
k and

3∑

k−1

λk = 1.

We can then construct a subgame perfect equilibrium with value v as follows. Let σ k be a sub-
game perfect equilibrium for !ζ such that vk = u(σ k), k = 1, 2, 3. Then, partition the interval 
(0, 1) into the subintervals I1 = (0, λ1), I2 = [λ1, λ1 +λ2] and I3 = (1 −λ3, 1), and let σ |ζ = σ k

for all ζ ∈ Ik , k = 1, 2, 3.
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Proof of Proposition 2. Let σ be a subgame perfect equilibrium in behavior strategies such 
that for some history ht and random outcomes (ζ t , xt ), at least one player strictly randomizes 
between accepting and rejecting the project xt . We show how to modify the continuation strategy 
σ |ht to obtain another subgame perfect equilibrium σP such that σP (ζ t , xt ) ∈ {0, 1}2 (that is, 
σP makes only deterministic choices in period t ) and u(σP ) = u(σ |ht ). By inductively repeating 
this process, we can “purify” strategy σ in every period to obtain a pure strategy subgame perfect 
equilibrium.

Without loss of generality, assume ht = h0, that σ randomizes in period 0 after the empty 
history and after some draw (ζ, x). Let + = {λ ∈ R3

+ | ∑
λk = 1}. As we have noted, by 

Caratheodory’s theorem, we can assume that there is (λ1, λ2, λ3) ∈ + with a corresponding col-
lection of intervals {I1, I2, I3} and continuation strategies {σ 1, σ 2, σ 3} such that σ |ζ = σ k for all 
ζ ∈ Ik , k = 1, 2, 3.

Let (α, w) be the factorization of σ . Pick (ζ, x) such that σi (ζ, x) /∈ {0, 1} for at least one 
player i (so i is strictly randomizing his choice after (ζ, x)). Note that

u(σ |(ζ,x)) = (1 − δ)α1α2x + δ
[
α1α2w

1,1 + α1(1 − α2)w
1,0

+ (1 − α1)α2w
0,1 + (1 − α1)(1 − α2)w

0,0],

where the arguments (ζ, x) have been omitted in αi (i = 1, 2) and in wa (a ∈ {0, 1}2). If 
α1α2 = 0, the randomization is irrelevant; the project x is rejected for sure. In this case, re-
place (α(ζ, x), w(ζ, x)) by (α̂, ŵ), where α̂ = (0, 0) (that is, make both players reject project x
for sure) and

ŵ0,0 = α1(1 − α2)w
1,0 + (1 − α1)α2w

0,1 + (1 − α1)(1 − α2)w
0,0

ŵα = (0,0) for α = (0,1), (1,0), (1,1),

where again, the arguments (ζ, x) have been omitted in αi and wα . By construction, δŵ0,0 =
u(σ |(ζ,x)) ≥ (0, 0) and (α̂, ŵ) satisfies (IC1) and (IC2) at x. Moreover, ŵ0,0 ∈ V as it is a convex 
combination of continuation values in V , and ŵα = (0, 0) ∈ V for α = (0, 1), (1, 0), (1, 1).

Now, suppose that α1α2 > 0. This implies that αi ∈ (0, 1] for i = 1, 2 and is interior for at 
least one player (that is, both players accept with positive probability after (ζ, x), with at least 
one player accepting with probability less than one). Assume that x1 ≥ 0 and x2 ≤ 0 (the case 
x1 ≤ 0 and x2 ≥ 0 is symmetric). Now we replace the factorization (α, w) at (ζ, x) with a lottery 
over two factorizations. We first specify the lottery and establish the resulting implications, and 
then return to how the lottery is accomplished.

With probability α1α2, we replace (α(ζ, x), w(ζ, x)) by the tuple (α̂, ŵ), where

α̂ = (1,1), ŵ1,1 = α1w
1,1 + (1 − α1)w

0,1, and ŵα = (0,0) for α = (0,0), (0,1), (1,0),

and with probability 1 − α1α2, replace (α(ζ, x), w(ζ, x)) by the tuple (α̃, w̃), where

α̃ = (0,0), w̃0,0 =
∑

α

βαwα, and w̃α = (0,0) for α = (0,1), (1,0), (1,1),

and

β1,1 = α2α1(1 − α1)

1 − α1α
∗
2

, β0,1 = α2(1 − α1)
2

1 − α1α2
,

β1,0 = (1 − α2)α1

1 − α1α2
, β0,0 = (1 − α2)(1 − α1)

1 − α1α2
.
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Since w̃0,0 ≥ 0, it is easy to see that (α̃, w̃) satisfies (IC1) and (IC2). Since x1 ≥ 0, it is also 
clear (α̂, ŵ) satisfies (IC1). Finally, αi ∈ (0, 1] for i = 1, 2, implies that (α(ζ, x), w(ζ, x)) satis-
fies (IC2). Since w1,0

2 ≥ 0 and w0,0
2 ≥ 0, (IC2) implies

(1−δ)x2 +δŵ1,1
2 = (1−δ)x2 +δ[α1w

1,1
2 + (1−α1)w

0,1
2 ] ≥ δ[α1w

1,0
2 + (1−α1)w

0,0
2 ] ≥ 0.

