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1 Introduction

The common prior assumption is one of the cornerstones of modern economic analy-

sis. Most models postulate that the players in a game have the “same model of the

world,” or more precisely, that they have a common prior about the game form and

payo! distributions–for example, they all agree that some state (payo!-relevant para-

meter vector) ! is drawn from a known distribution ", even though each may also have

additional information about some components of !. The typical justication for the

common prior assumption comes from learning; individuals, through their own experi-

ences and the communication of others, will have access to a history of events informative

about the state !, and this process will lead to “agreement” among individuals about the

distribution of !. A strong version of this view is expressed in Savage (1954, p. 48) as

the statement that a Bayesian individual, who does not assign zero probability to “the

truth,” will learn it eventually as long as the signals are informative about the truth.

An immediate implication of this result is that two individuals who observe the same

sequence of signals will ultimately agree, even if they start with very di!erent priors.

Despite this powerful intuition, disagreement is the rule rather than the exception in

practice. For example, there is typically considerable disagreement even among econo-

mists working on a certain topic. Similarly, there are deep divides about religious beliefs

within populations with shared experiences. In most cases, the source of disagreement

does not seem to be di!erences in observations or experiences. Instead, individuals ap-

pear to interpret the available data di!erently. For example, an estimate showing that

subsidies increase investment is interpreted very di!erently by two economists starting

with di!erent priors. An economist believing that subsidies have no e!ect on invest-

ment appears more likely to judge the data or the methods leading to this estimate to

be unreliable and thus to attach less importance to this evidence.

In this paper, we investigate the outcome of learning about an underlying state by

two Bayesian individuals with di!erent priors when they are possibly uncertain about

the conditional distributions (or interpretations) of signals. This leads to a potential

identication problem, as the same long-run frequency of signals may result from di!er-

ent combinations of payo!-relevant variables and di!erent interpretations of the signals.

Hence, even though the individuals will learn the asymptotic frequency of signals, they

may not always be able to infer the state !, and initial di!erences in their beliefs may

translate into di!erences in asymptotic beliefs. When the amount of uncertainty is small,
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the identication problem is also small in the sense that each individual nds it highly

likely that he will eventually assign high probability to the true state. One may then

expect that the asymptotic beliefs of the two individuals about the underlying states

should be close as well. If so, the common prior assumption would be a good approxi-

mation when players have a long common experience and face only a small amount of

uncertainty about how the signals are related to the states.

Our focus in this paper is to investigate the validity of this line of argument. In par-

ticular, we study whether asymptotic agreement is continuous at certainty. Asymptotic

agreement is continuous at certainty if a small amount of uncertainty leads only to a

small amount of disagreement asymptotically. Our main result shows that asymptotic

agreement is discontinuous at certainty for every model: for every model there is a van-

ishingly small amount of uncertainty that is su"cient for each individual to assign nearly

probability 1 that they will asymptotically hold signicantly di!erent beliefs about the

underlying state. This result implies that learning foundations of common prior are not

as strong as one might have thought.

Before explaining our main result and its intuition, it is useful to provide some details

about the environment we study. Two individuals with given priors observe a sequence

of signals, {#!}"!=0, and form their posteriors about the state !. The only non-standard

feature of the environment is that these individuals may be uncertain about the distri-

bution of signals conditional on the underlying state. In the simplest case where the

state and the signal are binary, e.g., ! " {$%&}, and #! " {'% (}, this implies that
Pr (#! = ! | !) = )# is not a known number, but individuals also have a prior over )#,

say given by a cumulative distribution function * $# for each agent + = 1% 2. We refer to

* $# as individual’s subjective probability distribution and to its density ,
$
# as subjective

(probability) density. This distribution, which can di!er among individuals, is a nat-

ural measure of their uncertainty about the informativeness of signals. When subjective

probability distributions are non-degenerate, individuals will have some latitude in in-

terpreting the sequence of signals they observe. The presence of subjective probability

distributions over the interpretation of the signals introduces an identication problem

and implies that, in contrast to the standard learning environments, asymptotic learning

and asymptotic agreement are not guaranteed. In particular, when each * $# has a full

support for each !, there will not be asymptotic learning or asymptotic agreement. Lack

of asymptotic agreement implies that two individuals with di!erent priors observing the
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same sequence of signals will reach di!erent posterior beliefs even after observing in-

nitely many signals. Moreover, individuals attach ex ante probability 1 that they will

disagree after observing the sequence of signals.

Now consider a family of subjective density functions, {, $#%&}, becoming increasingly
concentrated around a single point–thus converging to certainty. When- is large (and

uncertainty is small), each individual is almost certain that he will assign nearly proba-

bility 1 to the true value of !. Despite this approximate asymptotic learning, our main

result shows that asymptotic agreement may fail. In particular, for any ()1'% )
1
(% )

2
'% )

2
(),

we can construct sequences of , $#%& that become more and more concentrated around )
$
#,

but with a signicant amount of asymptotic disagreement at almost all sample paths

for all -. This establishes that asymptotic agreement is discontinuous at certainty for

every model.

Under additional continuity and uniform convergence assumptions on the family

{, $#%&}, we characterize the families of subjective densities under which asymptotic agree-
ment is continuous at certainty. When ,1#%& and ,

2
#%& are concentrated around the same

), these additional assumptions ensure that asymptotic agreement is continuous at cer-

tainty. Otherwise, continuity of asymptotic agreement depends on the tail properties of

the family of subjective density functions {, $#%&}. When this family has regularly-varying
tails (such as the Pareto or the log-normal distributions), even under the additional reg-

ularity conditions that ensure uniform convergence, there will be a substantial amount

of asymptotic disagreement. When {, $#%&} has rapidly-varying tails (such as the normal
distribution), asymptotic agreement will be continuous at certainty.

The intuition for this result is as follows. When the amount of uncertainty is small,

each individual believes that he will learn the state !, but he may still believe that the

other individual will fail to learn. Whether or not he believes this depends on how an

individual reacts when a frequency of signals di!erent from the one he expects with

“almost certainty” occurs. If this “surprise” event ensures that the individual learns !

(as it does in the case of learning under certainty), then each individual will expect the

other to learn when the frequency of signals under their model of the world is realized and

thus attaches probability arbitrarily close to 1 that they will asymptotically agree. This

is what happens when the family {, $#%&} has rapidly-varying tails. However, when the
family {, $#%&} has regularly-varying (thick) tails, an unexpected frequency of signals will
prevent the individual from learning (because he interprets this as a possibility likely even
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near certainty due to the thick tails). In this case, each individual expects the limiting

frequencies to be consistent with his model and the other individual not to learn the

true state !, and concludes that there will be signicant asymptotic disagreement.

Lack of asymptotic agreement has important implications for a range of economic

situations. We illustrate some of these in a companion paper by studying a number of

simple environments where two individuals observe the same sequence of signals before

or while playing a game (Acemoglu, Chernozhukov and Yildiz, 2008).

Our results cast doubt on the idea that the common prior assumption may be justied

by learning. They imply that in many environments, even when there is little uncertainty

so that each individual believes that he will learn the true state, Bayesian learning

does not necessarily imply agreement about the relevant parameters. Consequently,

the strategic outcomes may be signicantly di!erent from those in the common-prior

environments.1 Whether this assumption is warranted therefore depends on the specic

setting and what type of information individuals are trying to glean from the data.

Relating our results to the famous Blackwell-Dubins (1962) theorem may help clarify

their essence. This theorem shows that when two agents agree on zero-probability events

(i.e., their priors are absolutely continuous with respect to each other), asymptotically,

they will make the same predictions about future frequencies of signals. Our results do

not contradict this theorem, since we impose absolute continuity. Instead, as pointed out

above, our results rely on the fact that agreeing about future frequencies is not the same

as agreeing about the underlying payo!-relevant variables, because of the identication

problem that arises in the presence of uncertainty.2 This identication problem leads to

di!erent possible interpretations of the same signal sequence by individuals with di!erent

priors. In most economic situations, what is important is not future frequencies of signals

but some payo!-relevant parameter. For example, what is relevant for economists trying

to evaluate a policy is not the frequency of estimates on the e!ect of similar policies from

other researchers, but the impact of this specic policy when (and if) implemented.

Similarly, what may be relevant in trading assets is not the frequency of information

about the dividend process, but the actual dividend that the asset will pay. Thus,

1For previous arguments on whether game-theoretic models should be formulated with all individuals
having a common prior, see, for example, Aumann (1986, 1998) and Gul (1998). Gul (1998), for instance,
questions whether the common prior assumption makes sense when there is no ex ante stage.

2In this respect, our paper is also related to Kurz (1994, 1996), who considers a situation in which
agents agree about long-run frequencies, but their beliefs fail to merge because of the non-stationarity
of the world.
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many situations in which individuals need to learn about a parameter or state that will

determine their ultimate payo! as a function of their action falls within the realm of

the analysis here. Our main result shows that even when this identication problem is

negligible for individual learning, its implications to asymptotic agreement may be large.

In this respect, our work di!ers from papers, such as Freedman (1963, 1965) and

Miller and Sanchirico (1999), that question the applicability of the absolute continuity

assumption in the Blackwell-Dubins theorem in statistical and economic settings (see

also Diaconis and Freedman, 1986, Stinchcombe, 2005). Similarly, a number of impor-

tant theorems in statistics, for example, Berk (1966), show that when individuals place

zero probability on the true data generating process, limiting posteriors will have their

support on the set of all identiable values (though they may fail to converge to a limit-

ing distribution). Our results are di!erent from those of Berk both because in our model

individuals always place positive probability on the truth and also because we provide a

tight characterization of the conditions for lack of asymptotic learning and agreement.3

In addition, neither Berk nor any other paper that we are aware of investigates whether

asymptotic agreement is continuous at certainty, which is the main focus of our paper.

Our paper is also related to recent independent work by Cripps, Ely, Mailath and

Samuelson (2006), who study the conditions under which there will be “common learn-

ing” by two agents observing correlated private signals. Cripps, et al. focus on a model in

which individuals start with common priors and then learn from private signals under

certainty (though they note that their results could be extended to the case of non-

common priors). They show that individual learning ensures “approximate common

knowledge” when the signal space is nite, but not necessarily when it is innite. In

contrast, we focus on the case in which the agents start with heterogenous priors and

learn from public signals under uncertainty or under approximate certainty. Since all

signals are public in our model, there is no di"culty in achieving approximate common

knowledge.4

3In dynamic games, another source of non-learning (and thus lack of convergence to common prior)
is that some subgames are never visited along the equilibrium path and thus players do not observe
information that contradict their beliefs about payo!s in these subgames (see, Fudenberg and Levine,
1993, Fudenberg and Kreps, 1995). Our results di!er from those in this literature, since individuals fail
to learn or fail to reach agreement despite the fact that they receive signals about all payo!-relevant
variables.

4Put di!erently, we as whether a player thinks that the other player will learn, whereas Cripps et
al. ask whether a player ! thinks that the other player " thinks that ! thinks that " thinks that ... a
player will learn.
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The rest of the paper is organized as follows. Section 2 provides a number of prelimi-

nary results focusing on the simple case of two states and two signals. Section 3 contain

our main results at characterizing the conditions under which agreement is continuous

at certainty. Section 4 provides generalizations of these results to an environment with

. states and / # . signals. Section 5 concludes, while the Appendix contains the

proofs omitted from the text.

2 The Two-State Model and Preliminary Results

2.1 Environment

We start with a two-state model with binary signals. This model is su"cient to establish

all our main results in the simplest possible setting. These results are generalized to

arbitrary number of states and signal values in Section 4.

