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Abstract

Consider repeated two-player games with perfect monitoring and dis-
counting. We provide an algorithm that computes the set V ∗ of payoff
pairs of all pure-strategy subgame perfect equilibria with public random-
ization. The algorithm provides significant efficiency gains over the exist-
ing implementations of the algorithm from Abreu, Pearce and Stacchetti
(1990). These efficiency gains arise from a better understanding of the
manner in which extreme points of the equilibrium payoff set are gener-
ated. An important theoretical implication of our algorithm is that the
set of extreme points E of V ∗ is finite. Indeed, |E| ≤ 3|A|, where A is the
set of action profiles of the stage game.

1 Introduction

The paper develops a new algorithm for computing the set of subgame perfect equilib-
rium payoff vectors in repeated games with finitely many actions, perfect monitoring
and discounting. This is a very classical setting, which serves as a basis for many
applications. Nevertheless, our results suggest that significant improvements in ex-
isting computational procedures can be obtained from a better understanding of the

∗We are very grateful to Benjamin Brooks and Rohit Lamba for excellent research assistance.
Brooks and Lamba wrote the initial programs implementing our algorithm. Subsequently Brooks
has been responsible for further development of the programs and the user interface with input
from the authors. He is currently maintaining the website at which the algorithm is available.
Abreu acknowledges financial support from the National Science Foundation. Sannikov acknowledges
financial support from the Alfred P. Sloan Foundation.
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structure of equilibria, especially the generation of extreme equilibrium payoff vec-
tors. Besides describing a faster computational algorithm, we also provide a publicly
available implementation of our algorithm, which should be useful both to researchers
trying to understand the impact of changes in underlying parameters on equilibrium
possibilities and to students seeking to develop an understanding of dynamic games
and how they work.

Prior work on this topic has as its starting point the algorithm suggested by Abreu,
Pearce, and Stacchetti (1990), hereafter APS. This is true of the approach presented
here also. The APS algorithm works iteratively, starting with the set of feasible
payoffs of the stage game W 0. The set of subgame perfect equilibrium payoffs V ∗ is
found by applying a set operator B to W 0 iteratively until the resulting sequence
of sets W 0, W 1, . . . W n+1 = B(W n) converges. For a payoff set W, the operator
B(W ) gives the set of payoffs that can be generated through some action profile a in
the current period and using continuation values from W in the next period, while
respecting all incentive constraints.

A classic paper of Judd, Yeltekin, and Conklin (2003) (to which we refer frequently
below as JYC) provides a numerical implementation of the APS algorithm based
on linear programming problems. Each set W n is approximated by its supporting
hyperplanes. Such an approximation can be defined by a set of linear inequalities,
for a fixed number of directions, that the points of W n must satisfy. The JYC
implementation solves a set of linear programming problems, one for each action
profile, to find the supporting hyperplane of the set W n+1 for each direction.

Rather than implementing the APS algorithm directly, we simplify it using a
better understanding of how the extreme points of the equilibrium payoff set V ∗ are
generated. It turns out that any extreme point of V ∗ can be generated either by (1)
an infinite repetition of some action profile a on the equilibrium path or (2) some
action profile a in the current period and a vector of continuation payoffs for the next
period such that the incentive constraint of at least one of the players is binding. If
the former case, profile a generates a single extreme point of V ∗. In the latter case,
profile a generates at most four extreme points, all with a constraint of at least one
player binding.

While the structure of the set V ∗ is fairly simple, the generation of the set
W n+1 = B(W n) by the APS algorithm can be fairly complicated. Each action profile
a can potentially generate very many extreme points of the set W n+1. We modify the
APS algorithm by introducing a stronger set operator that keeps at most four points
corresponding to each action profile a by focusing on binding incentive constraints.
Keeping at most four points per action profile speeds up the algorithm, and allows us
to represent payoff sets via their extreme points, rather than supporting hyperplanes.
Clearly, because our algorithm is based on a stronger operator than B, it cannot
converge to a larger set than V ∗. We are also able to show that the sequence of sets
we generate contains V ∗ and therefore it must converge to V ∗.

We compare the running time of our algorithm to that of JYC both theoretically,
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and experimentally. Theoretically, the JYC algorithm takes time of at least O(M3)
to perform one iteration on a game with M action profiles and O(M) approximating
hyperplanes. At the same time our algorithm takes time O(M log M) per iteration.
In practice, our algorithm also runs significantly faster than that of JYC.

The most that one could hope for in this endeavor, is to in fact be able to solve for
the equilibrium value set analytically. A novel feature of our work is that we are indeed
able to obtain analytical solutions by exploiting what the algorithm reveals about
the limit equilibrium structure. This allows us to write down a set of simultaneous
equations (in the co-ordinates of the extreme points of V ∗) that can be solved to
obtain the extreme points analytically in terms of the underlying payoffs of the stage
game. This is discussed in Section 6.

This paper is organized as follows. Section 2 reviews background information
on repeated games and the APS algorithm. Section 3 presents our algorithm to-
gether with a proof of convergence. Section 4 presents several computed examples,
and compares our algorithm with that of JYC. Session 5 discusses methods to eval-
uate numerical errors, including inner approximations that generate a lower bound
on V ∗, and (as discussed above) methods to solve for the vertices of V ∗ analyti-
cally. An implementation of our algorithm is available online at www.princeton.
edu/econtheorycenter/research-links/dynamic-games-algorithm/.1

2 The Setting and Background

Consider a two-player repeated game with simultaneous-move stage game
G = {N, (Ai)i∈N , (gi)i∈N}, in which players N = {1, 2} have a common discount
factor δ < 1. The players observe each other’s actions after each repetition of the
stage game. Our objective is to construct an algorithm to compute the set V ∗ of
payoff pairs achievable in pure-strategy subgame-perfect equilibria of the repeated
game with public randomization. The set V ∗ is the largest compact self-generating
set (see Abreu, Pearce and Stacchetti (1986,1990)).2 To formalize this concept, for
any action aj ∈ Aj denote by

gi(aj) = max
ai

gi(ai, aj)

the maximal one-period payoff that player i can get in response to aj. Let hi(a) =
gi(aj) − gi(a). For any compact set X ⊂ R2, denote the worst punishment for each
player i by

Pi(X) = min {xi | (x1, x2) ∈ X for some xj}
1Our implementation is written in Matlab, but it includes a convenient graphical user inter-

face. The user will need to run Matlab before launching the implementation. The portion of the
implementation devoted to analytical solutions uses Mathematica in addition.