Hence, (α̂, ŵ) also satisfies (IC2).
The substitution of (α(ζ, x), w(ζ, x)) by the lottery of (α̂, ŵ) with probability α1α2 and 

(α̃, w̃) with probability 1 − α1α2 preserves the expected value:

α1α2[(1 − δ)x + δw1,1] + δ[α1(1 − α2)w
1,0 + (1 − α1)α2w

0,1 + (1 − α1)(1 − α2)w
0,0]

= α1α2[(1 − δ)x + δŵ1,1] + (1 − α1α2)δw̃
0,0.

So far, for each (ζ, x) we have been able to replace the continuation strategy σ |(ζ,x) by a 
lottery between two continuation strategies σ̂ |(ζ,x) and σ̃ |(ζ,x) (represented by their factorizations 
(α̂(ζ, x), ŵ(ζ, x)) and (α̃(ζ, x), w̃(ζ, x))). We now construct σP that implements these lotteries.

Recall the definition of (λ1, λ2, λ3) and {I1, I2, I3} for period 0. For a fixed x and k ∈ {1, 2, 3}, 
note that αk(x) = α1(ζ, x)α2(ζ, x) is constant for ζ ∈ Ik . Pick any ζk ∈ Ik , k = 1, 2, 3. For sim-
plicity, let ℓk and hk be such that Ik = (ℓk, hk).

Construct the factorization (αP , wP ) as follows:

(αP (ζ, x),wP (ζ, x)) =
{

((1,1), ŵ(ζ k, x)) if ℓk < ζ ≤ ℓk + αk(x)(hk − ℓk)

((0,0), w̃(ζ k, x)) if ℓk + αk(x)(hk − ℓk) < ζ < hk.

The factorization (αP , wP ) represents a subgame perfect equilibrium σP that duplicates the 
payoffs of σ and that makes only deterministic choices in period 0. ✷

A.2. Proof of Proposition 3

Proof. For simplicity, we offer the argument for the case in which ∂V λ = {vλ}. By self-
generation,

vλ = max
∫

A

λ · [(1 − δ)x + δw(x)]dµ(x) +
∫

R

δλ · w(x)dµ(x)

s.t. (A,R) is a partition of X, w : X → V

(1 − δ)xi + δwi(x) ≥ 0 for all x ∈ A and i = 1,2. (IC)

Since there is no incentive constraint for x ∈ R, to maximize the objective function it is opti-
mal to set w(x) = vλ for all x ∈ R. Similarly, we want to choose w(x) to maximize λ ·w(x) when 
x ∈ A. When x ∈ U , we can optimally set w(x) = vλ, but when x ∈ Ci , w(x) = vλ is not feasible 
and the choice of w(x) is restricted by the (IC) constraint for player i. The (IC) is satisfied with 
equality when wi(x) = −βxi and the optimal choice in this case is w(x) = (−βxi, ϕj (−βxi)).

Finally we turn to the optimal choice of partition (A, R). For any x ∈ X, the players can 
always reject the project, set w(x) = vλ, and obtain a total welfare contribution of δλ · vλ for this 
project. Hence, to improve total welfare, the players should accept the project only if λ · [(1 −
δ)x + δw(x)] ≥ δλ · vλ for some feasible continuation value w(x). Let

X+
i = {x ∈ X | −vλ

i ≤ βxi < 0} and X−
i = {x ∈ X | −v̄i ≤ βxi < −vλ

i }.
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A project x ∈ X+
i requires the consent of player i and his (IC) constraint can be satisfied by 

choosing w(x) = vλ. Hence the project should be adopted if and only if λ · [(1 − δ)x + δvλ] >
δλ · vλ, or equivalently, if λ · x > 0 (in case λ · x = 0 both decisions to adopt and reject the 
project are optimal). Similarly, a project x ∈ X−

i is adopted if and only if λ · [(1 − δ)x +
δ(−βxi, ϕj (−βxi))] > δλ · vλ, or βλj xj > λ · vλ − λjϕj (−βxi). ✷

A.3. Proof of Proposition 4

Proof. Let σ be a subgame perfect equilibrium in behavior strategies such that for some history 
ht and outcomes (ζ t , xt ), at least one player strictly randomizes between accepting and rejecting 
the project xt . As we did in Proposition 2, we show how to modify the continuation strategy σ |ht

to obtain another subgame perfect equilibrium σP such that σP (ζ t , xt ) ∈ {0, 1}2 and u(σP ) =
u(σ |ht ).