There are two individuals, denoted by + = 1 and + = 2, who observe a sequence

of signals {#!}
"
!=0 where #! " {'% (}. The underlying state is ! " {$%&}, and agent +

assigns ex ante probability 0$ " (0% 1) to ! = $. The individuals believe that, given

!, the signals are exchangeable, i.e., they are independently and identically distributed

with an unknown distribution.5 That is, the probability of #! = ' given ! = $ is an

unknown number )'; likewise, the probability of #! = ( given ! = & is an unknown

number )(–as shown in the following table:

$ &
' )' 1$ )(
( 1$ )' )(

Our main departure from the standard models is that we allow the individuals to

be uncertain about )' and )(. We denote the cumulative distribution function of )#
according to individual +–namely, his subjective probability distribution–by * $# . In the

standard models, * $# is degenerate (Dirac) and puts probability 1 at some )̂
$
#. In contrast,

for most of the analysis, we will impose the following assumption:

5See, for example, Billingsley (1995). If there were only one state, then our model would be iden-
tical to De Finetti’s canonical model (see, for example, Savage, 1954). In the context of this model,
De Finetti’s theorem provides a Bayesian foundation for classical probability theory by showing that
exchangeability (i.e., invariance under permutations of the order of signals) is equivalent to having an in-
dependent identical unknown distribution and implies that posteriors converge to long-run frequencies.
De Finetti’s decomposition of probability distributions is extended by Jackson, Kalai and Smorodinsky
(1999) to cover cases without exchangeability.
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Assumption 1 For each + and !, * $# has a continuous, non-zero and nite density ,
$
#

over [0% 1].

The assumption implies that * $# has full support over [0% 1]. As discussed in Remark 2,

Assumption 1 is stronger than necessary for our results, but simplies the exposition. In

addition, throughout we assume that 01, 02, * 1# and *
2
# are known to both individuals.

6

We consider innite sequences # % {#!}
!
!=1 of signals and write 1 for the set of all

such sequences. The posterior belief of individual + about ! after observing the rst 2

signals {#!}
"
!=1 is

3$" (#) % Pr
$ (! = $ | {#!}"!=1) %

where Pr$ (! = $ | {#!}"!=1) denotes the posterior probability that ! = $ given a sequence
of signals {#!}

"
!=1 under prior 0

$ and subjective probability distribution * $#. Since the

sequence of signals, #, is generated by an exchangeable process, the order of the signals

does not matter for the posterior. It only depends on

4" (#) % # {5 & 2|#! = '} %

the number of times #! = ' out of rst 2 signals.7 By the strong law of large numbers,

4" (#) 62 converges to some 7 (#) " [0% 1] almost surely according to both individuals.
Dening the set

1̄ % {# " 1 : lim""! 4" (#) 62 exists} % (1)

this observation implies that Pr$
¡
# " 1̄

¢
= 1 for + = 1% 2. We will often state our results

for all sample paths # in 1̄, which equivalently implies that these statements are true

almost surely or with probability 1. Now, a straightforward application of the Bayes

rule gives

3$" (#) =
1

1 + 1#)!
)!

Pr!(*"|#=()
Pr!(*"|#=')

% (2)

6Since our purpose is to understand whether learning justies the common prior assumption, we do
not assume a common prior, allowing agents to have di!ering beliefs even when the beliefs are commonly
known.

7Given the denition of #! ($), the probability distribution Pr
" on {%&'} × ( is

Pr"
¡
)#$%$!

¢
% *"

Z 1

0

+&!(%) (1$ +)!"&!(%) , "# (+) -+& and

Pr"
¡
)'$%$!

¢
%

¡
1$ *"

¢ Z 1

0

(1$ +)&!(%) +!"&!(%), "' (+) -+

at each event )($%$! = {(.& $0) |$0) = $) for each / & 0}, where $ % {$)}
#
)=1 and $

0 % {$0)}
#
)=1.
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where Pr$ (4"|!) is the probability of observing the signal #! = ' exactly 4" times out of
2 signals with respect to the distribution * $#.

The following lemma provides a useful formula for 3$! (#) % lim""! 3
$
" (#) for all

sample paths # in 1̄ and also introduces the concept of the asymptotic likelihood ra-

tio. Both the formula and the asymptotic likelihood ratio are crucial for our analyses

throughout the paper.

Lemma 1 Suppose Assumption 1 holds. Then for all # " 1̄,

3$! (7 (#)) % lim
""!

3$" (#) =
1

1 + 1#)!
)!
8$ (7 (#))

% (3)

where 7 (#) = lim""! 4" (#) 62, and '7 " [0% 1],

8$ (7) %
, $( (1$ 7)
, $' (7)

(4)

is the asymptotic likelihood ratio.

Proof. See the Appendix.

In equation (4), 8$ (7) is the asymptotic likelihood ratio of observing frequency 7 of

' when the true state is & versus when it is $. Lemma 1 states that, asymptotically,

individual + uses this likelihood ratio and Bayes rule to compute his posterior beliefs

about !.

In the statements about learning, without loss of generality, we suppose that in reality

! = $. The two questions of interest for us are:

1. Asymptotic learning: whether Pr$
¡
lim""! 3

$
" (#) = 1|! = $

¢
= 1 for + = 1% 2.

2. Asymptotic agreement: whether Pr$
¡
lim""!

¯̄
31" (#)$ 3

2
" (#)

¯̄
= 0

¢
= 1 for + =

1% 2.

Notice that both asymptotic learning and agreement are dened in terms of the

ex ante probability assessments of the two individuals. Therefore, asymptotic learning

implies that an individual believes that he or she will ultimately learn the truth, while

asymptotic agreement implies that both individuals believe that their assessments will

eventually converge.8

8We formulate asymptotic learning and agreement in terms of each individual’s initial probability
measure so as not to take a position on what the “objective” for “true” probability measure is. Under
Assumption 1, asymptotic learning and agreement occur i! the corresponding limits hold for almost all
long run frequencies 1 ($) " [0& 1] under Lebesgue measure, which has also an "objective" meaning.

8



2.2 Asymptotic Learning and Agreement with Full Identica-
tion

In this subsection, we provide a number of preliminary results on the conditions under

which there will be asymptotic learning and agreement. These results will be used

as the background for the investigation of the continuity of asymptotic agreement at

certainty in the next section. Throughout this subsection we focus on environments

where Assumption 1 does not hold.

The following result generalizes Savage’s (1954) well-known result on asymptotic

learning and agreement. Savage’s Theorem, which is then stated as Corollary 1 below,

is the basis of the argument that Bayesian learning will push individuals towards common

beliefs and priors. Let us denote the support of a distribution * by supp* and dene

inf(supp* ) to be the inmum of the set supp* (i.e., the largest ) such that * ()) = 0).

Also let us dene the threshold value

7̂ ()'% )() %
log ()(6 (1$ )'))

log ()(6 (1$ )')) + log ()'6 (1$ )())
" (1$ )(% )') 9 (5)

(For future reference, this is the unique solution to the equation )+' (1$ )')
1#+ =

)1#+( (1$ )()
+.)

Theorem 1 (Generalized Asymptotic Learning and Agreement) Dene 7̂ ()'% )()

as in (5). Assume that for each ! and +, )#%$ = inf(supp* $#) " (162% 1) and 1 $ )(%$ 6=
7̂ ()'%,% )(%,) 6= )'%$ for all + 6= :. Then for all + 6= :,

1. Pr$
¡
lim""! 3

$
" (#) = 1|! = $

¢
= 1;

2. Pr$
¡
lim""!

¯̄
31" (#)$ 3

2
" (#)

¯̄
= 0

¢
= 1 if and only if 1$)(%$ ; 7̂ ()'%,% )(%,) ; )'%$.

Proof. Both parts of the theorem are a consequence of the following claim.

Claim 1 For any # " 1̄,

lim
""!

3$" (#) =

½
1 if 7 (#) < 7̂ ()'%$% )(%$)
0 if 7 (#) ; 7̂ ()'%$% )(%$) %

(6)

where 7 (#) = lim 4" (#) 62.
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(Proof of Claim) Let

8$" (4") %
Pr$ (4"|! = &)
Pr$ (4"|! = $)

=

R
(1$ ))*" )"#*"=* $(R
)*" (1$ ))"#*" =* $'

9

Take any 7 < 7̂ ()'%$% )(%$). Since 1$ )(%$ ; )'%$,

(1$ )(%$)+ )1#+(%$ ; )
+
'%$ (1$ )'%$)

1#+ 9 (7)

The function )+ (1$ ))1#+ is continuous and concave in ), and reaches its maximum at

) = 7. Then, (7) implies that there exists > < 0 and )̂ < )'%$ such that for all )̃ "
supp* $(, ) " [)'%$% )̂],4"62 " (7$ >% 7+ >),

(1$ )̃)*" )̃"#*" & (1$ )(%$)
*" )"#*"(%$ ; )̂*" (1$ )̂)"#*" & )*" (1$ ))"#*" 9 (8)

The rst inequality in (8) implies that
Z
(1$ ))*" )"#*"=* $( & (1$ )(%$)

*" )"#*"(%$ 9 (9)

On the other hand, the last inequality in (8) implies that
Z
)*" (1$ ))"#*" =* $' #

Z

-$-̂
)*" (1$ ))"#*" =* $' # *

$
' ()̂) )̂

*" (1$ )̂)"#*" % (10)

where the rst inequality follows from non-negativity of )*" (1$ ))"#*" . By dividing the
left-hand side [right-hand side] of (9) by the left-hand side [right-hand side] of (10), we

therefore obtain

0 & 8$" (4") &
1

* $' ()̂)

Ã
(1$ )(%$)*"." )

1#*"."
(%$

)̂*"." (1$ )̂)1#*"."

!"
9 (11)

Equation (6) follows from (11). By (8), when 4"62 " [7$ >62% 7+ >62], the expression
in parenthesis in (11) is smaller than 1, so that the right-hand side converges to 0 as

2 ( ) and 4"62 ( 7. Therefore, 8$" (4") ( 0, and thus 3$" (#) ( 1. The same

argument (switching $ and &) implies that 3$" (#)( 0 when 7 ; 7̂ ()'%$% )(%$). ¤
(Part 1) Since )#%$ = inf(supp* $#) " (162% 1), (6) implies that conditional on ! = $,

agent + assigns probability 1 to the event that # " 1̄ and 7 (#) # )'%$ < 7̂ ()'%$% )(%$), where
the last inequality follows from (5). This implies thatPr$

¡
lim""! 3

$
" (#) = 1|! = $

¢
= 1.

(Part 2: Su!ciency) We prove that 1 $ )(%$ ; 7̂ ()'%,% )(%,) ; )'%$ implies as-

ymptotic agreement. Suppose 7̂ ()'%,% )(%,) ; )'%$. Then, conditional on ! = $, (6)
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implies that 3," (#) also converges to 1, and therefore
¯̄
31" (#)$ 3

2
" (#)

¯̄
( 0. Next, when

7̂ ()'%,% )(%,) < 1 $ )(%$, conditional on ! = &, 3," (#) ( 0 and 3$" (#) ( 0. This

establishes that
¯̄
31" (#)$ 3

2
" (#)

¯̄
( 0 and proves su"ciency.

(Part 2: Necessity) We prove that asymptotic agreement implies the inequality

1 $ )(%$ ; 7̂ ()'%,% )(%,) ; )'%$. Suppose the inequality does not hold, and consider the
case )'%$ ; 7̂ ()'%,% )(%,). Then, + assigns strictly positive probability to the event that

4" (#) 62 ( 7 (#) " [)'%$% 7̂ ()'%,% )(%,)). But (6) implies 3$" (#) ( 1 and 3," (#) ( 0, so

that
¯̄
31" (#)$ 3

2
" (#)

¯̄
( 1. Therefore, the beliefs diverge almost surely. The argument

for the case where 7̂ ()'%,% )(%,) ; 1 $ )(%$ is analogous and completes the proof of the
theorem.