2The straightforward adaptation of the original APS framework to the simpler setting of perfect
monitoring environments appears in Cronshaw and Luenberger (1994), and in teaching notes and
problem sets of the original authors.
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Definition 1 A point v is generated by the set X if there is an action pair a ∈ A in
the current period and a pair of continuation values w ∈ X such that

v = (1− δ)g(a) + δw (A) (“Adding up
��)

δ(w − P (X)) ≥ (1− δ)h(a) (IC)

A set X is called self-generating if each extreme point of X can be generated by X.

The incentive constraints (IC) guarantee that each player prefers to follow her
equilibrium action rather than to deviate and receive her worst equilibrium pun-
ishment. In what follows, we denote the worst punishments from the set V ∗ by
v = P (V ∗). APS propose an algorithm to compute the set V ∗, which is based on the
operator B defined below:

B(W ) = co {v | ∃w ∈ W,a ∈ A s.t. v = (1− δ)g(a) + δw and δ(w − P (W )) ≥ (1− δ)h(a)}

APS also show that the operator B is monotonic, that is for any two sets W ⊆ W �,

B(W ) ⊆ B(W �).

The APS algorithm starts with a convex set W 0 that clearly contains V ∗, and applies
operator B infinitely many times. Defining recursively W n = B(W n−1), APS show
that

W
n → V

∗ as n →∞.

If B(W 0) ⊆ W 0, then the monotonicity of operator B implies that V ∗ ⊆ . . . W n ⊆
W n−1 . . . ⊆ W 0. One such possible starting point for the iterative algorithm is the
convex hull of all feasible payoffs

W
0 = co{g(a) | a ∈ A}.

3 A Theoretical Result

We present here a basic result on how extreme points are generated. An immediate
implication is that the number of extreme points of V ∗ is finite, in fact at most 4|A|
where |A| is the number of stage game action profiles. This result is of theoretical
interest. It also motivates the algorithm that we develop below.

To understand our approach, one needs a detailed mechanical understanding of
the operator B. It is useful to “break down” the operator B as follows: for an action
profile a and a threat point u ∈ R2, denote by Q(a, W, u) the intersection of the
quadrant

{w ∈ R
2 | δ(w − u) ≥ (1− δ)h(a)}
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! Figure 1

with the set W. To compute B(W ), one takes the linear combination

Ba(W ) = (1− δ)g(a) + δQ(a, W, P (W ))

and finds the convex hull of the union of Ba(W ) over all action profiles a. This
procedure, which yields B(W ), is illustrated in the panels of Figure 1:

Since each set Ba(W ) could have as many vertices as the set W itself (or more),
the number of vertices that the sets of the sequence {W n} have could potentially grow
without bound. Hence the APS algorithm does not yield a bound on the number of
extreme points of V ∗. However the following theorem does lead to such a bound, by
specifying a limited number of ways in which extreme points of V ∗ can be generated.

Theorem 1 Any action profile a such that g(a) ≥ v + 1−δ

δ
h(a) generates at most one

extreme point of V ∗, v = g(a). Any action profile for which

g1(a) < v1 +
1− δ

δ
h1(a) or g2(a) < v2 +

1− δ

δ
h2(a)

generates at most four extreme points of V ∗, using continuation payoff vectors w that
are extreme points of Q(a, V ∗, v) such that n

δ(w1 − v1) = (1− δ)h1(a) or δ(w2 − v2) = (1− δ)h2(a) (1)

Proof. Follows directly from a stronger Theorem 2 below.

Abreu (1986) has results with this flavor (see especially Lemma 44) in the special
setting of continuous action repeated Cournot games.

In the finite setting of the current paper Theorem 1 yields a significant theoretical
result that the number of extreme points of V ∗ is at most 4|A| where |A| is the number
of stage game action profiles. In this setting it was not even known (as far as we are
aware) that the number of extreme points is finite. For instance, as noted above, the
APS algorithm does not yield this conclusion.

In fact, this bound can be tightened to 3|A| extreme points; see Theorem 4 in the
Appendix.

5



4 Our Algorithm

We develop an algorithm for computing the set V ∗ that is related to the APS algo-
rithm, but happens to be more efficient and simpler to program. As noted earlier, the
number of vertices of the sets of the APS sequence {Bn(W 0)} could potentially grow
without bound, making computation difficult. We propose a simpler computational
procedure, which is faster and more parsimonious.

Motivated by the theoretical results above, we focus on points produced by the
APS algorithm, which are generated with one of the constraints binding or attained
by repeated play of a particular action profile. Specifically, our algorithm makes use
of the operator R(W,u) defined below.

Definition 2 For an action profile a, a convex set W and a punishment vector u,

define C(a, W, u) = g(a) if

δ(g(a)− u) ≥ (1− δ)h(a),

and otherwise let C(a, W, u) be the set of extreme points of Q(a, W, u) such that

δ(w1 − u1) = (1− δ)h1(a) or δ(w2 − u2) = (1− δ)h2(a).

Let
R(W,u) = co ∪a∈A (1− δ)g(a) + δC(a, W, u).

Figure 2 illustrates the relationship between the sets Q(a, W, u) and C(a, W, u).
Note that C(a, W, u) picks up at most four points of the set Q(a, W, u).