Without loss of generality, assume ht = h0, that σ randomizes in period 0, after the empty 
history and after some draw (ζ, x). Assume that there is a partition (λ1, λ2, λ3) and corresponding 
collection of intervals {I1, I2, I3} and continuation strategies {σ 1, σ 2, σ 3} such that σ |ζ = σ k for 
all ζ ∈ Ik , k = 1, 2, 3.

Let (α, m, w) be the factorization of σ . Since payoffs are linear in transfers, without loss 
of generality we can assume that m is deterministic. If ma specified random transfers, we could 
replace ma by its expected transfers without affecting any incentives or continuation values. Note 
that

u1(σ |(ζ,x))

= (1 − δ)
[
α1α2(x1 + m1,1

2 − m1,1
1 ) + α1(1 − α2)(x1 + m1,0

2 − m1,0
1 )

+ (1 − α1)α2(x1 + m0,1
2 − m0,1

1 ) + (1 − α1)(1 − α2)(x1 + m1,1
2 − m1,1

1 )
]

+ δ
[
α1α2w

1,1 + α1(1 − α2)w
1,0 + (1 − α1)α2w

0,1 + (1 − α1)(1 − α2)w
0,0]

where the arguments (ζ, x) have been omitted in αi , ma
i and wa

i for i = 1, 2 and a ∈ {0, 1}2. Since 
σ is a subgame perfect equilibrium, the players must be willing to make the required transfers at 
the end of the first period, that is

(1 − δ)[ma
i (ζ, x) − ma

j (ζ, x)] ≤ δwa
i (ζ, x) for i = 1,2, and for all a ∈ {0,1}2. (ICT )

If α1α2 = 0, the randomization is irrelevant; the project x is rejected for sure. In this case, 
replace (α(ζ, x), m(ζ, x), w(ζ, x)) by (α̂, m̂, ŵ), where α̂ = (0, 0) (that is, make both players 
reject project x for sure) and

m̂0,0 = α1(1 − α2)m
1,0 + (1 − α1)α2m

0,1 + (1 − α1)(1 − α2)m
0,0

ŵ0,0 = α1(1 − α2)w
1,0 + (1 − α1)α2w

0,1 + (1 − α1)(1 − α2)w
0,0

m̂a = ŵa = (0,0) for a = (0,1), (1,0), (1,1).

By construction, δŵ0,0 ≥ (0, 0) and thus each player prefers to reject x. Clearly (α̂, m̂, ŵ) pre-
serves the original total expected value of (α(ζ, x), m(ζ, x), w(ζ, x)).

Moreover, ŵ0,0 ∈ V as it is a convex combination of continuation values in V , and ŵα =
(0, 0) ∈ V for α = (0, 1), (1, 0), (1, 1). Finally, (ICT ) implies that

(1 − δ)[m̂0,0
i − m̂0,0

j ] ≤ δŵ0,0
i i = 1,2,

so the players are willing to make the transfers m̂0,0 at the end of the period.
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Now, suppose that α1α2 > 0. This implies that αi ∈ (0, 1] for i = 1, 2 and is interior for at least 
one player (that is, both players accept with positive probability after (ζ, x), with at least one 
player accepting with probability less than one). Assume that x1 > 0 and x2 ≤ 0 (the case x1 ≤ 0
and x2 > 0 is symmetric). Now we replace the factorization (α, m, w) at (ζ, x) with a lottery 
over two factorizations. We first specify the lottery and establish the resulting implications, and 
then return to how the lottery is accomplished.

With probability α1α2, we replace (α(ζ, x), m(ζ, x), w(ζ, x)) by the tuple (α̂, m̂, ŵ), where

α̂ = (1,1),

m̂1,1 = α1m
1,1 + (1 − α1)m

0,1, and m̂a = (0,0) for a = (0,0), (0,1), (1,0),

ŵ1,1 = α1w
1,1 + (1 − α1)w

0,1, and ŵa = (0,0) for a = (0,0), (0,1), (1,0),

and with probability 1 − α1α2, replace (α(ζ, x), m(ζ, x), w(ζ, x)) by the tuple (α̃, m̃, w̃), where

α̃ = (0,0)

m̃0,0 =
∑

α

βαwα, and m̃α = (0,0) for α = (0,1), (1,0), (1,1)

w̃0,0 =
∑

α

βαwα, and w̃α = (0,0) for α = (0,1), (1,0), (1,1)

and

β1,1 = α2α1(1 − α1)

1 − α1α2
, β0,1 = α2(1 − α1)

2

1 − α1α2
,

β1,0 = (1 − α2)α1

1 − α1α2
, β0,0 = (1 − α2)(1 − α1)

1 − α1α2
.