Theorem 1 shows that under the “full identication assumption” that )#%$ < 162 for

each ! and +, asymptotic learning always obtains. Furthermore, asymptotic agreement

depends on the lowest value )#%$ of )# to which individual + = 1% 2 assigns positive

probability.

An immediate corollary is Savage’s theorem.

Corollary 1 (Savage’s Theorem) Assume that each * $# puts probability 1 on )̂# for

some )̂# < 162, i.e., * $# ()̂#) = 1 and *
$
# ()) = 0 for each ) ; )̂#. Then, for each + = 1,2,

1. Pr$
¡
lim""! 3

$
" (#) = 1|! = $

¢
= 1.

2. Pr$
¡
lim""!

¯̄
31" (#)$ 3

2
" (#)

¯̄
= 0

¢
= 1.

It is useful to spell out the intuition for Theorem 1 and Corollary 1. Let us start

with the latter. Corollary 1 states that when the individuals know the conditional

distributions of the signals (and hence they agree what those distributions are), they

will learn the truth with experience (almost surely as 2 ( )) and two individuals
observing the same sequence will necessarily come to agree what the underlying state, !,

is. A simple intuition for this result is that the underlying state ! is fully identied from

the limiting frequencies, so that both individuals can infer the underlying state from the

observation of the limiting frequencies of signals.

However, there is more to this corollary than this simple intuition. Each individual

is sure that they will be confronted either with a limiting frequency of ' signals equal

to )̂', in which case they will conclude that ! = $, or they will observe a limiting

frequency of 1$ )̂(, and they will conclude that ! = &; and they attach zero probability
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to the events that they will observe a di!erent asymptotic frequency. What happens if

an individual observes a frequency 7 of signals di!erent from )̂' and 1 $ )̂( in a large
sample of size 2? The answer to this question will provide the intuition for some of

the results that we will present in the next section. Observe that this event has zero

probability under the individual’s beliefs at the limit 2 =). However, for 2 ;) he will

assign a strictly positive (but small) probability to such a frequency of signals resulting

from sampling variation. Moreover, it is straightforward to see that there exists a unique

7̂ ()̂'% )̂() " (1$ )̂(% )̂') given by (5) above such that when 7 < 7̂ ()̂'% )̂(), the required
sampling variation that leads to 7 under ! = & is innitely greater (as 2()) than the
one under ! = $. Consequently, when 7 < 7̂ ()̂'% )̂(), the individual will asymptotically

assign probability 1 to the event that ! = $. Conversely, when 7 ; 7̂ ()̂'% )̂(), he will

assign probability 1 to ! = &.

The intuition for Theorem 1 is very similar to that of Corollary 1. The assumption

that inf(supp* $#) " (162% 1) generalizes the assumption that )̂# < 162 in Corollary 1, and
is su"cient to ensure that asymptotically each individual will learn the payo!-relevant

state !, and also expects both himself and the other player to do so before observing

the sequence of signals. In particular, similar to the intuition for Corollary 1, when

individual + observes a frequency 7 " (1$ )(%$% )'%$), he presumes that this has resulted
from sampling variation, and decides whether frequency 7 is more likely under ! = $

or under ! = &. In particular, for each !, the lowest sampling variation that leads

to 7 is attained at )#%$, and the asymptotic beliefs depend only on how large these

variations are. When 7 < 7̂ ()'%$% )(%$) (and as 2()) the necessary sampling variation
is innitely smaller under ! = $ than under ! = &. Consequently, the individual

believes with probability 1 that ! = $. Conversely, when 7 ; 7̂ ()'%$% )(%$), he believes

with probability 1 that ! = &. Whether there will be asymptotic agreement then purely

depends on whether and how di!erent the cuto! values 7̂ ()'%1% )(%1) and 7̂ ()'%2% )(%2) are.

When they are close, both individuals will interpret the limiting frequency of signals, 7,

similarly, even when this is a frequency to which they initially assigned zero probability,

and will reach asymptotic agreement.9

The next corollary highlights a range of conditions other than those in Corollary 1

that, according to part 2 of Theorem 1, are su"cient for asymptotic agreement.

9In contrast, if these cuto! values were far apart, so that 1̂ (+#$* & +'$*) 2" (1$ +'$"& +#$"), both players
would assign positive probability to the event that their beliefs would diverge to the extremes and we
would thus have lim!$#

¯̄
31! ($)$ 3

2
! ($)

¯̄
= 1.
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Corollary 2 (Su!cient Conditions for Asymptotic Agreement) Suppose that

)#%$ = inf(supp* $#) " (162% 1). Then, there is asymptotic agreement whenever any one of
the following conditions hold:

1. certainty (with symmetry): each * $# puts probability 1 on some )̂
$ < 162;

2. symmetric support: supp* $' = supp*
$
( for each +;

3. common support: supp* 1# = supp*
2
# for each !.

Proof. Part 1 of the corollary is a special case of part 2. Under symmetric support

assumption, we have 7̂ ()'%$% )(%$) = 162 for each +, so that part 2 of the corollary follows

from part 2 of Theorem 1. Finally, part 3 of the corollary follows from the fact that

under the common support assumption 7̂ ()'%,% )(%,) = 7̂ ()'%$% )(%$) " (1$ )(%$% )'%$).
Corollary 2 shows that various reasonable conditions ensure asymptotic agreement.

Asymptotic agreement is implied, for example, by certainty, symmetric support or com-

mon support assumptions. In particular, certainty (with symmetry), which corresponds

to both individuals believing that limiting frequencies have to be )̂$ or 1$ )̂$ (but with
)̂1 6= )̂2) is su"cient for asymptotic agreement. In this case, each individual is certain
about what the limiting frequency will be and therefore believes that the frequency ex-

pected by the other individual will not be realized (creating a discrepancy between that

individual’s initial belief and observation). Nevertheless, with the same reasoning as in

the discussion following Corollary 1, each individual also believes that the other individ-

ual will ascribe this discrepancy to sampling variation and reach the same conclusion as

himself. This is su"cient for asymptotic agreement.

Theorem 1 and Corollary 2 therefore show that results on asymptotic learning and

agreement are substantially more general than Savage’s original theorem. Nevertheless,

these results do rely on the feature that * $# (162) = 0 for each + = 1,2 and each !

(thus implicitly imposing that Assumption 1 does not hold). This feature implies that

both individuals attach zero probability to a range of possible models of the world–i.e.,

they are certain that )# cannot be less than 1/2. There are two reasons for considering

situations in which this is not the case. First, the preceding discussion illustrates why

assigning zero probability to certain models of the world is important; it enables individ-

uals to ascribe any frequency of signals that are unlikely under these models to sampling

variability. This kind of inference may be viewed as somewhat unreasonable, since indi-

viduals are reaching very strong conclusions based on events that have vanishingly small
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probabilities (since sampling variability vanishes as 2()). Second, our motivation of
investigating learning under uncertainty suggests that individuals may attach positive

(albeit small) probabilities to all possible values of )#. This latter feature is the essence

of Assumption 1 (the “full support” requirement).

2.3 Failure of Asymptotic Learning and Agreement with Full
Support

We next impose Assumption 1 and show that under the more general circumstances

where * $# has full support, there will be neither asymptotic learning nor asymptotic

agreement.

Theorem 2 (Lack of Asymptotic Learning and Agreement) Under Assumption

1,

1. Pr$
¡
lim""! 3

$
" (#) 6= 1|! = $

¢
= 1 for + = 1,2;

2. Pr$
¡
lim""!

¯̄
31" (#)$ 3

2
" (#)

¯̄
6= 0

¢
= 1 whenever 01 6= 02 and * 1# = * 2# for each

! " {$%&}.

Proof. Since , $( (1$ 7 (#)) < 0 and ,' (7 (#)) is nite, 8$ (7 (#)) < 0. Hence, by

Lemma 1, 3$! (7 (#)) 6= 1 for each #, establishing the rst part. To see the second part,
note that, by Lemma 1, for any # " 1̄,

31! (7 (#)) = 3
2
! (7 (#)) if and only if

1$ 01

01
81 (7 (#)) =

1$ 02

02
82 (7 (#)) . (12)

Since 01 6= 02 and * 1# = * 2# , this implies that for each # " 1̄% 3
1
! (#) 6= 3

2
! (#), and thus

Pr$
¡¯̄
31! (#)$ 3

2
! (#)

¯̄
6= 0

¢
= 1 for + = 1% 2.

Remark 1 The assumption that * 1# = * 2# in this theorem is adopted for simplicity.

We can see from (12) that even in the absence of this condition, there will typically be

no asymptotic agreement. Theorem 6 in Section 4 states a more general version of this

result for the case of multidimensional state and signals, and shows how the assumption

that * 1# = *
2
# can be relaxed signicantly.

Remark 2 Assumption 1 is considerably stronger than the necessary conditions for

Theorem 2. It is adopted only for simplicity. It can be veried that for lack of as-

ymptotic learning it is su"cient (but not necessary) that the measures generated by
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the distribution functions * $' ()) and *
$
( (1$ )) be absolutely continuous with respect

to each other. Similarly, for lack of asymptotic agreement, it is su"cient (but not nec-

essary) that the measures generated by * 1' ()), *
1
( (1$ )), * 2' ()) and * $( (1$ )) be

absolutely continuous with respect each other. For example, if both individuals believe

that )' is either 0.3 or 0.7 (with the latter receiving greater probability) and that )( is

also either 0.3 or 0.7 (with the former receiving greater probability), then there will be

neither asymptotic learning nor asymptotic agreement. Throughout we use Assumption

1 both because it simplies the notation and because it is a natural assumption when

we turn to the analysis of asymptotic agreement as the amount of uncertainty vanishes.

Theorem 2 contrasts with Theorem 1 and implies that, with probability 1, each

individual will fail to learn the true state. The second part of the theorem states that

if the individuals’ prior beliefs about the state di!er (but they interpret the signals in

the same way), then their posteriors will eventually disagree, and moreover, they will

both attach probability 1 to the event that their beliefs will eventually diverge. Put

di!erently, this implies that there is “agreement to eventually disagree” between the two

individuals, in the sense that they both believe ex ante that after observing the signals

they will fail to agree.

Intuitively, when Assumption 1 (in particular, the full support feature) holds, an

individual is never sure about the exact interpretation of the sequence of signals he

observes and will update his views about )# (the informativeness of the signals) as well

as his views about the underlying state. For example, even when signal ' is more likely

in state $ than in state &, a very high frequency of ' will not necessarily convince him

that the true state is $, because he may infer that the signals are not as reliable as he

initially believed, and they may instead be biased towards '. Therefore, the individual

never becomes certain about the state, which is captured by the fact that 8$ (7) dened

in (4) never takes the value zero or innity. Consequently, as shown in (3), his posterior

beliefs will be determined by his prior beliefs about the state and also by8$, which tells

us how the individual updates his beliefs about the informativeness of the signals as he

observes the signals. When two individuals interpret the informativeness of the signals

in the same way (i.e., 81 = 82), the di!erences in their priors will always be reected

in their posteriors.

In contrast, if an individual were certain about the informativeness of the signals

(i.e., if + were sure that )# = )$# for some )
$
# < 162) as in Theorem 1 and Corollary 2,
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then he would never question the informativeness of the signals, even when the limiting

frequency of ' converges to a value di!erent from )$' or 1 $ )$(, and would interpret
such discrepancies as resulting from sampling variation. This would be su"cient for

asymptotic agreement when )$' = )$(. The full support assumption in Assumption 1

prevents this type of reasoning and ensures asymptotic disagreement.