Figure 2

Note that by Theorem 1, V ∗ = R(V ∗, v). Our algorithm is based on successive
applications of the operator R. The decisive advantage of this operator is that for any
a ∈ A, whereas B takes account of all extreme points of Q(a, W, u), our operator R

considers at most four extreme points. At each iteration there are fewer computations

6



and the set generated is smaller than under the operator B. This advantage is, of
course, cumulative. Whereas the nth application of the APS operator B might yield
a set with |A|n+1 extreme points our algorithm yields a set with at most 4|A| extreme
points at every round.

Why does this approach work? There are many potential problems. The most
obvious and primary one is that the operator R may discard too much. Of course,
Theorem 1 offers some hope that this might not be the case.3 Furthermore what
guarantees convergence? This is indeed potentially problematic because R does not
necessarily generate a monotone sequence. The precise specification of our algorithm
(in particular the inductive definition of un+1) finesses this issue, although it does not
guarantee monotonicity.

We suggest the following algorithm:

1. Start with a convex set W 0 that contains the set V ∗, and a vector u0 ∈ R2 such
that u0 ≤ P (V ∗).

2. Inductively compute W n = R(W n−1, un−1), and denote un = max(un−1, P (W n)).

Then W n contains some, but usually not all, points generated by W n−1, i.e. W n ⊆
B(W n−1). Moreover, the threats un defined inductively are potentially weaker than
P (W n). Inductively, it follows that W n ⊆ Bn(W 0) (see Lemma 5). Since the sequence
{Bn(W 0)} converges to V ∗ as n →∞, it follows immediately that W n also converges
to V ∗ if we can show that V ∗ ⊆ W n for all n. In that case the sequence {W n} would
be squeezed between {Bn(W0)} and V ∗, and the algorithm works.

Of course, given our analysis so far, there is no guarantee yet that W n contains
V ∗ for all n. All we have so far is crude intuition, motivated by Theorem 1, that the
operator R(W n−1, un−1) keeps only essential points and discards points that would be
eventually eliminated by the APS algorithm. How do we establish that each element
W n of the sequence produced by the algorithm contains V ∗?

It turns out that while the operator R(W,u) is monotonic in W, it is not monotonic
in u. Therefore, inductively V ∗ ⊆ W n−1 and v ≥ un−1 do not imply that V ∗ =
R(V ∗, v) ⊆ R(W n−1, un−1). To make the inductive argument work, as an intermediate
step we define sets V (u) that contain V ∗ whenever u ≤ v, and prove by induction on
n that

V (un) ⊆ W
n and u

n ≥ v

for all n. We proceed now to the details.

Definition 3 Denote by B(W,u) the set of points generated by a set W ⊆ R2 using
the threats given by u ∈ R2, i.e.

B(W,u) = co ∪a∈A (1− δ)g(a) + δQ(a, W, u).

3It is only suggestive because it is a property of V ∗ and not, in the form stated in Theorem 1,
related to any sets which we might encounter in the process of computing V ∗.

7



Let V (u) denote the largest bounded self-generating set under B(·, u) (i.e. such that
V (u) ⊆ B(V (u), u)).

Since B(·, u) is monotonic in its first argument, it follows directly from defini-
tions that the union of all self-generating sets is self-generating, and that V (u) =
B(V (u), u). Since stronger threats relax the incentive constraints, we have the follow-
ing lemma, which implies that V ∗ ⊆ V (u) whenever u ≤ v.

Lemma 1 If u ≤ u� then V (u�) ⊆ V (u).

Proof. Follows directly from definitions.

Moreover, it turns out that any extreme point of the set V (u) is generated by
some action profile a with continuation payoff vector from C(a, W, u), as shown in
Theorem 2 below.

Theorem 2 V (u) = R(V (u), u).

Proof. We need to show that if v ∈ V (u) is an extreme point generated with the
action profile a ∈ A and continuation value w ∈ V (u), then w ∈ C (a, V (u), u) . First,
if g(a) ≥ u + 1−δ

δ
h(a), then g(a) ∈ V (u). Since v = (1 − δ)g(a) + δw, it follows that

v = w = g(a), or else v cannot be an extreme point of V (u) (since w is also in V (u).)

! Figure 3

Otherwise, g1(a) < u1+
1−δ

δ
h1(a) or g2(a) < u2+

1−δ

δ
h2(a), and so v �= w (see Figure

4). Since v is extreme, w must be an extreme point of Q(a, V (u), u). Note that also
[w, v] ≡ {w�|w� = λw + (1− λ)v, λ ∈ [0, 1]} ⊆ V (u). Now, if the incentive constraints
are slack, i.e. w > u + 1−δ

δ
h(a), then (w, v]

�
Q (a, V (u), u) �= ∅. Consider w� ∈

(w, v]
�

Q (a, V (u), u) and let z = (1− δ)g(a) + δw� ∈ V (u). Then v = λw + (1− λ)z
for some λ ∈ (0, 1), and so v is not extreme, a contradiction. It follows that w is an
extreme point of Q(a, V (u), u) such that wi = ui + 1−δ

δ
hi(a) for i = 1 or 2, i.e. one of
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the two incentive constraints is binding. Therefore, w ∈ C(a, V (u), u) in this case as
well.

It is also useful to note that R is increasing in its first argument.

Lemma 2 The function R(·, u) is increasing in its first argument.

Proof. Note that for all a, co C(a, W, u) is increasing in W. Therefore,

co{(1− δ)g(a) + δC(a, W, u)}

is increasing in W, and R(W,u) is increasing in W by the definition of R(W,u).

The following lemma presents the main inductive argument:

Lemma 3 If V ∗ ⊆ V (un−1) ⊆ W n−1 and un−1 ≤ v then un ≤ v and V ∗ ⊆ V (un) ⊆
W n.

Proof. By definition un ≥ un−1. It follows from Lemma 1 that V (un) ⊆ V (un−1).
Since V (un−1) ⊆ W n−1 it follows from Lemma 2 that V (un−1) ⊆ W n = R(W n−1, un−1).
Consequently V (un) ⊆ W n.