Since αi (ζ, x) > 0 for i = 1, 2, player i is willing to accept x in (α(ζ, x), m(ζ, x), w(ζ, x)). 
That is,

(1 − δ)[x1 + α2(m
1,1
2 − m1,1

1 ) + (1 − α2)(m
1,0
2 − m1,0

1 )] + δ[α2w
1,1
1 + (1 − α2)w

1,0
1 ]

≥ (1 − δ)[α2(m
0,1
2 − m0,1

1 ) + (1 − α2)(m
0,0
2 − m0,0

1 )] + δ[α2w
0,1
1 + (1 − α2)w

0,0
1 ]

(IC1)

(1 − δ)[x2 + α1(m
1,1
1 − m1,1

2 ) + (1 − α1)(m
0,1
1 − m0,1

2 )] + δ[α1w
1,1
2 + (1 − α1)w

0,1
2 ]

≥ (1 − δ)[α1(m
1,0
1 − m1,0

2 ) + (1 − α1)(m
0,0
1 − m0,0

2 )] + δ[α1w
1,0
2 + (1 − α1)w

0,0
2 ].

(IC2)

Also, observe that (ICT ) implies that

(1 − δ)[m̂1,1
i − m̂1,1

j ] ≤ δŵ1,1
i and (1 − δ)[m̃0,0

i − m̃0,0
j ] ≤ δw̃0,0

i i = 1,2.

That is, the players are willing to make the transfers at the end of the first period in (α̂, m̂, ŵ) and 
(α̃, m̃, w̃) respectively (the other transfers are all (0, 0)).

We now verify that the players are willing to accept x in (α̂, m̂, ŵ) and to reject x in (α̃, m̃, w̃). 
Note that when the players choose a ≠ (1, 1) in (α̂, m̂, ŵ) or a ≠ (0, 0) in (α̃, m̃, w̃), they 
get a continuation value of (0, 0) (no transfers followed by autarky). The (ICT ) constraint for 
(α̃, m̃, w̃) also implies that the players (weakly) prefer to reject project x. Now, x1 ≥ 0, (ICT )

and (IC2) imply that
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(1 − δ)[x1 + m̂1,1
2 − m̂1,1

1 ] + δŵ1,1
1

= α1[(1 − δ)(x1 + m1,1
2 − m1,1

1 ) + δw1,1
1 ] + (1 − α1)[(1 − δ)(m0,1

2 − m0,1
1 ) + δw0,1

1 ]
≥ α1(1 − δ1)x1 ≥ 0 and

(1 − δ)[x2 + m̂1,1
1 − m̂1,1

2 ] + δŵ1,1
2

≥ (1 − δ1)[α1(m
1,0
1 − m1,0

2 ) + (1 − α1)(m
0,0
1 − m0,0

2 )] + δ[α1w
1,0
2 + (1 − α1)w

0,0
2 ]

≥ 0.

Hence, players 1 and 2 (weakly) prefer to accept x with (α̂, m̂, ŵ).
The substitution of (α(ζ, x), m(ζ, x), w(ζ, x)) by the lottery of (α̂, m̂, ŵ) with probability 

α1α2 and (α̃, m̃, w̃) with probability 1 −α1α2 preserves the expected value. So far, for each (ζ, x)

we have been able to replace the continuation strategy σ |(ζ,x) by a lottery between two continu-
ation strategies σ̂ |(ζ,x) and σ̃ |(ζ,x) (represented by their factorizations (α̂, m̂, ŵ) and (α̃, m̃, w̃)). 
We then construct σP as in Proposition 2. ✷

A.4. Proof of Proposition 7

Pick an arbitrary pair of functions x̄1, x̄2 : (0, ∞) → [−T ∗/β, 0]. The existence of a subgame 
perfect equilibrium σ that accepts projects (i, x) if and only if xj ≥ x̄j (x1), i = 1, 2, is implied 
by the construction of an optimal subgame perfect equilibrium we present below.

Fix λ ∈ R2
++. Assume σ is a subgame perfect equilibrium with factorization (α, m, w) that 

satisfies the proposed project acceptance rule. Suppose, for example, that (i, xi) = (1, x1) and as-
sume that wA(1, x1) /∈ V (1,1). We now construct another factorization associated with a subgame 
perfect equilibrium that strictly increases the expected conditional welfare given x1. As usual, we 
drop the variables (i, xi) from relevant functions below. Let ŵR = wR , v̂R = vR , ŵA ∈ V (1,1), 
and v̂A = (vA