3 Main Results

In this section, we present our main results concerning the potential discontinuity of

asymptotic agreement at certainty. More precisely, we investigate whether as the amount

of uncertainty about the interpretation of the signals disappears and we recover the

standard model of learning under certainty, the amount of asymptotic disagreement

vanishes continuously. We will show that this is not the case, so that one can perturb

the standard model of learning under certainty sightly and obtain a model in which

there is substantial asymptotic disagreement. We rst show that asymptotic agreement

is discontinuous at certainty in every model, including the canonical model of learning

under certainty, where both individuals share the same beliefs regarding the conditional

signal distributions (Theorem 3). We then restrict our perturbations to a class that

embodies strong continuity and uniform convergence assumptions. Within this class of

perturbations, we characterize the conditions under which asymptotic agreement will be

continuous at certainty (Theorem 5).

For any )̂ " [0% 1], write ?-̂ for the Dirac distribution that puts probability 1 on ) = )̂;
i.e., ?-̂ ()) = 1 if ) # )̂ and ?-̂ ()) = 0 otherwise.
Let {* $#%&}&%N%$%/%#%! ({* $#%&} for short) denote an arbitrary sequence of subjective

probability distributions converging to a Dirac distribution ?-!# for each (+% !) as-():

lim
&"!

* $#%& ()) =

½
1 if ) < )$#
0 if ) ; )$#9

(13)

(We will simply say that {* $#%&} converges to ?-!#). Throughout it is implicitly assumed
that there is asymptotic agreement under ?-!# (as in Corollaries 1 and 2). Therefore, as

-(), uncertainty about the interpretation of the signals disappears and we converge
to a world of asymptotic agreement. We write Pr$%& for the ex ante probability under

(* $'%&% *
$
(%&) and 3

$
!%& for the asymptotic posterior belief that ! = $ under (*

$
'%&% *

$
(%&).

Evidently, as {* $#%&} converges to ?-!# , each individual becomes increasingly convinced
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that he will learn the true state, so that learning is continuous at certainty. More

formally, for all > < 0,

lim
&"!

Pr$%&
¡
3$!%& < 1$ >|! = $

¢
= 19

This implies that when a model of learning under certainty is perturbed, deviations

from full learning will be small and each individual will attach a probability arbitrarily

close to 1 that he will eventually learn the payo!-relevant state variable !. We next

dene the continuity of asymptotic agreement at certainty.

Denition 1 For any given family {* $#%&}, we say that asymptotic agreement is
continuous at certainty under {* $#%&}, if for all > < 0 and for each + = 1% 2,

lim
&"!

Pr$%&
¡¯̄
31!%& $ 3

2
!%&

¯̄
; >
¢
= 19

We say that asymptotic agreement is continuous at certainty at ()1'% )
1
(% )

2
'% )

2
()

if it is continuous at certainty under every family {* $#%&} converging to ?-!# .

Thus, continuity at certainty requires that as the family of subjective probability

distributions converge to a Dirac distribution (at which there is asymptotic agreement),

the ex ante probability that both individuals assign to the event that they will agree

asymptotically becomes arbitrarily close to 1. Hence, asymptotic agreement is discon-

tinuous at certainty at ()1'% )
1
(% )

2
'% )

2
() if there exists a family {* $#%&} converging to ?-̂!#

and > < 0 such that

lim
&"!

Pr$%&
¡¯̄
31!%& $ 3

2
!%&

¯̄
< >
¢
< 0

for + = 1% 2. We will next dene a stronger notion of discontinuity.

Denition 2 We say that asymptotic agreement is strongly discontinuous at

certainty under {* $#%&} if there exists > < 0 such that

lim
&"!

Pr$%&
¡¯̄
31!%& $ 3

2
!%&

¯̄
< >
¢
= 1

for + = 1% 2. We say that asymptotic agreement is strongly discontinuous at

certainty at ()1'% )
1
(% )

2
'% )

2
() if it is strongly discontinuous at certainty under some

family {* $#%&} converging to ?-!# .

Strong discontinuity requires that even as we approach the world of learning un-

der certainty, asymptotic agreement will fail with probability approximately equal to 1

according to both individuals.
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3.1 Discontinuity of Asymptotic Agreement

The next theorem establishes the strong discontinuity of asymptotic agreement at cer-

tainty.

Theorem 3 (Strong Discontinuity of Asymptotic Agreement) Asymptotic agree-

ment is strongly discontinuous at every ()1'% )
1
(% )

2
'% )

2
() with )

$
# " (162% 1) for all (!% +).

Moreover, if 01 6= 02, then there exist {* $#} converging to ?-!# and @̃ < 0 such that

¯̄
31!%& (7 (#))$ 3

2
!%& (7 (#))

¯̄
< @̃ for all - " N and # " 1̄9

The proof of this theorem is provided below. Note that when )1# = )2# = )̂# for

each !, the limiting world is the canonical learning model (under certainty) described

in Savage’s Theorem (Corollary 1): both individuals are certain that the probability

of observing signal # = ' is )̂' < 162 if the state is ! = $ and 1 $ )̂( if the state is
! = & (i.e., each * $# puts probability 1 on )̂#). Therefore, this theorem establishes strong

discontinuity at certainty for the canonical learning model; even when we are arbitrarily

close to this world of certainty, the asymptotic gap in beliefs is bounded away from zero.

The condition )$# " (162% 1) is not needed (see Theorem 7 below). The proof is based on
the following example.

Example 1 For some small A% B " (0% 1), each individual + thinks that with probability
1 $ A, )# is in a B-neighborhood of some )̂$# < (1 + B) 62, but with probability A, the

signals are not informative. More precisely, for )̂$# < (1 + B) 62 and B ; |)̂1# $ )̂2#|, we
have

, $# ()) =

½
A+ (1$ A) 6B if ) " ()̂$# $ B62% )̂$# + B62)
A otherwise

(14)

for each ! and +. Now, by (4), the asymptotic likelihood ratio is

8$ (7 (#)) =

!
""#

""$

01
1#0(1#1) if 7 (#) " C$

' % ()̂$' $ B62% )̂$' + B62)

1#0(1#1)
01

if 7 (#) " C$
( % (1$ )̂$( $ B62% 1$ )̂$( + B62)

1 otherwise.

This and other relevant functions are plotted in Figure 1 for A ( 0, B ( 0. The

likelihood ratio 8$ (7 (#)) is 1 when 7 (#) is small, takes a very high value at 1$ )̂$(, goes
down to 1 afterwards, becomes nearly zero around )̂$', and then jumps back to 1. By

Lemma 1, 3$! (#) will also be non-monotone: when 7 (#) is small, the signals are not
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Figure 1: The three panels show, respectively, the approximate values of8$ (7), 3$!, and¯̄
31! $ 3

2
!

¯̄
as A( 0, for )̂$' = )̂

$
( = )̂

$.

informative, thus 3$! (#) is the same as the prior, 0
$. In contrast, around 1 $ )̂$(, the

signals become very informative suggesting that the state is &, thus 3$! (#) *= 0. After
this point, the signals become uninformative again and 3$! (#) goes back to 0

$. Around

)̂$', the signals are again informative, but this time favoring state $, so 3
$
! (#)

*= 1.

Finally, signals again become uninformative and 3$! (#) falls back to 0
$. Intuitively,

when 7 (#) is around 1 $ )̂$( or )̂$', the individual assigns very high probability to the
true state, but outside of this region, he sticks to his prior, concluding that the signals

are not informative.

The rst important observation is that even though 3$! is equal to the prior for a large

range of limiting frequencies, as A ( 0 and B ( 0 each individual attaches probability

1 to the event that he will learn !. This is because as illustrated by the discussion after

Theorem 1, as A ( 0 and B ( 0, each individual becomes convinced that the limiting

frequencies will be either 1$ )̂$( or )̂$'.
However, asymptotic learning is considerably weaker than asymptotic agreement.

Each individual also understands that since B ; |)̂1# $ )̂2#|, when the long-run frequency
is in a region where he learns that ! = $, the other individual will conclude that the

signals are uninformative and adhere to his prior belief. Consequently, he expects the

posterior beliefs of the other individual to be always far from his. Put di!erently, as

A ( 0 and B( 0, each individual believes that he will learn the value of ! himself but

that the other individual will fail to learn, thus attaches probability 1 to the event that

they disagree. This can be seen from the third panel of Figure 1; at each sample path
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in 1̄, at least one of the individuals will fail to learn, and the di!erence between their

limiting posteriors will be uniformly higher than the following “objective” bound

D̃ = min
©
01% 02% 1$ 01% 1$ 02%

¯̄
01 $ 02

¯̄ª
9

When 01 = 163 and 02 = 263, this bound is equal to 163. In fact, the belief of

each individual regarding potential disagreement can be greater than this; each indi-

vidual believes that he will learn but the other individual will fail to do so. Conse-

quently, for each +, Pr$
¡¯̄
31! (#)$ 3

2
! (#)

¯̄
# @̄

¢
# 1 $ A, where as A ( 0, @̄ ( D %

min {01% 02% 1$ 01% 1$ 02}. This “subjective” bound can be as high as 162.

Proof of Theorem 3. We only consider the case )1# # )2# for ! = $%&; the

other cases are identical. In Example 1, for each -, take A = B = Ā6-, )̂1# = )1# + B,

and )̂2# = )2# $ B where Ā is such that 1 $ 3
$
! (#) ; (1$ 0,) 62 for 7 (#) " C$

' and

3$! (#) ; 0,62 for 7 (#) " C$
( whenever A = B & Ā. Such Ā exists (by asymptotic

learning of +). By construction, each * $%&# converges to ?-!# , and |)̂
1
# $ )̂2#| < B for each

!. To complete the proof, pick @̄ = D62 < 0. By choice of Ā,
¯̄
31!%& (#)$ 3

2
!%& (#)

¯̄
< @̄

whenever 7 (#) " C$
' +C$

(. But Pr
$%& (7 (#) " C$

' +C$
() = A (1$ B), which goes to 1 as

-(). Therefore,
lim
&"!

Pr$%&
¡¯̄
31!%& $ 3

2
!%&

¯̄
< @̄

¢
= 19 (15)

To prove the last statement in the theorem, pick @̃ = D̃62, which is positive when

01 6= 02.
In the example (and thus in the proof of Theorem 3), the likelihood ratio 8$ (7 (#))

and the asymptotic beliefs 3$! (#) are non-monotone in the frequency 7 (#). This is a

natural outcome of uncertainty on conditional signal distributions (see the discussion at

the end of Section 2 and Figure 2 below). When 8$ is monotone and the amount of

uncertainty is small, at each state one of the individuals assigns high probability that

both of them will learn the true state and consequently asymptotic disagreement will be

small. Nevertheless, asymptotic agreement is still discontinuous at uncertainty when we

impose the monotone likelihood ratio property. This is shown in the next theorem.

Theorem 4 (Discontinuity of Asymptotic Agreement under Monotonicity)

For any )̂$'% )̂
$
( < 162, + " {1% 2}, and 01% 02 " (0% 1), there exist a family {* $#%&} and

@̄ < 0 such that:
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1. for each ! " {$%&} and + = 1% 2, * $#%& converges to ?-̂!# ;

2. the likelihood ratio 8$& (7) is nonincreasing in 7 for each + and -, and

3. for each +,

lim
&"!

Pr$%&
¡¯̄
31!%& $ 3

2
!%&

¯̄
< @̄

¢
< 09 (16)

Proof. See the Appendix.

The monotonicity of the likelihood ratio has weakened the conclusion of Theorem

3, so that the limit in (16) is no longer equal to 1, so that asymptotic agreement is

discontinuous at certainty, but not strongly so.

Note that in Theorems 3 and 4 the families {* $#%&} leading to the discontinuity of
asymptotic agreement induce discontinuous likelihood ratios. This is not crucial for the

results, however, since smooth approximations to * $#%& would ensure continuity of the

likelihood ratios as well. What is important is that the likelihood ratios under families

{* $#%&} does not converge uniformly (instead, convergence is pointwise). We next impose
a uniform convergence assumption (as well as additional strong continuity assumptions)

and characterize the conditions for discontinuity of asymptotic agreement at certainty.

