
Overcoming Incentive Constraints by Linking Decisions

by Matthew O. Jackson and Hugo F. Sonnenschein ∗

Revision: May 17, 2005†
forthcoming in Econometrica

Abstract

Consider a Bayesian collective decision problem in which the preferences of agents
are private information. We provide a general demonstration that the utility costs
associated with incentive constraints become negligible when the decision problem is
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defining a mechanism in which agents must budget their representations of preferences
so that the frequency of preferences across problems mirrors the underlying distribution
of preferences, and then arguing that agents’ incentives are to satisfy their budget by
being as truthful as possible. We also show that all equilibria of the linking mechanisms
converge to the target utility levels. The mechanisms do not require transferable utility
or interpersonal comparisons of utility and are immune to manipulations by coalitions.
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1 Introduction

Over the past fifty years we have learned that social welfare possibilities depend not only

on resources and technology, but also on incentive constraints (including participation con-

straints) and the ability of social institutions to mediate those constraints. Thus, voting

systems, labor contracts, financial contracts, auction forms, and a host of other practical

arrangements are now commonly formulated as Bayesian games, and judged in terms of

their ability to mediate incentive constraints.

This paper demonstrates how the limitations that incentive constraints impose on the

attainment of socially efficient outcomes disappear when problems are linked. We exploit

the idea that when independent social decision problems are linked, then it makes sense to

speak of “rationing” or “budgeting” an agent’s representations. In more formal language,

we consider an abstract Bayesian collective decision problem and an ex ante Pareto efficient

social choice function f that indicates the collective decision we would like to make as a

function of the realized preferences of the n agents. Let (u1, u2, . . . , un) denote the ex ante

expected utilities that are achieved under f . This f will generally not be implementable

because of incentive constraints. Now, consider K copies of the decision problem, where

agents’ preferences are additively separable and independently distributed across the prob-

lems. We show that as K becomes large it is essentially possible to implement f on each

problem and thus achieve the target utilities (u1, u2, . . . , un) on each problem.

We establish this result by constructing a mechanism in which each agent announces

a K-vector of preferences. The announcements of the agents are “budgeted” so that the

distribution of types across problems must mirror the underlying distribution of their pref-

erences. The decision on each of the K problems is made according to the desired f as if

the announcements were true. With some adjustments in this idea to deal with the case

of more than two agents (as well as participation constraints), we show that in the limit

there is no gain from lying. In fact, for every K there is an equilibrium in which all agents

are telling the truth as fully as the constraint on their announcements permits. Moreover,

we show that being as truthful as possible secures for any agent an expected utility that

for large K approximates the target utility level regardless of the strategies followed by the

other agents. Thus, we can conclude that all equilibria of the linking mechanisms converge

to the target utility levels. Furthermore, our mechanisms do not require any transferable

utility or interpersonal comparisons of utility, and they are also immune to manipulations

by coalitions. Thus, the machinery that is generally used in mechanism design theory and

relies heavily on transferable utility is not used here.

1



The closest antecedents of our work are Townsend (1982) and McAfee (1992).1,2 Townsend

(1982) examines a repeated risk-sharing problem between a risk-neutral agent with a constant

endowment and a risk averse agent with a risky endowment taking on either a high or low

value. He notes that by limiting the number of times the risk averse agent can claim to

have a low endowment, an approximately efficient outcome can be reached. McAfee (1992)

examines a group of agents allocating a set of indivisible objects when agents may have

different valuations for different objects and the objective is to get objects to the agents

who value them most. He shows, under some symmetry assumptions, that a mechanism

where agents take turns selecting objects approaches full efficiency as the number of objects

grows.3 Our mechanism simplifies to Townsend’s in his special context. McAfee’s mechanism,

although different in structure, would lead to approximately the same outcomes as a version

of our linking mechanism that sought to give objects to agents with the highest valuation.

However, their results give little indication of the shape of the general theory presented here,

especially when no transfers are present.4

Our results show that if linking is possible, then efficiency is generally obtainable, even

without any transferability, and by a simple mechanism with a number of desirable prop-

erties. These results can be thought of as stemming from two insights. The first, which

appears in many forms in the previous literature, is that when many problems are linked,

laws of large numbers tell us that the realized frequency of players’ types will closely match

the underlying distribution. The second insight is the more innovative aspect of our results

and the key to their general coverage. It is that if the desired social choice function is ex ante

1Radner (1981) examines repeated contracting in a finitely repeated principal-agent setting, but relies on
ε-equilibrium and trigger strategies that are closer in spirit to the incomplete information repeated games
literature (e.g., Green and Porter (1984), Abreu, Pearce and Stacchetti (1991))) than the approach taken
here. Equilibria in many incomplete information repeated games are bounded away from efficiency (e.g., see
Fudenberg and Levine (1994)).