1 + S, vA
2 ) ∈ D(T̂ A) = D(T ∗), where S = δ[(ŵA

1 + ŵA
2 ) − (wA

1 + wA
2 )] > 0 (so 

*̂R = [v̂R
2 − δŵR

2 ]/(1 − δ) and *̂A = [v̂A
2 − δŵA

2 ]/(1 − δ)). Clearly (α, m̂, ŵ) is the factoriza-
tion of another subgame perfect equilibrium σ̂ (it satisfies all the necessary incentive constraints: 
v̂R ∈ D(T̂ R), v̂A ∈ D(T̂ A), and v̂A

2 − v̂R
2 = −(1 − δ)x̄2(x1)), and increases the conditional ex-

pected welfare after x1 by λ1(1 − F2(x̄2|x1))S. A similar welfare improving modification can 
be made if wR(i, xi) /∈ V (1,1). Thus, if wA(i, xi) /∈ V (1,1) or wR(i, xi) /∈ V (1,1) for xi in a set 
of positive measure, the strategy σ could be modified accordingly in the same set, obtaining 
a subgame perfect equilibrium σ̂ that has a strictly higher welfare value λ · u(σ̂ ). Therefore, 
σ maximizes λ ·u(σ ) among all subgame perfect equilibria with an acceptance rule (x̄1, x̄2) only 
if wR(i, xi) ∈ V (1,1) and wA(i, xi) ∈ V (1,1) almost surely for xi > 0, i = 1, 2.

Let α be such that αi (i, x) ≡ 1 and αj (i, x) = 1 if xj ≥ x̄2(x1) and 0 otherwise. Pick any w =
(wR, wA) such that wR(i, xi), wA(i, xi) ∈ V (1,1) for all (i, xi). Hence wR

1 (i, xi) + wR
2 (i, xi) =

wA
1 (i, xi) + wA

2 (i, xi) = T ∗ for all (i, xi). We now construct optimal transfers m = (mR, mA)

such that (α, m, w) is the factorization of a subgame perfect equilibrium σ that maximizes λ ·
u(σ ).1 Fix (i, xi). As argued above, transfers (mR, mA) are uniquely defined by continuation 
values (vR, vA) and conversely. To satisfy (V IC) we need to choose vR, vA ∈ D(T ∗) such 

1 Any continuation values wR(i, xi ), wA(i, xi ) ∈ V (1,1) are possible. If V (1,1) is not a singleton, all such continuation 
values lead to the same interim continuation value sets D(T ∗). So while different choices lead to different optimal 
subgame perfect equilibria (because they provide different continuation values), they will all share the same interim 
continuation values and therefore the same total expected value.
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that vA
j − vR

j = −(1 − δ)x̄j (xi). When −βx̄j (xi) = T ∗, (vR
i , vR

j ) = (0, δT ∗) and (vA
i , vA

j ) =
(δT ∗, 0) are the only feasible choices. These choices correspond to *R = −wR

j /β and *A =
wA

i /β , which in turn correspond to (mR
i , mR

j ) = (0, wR
j /β) and (mA

i , mA
j ) = (wA

i /β, 0). When 
−βx̄j (xi) < T ∗, there is a range of possible values for vR and vA such that vA

j − vR
j = −(1 −

δ)x̄j (xi). If λi > λj , these values should be chosen to maximize player i’s expected value. In 
this case, (vA

i , vA
j ) = (δT ∗ + (1 − δ)x̄j (xi), −(1 − δ)x̄j (xi)) and (vR

i , vR
j ) = (δT ∗, 0), so *A =

−wA
j /β − x̄j (xi) and *R = −wR

j /β . If λi < λj , these values should be chosen to maximize 
player j ’s expected value, and (vA

i , vA
j ) = (0, δT ∗) and (vR

i , vR
j ) = (−(1 − δ)x̄j (xi)), δT ∗ +

(1 − δ)x̄j (xi)). ✷

A.5. Acceptance regions, imperfect monitoring

This appendix completes the characterization of efficient equilibria for the model of imperfect 
monitoring presented in Section 5.3.

Let λ ∈ R+\{(0, 0)} and suppose that σ is efficient: u(σ ) ∈ ∂V λ. In order to maximize total 
welfare, we would like to induce player j to accept all projects (i, x) such that λ · x > 0. That is, 
we would like to set x̄j (xi) = − λi

λj
xi . But this is possible only if xi is not too large. In particular, 

let

x∗
i = λj

λi
T ∗/β i = 1,2. (5)

If xi > x∗
i , there are no feasible transfers that satisfy (V IC) for x̄j (xi) = − λi

λj
xi < −T ∗/β .

By Proposition 7, after every equilibrium history except the null history, the continuation 
strategies σ̂ maximize the total surplus, i.e., u(σ̂ ) ∈ V (1,1). The next Proposition characterizes 
the acceptance regions for any such subgame perfect equilibrium, showing that current projects 
are accepted if and only if they increase the total surplus, subject to the constraints identified 
in (5).