3.2 Agreement and Disagreement with Uniform Convergence

In this subsection, we consider a class of families {* $#%&} converging uniformly to the
Dirac distribution ?-̂! for some )̂$ " (162% 1) and show that whether there is discontinuity
of asymptotic agreement at certainty depends on the tail properties of {* $#%&}.
We start our analysis by dening the family {* $#%&}, with a corresponding family

of subjective probability density functions {, $#%&}. The family is parameterized by a
determining density function , . We impose the following conditions on , :

(i) , is strictly positive and symmetric around zero;

(ii) there exists Ē ;) such that , (E) is decreasing for all E # Ē;

(iii)

8̃ (E% F) % lim
&"!

, (-E)

, (-F)
(17)

exists in [0%)] at all (E% F) " R2+.
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Conditions (i) and (ii) are natural and serve to simplify the notation. Condition (iii)

introduces the function 8̃ (E% F), which will arise naturally in the study of asymptotic

agreement and has a natural meaning in asymptotic statistics (see Denitions 1 and 2

below).

In order to vary the amount of uncertainty, we consider mappings of the form E 7(
(E$ F) 6-, which scale down the real line around F by the factor 16-. The family of
subjective densities for individuals’ beliefs about )' and )(, {, $#%&}, will be determined
by , and the transformation E 7( (E$ )̂$) 6-.10 In particular, we consider the following
family of densities

, $#%& ()) = G
$ (-) ,

¡
-
¡
)$ )̂$

¢¢
(18)

for each ! and + where G$ (-) % 16
R 1
0
, (- ()$ )̂$)) =) is a correction factor to ensure

that , $#%& is a proper probability density function on [0% 1] for each -. In this family of

subjective densities, the uncertainty about )' is scaled down by 16-, and , $#%& converges

to the Dirac distribution ?-̂! as - ( ), so that individual + becomes sure about the
informativeness of the signals in the limit.

The next theorem characterizes the class of determining functions , for which the

resulting family of the subjective densities {, $#%&} leads to approximate asymptotic agree-
ment as the amount of uncertainty vanishes.

Theorem 5 (Characterization) Consider the family {* $#%&} dened in (18) for some
)̂$ < 162 and , , satisfying conditions (i)-(iii) above. Assume that , (-E) 6, (-F) uni-

formly converges to 8̃(E% F) over a neighborhood of ()̂1 + )̂2 $ 1% |)̂1 $ )̂2|).

1. If 8̃ ()̂1 + )̂2 $ 1% |)̂1 $ )̂2|) = 0, then agreement is continuous at certainty under
{* $#%&}.

2. If 8̃ ()̂1 + )̂2 $ 1% |)̂1 $ )̂2|) 6= 0, then agreement is strongly discontinuous at cer-
tainty under {* $#%&}.

Proof. Both parts of the theorem are proved using the following claim.

Claim 2 lim&"!
¡
3$!%& ()̂

$)$ 3,!%& ()̂$)
¢
= 0 if and only if 8̃ ()̂1 + )̂2 $ 1% |)̂1 $ )̂2|) =

0 (where 3$!%& ()̂
$) denotes beliefs evaluated under sample paths with 7 = )̂$).

10This formulation assumes that +̂"# and +̂
"
' are equal. We can easily assume these to be di!erent, but

do not introduce this generality here to simplify the exposition. Theorem 8 allows for such di!erences
in the context of the more general model with multiple states and multiple signals.
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(Proof of Claim) Let 8$& (7) be the asymptotic likelihood ratio as dened in (4)

associated with subjective density , $#%&. One can easily check that lim&"!8
$
& ()̂

$) = 0.

Hence, by (12), lim&"!
¡
3$!%& ()̂

$)$ 3,!%& ()̂$)
¢
= 0 if and only if lim&"!8,& ()̂

$) = 0.

By denition,

lim
&"!

8,&
¡
)̂$
¢
= lim

&"!

, (- (1$ )̂1 $ )̂2))
, (- ()̂1 $ )̂2))

= 8̃
¡
1$ )̂1 $ )̂2% )̂1 $ )̂2

¢

= 8̃
¡
)̂1 + )̂2 $ 1%

¯̄
)̂1 $ )̂2

¯̄¢
%

where the last equality follows by condition (i), the symmetry of the function , . This

establishes that lim&"!8$& ()̂
$) = 0 (and thus lim&"!

¡
3$!%& ()̂

$)$ 3,!%& ()̂$)
¢
= 0) if

and only if 8̃ ()̂1 + )̂2 $ 1% |)̂1 $ )̂2|) = 0. ¤
(Proof of Part 1)Take any A < 0 and ? < 0, and assume that 8̃ ()̂1 + )̂2 $ 1% |)̂1 $ )̂2|) =

0. We will show that there exists -̄ " N such that

Pr$
³
lim
""!

¯̄
31"%& (#)$ 3

2
"%& (#)

¯̄
< A
´
; ? ('- < -̄% + = 1% 2)9

By Lemma 1, there exists A0 < 0 such that 3$!%& (7 (#)) < 1$ A whenever 8$ (7 (#)) ; A0.
There also exists E0 such that

Pr$
¡
7 (#) "

¡
)̂$ $ E06-% )̂$ + E06-

¢
|! = $

¢
=

Z 20

#20
, (E) =E < 1$ ?9 (19)

Let H = min2%[#20%20] , (E) < 0. Since , monotonically decreases to zero in the tails

(see (ii) above), there exists E1 such that , (E) ; A0H whenever |E| < |E1|. Let -1 =

(E0 + E1) 6 (2)̂
$ $ 1) < 0. Then, for any - < -1 and 7 (#) " ()̂$ $ E06-% )̂$ + E06-), we

have |7 (#)$ 1 + )̂$| < E16-, and hence

8$& (7 (#)) =
, (- (7 (#) + )̂$ $ 1))
, (- (7 (#)$ )̂$))

;
A0H

H
= A0.

Therefore, for all - < -1 and 7 (#) " ()̂$ $ E06-% )̂$ + E06-), we have that

3$!%& (7 (#)) < 1$ A9 (20)

Again, by Lemma 1, there exists A00 < 0 such that 3,!%& (7 (#)) < 1 $ A whenever
8,& (7 (#)) ; A

00. Now, for each 7 (#),

lim
&"!

8,& (7 (#)) = 8̃
¡
7 (#) + )̂, $ 1%

¯̄
7 (#)$ )̂,

¯̄¢
9 (21)
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Moreover, by the uniform convergence assumption, there exists I < 0 such that8,& (7 (#))

uniformly converges to 8̃ (7 (#) + )̂, $ 1% |7 (#)$ )̂,|) on ()̂$ $ I% )̂$ + I) and

8̃
¡
7 (#) + )̂, $ 1%

¯̄
7 (#)$ )̂,

¯̄¢
; A0062

for each 7 (#) in ()̂$ $ I% )̂$ + I). Moreover, uniform convergence also implies that 8̃

is continuous at ()̂1 + )̂2 $ 1% |)̂1 $ )̂2|) (and in this part of the proof, by hypothesis,
it takes the value 0). Hence, there exists -2 ; ) such that for all - < -2 and

7 (#) " ()̂$ $ I% )̂$ + I),

8,& (7 (#)) ; 8̃
¡
7 (#) + )̂, $ 1%

¯̄
7 (#)$ )̂,

¯̄¢
+ A0062 ; A009

Therefore, for all - < -2 and 7 (#) " ()̂$ $ I% )̂$ + I), we have

3,!%& (7 (#)) < 1$ A9 (22)

Set -̄ % max {-1%-2% I6E0}. Then, by (20) and (22), for any - < -̄ and 7 (#) "
()̂$ $ E06-% )̂$ + E06-), we have

¯̄
3$!%& (7 (#))$ 3

,
!%& (7 (#))

¯̄
; A. Then, (19) implies

that Pr$
¡¯̄
3$!%& (7 (#))$ 3

,
!%& (7 (#))

¯̄
; A|! = $

¢
< 1 $ ?. By the symmetry of $ and

&, this establishes that Pr$
¡
|3$!%& (7 (#))$ 3

,
!%& (7 (#)) | ; A

¢
< 1$ ? for - < -̄.

(Proof of Part 2) We will nd A < 0 such that for each ? < 0, there exists -̄ " N
such that

Pr$
³
lim
""!

¯̄
31"%& (#)$ 3

2
"%& (#)

¯̄
< A
´
< 1$ ? ('- < -̄% + = 1% 2)9

Since lim&"!8,& ()̂
$) = 8̃ ()̂1 + )̂2 $ 1% |)̂1 $ )̂2|) < 0, lim&"! 3

,
!%& ()̂

$) ; 1. We set

A =
¡
1$ lim&"! 3,!%& ()̂$)

¢
62 and use similar arguments to those in the proof of Part

1 to obtain the desired conclusion.

The main assumption in Theorem 5 is that the likelihood ratios 8$& (7 (#)) converge

uniformly to a limiting likelihood ratio, given by 8̃.11 In what follows, we say that

“noise vanishes uniformly” as a shorthand for the statement that the likelihood ratio

8$& (7 (#)) converges uniformly to the limiting likelihood ratio. Theorem 5 provides a

complete characterization of the conditions for the continuity of asymptotic agreement at

certainty under this uniform convergence assumption. In particular, this theorem shows

that even when the likelihood ratios converge uniformly, asymptotic agreement may fail.

11Note that the limiting likelihood ratio 4̃ is not related to the likelihood ratio that applies in the
(“limiting”) model without uncertainty.
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In contrast Corollary 2 shows that that there will always be asymptotic agreement in

the limit.

The theorem provides a simple condition on the tail of the distribution , that de-

termines whether the asymptotic di!erence between the posteriors will be small as the

amount of uncertainty concerning the conditional distribution of signals vanishes “uni-

formly”. This condition can be expressed as:

8̃ (Ê% F̂) % lim
&"!

, (-Ê)

, (-F̂)
= 0 (23)

where Ê % )̂1 + )̂2 $ 1 < |)̂1 $ )̂2| % F̂. The theorem shows that if this condition is

satised, then as uncertainty about the informativeness of the signals disappears the

di!erence between the posteriors of the two individuals will become negligible. Notice

that condition (23) is symmetric and does not depend on +.

Intuitively, condition (23) is related to the beliefs of one individual on whether the

other individual will learn. As the amount of uncertainty concerning the conditional

distributions vanishes, we always have that lim&"!8$& ()̂
$) = 0, so that each agent

believes that he will learn the value of ! with probability 1. Asymptotic agreement (or

lack thereof) depends on whether he also believes the other individual will learn the

value of !. When 8̃ (Ê% F̂) = 0, an individual who expects a limiting frequency of )̂2 in

the asymptotic distribution will still learn the true state when the limiting frequency is

)̂1. Therefore, individual 1, who is almost certain that the limiting frequency will be

)̂1, still believes that individual 2 will reach the same inference as himself. In contrast,

when 8̃ (Ê% F̂) 6= 0, individual 1 is still certain that limiting frequency of signals will be
)̂1 and thus expects to learn himself. However, he understands that, when 8̃ (Ê% F̂) 6= 0,
an individual who expects a limiting frequency of )̂2 will fail to learn the true state

when limiting frequency happens to be )̂1. Since he is almost certain that the limiting

frequency will be )̂1 (or 1 $ )̂1), he expects the other agent not to learn the truth and
thus he expects the disagreement between them to persist asymptotically.