Since V ∗ ⊆ V (un−1) and un−1 ≤ v it follows that un ≤ v and hence by Lemma 1
that V ∗ ⊆ V (un).

Letting u0 be the vector pure-strategy minmax payoffs of players 1 and 2, we have
u0 ≤ v and V ∗ ⊆ V (u0) ⊆ W 0, and so Lemma 3 implies that V ∗ ⊆ W n for all n, by
induction on n.

Hence, the sequence W n is squeezed between V (un), which contain V ∗, and
Bn(W 0), which converges to V ∗ by APS. It follows that W n must converge to V ∗

also, a conclusion that we summarize in Theorem 3.

Theorem 3 W n → V ∗ as n →∞.

Proof. Lemma 3 implies that V ∗ ⊆ V (un) ⊆ W n. Also, by induction on n, W n ⊆
B(W n−1, un−1) ⊆ B(W n−1) ⊆ Bn(W 0) (see Lemma 5 in the Appendix). This leads
to the desired conclusion.

That is, our algorithm does indeed yield convergence to V ∗ (despite possible lack
of monotonicity and the fact that it drops points that the APS algorithm includes).4

4In particular, if the stage game has no pure strategy Nash equilibria and the set V ∗ is empty,
then Wn = R(Wn−1, un−1) becomes empty at some finite stage n. A decreasing sequence of closed
nonempty sets cannot converge to an empty set.
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5 Implementation, Examples and Evaluation

The set V ∗ is naturally described by its extreme points; any extreme point of V ∗ is
generated by some action profile a today and some incentive compatible continuation
value w ∈ Q∗ (a) tomorrow, where Q∗ (a) denotes the set of incentive compatible
continuation values. According to Theorem 1, if g(a) ∈ Q∗ (a) then w = g(a). If
not, w must be an extreme point of Q∗ (a) at which one or both players’ incentive
constraints are binding. There are at most four such points. Crucially we were able to
show that an algorithm which mimics these properties of the equilibrium set V ∗ does
in fact work, and yields convergence to V ∗. This yields an important simplification
which goes beyond the natural focus on extreme points of Q∗ (a) that is a noteworthy
feature of the APS algorithm.

In this section, we start by presenting a simple illustrative example. We then turn
to a comparison of our algorithm with that of Judd, Yeltekin and Conklin (2003)
(JYC). To perform a practical comparison of running times, we use a Cournot duopoly
example from JYC, and calculate the equilibrium payoff set with the two algorithms.
To perform theoretical comparisons, we estimate the number of steps that each algo-
rithm takes to run for a game with a given number of actions per player, and for a
given level of computational precision.

Implementation. Because our algorithm exploits our knowledge about the struc-
ture of equilibria, the algorithm also produces output in a form that makes clear not
only the shape of V ∗, but also of the equilibria themselves. As noted in the introduc-
tion, a Matlab implementation of our algorithm is available at www.princeton.edu/
econtheorycenter/research-links/dynamic-games-algorithm/. Here the user
may input payoffs for any finite two-player game and any discount factor and imme-
diately see the solution, the coordinates of the extreme points, how they are generated,
solve for exact solutions (see Section 5), observe, if desired, the iterative steps of the
algorithm and so on. The reader is invited to explore the algorithm here and solve
their games of choice.

Simple Example. We turn now to a simple example, which illustrates the al-
gorithm and its implementation “in action.” The computation of V ∗ and the de-
composition of extreme points and associated diagrams are all taken directly from
the implementation discussed above. Consider a Cournot duopoly game with the
following payoff matrix:

L M H
L 16, 9 3, 13 0, 3
M 21, 1 10, 4 -1, 0
H 9, 0 5, -4 -5, -10

In this game the Nash equilibrium is (M, M), with payoffs (10, 4). At the same
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time, profiles (L, L), (L, M) and (M, L) all produce a higher sum of payoffs. The
minmax payoffs are 1 for player 1 and 0 for player 2.

Figure 4 shows the set feasible payoffs, and the hexagonal set V ∗ for the discount
factor δ = 0.3. The five panels of Figure 4 illustrate how each of the extreme points
of V ∗ is attained in equilibrium. The largest panel illustrates how the extreme point
v ∈ V ∗, which maximizes the payoff of player 2, is generated using the profile (L, M)
with payoffs (3, 13). Because player 1 has a large deviation payoff, this action profile
is enforced using continuation value w, with a large payoff to player 1. The dashed
quadrant in the figure tells us that player 1’s constraint is binding.

The four small panels of Figure 4 illustrate the generation of five other extreme
points, highlighting the current-period action profile, the continuation value in the
next period, and the binding constraint(s). Interestingly, play on the Pareto frontier
involves complex dynamics, in which all three action profiles (L, L), (L, M) and (M,
L) necessarily have to be used on the equilibrium path.

The punishment extreme points of V ∗ are used only after deviations, off the equi-
librium path. Note that both punishment points of player 2 are generated by the
profile (H, M) with player 2’s constraint binding. Thus, player 2 is indifferent be-
tween taking the equilibrium action or deviating to the best response L. If he does
the latter, he receives his minmax payoff of 0, and receives punishment in the next
period. From this, we know that the worst equilibrium punishment of player 2 is
exactly 0.

In contrast, player 1’s punishment point is generated by the profile (M, H) with
player 2’s constraint binding. Player 1 strictly prefers to participate in his own
punishment. Therefore, his worst punishment is strictly greater than 1, which is his
best response payoff to action H of player 2, and also his minmax payoff.

In Section 6.1 we discuss how the knowledge of how each extreme point of V ∗ is
generated translates into an exact system of equations for coordinates of these points.
These equations can be often solved analytically.

This game takes 23 iterations (and 0.11 seconds) to solve.