Proposition 8. Let λ1 = λ2 = 1 and assume that σ is an subgame perfect equilibrium with value 
u(σ ) ∈ V (1,1). Then, its acceptance regions are defined by the functions x̄j , j = 1, 2, where

x̄j (xi) =
{

−xi if xi < x∗
i

−T ∗/β if xi ≥ x∗
i .

Proof. Let (α, m, w) be σ ’s factorization. By Proposition 7, wR, wA ∈ V (1,1) and wR
1 + wR

2 =
wA

1 + wA
2 = T ∗. Assume (i, xi) = (1, x1). When λ1 = λ2 = 1, the conditional expected welfare 

of σ given x1 becomes

W = (1 − δ)

0∫

x̄2

(x1 + x2)dF2(x2|x1) + δT ∗.

We want to maximize W subject to the constraint that −(1 − δ)x̄2 = vA − vR for some vR, vR ∈
D(T ∗). If x1 < x∗

1 = T ∗/β , the optimum is not constrained and W is maximized when x̄2 = −x1. 
If x1 ≥ x∗

1 , the optimum is constrained and W is maximized when x̄2 = −T ∗/β (and vR =
(0, δT ∗) and vA = (δT ∗, 0)). ✷
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Propositions 7 and 8 fully characterize σ , including the acceptance regions for all periods 
except for period 0. We now examine the acceptance regions for σ in period 0.

Let λ ∈ R2
+\{(0, 0)} with λ1 ≠ λ2 and σ be a subgame perfect equilibrium such that u(σ ) ∈

∂V λ. We organize the presentation by considering projects (xi, xj ) with xi > 0 and xj < 0, so 
that i is the beneficiary and j the benefactor. We then divide the analysis into two cases.

First, suppose λj > λi > 0, so it is beneficial to transfer surplus to the benefactor. From 
Proposition 7, when λj > λi > 0, the optimal interim continuation values are (vR

i , vR
j ) = (−(1 −

δ)x̄j , δT ∗ + (1 − δ)x̄j ) and (vA
i , vA

j ) = (0, δT ∗). Therefore, vR − vA = (−(1 − δ)x̄j , (1 − δ)x̄j )

and

W = (1 − δ)Fj (x̄j |xi)(λj − λi )x̄j + δλj T
∗ + (1 − δ)

0∫

x̄j

λ · xdFj (xj |xi).

Hence,
∂W

∂ x̄j
= (1 − δ)

[
(λj − λi )[fj (x̄j |xi)x̄j + Fj (x̄j |xi)] − (λixi + λj x̄j )fj (x̄j |xi)

]

= (1 − δ)
[
(λj − λi )Fj (x̄j |xi) − λi (xi + x̄j )fj (x̄j |xi)

]
.

When λi = λj , the first term in the brackets is zero and this derivative is negative as long as 
xi + x̄j > 0. Thus, optimally, x̄j should be decreased until x̄j reaches −xi or −δT ∗, as was 
already established in Proposition 8. In this case there are no gains from transferring surplus 
from one agent to the other (reflected in the zero first term), and so projects are accepted if and 
only if (within the bounds set by incentive compatibility) they increase the total surplus.

When λj > λi , the objective of increasing surplus competes with the objective of transferring 
surplus to the benefactor, player j . The first term in brackets is positive and bounded away from 
zero. As a result, there exists x0

i > 0 such that the derivative ∂W
∂ x̄j

is positive for all xi ∈ (0, x0
i ) and 

hence optimally x̄j = 0. Reducing x̄j reduces the amount that can be transferred to player j after 
a rejection, in order to create incentives to accept projects, which overwhelms the modest surplus 
gains from accepting projects, for values of xi < x0

i . At the other end, there exists x1
i > x0

i such 
that for all xi ≥ x1

i , optimally x̄j = −λj /λi[T ∗/β]. Here, projects are sufficiently valuable that 
they accepted up to the limits of the ability to create the requisite incentives, despite sacrificing 
the opportunity to make transfers to agent j . For values of xi in between x0

1 and x1
i , the optimal 

value x̄j is greater than 0 but less than max {−xi, −λj /λi[T ∗/β]}. Here, xi is sufficiently large 
that W is maximized by accepting some projects, but the ability to increase transfers to player j

by reducing the incentives to accept projects still pushes the acceptance boundary above the level 
max {−xi, −λj /λi[T ∗/β]}.

Now we continue to maintain that xi > 0 and xj < 0, but assume that λi > λj > 0. When 
λi > λj > 0, the optimal interim continuation values are

(
vA
i

vA
j

)
=

(
δT ∗ + (1 − δ)x̄j

−(1 − δ)x̄j

)
and

(
vR
i

vR
j

)
=

(
δT ∗

0

)
.