The theorem exploits this result and the continuity of 8̃ to show that the individuals

attach probability arbitrarily close to 1 to the event that the asymptotic di!erence

between their beliefs will disappear when (23) holds, and they attach probability 1

to asymptotic disagreement when (23) fails to hold. Thus the behavior of asymptotic

beliefs as uncertainty vanishes “uniformly” are completely determined by condition (23),

a condition on the tail of , .
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When F̂ < 0 (i.e., when )̂1 6= )̂2), condition (23) is a familiar condition in statistics.
Whether it is satised depends on whether , has rapidly-varying (thin) or regularly-

varying (thick) tails:

Denition 3 A density function , has regularly-varying tails if it has unbounded sup-

port and satises

lim
&"!

,(-E)

,(-)
= J(E) " R

for any E < 0.

The condition in Denition 3 that J (E) " R is relatively weak, but nevertheless

has important implications. In particular, it implies that J(E) % E#3 for K " (0%)).
This follows from the fact that in the limit, the function J (·) must be a solution to
the functional equation J(E)J(F) = J(EF), which is only possible if J(E) % E#3 for

K " (0%)).12 Moreover, Seneta (1976) shows that the convergence in Denition 3 holds
locally uniformly, i.e., uniformly for E in any compact subset of (0%)). This implies that
if a density , has regularly-varying tails, then the assumptions imposed in Theorem 5

(in particular, the uniform convergence assumption) are satised. In fact, in this case,

8̃ dened in (17) is given by

8̃(E% F) =

µ
E

F

¶#3
%

and is everywhere continuous. As this expression suggests, densities with regularly-

varying tails behave approximately like power functions in the tails; indeed a density

, (E) with regularly-varying tails can be written as ,(E) = L(E)E#3 for some slowly-
varying function L (with lim&"!L(-E)6L (-) = 1). Many common distributions,

including the Pareto, log-normal, and t-distributions, have regularly-varying densities.

When , has regularly varying tails, 8̃(Ê% F̂) < 0, and condition (23) cannot be satised.

We also dene:

Denition 4 A density function , has rapidly-varying tails if it satises

lim
&"!

, (-E)

, (-)
= E#! %

!
#

$

0 +, E < 1
1 +, E = 1
) +, E ; 1

12To see this, note that since lim+$# (,(56)2,(5)) = 7 (6) " R, we have

7 (68) = lim
+$#

µ
,(568)

,(5)

¶
= lim
+$#

µ
,(568)

,(58)

,(58)

, (5)

¶
= 7 (6)7 (8) 9

See de Haan (1970) or Feller (1971).
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for any E < 0.

As in Denition 3, the above convergence holds locally uniformly (uniformly in E

over any compact subset that excludes 1). Examples of densities with rapidly-varying

tails include the exponential and the normal densities. When , has rapidly varying tails

8̃ (Ê% F̂) = (Ê6F̂)#! = 0, and condition (23) is satised.

The next proposition formally states that under the assumptions that noise vanishes

uniformly and set )̂1 6= )̂2, whether agreement is continuous depends on whether the

family of subjective densities converging to “certainty” has regularly or rapidly-varying

tails:

Proposition 1 (Tail Properties and Asymptotic Disagreement Under Uni-

form Convergence) Suppose that the conditions in Theorem 5 are satised and that

)̂1 6= )̂2. Then,

1. If , has regularly-varying tails, then agreement is continuous at certainty under

{* $#%&}.

2. If , has rapidly-varying tails, then agreement is strongly discontinuous at certainty

under {* $#%&}.

Proof. When , has regularly or rapidly varying tails, uniform convergence assump-

tion is satised, and the proposition follows from Denitions 3 and 4 and from Theorem

5.

Returning to the intuition above, Proposition 1 and the previous denitions make

it clear that the failure of asymptotic agreement, under the assumption that 8$& (7)

converges to 8̃ uniformly, is related to disagreement between the two individuals about

limiting frequencies, i.e., )̂1 6= )̂2, together with su"ciently thick tails of the subjective
probability distribution so that an individual who expects )̂2 should have su"cient un-

certainty when confronted with a limiting frequency of )̂1. Along the lines of the intuition

given there, this is su"cient for both individuals to believe that they will learn the true

value of ! themselves, but that the other individual will fail to do so. Rapidly-varying

tails imply that individuals become relatively certain of their model of the world and

thus when individual + observes a limiting frequency 7 close to, but di!erent from )̂$, he

will interpret this as being driven by sampling variation and attach a high probability
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to ! = $. This will guarantee asymptotic agreement between the two individuals. In

contrast, with regularly-varying tails, even under the uniform convergence assumptions,

limiting frequencies di!erent from )̂$ will be interpreted not as sampling variation, but as

potential evidence for ! = &, preventing asymptotic agreement. The following example

provides a simple illustration of part 1 of Proposition 1.

Example 2 Let , be the Pareto distribution and 01 = 02 = 162. The likelihood ratio

is

8$& (7 (#)) =

µ
7 (#) + )̂$ $ 1
7 (#)$ )̂$

¶#3
%

and the asymptotic probability of ! = $ is

3$!%& (7 (#)) =
(7 (#)$ )̂$)#3

(7 (#)$ )̂$)#3 + (7 (#) + )̂$ $ 1)#3

for all -. (These expressions hold in the limit - ( ) under any , with regularly-

varying tails.) As illustrated in Figure 2, in this case 3$!%& is not monotone. To see the

magnitude of asymptotic disagreement, consider 7 (#) *= )̂$. In that case, 3$!%& (7 (#))

is approximately 1, and 3,!%& (7 (#)) is approximately F̂
#36 (Ê#3 + F̂#3). Hence, both

individuals believe that the di!erence between their asymptotic posteriors will be

¯̄
31!%& $ 3

2
!%&

¯̄ *=
Ê#3

Ê#3 + F̂#3
9

This asymptotic di!erence is increasing with the di!erence F̂ % |)̂1 $ )̂2|, which corre-
sponds to the di!erence in the individuals’ views on which frequencies of signals are most

likely. It is also clear from this expression that this asymptotic di!erence will converge

to zero as F̂ ( 0 (i.e., as )̂1 ( )̂2).

The last statement in the example is in fact generally true when noise vanishes

uniformly and 8̃ is continuous. This is explored in the next proposition.

Proposition 2 (Limits to Asymptotic Disagreement) In Theorem 5, in addition,

assume that 8̃ is continuous on the set C = {(E% F) |$ 1 & E & 1% |F| & F̄} for some
F̄ < 0. Then for every A < 0 and ? < 0, there exist B < 0 and -̄ " (0%)) such that
whenever |)̂1 $ )̂2| ; B,

Pr$
³
lim
""!

¯̄
31"%& $ 3

2
"%&

¯̄
< A
´
; ? ('- < -̄% + = 1% 2)9
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Figure 2: lim""! 3$" (#) for Pareto distribution as a function of 7 (#) [K = 2, )̂
$ = 364.]

Proof. To prove this proposition, we modify the proof of Part 1 of Theorem 5

and use the notation in that proof. Since 8̃ is continuous on the compact set C and

8̃ (E% 0) = 0 for each E, there exists B < 0 such that 8̃ ()̂1 + )̂2 $ 1% |)̂1 $ )̂2|) ; A0064

whenever |)̂1 $ )̂2| ; B. Fix any such )̂1 and )̂2. Then, by the uniform conver-

gence assumption, there exists I < 0 such that 8,& (7 (#)) uniformly converges to

8̃ (7 (#) + )̂, $ 1% |7 (#)$ )̂,|) on ()̂$ $ I% )̂$ + I) and

8̃
¡
7 (#) + )̂, $ 1%

¯̄
7 (#)$ )̂,

¯̄¢
; A0062

for each 7 (#) in ()̂$ $ I% )̂$ + I). The rest of the proof is identical to the proof of Part 1
in Theorem 5.

This proposition implies that in the case where noise vanishes uniformly and the

individuals are almost certain about the informativeness of signals, any signicant dif-

ference in their asymptotic beliefs must be due to di!erences in their subjective densities

regarding the signal distribution–that is, |)̂1 $ )̂2| cannot be too small. In particular,
when )̂1 = )̂2, we must have 8̃ (Ê% F̂) = 0, and thus, from Theorem 5, there will be

convergence to asymptotic agreement. Notably, however, the requirement that )̂1 = )̂2

is rather strong. For example, Corollary 2 established that under certainty there is

asymptotic agreement for all )̂1% )̂2 < 162.

In closing this section, let us reiterate that the key assumption in Proposition 2 is that

8$& (7) uniformly converges to a continuous limiting likelihood ratio 8̃. In contrast, recall

that Theorem 3 establishes that a slight uncertainty may lead to substantial asymptotic

disagreement with nearly probability 1 even when )̂1 = )̂2. The crucial di!erence is that
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in Theorem 3 the likelihood ratios converge to a continuous limiting likelihood function

pointwise, but not uniformly.

4 Generalizations

The previous section provided our main results in an environment with two states and

two signals. In this section, we show that the results from the previous two sections

generalize to an environment with . # 2 states and / # . signals. All the proofs for

this section are contained in the Appendix and to economize on space, we do not provide

the analog of Theorem 1.

Suppose ! " !, where ! % {$1% 999% $4} is a set containing . # 2 distinct elements.
We refer to a generic element of the set by $5. Similarly, let #! " {'1% 999% '6}, with
/ # . signal values. As before, dene # % {#!}

!
!=1, and for each L = 1% 999% /, let

4"%7 (#) % # {5 & 2|#! = '7}

be the number of times the signal #! = '7 out of rst 2 signals. Once again, the

strong law of large numbers implies that, according to both individuals, for each L =

1% 999% /, 4"%7 (#) 62 almost surely converges to some 77 (#) " [0% 1] with
P6

7=1 77 (#) =

1. Dene 7 (#) " " (/) as the vector 7 (#) % (71 (#) % 999% 76 (#)), where " (/) %n
) = ()1% 9 9 9 % )6) " [0% 1]

6 :
P6

7=1 )7 = 1
o
, and let the set 1̄ be

1̄ % {# " 1 : lim""! 4"%7 (#) 62 exists for each L = 1% 999% /} 9 (24)

With analogy to the two-state-two-signal model in Section 2, let 0$5 < 0 be the prior

probability individual + assigns to ! = $4, 0$ % (0$1% 999% 0$4), and )#%7 be the frequency
of observing signal # = '7 when the true state is !. When players are certain about )#%7’s

as in usual models, immediate generalizations of Theorems 1 and 1 apply. With analogy

to before, we dene * $# as the joint subjective probability distribution of conditional

frequencies )# % ()#%1% 999% )#%6) according to individual +. Since our focus is learning

under uncertainty, we impose an assumption similar to Assumption 1.

Assumption 2 For each + and !, the distribution * $# over "(/) has a continuous, non-

zero and nite density , $# over "(/).

This assumption can be weakened along the lines discussed in Remark 2 above.
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We also dene 3$5%" (#) % Pr
$ (! = $5 | {#!}

"
!=0) for each M = 1% 999%. as the posterior

probability that ! = $5 after observing the sequence of signals {#!}"!=0, and

3$5%! (7 (#)) % lim
""!

3$5%" (#) 9

Given this structure, it is straightforward to generalize the results in Section 2. Let us

now dene the transformation N5 : R4+ ( R4#1+ , such that

N5 (E) =

µ
E50

E5
; M0 " {1% 999%.} \ M

¶
9

Here N5 (E) is taken as a column vector. This transformation will play a useful role in the

theorems and the proofs. In particular, this transformation will be applied to the vector

0$ of priors to determine the ratio of priors assigned the di!erent states by individual +.

Let us also dene the norm kEk = max7 |E7| for E = (E1% 9 9 9 % E6) " R6.
The next lemma generalizes Lemma 1 (proof omitted).