The JYC algorithm and Theoretical Comparison. The JYC algorithm in
principle can be applied to games with more than two players. Below we describe the
JYC algorithm in the context of two-player games.

The JYC algorithm is based on linear programming. Rather than representing
sets via its extreme points, it represents sets by outer approximations via inequalities.
A convex set W is approximated by

{x ∈ �2 | x · hl ≤ cl for all l = 1, . . . L}, (2)

where hl =
�
cos

�
2πl

L

�
, sin

�
2πl

L

��
, L is the number of approximating subgradients, and

cl = maxw∈W w · hl. The JYC algorithm is based on linear programming problems

c
�
l
(a) = max

w
hl · [(1− δ)g(a) + δw], s.t. (3)
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Figure 4: The set V ∗ in the three-by-three Cournot example, δ = 0.3.
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(i) w · hl ≤ cl for all l = 1, . . . L,

(ii) (1− δ)gi(a) + δwi ≥ (1− δ)ḡi(aj) + δPi(W ),

where the number Pi(W ) itself can be found using linear programming. To find
B(W ), JYC solve (3) for each subgradient, for each action profile a ∈ A. Then they
let c�

l
= maxa∈A cl(a), and approximate B(W ) by

{x ∈ �2 | x · hl ≤ c
�
l
for all l = 1, . . . L}. (4)

If a game has M action profiles, then the computational complexity of the JYC
algorithm per iteration can be estimated as follows. Although the two-dimensional
linear programming problem (3) would run quite fast, it takes at least O(L) steps
to solve, where L is the number of approximating subgradients. Since it has to be
solved LM times during each iteration, the running time of the algorithm is at least
O(ML2) per iteration.

In contrast, to evaluate the complexity of our algorithm, note that after each itera-
tion the set W n−1 has at most 4M extreme points. In our implementation we order the
points in such a way that the search for extreme points of each set Q(a, W n−1, un−1)
takes O(log(M)) steps. Since we need to do this for every profile a, the running time
of the algorithm is O(M log M). The JYC algorithm could potentially be faster on
games with a huge number of actions when using relatively few approximating sub-
gradients, i.e. M � L. However, approximations via few subgradients could easily
lead the JYC algorithm to converge to a much larger set than V ∗ (although JYC also
propose an inner approximation method to deal with this issue). If O(M) = O(L),
then the running time of our algorithm of O(M log M) is significantly faster than that
of the JYC algorithm, of O(M3).

Experimental Comparison with the JYC algorithm. We borrow a game
from JYC: a Cournot duopoly in which firms face the demand function P = 6−q1−q2,

and receive payoffs q1(P − 0.6) and q2(P − 0.6) (that is, c1 = c2 = .6). The set of
actions of each firm is the interval [0, 6], discretized to include 15 evenly spaced
points. That is, altogether the game has 152 = 225 action profiles, which could result
in a nontrivial computation time. The discount factor is set at δ = .8.

Figure 5 presents the set V ∗. The algorithm with an error threshold of 0.0001 (in
Hausdorff metric) takes 8 iterations and a total run time of 0.34 seconds.

We also performed the same computation using a Fortran implementation of the
JYC algorithm, kindly provided to us by Sevin Yeltekin. These experimental results
complement the theoretical analysis above. Certainly, comparisons of implementa-
tions in different programming languages are quite crude, because differences in run-
ning times could be driven by particularities of the language or the implementation,
rather than fundamentals of the algorithm. So reported results should be taken with
the understanding that there may be many reasons for the differences. In our ex-
periment the JYC algorithm with the same error threshold of 0.0001 converged after
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Figure 5: The set V ∗ in the Cournot duopoly game from JYC.

48 iterations in 6 minutes 51 seconds.5 The average time per iteration of the JYC
algorithm was 8.56 seconds, versus 0.043 seconds for our algorithm. The iterations of
the JYC algorithm are not equivalent to those of our algorithm, since the JYC itera-
tion produces somewhat larger sets than the APS algorithm, while an iteration of our
algorithm produces somewhat smaller sets. That is why our algorithm converges in
fewer steps than the JYC algorithm in this example. As it happens, our limit set is
strictly contained in the JYC limit set (although this would not be obvious on visual
inspection!). The following table records our observations of running times.

JYC AS

Error 10−4 # of Iterations 48 8
Run Time 6 min 51 sec 0.34 sec

Error 2−52 # of Iterations 260 26
Run Time 32 min 16 sec 1.09 sec

In their 2003 paper JYC report a run time of 44 minutes and 53 seconds for
this example with L = 72 approximating subgradients and faster running times of
4 minutes 46 seconds and 63 seconds for L = 32 and 16 respectively, using an error
threshold of 10−5. We can estimate the error of approximating a circle of radius

5Following the JYC implementation, we used 72 subgradients to represent sets in the JYC algo-
rithm. See the description of the algorithm in this Section.
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R with L subgradients to be about Rπ2/(2L2). This suggests that the number of
approximating subgradients has to be tailored to the desired precision of calculation.
To get an error margin of about 10−5 for the set or radius 3 (see Figure 5), it seems
appropriate to use at least 1000 approximating subgradients.6

6 Further Topics

6.1 From Almost Convergence to Exact Solutions

This section combines computational methods with analytical ones, in a novel way.
This hybrid approach may well be more widely applicable, and is an important com-
ponent of the current paper.

Once the algorithm ‘stops’ the set of extreme points remains fixed and we can
express how each extreme point is generated as a linear combination of at most two
other extreme points. This leads to a simultaneous equation system which in principle
can be solved exactly. This is particularly simple when the system is linear as it will
frequently turn out to be.

Suppose the algorithm has almost converged and we therefore know (generically)
how many extreme points there are and precisely how they are generated. Let the
extreme points be ordered in some convenient way, say clockwise, E1, E2, ..., EM . Let
m(i) index the extreme point which yields the lowest payoff to Player i. There is an
action profile am associated with every extreme point Em. From Theorems 1 and 3
we know that there are four possibilities:

(i) Neither player’s constraint binds and Em = g(am), where g denotes the stage
game payoff function.