Therefore, vR − vA = (−(1 − δ)x̄j , (1 − δ)x̄j ),

W = (1 − δ)(1 − Fj (x̄j |xi))(λi − λj )x̄j + δλiT
∗ + (1 − δ)

0∫

x̄j

λ · xdFj (xj |xi),
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and

∂W

∂ x̄j
= (1 − δ)

[
(λi − λj )(1 − Fj (x̄j |xi)) − x̄j fj (x̄j |xi)] − (λixi + λj x̄j )fj (x̄j |xi)

]

= (1 − δ)
[
(λi − λj )(1 − Fj (x̄j |xi)) − λi (xi + x̄j )fj (x̄j |xi)

]
.

Once again, if λi = λj , this derivative reduces to −(xi + x̄j )fj (x̄j |xi), and a project will be 
accepted only if xi + xj > 0. When λi > λj , the first term in brackets in the derivative above is 
positive, capturing the objective of transferring surplus to player i. Creating incentives for j to 
accept projects reduces the effectiveness of such transfers. Hence, we again have x1

i > x0
1 > 0

such that x̄j = 0 (no projects are accepted) when xi < x0
i and x̄j = −λj /λi[T ∗/β] (all projects 

for which we can create the requisite incentives) are accepted for xi > x1
i . For values of xi in be-

tween x0
1 and x1

i , the optimal value x̄j is greater than 0 but less than max {−xi, −λj /λi[T ∗/β]}.

A.6. Two-sided imperfect monitoring, sufficient conditions for efficient continuation payoffs

This section considers the model of two-sided imperfect monitoring examined in Section 5.4. 
We establish sufficient conditions under which all continuation values maximize expected surplus 
(i.e., all continuation values satisfy wa(i) ∈ V (1,1)), for any λ ∈ R2

+\{(0, 0)} and any equilibrium 
σ with u(σ ) ∈ ∂V λ. We depart from our previous analysis in requiring the players to be suffi-
ciently patient.

In each period, with probability half each player is chosen to be the beneficiary. The bene-
fit is then drawn from a distribution F in [0, ∞) and independently, the cost is drawn from a 
distribution G in (−∞, 0]. Assume F and G are absolutely continuous with densities f and g, 
respectively.

Fix λ ∈ R2
++ (again avoiding special cases by requiring both to weights to be positive). Let σ

be an equilibrium with factorization (α, m, w) such that u(σ ) ∈ ∂V λ. The vote policy α for the 
first period corresponds to two threshold vectors x̄(i) = (x̄1(i), x̄2(i)), i = 1, 2, such that when 
player i is the beneficiary, player j accepts a project x if and only xj ≥ x̄j (i), j = 1, 2.

We first identify the threshold vectors that maximize the contribution of the current period to 
the weighted welfare objective. When player 1 is the beneficiary, the expected contribution of the 
current project to the objective is

H =
∞∫

x̄1(1)

0∫

x̄2(1)

λ · xf (x1)g(x2)dx2dx1.

The thresholds that maximize H satisfy the first-order conditions

∂H

∂ x̄2(1)
= −

∞∫

x̄1(1)

(λ1x1 + λ2x̄2(1))g(x̄2(1))f (x1)dx1 = 0

∂H

∂ x̄1(1)
= −

0∫

x̄2(1)

(λ1x̄1(1) + λ2x2)f (x̄1(1))g(x2)dx2 = 0

which we can solve for
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x̄1(1) = −λ2

λ1
EG[x2|x2 ≥ x̄2(1)] and x̄2(1) = −λ1

λ2
EF [x1|x1 ≥ x̄1(1)].

These conditions are just what one would expect, and have an intuitive interpretation. Player 2 
should accept the project if and only if λ2 · [the cost] is less then λ1 · [expected benefit to 
player 1]. Similarly, player 1 should accept the project if and only if λ1 · [the benefit] is larger 
than λ2 · [the expected cost to player 2]. It is straightforward that the solution to the problem of 
maximizing H is interior. The thresholds that maximize the expected welfare contribution of the 
first period when player 2 is the beneficiary are similarly

x̄1(2) = −λ2

λ1
EF [x2|x2 ≥ x̄2(2)] and x̄2(2) = −λ1

λ2
EG[x1|x1 ≥ x̄1(2)].

Next, consider the special case λ = (1, 1) and let (x̄∗(1), x̄∗(2)) be the corresponding thresh-
olds. In this case, x̄∗

1 (2) = x̄∗
2 (1) and x̄∗

2 (2) = x̄∗
1 (1). The total expected surplus if, in every period, 

a project is implemented if and only if the benefit is more than x̄∗
1(1) and the cost is less than 

x̄∗
2 (1), is given by

T ∗ = (1 − F̄ ∗)(1 − Ḡ∗)[EF [x1|x1 ≥ x̄∗
1 (1) + EG[x2|x2 ≥ x̄∗

2 (1)]]
= −(1 − F̄ ∗)(1 − Ḡ∗)[x̄∗

2 + x̄∗
1 ],

where F̄ ∗ = F(x̄∗
1 (1)) and Ḡ∗ = G(x̄∗

2 (1)). This value T ∗ is an upper bound on the total expected 
surplus one could expect an equilibrium to generate. We show below that if the players are 
sufficiently patient, this upper bound is achieved, i.e., (T ∗/2, T ∗/2) ∈ ∂V (1,1) for δ sufficiently 
large.