Lemma 2 Suppose Assumption 2 holds. Then for all # " 1̄,

3$5%! (7 (#)) =
1

1 +

P
$0 6=$ )

!
$0
8 !%$0

(+(9))

)!$8
!
%$
(+(9))

9

Our rst theorem in this section parallels Theorem 2 and shows that under Assump-

tion 2 there will be lack of asymptotic learning, and under a relatively weak additional

condition, there will also asymptotic disagreement.

Theorem 6 (Generalized Lack of Asymptotic Learning and Agreement) Sup-

pose Assumption 2 holds for + = 1,2, then for each M = 1% 999%., and for each + = 1,2,

1. Pr$
¡
3$5%! (7 (#)) 6= 1|! = $5

¢
= 1, and

2. Pr$
¡¯̄
315%! (7 (#))$ 3

2
5%! (7 (#))

¯̄
6= 0

¢
= 1 whenever Pr$((N5 (01)$N5 (02))0N5(, $(7(#)) =

0) = 0 and * 1# = *
2
# for each ! " !.

The additional condition in part 2 of Theorem 6, thatPr$((N5 (01)$N5 (02))0N5(, $(7(#)) =
0) = 0, plays the role of di!erences in priors in Theorem 2 (here “ 0 ” denotes the trans-

pose of the vector in question). In particular, if this condition did not hold, then at some

7 (#), the relative asymptotic likelihood of some states could be the same according to

two individuals with di!erent priors and they would interpret at least some sequences of
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signals in a similar manner and achieve asymptotic agreement. It is important to note

that the condition that Pr$((N5 (01) $ N5 (02))0N5(, $(7(#)) = 0) = 0 is relatively weak

and holds generically–i.e., if it did not hold, a small perturbation of 01 or 02 would

restore it.13 The Part 2 of Theorem 6 therefore implies that asymptotic disagreement

occurs generically.

We next dene continuity and discontinuity of asymptotic agreement at certainty in

this more general case. A family of subjective probability distributions is again denoted

by {* $#%&}. Throughout {* $#%&} converge to a Dirac distribution ?-!# , where )
$
# " " (/),

and ?-!# is such that there is asymptotic agreement (that is, there is asymptotic agreement

when learning is under uncertainty). The corresponding asymptotic beliefs are denoted

by 315%!%& and 3
2
5%!%& for M = 1% 999%. and - " N.

Denition 5 Asymptotic agreement is continuous at certainty under family {* $#%&}
if for all > < 0, for each M = 1% 999%. and for each + = 1% 2,

lim
&"!

Pr$%&
¡¯̄
315%!%& $ 3

2
5%!%&

¯̄
; >
¢
= 19

Asymptotic agreement is continuous at certainty at ()1% )2) " " (/)24 if it is con-

tinuous at certainty under all families {* $#%&} converging to ?-!# .

Denition 6 Asymptotic agreement is strongly discontinuous at certainty under

family {* $#%&} if there exists > < 0 such that

lim
&"!

Pr$%&
¡¯̄
315%!%& $ 3

2
5%!%&

¯̄
< >
¢
= 1

for each M = 1% 999%. and each + = 1% 2. Asymptotic agreement is strongly discontinu-

ous at certainty at ()1% )2) " " (/)24 if asymptotic agreement is strongly discontinu-
ous at certainty under some family {* $#%&} converging to ?-!# .

The next result generalizes Theorem 3:

13More formally, the set of solutions S % {
¡
*1& *2& 1

¢
" !(:)2 : (;,

¡
*1
¢
$ ;,

¡
*2
¢
)0;,(,

"(1)) = 0}
has Lebesgue measure 0. This is a consequence of the Preimage Theorem and Sard’s Theorem in
di!erential topology (see, for example, Guillemin and Pollack, 1974, pp. 21 and 39). The Preimage
Theorem implies that if 8 is a regular value of a map , : < ( = , then ,"1 (8) is a submanifold of <
with dimension equal to dim< $ dim= . In our context, this implies that if 0 is a regular value of the
map (;,

¡
*1
¢
$ ;,

¡
*2
¢
)0;,(,

"(1)), then the set S is a two dimensional submanifold of !(:)3 and thus
has Lebesgue measure 0. Sard’s theorem implies that 0 is generically a regular value.
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Theorem 7 (Generalized Strong Discontinuity of Asymptotic Agreement) As-

ymptotic agreement is strongly discontinuous at each ()1% )2) " " (/)24.

Towards generalizing Theorem 5, we now formally present the appropriate families

of probability densities and introduce the necessary notation:

Assumption 3 For each ! " ! and - " N, let the subjective density , $#%& be dened by

, $#%& ()) = G (+% !%-) , (- ()$ )̂ (+% !)))

where G (+% !%-) % 16
R
-%"(6) , (- ()$ )̂ (+% !))) =), )̂ (+% !) " " (/) with )̂ (+% !) 6= )̂ (+% !

0)

whenever ! 6= !0, and , : R6 ( R is a positive, continuous probability density function
that satises the following conditions:

(i) lim:"!max{2:k2k&:} , (E) = 0,

(ii)

8̃ (E% F) % lim
&"!

, (-E)

, (-F)
(25)

exists at all E% F, and

(iii) convergence in (25) holds uniformly over a neighborhood of each ()̂ (+% !)$ )̂ (:% !0) % )̂ (+% !)$ )̂ (:% !))

Writing 3$5%!%& (7 (#)) % lim""! 3
$
5%"%& (#) for the asymptotic posterior of individual

+ with subjective density , $#%&, we are now ready to state the generalization of Theorem

5.

Theorem 8 (Generalized Asymptotic Agreement and Disagreement Under

Uniform Convergence) Under Assumption 3, the following are true:

1. Suppose that 8̃ ()̂ (+% !)$ )̂ (:% !0) % )̂ (+% !)$ )̂ (:% !)) = 0 for each distinct ! and !0.
Then, asymptotic agreement is continuous under {* $#%&}.

2. Suppose that 8̃ ()̂ (+% !)$ )̂ (:% !0) % )̂ (+% !)$ )̂ (:% !)) 6= 0 for each distinct ! and !0.
Then, asymptotic agreement is strongly discontinuous under {* $#%&}.
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These theorems therefore show that the results about lack of asymptotic learning and

asymptotic agreement derived in the previous section do not depend on the assumption

that there are only two states and binary signals. It is also straightforward to generalize

Propositions 2 and 1 to the case with multiple states and signals; we omit this to avoid

repetition.

We assumed both the number of signal values and states are nite. This assumption

can be dropped in the expense of introducing technical issues that are not central to our

focus here.

5 Concluding Remarks

The standard approach in game theory and economic modeling assumes that individu-

als have a “common prior,” meaning that they have beliefs consistent with each other

regarding the game forms, institutions, and possible distributions of payo!-relevant pa-

rameters. This presumption is often justied by the argument that su"cient common

experiences and observations, either through individual observations or transmission of

information from others, will eliminate disagreements, taking agents towards common

priors. This presumption receives support from a number of well-known theorems in

statistics, such as Savage (1954) and Blackwell and Dubins (1962).

Nevertheless, existing theorems apply to environments in which learning occurs un-

der certainty, that is, individuals are certain about the meaning of di!erent signals.

Certainty is su"cient to ensure that payo!-relevant variables can be identied from lim-

iting frequencies of signals. In many situations, individuals are not only learning about

a payo!-relevant parameter but also about the interpretation of di!erent signals, i.e.,

learning takes place under uncertainty. For example, many signals favoring a particular

interpretation might make individuals suspicious that the signals come from a biased

source. This may prevent full identication (in the standard sense of the term in econo-

metrics and statistics). In such situations, information will be useful to individuals but

may not lead to full learning.

This paper investigates the conditions under which learning under uncertainty will

take individuals towards common priors and asymptotic agreement. We consider an

environment in which two individuals with di!erent priors observe the same innite

sequence of signals informative about some underlying parameter. Learning is under
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uncertainty, however, because each individual has a non-degenerate subjective probabil-

ity distribution over the likelihood of di!erent signals given the values of the parameter.

When subjective probability distributions of both individuals have full support, they

will never agree, even after observing the same innite sequence of signals.

Our main results provide conditions under which asymptotic agreement is fragile

or discontinuous at certainty (meaning that as the amount of uncertainty in the envi-

ronment diminishes, we remain away from asymptotic agreement). We rst show that

asymptotic agreement is discontinuous at certainty for every model. In particular, a van-

ishingly small amount of uncertainty about the signal distribution can guarantee that

both individuals attach probability arbitrarily close to 1 that they will asymptotically

disagree. Under additional strong continuity and uniform convergence assumptions,

we also characterize the conditions under which asymptotic agreement is continuous at

certainty. Even under these assumptions, asymptotic disagreement may prevail as the

amount of uncertainty vanishes, provided that the family of subjective distributions has

regularly-varying tails (such as for the Pareto, the log-normal or the t-distributions). In

contrast, with rapidly-varying tails (such as the normal and the exponential distribu-

tions), convergence to certainty leads to asymptotic agreement.

Lack of common beliefs and common priors has important implications for economic

behavior in a range of circumstances. The type of learning outlined in this paper interacts

with economic behavior in various di!erent situations. The companion paper, Acemoglu,

Chernozhukov and Yildiz (2008), illustrates the inuence of learning under uncertainty

and lack of asymptotic agreement on games of coordination, games of common interest,

bargaining, asset trading and games of communication.
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6 Appendix: Omitted Proofs
Proof of Lemma 1. Write

Pr$ (#"|. = ')
Pr$ (#"|. = %)

=

R 1
0 +

*"(1$ +)"#*",((1$ +)-+R 1
0 +

*"(1$ +)"#*",'(+)-+

=

R 1
0 -

&"(1#-)"!&"8'(1#-);-R 1
0 -

&"(1#-)"!&";-
R 1
0 -

&"(1#-)"!&"8%(-);-R 1
0 -

&"(1#-)"!&";-

=
E1[,((1$ +)|#"]
E1[,'(+)|#"]

9

Here, the rst equality is obtained by dividing the numerator and the denominator by the
same term. The resulting expression on the numerator is the conditional expectation of
,( (1$ +) given #" under the at (Lebesgue) prior on + and the Bernoulli distribution on
{$!}"!=0. Denoting this by E

1[,((1$ +)|#"], and the denominator, which is similarly dened as
the conditional expectation of ,' (+), by E1[,'(+)|#"], we obtain the last equality. By Doob’s
consistency theorem for Bayesian posterior expectation of the parameter, as #" ( 1, we have
that E1[,((1 $ +)|#"] ( ,((1 $ 1) and E1[,'(+)|#"] ( ,'(1) (see, e.g., Doob, 1949, Ghosh
and Ramamoorthi, 2003, Theorem 1.3.2). This establishes

Pr$ (#"|. = ')
Pr$ (#"|. = %)

( 4$ (1) &

as dened in (4). Equation (3) then follows from (2).

Proof of Theorem 4. For each 5À 1, let

, $#%& (1) =

!
#

$

6#2> if 1 "
£
+̂$# $ >22& +̂

$
# + >22

¤
&

?3 if 1 @ 1$ +̂$
#0
$ >22&

? otherwise,

where .0 6= ., ? = > = 125, +̂1' = +̂' + >, +̂1( = +̂( $ >, +̂2' = +̂' $ >, +̂2( = +̂( + >, and
6# = 1$ ?

¡
+̂$
#0
$ >22

¢
$ ?3

¡
1$ +̂$

#0
$ >22

¢
" (0& 1). Here, 6# is close to 1 for large 5. Then,

4$%& (1) =

!
""""#

""""$

12?2 if 1 @ 1$ +̂$( $ >22&
6(2?