(ii) Player 2’s constraint binds. This case is depicted below.
Recall that hi(am) is the (maximal) gain to player i of deviating from am

i
given

that his opponent plays am

j
in the stage game. If Player 2’s constraint binds then 2’s

continuation payoff is w2 = E
m(2)
2 + 1−δ

δ
h2(am). Hence,

E
m

2 = (1− δ)g2(a
m) + δ

�
E

m(2)
2 +

1− δ

δ
h2(a

m)

�

� �� �
w2

= (1− δ)g2(a
m) + δE

m(2)
2 .

The continuation payoff w2 is obtained by public randomization between the ex-
treme points Ek

2 and E
k+1
2 with weights αm and (1− αm) respectively.

We may solve for αm, where

6JYC indicate that they ran their program on a 550 MHz Pentium PC. We ran their program
on a 3.4GHz machine.
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! Figure 6

α
m

E
k

2 + (1− α
m)Ek+1

2 = E
m(2)
2 +

1− δ

δ
h2(a

m) (= w2)

Furthermore,

E
m

1 = (1− δ)g1(a
m) + δ

�
α

m
E

k

1 + (1− α
m)Ek+1

1

�

(iii) Player 1’s constraint binds. This case is analogous to (ii) above with the
indices 1 and 2 reversed.

(iv) Both constraints bind. Then

Em = (1− δ)g(am) + δ
�
u + 1−δ

δ
h(am)

�
= (1− δ)g(am) + δu

where u ≡ (Em(1)
1 , E

m(2)
2 )

This yields a system of simultaneous equations in the unknown Em

i
’s and (in the

relevant cases) corresponding αm’s. The equations corresponding to cases (i) and (iv)
are trivial. Some of the type (ii) and (iii) equations will also be simple (in particular,
linear) when Ek

i
and E

k+1
i

correspond to cases (i) or (iv) above. So linearity might be
contagious. In any case, this system of equations does not seem terribly complicated
and in many instances should solve quite easily. This would then yield a kind of “holy
grail” (at least locally): a closed form solution for the set of discounted equilibrium
payoffs in a repeated game.

Such exact solutions are of great interest because they are expressed symbolically
in closed form (in our current implementation we simply use Mathematica), and may
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be used to perform comparative statics with respect to changes in payoffs (driven by
changes in underlying parameters of cost or demand for instance) in a neighborhood
of the original payoffs. The ability to do this in applied problems is potentially quite
exciting.

We demonstrate this approach with the example introduced earlier that we now
evaluate with a discount factor δ = .4 (which also serves to illustrate the evolution of
the set as the discount factor increases). The algorithm yields the limit set in Figure
7 below.
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Figure 7: The set V ∗ in the three-by-three Cournot example of Section 5, for δ = 0.4.

The coordinates of the respective extreme points are reported as:

(0.43169727312472, 2.4) , (6.17267888662042, 0) ,

(10.15, 0) , (20.125, 2.4) , (16, 9) ,

(6.17267888662042, 12.0237911118091) .

The equation system corresponding to the above limit set is also reported as a
final step in our algorithm and we solve this system using Mathematica. Mathematica
reports the following exact solution for the extreme points:

�
3573−

√
12520729

80
,
12

5

�
,

�
4773−

√
12520729

200
, 0

�
,

�
203

20
, 0

�
,

�
161

8
,
12

5

�
, (16, 9) ,
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�
4773−

√
12520729

200
,
4277 +

√
12520729

650

�
.

which agrees with the earlier algorithmic solution up to the 12th decimal place.

Now suppose we replace the payoff pair corresponding to say (M,H) by (−1 +
x, 0 + y) the exact solutions obtained by Mathematica are:

�
3613 + A(x, y)

80
,
12

5

�
,

�
4773 + A(x, y)

200
, 0

�
,

�
203

20
, 0

�
,

�
161

8
,
12

5

�
, (16, 9) ,

�
4773 + A(x, y)

200
,
4277− A(x, y)

650

�
,

where

A(x, y) = 40x− 195y −
�

12520729− 217360x + 1600x2 − 1081470y − 15600xy + 38025y2

and we have explicit expressions for how the extreme points vary with x and y.

6.2 Inner Approximation.

Very low error thresholds give one substantial confidence that the true equilibrium
value set V ∗ has been basically attained and it is not obvious to us, as a practical
matter, that one needs further confirmation that V ∗ has been, for all practical pur-
poses, determined. Nevertheless there is the theoretical possibility of a discontinuity.
In response to this concern JYC suggest performing “inner approximation” to com-
plement their “outer approximation” of the set. Of course, in cases where we obtain
exact solutions along the lines outlined in the preceding subsection, we are decisively
done.

The procedure that JYC suggest works as follows. After running their imple-
mentation of the APS algorithm and almost converging, they “shrink” their final set
W n by a small amount (such as 2-3%) to obtain a new set W 0. The first step in
their procedure entails checking if W 0 ⊆ B(W 0). If it is, they proceed to iteratively
compute W n. However, unlike in the original iteration, which errs on the side of a
larger set by approximating via supporting hyperplanes, here they use an alternative
implementation BI that errs on the side of a smaller set. In particular, given a fixed
set of search subgradients {hl, l = 1, . . . L}, BI(W ) is the convex hull of extreme
points of B(W ) that solve maxx∈R(W ){x · hl | x ∈ B(W )}.

The operator BI is also used initially to test whether W 0 is self-generating. If
this test is passed it follows directly that W n = BI(W n−1) is an increasing sequence.
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Convergence is registered when the distance between W n and W n−1 is small, and W n

is taken to be a lower bound on V ∗.

If W 0 ⊆ BI(W 0) then in a sense JYC are already done; W 0 is contained in V ∗

and is moreover within (say) 2% of it. The additional steps are less essential and
serve to whittle away at that initial slight shrinkage.