We now argue that in equilibrium σ , where u(σ ) ∈ ∂V λ for an arbitrary λ ∈ R2
+\{(0, 0)}, 

a project x is implemented in the first period if and only if xj ≥ x̄j (i) for j = 1, 2 when the 
beneficiary is player i (i = 1, 2). Moreover, wa(i) = (T ∗/2, T ∗/2) for all a ∈ {0, 1}2 and i =
1, 2. Hence, first-period decisions are arranged to maximize the expected value of the objective 
λ1x1 + λ2x2, while continuation payoffs invariably maximize the social surplus. The argument 
proceeds in three steps.

First, the argument that continuation payoffs are drawn from V (1,1), and hence maximize the 
social surplus, is analogous to that given in Proposition 7 for the one-sided imperfect monitoring 
case, and we will not repeat it here. Second, taking this as given, we show that we can create 
the required incentives in the first period. As usual, we will work with the interim value va(i) =
(1 − δ)ma(i) + δwa(i). Conditional on player 1 being 1 the beneficiary, the voting incentive 
constraints are

Ḡv0,0
1 (1) + (1 − Ḡ)v0,1

1 (1) = Ḡv1,0
1 (1) + (1 − Ḡ)[(1 − δ)x̄1 + v1,1

1 (1)]
F̄ v0,0

2 (1) + (1 − F̄ )v1,0
2 (1) = F̄ v0,1

2 (1) + (1 − F̄ )[(1 − δ)x̄2 + v1,1
2 (1)],

where F̄ = F(x̄1(1)) and Ḡ = G(x̄2(1)). Since wa
1 (i) + wa

2 (i) = T ∗, we must have that 
va

1 (i) + va
2 (i) = δT ∗ for all a ∈ {0, 1}2 and i = 1, 2. Substituting va

1 (1) = δT ∗ − va
2 (1) in the 

first constraint we get

Ḡv0,0
2 (1) + (1 − Ḡ)v0,1

2 (1) = Ḡv1,0
2 (1) + (1 − Ḡ)[−(1 − δ)x̄1 + v1,1

2 (1)]
F̄ v0,0

2 (1) + (1 − F̄ )v1,0
2 (1) = F̄ v0,1

2 (1) + (1 − F̄ )[(1 − δ)x̄2 + v1,1
2 (1)].

These constraints can be rewritten as

A · z = 1 − δ

δ

[
(1 − Ḡ)x̄1(1)/T ∗

(1 − F̄ )x̄2(1)/T ∗

]
≡

[
1 − δ

δ

]
b,
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where

A =
[−Ḡ −(1 − Ḡ) Ḡ (1 − Ḡ)

F̄ −F̄ (1 − F̄ ) −(1 − F̄ )

]
and z = 1

δT ∗

⎡

⎢⎢⎢⎢⎣

v0,0
2 (1)

v0,1
2 (1)

v1,0
2 (1)

v1,1
2 (1)

⎤

⎥⎥⎥⎥⎦
.

Thus, σ is an equilibrium if there exists z ∈ [0, 1]4 that solves the linear system of equations. 
Now, C = A([0, 1]4) is a convex polyhedron in R2 that contains the four points corresponding to 
the four columns of A (since, for example, (−Ḡ, F̄ ) = A(1, 0, 0, 0)). Hence (0, 0) is an interior 
point of C. Therefore, no matter what are the values of x̄1(1) and x̄2(1), there exists δ̄ ∈ (0, 1)

such that [(1 − δ)/δ]b ∈ C for all δ ∈ [δ̄, 1). A symmetric analysis applies to the thresholds 
(x̄1(2), x̄2(2)). This establishes that σ is an equilibrium and that u(σ ) ∈ ∂V λ for δ sufficiently 
high.

Third, we need to show that (T ∗/2, T ∗/2) ∈ V (1,1) for δ sufficiently high is proved. The 
argument here is analogous to that of the second step. One proceeds by considering the strategy 
σ ∗ with factorization (α∗, m, w) where α∗ corresponds to the thresholds x̄∗(1) and x̄∗(2), and 
wa(i) = (T ∗/2, T ∗/2) for all (a, i).

We have thus established conditions under which every continuation path in an efficient sub-
game perfect equilibrium maximizes the expected surplus.
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