2 if 1$ +̂$( $ >22 & 1 & 1$ +̂
$
( + >22&

1 if 1$ +̂$( + >22 @ 1 @ +̂
$
' $ >22&

?226' if +̂$' $ >22 & 1 & +̂
$
' + >22&

?2 if 1 A +̂$' + >22&

which is clearly decreasing when 5 is large. For ? *= 0, we have

4$%& (1) *=

!
#

$

) if 1 & 1$ +̂$( + >22&
1 if 1$ +̂$( + >22 @ 1 @ +̂

$
' $ >22&

0 if 1 # +̂$' $ >22&
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and hence

3$%&! (1) *=

!
#

$

0 if 1 & 1$ +̂$( + >22&
*$ if 1$ +̂$( + >22 @ 1 @ +̂

$
' $ >22&

1 if 1 # +̂$' $ >229

Notice that when 1 "
£
+̂2' $ >22& +̂

2
' + >22

¤
, we have 1 @ +̂1' $ >22, so that 3

2%&
! (1) *= 1 and

31%&! (1) *= *1, yielding
¯̄
31%&! (1)$ 32%&! (1)

¯̄ *= 1$*1. Similarly, when 1 "
£
1$ +̂1( $ >22& +̂

1
( + >22

¤
,

we have 31%&! (1) *= 0 and 32%&! (1) *= *2, so that
¯̄
31%&! (1)$ 32%&! (1)

¯̄ *= *2. In order to complete
the proof of theorem, we then pick B̄ = min

©
*2& 1$ *1

ª
22. In that case,

lim
&"!

Pr1%&
¡¯̄
31%&! (1)$ 32%&! (1)

¯̄
A B̄

¢
= lim
&"!

Pr1%&
¡
1 "

£
1$ +̂1( $ >22& +̂

1
( + >22

¤¢
= 1$*1 A 0&

and

lim
&"!

Pr2%&
¡¯̄
31%&! (1)$ 32%&! (1)

¯̄
A B̄

¢
= lim
&"!

Pr2%&
¡
1 "

£
+̂2' $ >22& +̂

2
' + >22

¤¢
= *2 A 0&

completing the proof.

Proof of Theorem 6.
(Proof of Part1) This part immediately follows from Lemma 2, as each *$50,'$0 (1 ($)) is

positive, and *$5,'$ (1 ($)) is nite.
(Proof of Part 2) Assume C 1# = C 2# for each . " ". Then, by Lemma 2, 3

1
5%! (1) $

325%!(1) = 0 if and only if
¡
;5
¡
*1
¢
$ ;5

¡
*2
¢¢0
;5

³¡
,1# (1)

¢
#%!

´
= 0. The latter inequality has

probability 0 under both probability measures Pr1 and Pr2 by hypothesis.

Proof of Theorem 7. Pick sequences +$%&# ( +$# and D̄ A 0 such that
°°°+1%&# $ +2%&

#0

°°° A D̄25
for all .& .0 (including . = .0). For each (.& !), dene

E$%&# =
n
+ " ! (:) : 3

°°°+$ +$%&#
°°° & D̄25

o
&

which will be the set of likely frequencies at state . according to !. Notice thatE$%&# ,E$
0%&
#0

6= !
i! . = .0 and ! = !0. Dene

, $#%& (1) =

½
6$#%& if 1 " E$%&#
125 otherwise,

where 6$#%& is normalized so that ,
$
#%& is a probability density function. By construction of se-

quences , $#%& and +
$%&
# , C $#%& ( F-!#

for each (.& !). We will show that agreement is discontinuous

under {C $#%&}. Now

3$!%#%& (1) =
1

1 +
1#)!#

)!#&2
!
#()

if 1 " E$%&# for some . and 3$!%& (1) = *$ otherwise. Note that 3$!%#%& (1) ( 1 if 1 " E$%&# .

Moreover, since the sets E$%&# are disjoint (as we have seen above), 3,!%& (1) = *, when

1 " E$%&# . Hence, there exist 5̄ such that for any 5 # 5̄ and any 1 " E$%& % +#E
$%&
# ,

°°3$!%& (1)$ 3,!%& (1)
°° A ?
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where ? % min,%#

³
1$ *,#

´
22. But for each ., Pr$%&

³
1 " E$%&# |.

´
# 1 $ 125, showing that

Pr$%&
¡
1 " E$%&

¢
# 1$ 125. Therefore,

lim
&"!

Pr$%&
¡°°3$!%& $ 3,!%&

°° A ?
¢
= 19

Proof of Theorem 8. Our proof utilizes the following two lemmas.

Lemma A.

lim
&"!

3$5%!%& (+) =
1

1 +
P
50 6=5

)!
$0

)!$
4̃ (+$ +̂ (!& %50) & +$ +̂ (!& %5))

9

Proof. By condition (i), lim&"! G (!& %5&5) = 1 for each ! and H. Hence, for every distinct
H and H0,

lim
&"!

, $'$0
(+)

, $'$ (+)
= lim
&"!

G (!&%50 &5)

G (!& %5&5)
lim
&"!

, (5 (+$ +̂ (!&%50)))
, (5 (+$ +̂ (!& %5)))

= 4̃ (+$ +̂ (!&%50) & +$ +̂ (!& %5)) 9

Then, Lemma A follows from Lemma 2. ¥

Lemma B. For any ?̃ A 0 and I A 0, there exists 5̃ such that for each 5 A 5̃, H & J,
and each 1 ($) with k1 ($)$ +̂ (!& %5)k @ I25,

¯̄
¯3$5%!%& (1 ($))$ lim

&"!
3$5%!%& (+̂ (!& %5))

¯̄
¯ @ ?̃9 (26)

Proof. Since, by hypothesis, 4̃ is continuous at each
¡
+̂ (!& .)$ +̂

¡
"& .0

¢
& +̂ (!& .)$ +̂ ("& .)

¢
,

by Lemma A, there exists I0 A 0, such that
¯̄
¯ lim
&"!

3$5%!%& (1 ($))$ lim
&"!

3$5%!%& (+̂ (!&%5))
¯̄
¯ @ ?̃22 (27)

and by condition (iii), there exists 5̃ A I2I0 such that
¯̄
¯3$5%!%& (1 ($))$ lim

&"!
3$5%!%& (1 ($))

¯̄
¯ @ ?̃229 (28)

holds uniformly in k1 ($)$ +̂ (!& %5)k @ I0. The inequalities in (27) and (28) then imply (26).
¥

Lemma C. lim&"!
³
3$5%!%& (+̂ (!& %5))$ 3

,
5%!%& (+̂ (!& %5))

´
= 0 i! 4̃ (+̂ (!& %5)$ +̂ ("&%50) & +̂ (!& %5)$ +̂ ("&%

0 for each H0 6= H.
Proof. Proof. Since 4̃ (+̂ (!&%5)$ +̂ (!& %50) & 0) = 0 for each H0 6= H (by condition (i)),

Lemma A implies that lim&"! 3$5%!%& (+̂ (!& %5)) = 1. Hence, lim&"!
³
3$5%!%& (+̂ (!&%5))$ 3

,
5%!%& (+̂ (!& %5))

´
=

0 if and only if lim&"! 3
,
5%!%& (+̂ (!& %5)) = 1. Since each ratio *

,
502*

,
5 is positive, by Lemma
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A, the latter holds if only if 4̃ (+̂ (!& %5)$ +̂ ("&%50) & +̂ (!&%5)$ +̂ ("&%5)) = 0 for each H0 6= H.
¥

(Proof of Part 1) Fix D A 0 and F A 0. We will nd 5̄ " N such that

Pr$
¡°°31!%& ($)$ 32!%& ($)

°° A D
¢
@ F ('5 A 5̄& ! = 1& 2)9

Fix any ! and H. Since each *,502*
,
5 is nite, by Lemma 2, there exists D

0 A 0, such that
3$5%!%& (1 ($)) A 1 $ D whenever , $'$0 (1 ($)) 2,

$
'$
(1 ($)) @ D0 holds for every H0 6= H. Now, by

(i), there exists I0%5 A 0, such that

Pr$ (k1 ($)$ +̂ (!& %5)k & I0%525|. = %5) =
Z

k2k$:0($
, (6) -6 A (1$ F) 9

Let
K5%& = {+ " ! (:) : k+$ +̂ (!& %5)k & I0%525}

and L % mink2k$:0($ , (6) A 0. By (i), there exists I1%5 A 0 such that, whenever k6k A I1%5,
, (6) @ D0L22. There exists a su"ciently large constant 51%5 such that for any 5 A 51%5,
1 ($) " K5%&, and any H0 6= H, we have k1 ($)$ +̂ (!& %50)k A I1%525, and

, (5 (1 ($)$ +̂ (!& %50)))
, (5 (1 ($)$ +̂ (!& %5)))

@
D0L

2

1

L
=
D0

2
9

Moreover, since lim&"! G (!& .&5) = 1 for each ! and ., there exists 52%5 A 51%5 such that
G (!& %50 &5) 2G (!& %5&5) @ 2 for every H0 6= H and 5 A 52%5. This implies

, $'$0 (1 ($)) 2,
$
'$
(1 ($)) @ D0&

establishing that
3$5%!%& (1 ($)) A 1$ D9 (29)

Now, for " 6= !, assume that 4̃
¡
+̂ (!& .)$ +̂

¡
"& .0

¢
& +̂ (!& .)$ +̂ ("& .)

¢
= 0 for each distinct .

and .0. Then, by Lemma A, lim&"! 3
,
5%!%& (+̂ (!& %5)) = 1, and hence by Lemma B, there

exists 53%5 A 52%5 such that for each 5 A 53%5, 1 ($) " K5%&,

3,5%!%& (1 ($)) A 1$ D9 (30)

Notice that when (29) and (30) hold, we have
°°31!%& ($)$ 32!%& ($)

°° @ D. Then, setting
5̄ = max554%5, we obtain the desired inequality for each 5 A 5̄:

Pr$
¡°°31!%& ($)$ 32!%& ($)

°° @ D
¢
=

X

5$4

Pr$
¡°°31!%& ($)$ 32!%& ($)

°° @ D|. = %5
¢
Pr$ (. = %5)

#
X

5$4

Pr$ (1 ($) " K5%&|. = %5) Pr$ (. = %5)

#
X

5$4

(1$ F)*$5

= 1$ F9
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(Proof of Part 2) Assume that 4̃
¡
+̂ (!& .)$ +̂

¡
"& .0

¢
& +̂ (!& .)$ +̂ ("& .)

¢
6= 0 for each dis-

tinct . and .0. We will nd D A 0 such that for each F A 0, there exists 5̄ " N such that

Pr$
¡°°31!%& ($)$ 32!%& ($)

°° A D
¢
A 1$ F ('5 A 5̄& ! = 1& 2)9

Now, since each *,502*
,
5 is positive, Lemma A implies that lim&"! 3

,
5%!%& (+̂ (!& %5)) @ 1 for

each H. Let
D = min

5

n
1$ lim

&"!
3,5%!%& (+̂ (!& %5))

o
23 A 09

Then, by Part 1, for each H, there exists 52%5 such that for every 5 A 52%5 and 1 ($) " K5%&,
we have 3$5%! (1 ($)) A 1$ D. By Lemma B, there also exists 55%5 A 52%5 such that for every
5 A 55%5 and 1 ($) " K5%&,

3,5%!%& (1 ($)) @ lim
&"!

3,5%!%& (+̂ (!& %5)) + D & 1$ 2D @ 3
$
5%! (1 ($))$ D9

This implies that
°°31!%& (1 ($))$ 32!%& (1 ($))

°° A D. Setting 5̄ = max555%5 and changing°°31!%& ($)$ 32!%& ($)
°° @ D at the end of the proof of Part 1 to

°°31!%& ($)$ 32!%& ($)
°° A D, we

obtain the desired inequality.
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