However, a potential difficulty with the starting point of the JYC procedure is
that the initial set W 0 may not be self-generating. Consider for example a game with
the following payoff matrix:

1 2 3
1 400, 530 0, -400 1, 1
2 1100, -1200 0, 0 -400, 0
3 1, 1 -1200, 1100 530, 400
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Figure 8: A narrow set V ∗, for δ = 0.6.

For the discount factor δ = 0.6, the set V ∗ for this game is presented in Figure 8.
The extreme points of V ∗ are

(0, 0) , (490, 440) and (440, 490) .

Unless the search directions chosen in the JYC algorithm accidentally coincide
with the faces of V ∗ then the outer approximation W n obtained by JYC will have
the form presented in Figure 9
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Figure 9: Outer approximation with 32 search hyperplanes.

Depending on the grid of possible search directions and their relation to the true
V ∗ a “slightly” shrunk version7 of W n may or may not be contained in V ∗. If not,
such a W 0 will obviously not self-generate.8

Remark. The difficulty here is that there are spurious extreme points which
do not get shrunk away. An easy fix to this problem is to specify W 0 by shrinking
BI(W n−1) rather than the larger set BO(W n−1) ≡ W n.

However even when we modify the JYC procedure as above it is not the case that
“generically” W 0 � B(W 0). There is a more subtle difficulty also illustrated by the
same example.

Let us shrink V ∗ by 2% to obtain W 0. Then as shown in Figure 10, W 0 � B(W 0).
Hence, W 0 � BI(W 0). Note that there is nothing non-generic about this example.
Slight perturbations of payoffs or the discount factor do not affect the conclusion.

The example demonstrates that there is no presumption that a slightly smaller
set than V ∗ will necessarily expand in all directions, in one round of application

7We “shrink” a convex set C with a finite number of extreme points as follows. Let e denote the
arithmetic average of the set of extreme points. Then for every extreme point e of C we define a
new extreme point e� = αe + (1− α) e where α is the shrinkage factor. Our shrunken set C � is the
convex hull of the e�s. In the example we use α = .02.

8In a footnote JYC (footnote 11, p.1246) suggest that in such a situation one might define W 0 to
be the set of payoffs obtainable using simple subgame perfect strategies such as those which prescribe
constant action profiles and Nash reversion in the event of deviation. In the example above the only
such equilibrium strategy is playing the Nash equilibrium always and the inner approximation this
yields will be W 0 = {(0, 0)} itself.
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Figure 10: An example in which the set W 0 does not supergenerate.

of the B (or related) operator (s). Intuitively the difficulty is that there are many
interdependent extreme points and the initial movement in some may be large relative
to others. One cannot be assured of a monotonic process of expansion. However one
might reasonably expect that successive applications of the operator within a “basin
of attraction” of V ∗ will get close to V ∗, and therefore eventually contain the initial
slightly shrunken set. But how does one convert this eventual containment into a
sufficient condition for a legitimate “inner approximation”?

The following new lemma provides an answer; it generalizes the self-generation
result of APS.

Lemma 4 Suppose X ⊆ R2 is compact and let Y ≡
m

∪
k=1

Bk(X). If X ⊆ Y then

Y ⊆ B (Y ) ⊆ V
∗
.

Proof. The proof is immediate. We first argue that Y ⊆ B(Y ). That B (Y ) ⊆ V ∗

then follows directly from self-generation. Suppose y ∈ Bk(X) , k = 2, ...m. Then
(by definition) y ∈ B

�
Bk−1(X)

�
⊆ B (Y ) (since B is a monotone operator). Finally,

if y ∈ B1(X) then y ∈ B (Y ) since X ⊆ Y by assumption.

Motivated by this lemma and the preceding discussion we propose the following
inner approximation procedure (where the sets W n now are taken to denote the sets
obtained iteratively by our algorithm).
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1) Shrink W n slightly to obtain W 0.

2) Apply our operator R to W 0 to obtain W 1 and proceed to inductively define
W 2, W 3, . . . until convergence at Wm

3) Check if W 0 ⊆ Wm. If so,
m

∪
k=1

W k ⊆ V ∗. In particular, Wm is an inner approx-

imation of V ∗.

Applying this procedure to our example we find that we obtain convergence to
within 10−6 in 0.0847 seconds and in 31 iterations.

Furthermore W 0 ⊆ Wm as required. As can be seen in Figure 11, Wm is visually
indistinguishable from W 0.
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Figure 11: Sets W 0 and Wm in our inner approximation procedure.

In terms of the above schema one could replace the operator R in 3) above with
the JYC inner approximation operator even when W 0 � B(W 0). (As noted above we
would define W 0 by shrinking BI(W n−1) rather than BO(W n−1) as JYC do).

We have argued above and demonstrated by example that an inner approxima-
tion procedure based on an initial condition W 0 ⊆ B(W 0) might “fail to launch”.
Fortunately, the new Lemma 4, suggests a way out of this difficulty and provides a
theoretical foundation for the approach we suggest.

7 Conclusion

In the context of two player finite action repeated games with perfect monitoring we
developed a new algorithm for computing the set of pure strategy subgame perfect
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equilibrium payoffs. Compared to the well known algorithm of JYC, ours appears to
be remarkably quick; indeed over 1000 times quicker (6 minutes 51 seconds versus
0.34 seconds) in the Cournot example featured in JYC. Our algorithm is inspired
by a theoretical result of independent interest: any action profile a can generate at
most four extreme points. The most one could hope for from a computational per-
spective are closed form expressions (“exact” solutions) for the set of extreme points.
We demonstrate how in many cases this is attainable. We complement our “exact”
approach with a new “inner approximation” procedure which is also quick and fi-
nesses some potential difficulties with the approach to inner approximation pioneered
by JYC. Finally we have made available on the web a user friendly implementa-
tion of our algorithm: www.princeton.edu/econtheorycenter/research-links/
dynamic-games-algorithm/. This provides a very accessible way for students and
researchers to investigate the equilibrium value sets of two-player repeated games, to
see their structural properties in terms of generation via actions today and continu-
ation values, to solve for exact solutions, perform inner approximations, and so on.
We note that our algorithm exploits the particular geometry of two-player games.
The JYC method, on the other hand, is quite general and can be directly applied to
games with three or more players. It is unclear at this point whether this leads to
computation in reasonable time frames for games with three or more players, because
of the “curse of dimensionality” that arises under the JYC approach.

The key to our approach was to develop a finer understanding of how extreme
points are generated, and, in particular to determine which incentive compatible con-
tinuation values could possibly generate extreme points. In the environment consid-
ered here the JYC approach based on solving families of linear programming problems
seems unnecessarily cumbersome and a relatively simple approach based directly on
computing all necessary extreme points at every iteration turns out to be very effec-
tive. In fact, a straightforward implementation of APS could run into problems if
the number of extreme points increased, possibly without bound, along the sequence
of iterations. The JYC approach evades this difficulty by limiting the number of ex-
treme points considered to the number of exogenously given “search subgradients”.
Of course, a central feature of our algorithm is that at every iteration, the number of
extreme points is bounded above by 4|A| where |A| is the number of action profiles.
Some readers have expressed a preference for solutions to games with continuous ac-
tion spaces. We are a bit mystified by strong tastes in this regard. On the one hand
our view is that the choice between continuous and discrete modeling is purely a mat-
ter analytical convenience. On the other hand, we are firm believers in a “quantum”
economic universe; we are not aware of any application in which in reality the units of
measurement are not discrete. If anything, the concern should be whether continuous
models provide a good approximation to a discrete underlying economic reality.

Turning to other dynamic game settings our work suggests that it might be pro-
ductive to look for special structure in how extreme points are generated and to
incorporate the relevant structure in the design of the algorithm as we have done
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here.9 Even absent the availability of very sharp structural results it is quite possible
that the number of extreme points does not grow without bound in actual applica-
tions. In such cases it is quite possible that a naive implementation of APS is more
speedy than an optimization based approach involving repeated solution of families
of linear programs.

The detailed simplification obtained here depends on the geometry of two-player
games. However, other kinds of structural features might apply to different settings.
In future work we hope to explore this general approach in the context of stochastic
games with perfect monitoring, and three or more player games. Of course, the
entire universe of perfect and imperfect public monitoring dynamic games could, in
principle, be usefully investigated from this perspective.

9Promising examples that come to mind are games from Thomas and Worrall (1990) and Phe-
lan and Stacchetti (2001). Indeed these are particularly close in that they embody both perfect
monitoring and a two-player structure.
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Appendix

Lemma 5 W n ⊆ B(W n−1, un−1) ⊆ B(W n−1) ⊆ Bn(W 0)

Proof. First, note that B(W,u) is increasing in W and decreasing in u. Clearly
W n ≡ R(W n−1, un−1) ⊆ B(W n−1, un−1). Since un−1 ≥ P (W n−1), B(W n−1, un−1) ⊆
B(W n−1, P (W n−1)) ≡ B(W n−1). Furthermore W n−1 ⊆ Bn−1(W 0) implies B(W n−1) ⊆
Bn(W 0). Since W 1 ⊆ B(W 0) the conclusion follows.

Theorem 4 The number of extreme points of V ∗ is at most 3|A|.

Remark. We can modify the R operator along the lines of Case 1 of the proof
of Theorem 4; however there appears to be no natural modification that covers Case
2 in a manner which preserves the monotonicity of R in W. So unlike Theorem 1,
Theorem 4 does not translate directly into an algorithmic procedure.

Proof. The proof of Theorem 2 in Section 4 implies that each action profile a such
that g(a) ≥ v + 1−δ

δ
h(a) generates at most one extreme point of V ∗, v = g(a). Any

other action profile a generates at most four extreme points, using continuation values
w that are extreme points of Q(a, V ∗, v) such that

w1 = v1 +
1− δ

δ
h1(a) or w2 = v2 +

1− δ

δ
h2(a). (5)

To prove Theorem 4, it is sufficient to narrow down this set of possibilities to three.
We need to consider two cases.

Case 1 (The result of this case is due to Ben Brooks): Suppose gi(a) ≥ vi+
1−δ

δ
hi(a)

for some i = 1, 2, but gj(a) < vj + 1−δ

δ
hj(a) for j �= i. Then a can only generate

extreme points v with continuation values w which, in addition to being extreme
points of Q(a, V ∗, v), satisfy wj = vj + 1−δ

δ
hj(a). Clearly there are at most two such

points. In order for an extreme point w of Q(a, V ∗, v) to generate an extreme point
v of V ∗, as in the proof of Theorem 3, it is necessary that (w, v]

�
Q (a, V ∗, v) = ∅.

Note that (w, v] ⊂ V ∗. If wj > vj + 1−δ

δ
hj(a) then by continuity for small λ ∈ (0, 1),

(1− λ)w + λv ≥ v + 1−δ

δ
h(a) (because also vi = (1− δ)gi(a) + δwi ≥ vi + 1−δ

δ
hi(a)).

Hence (w, v]
�

Q (a, V ∗, v) �= ∅, a contradiction.

Case 2: gi(a) < vi + 1−δ

δ
hi(a) for both i = 1, 2. Then we claim that Q(a, V ∗, v)

has at most three extreme points such that (5). Suppose that there are four such
points w̄i, wi, i = 1, 2, as shown in Figure 12. Then all of these points have to be on
the boundary of V ∗. This cannot be the case because w1 is strictly inside the triangle
with vertices w̄1, w̄2, v1 = (1− δ)g(a) + w1 ∈ V ∗, a contradiction.
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!
Figure 12: Case 2 in the proof of Theorem 4.
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