2A short list of other research that involves the linking of decisions includes log-rolling (e.g., Tullock (1970),
Wilson (1969), Miller (1977)), bundling of goods by a monopolist (Adams and Yellen (1976), McAfee, McMil-
lan and Whinston (1979), Chakraborty and Harbaugh (2003), Armstrong (1999), Bakos and Brynjolfsson
(1999, 2000)), agency problems (Maskin and Tirole (1990)), and new papers by Fang and Norman (2003)
who examine the efficiency gains from the bundling of excludable public goods, and Hörner and Jamison
(2004) who examine collusion in a repeated Bertrand game. While some of these papers also rely on laws
of large numbers (e.g., Armstrong (1999), Bakos and Brynjolfsson (1999, 2000)), our approach differs in
showing that ex ante Pareto efficiency of a social choice function or allocation rule can be used to give agents
incentives to report their types as truthfully as possible; and moreover that this applies to any collective
decision problem.

3A related mechanism is discussed by Pesendorfer (2000) in the context of a set of bidders colluding in a
sequence of auctions trying to decide who should win which auctions. See also, Blume and Heidhues (2002),
Campbell (1998), and Chakraborty, Gupta, and Harbaugh (2002), as well as earlier work on multi-market
collusion by Bernheim and Whinston (1990).

4Our own investigations were spurred by trying to understand whether full efficiency could be achieved
in a simple voting setting, after seeing the creative and innovative storable votes mechanism of Casella
(2002) (see also Hortala-Vallve (2003) and Casella and Palfrey (2003)). Casella shows that in some cases,
an equilibrium of the storable votes mechanism offers a Pareto improvement over separate votes.
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Pareto efficient, and we employ a simple mechanism that budgets agents’ announcements

to match the underlying distribution, then agents have an incentive to be as truthful as

possible.

2 Examples

Example 1 A Voting Problem

Consider a two-agent society making a binary decision represented by d ∈ {a, b}. An

agent’s preferences are summarized by the difference in utilities between decisions a and

b, denoted vi = vi(b) − vi(a). For simplicity, assume that each vi is independently and

identically distributed and takes on values in {−2,−1, 1, 2} with equal probability.

Suppose that we wish to choose the decision that maximizes the sum of the utilities, and

in the case of a tie we flip a coin. Clearly this social choice function is not implementable.

The unique incentive compatible social choice function that is anonymous and neutral, and

maximizes total utility subject to incentive constraints, corresponds to having agents vote

over the alternatives and flipping a coin in the event of a tie (a version of May’s (1952)

Theorem). The inefficiency is that we are not able to discover agents’ intensity of preference

in the event of a tied vote. This is not an issue of inter-personal comparisons, but rather

intra-personal comparisons. An agent would be better off if he or she won the ties when

having a type -2 or 2, at the cost of losing the ties when of type -1 or 1. However, this

cannot be achieved in an incentive compatible way with just one decision, as the agent

would always pretend to be of the high type. However, if two such decisions are linked, we

could, for instance, ask the agents to declare that they are of a high type on just one of the

two decisions. Essentially, by linking the decisions together, we can ask, “Which decision

do you care more about?” This can be answered in an incentive compatible way in the

linked problem. Effectively, linking the problem changes ex ante inefficiencies - “I would like

to make trades over my different possible future selves,” to ex post inefficiencies - “I now

actually have different selves and would be happy to make trades across them”.

If we link a number K (say divisible by 4) of independent decisions together of the type

described above, then we can budget each agent to announce -2 on K/4 problems, -1 on K/4

problems, etc. Now let us simply choose outcomes according to the desired social choice

function, treating the agents’ announcements as if they were truthful. It turns out that it

is in the agents’ interest to be as truthful as they can. Clearly, if an agent has a positive

type on problem k and a negative type on problem k′, then the agent would not gain by

switching those announcements. But, if the agent has type 1 on problem k and a type 2

on problem k′, then does the agent have any incentive to lie and reverse the types in his

announcements? If the agent does not have substantially different beliefs about what the

other agent’s type announcement is likely to be across these problems, then he or she would

rather have the choice made in his or her favor on the problem where he or she really is a 2,

and thus announcing these types correctly is better than reversing them. There is more work
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to be done to prove that being as truthful as possible is a good strategy (and essentially

the only equilibrium strategy) for this problem, but the essence is clear. With large K,

the mechanism will force the agents to “lie” on a negligible fraction of problems. So, on

each problem, we are converging to truthful revelation and the associated ex ante (and thus

interim and ex post) efficient decisions.5

Note that this mechanism works without any transfers. If one could use transfers then

there are other ways to mitigate the inefficiency problem in this particular voting problem.

However, allowing for transfers cannot always reconcile incentive constraints with efficiency.

We now present another example, where even in the presence of transfers there is a conflict

between efficiency, incentive compatibility, and participation constraints.

Example 2 A Bargaining Problem

There is a seller of an object with valuation chosen uniformly from {.1, .3, .5, .7, .9}, and

a buyer with valuation chosen uniformly from {.2, .4, .6, .8, 1}. Each agent’s utility is the

value of the object if he or she has it at the end of the period, net of any transfers that are

made. The values are independent and we wish to have the agents trade the object if and

only if the buyer’s value exceeds that of the seller. To set a target, consider the social choice

function that trades the object precisely in these cases and at a price that is the average

of the valuations. This mechanism fails to be incentive compatible. In fact, there is no

incentive compatible, Pareto efficient, and individually rational mechanism for this problem,

as we know from Myerson and Satterthwaite (1983).

As before, we link K (say divisible by 5) decision problems by requiring each agent to

specify exactly 1/5 of the problems where they have each valuation; and then determine

the outcomes by using the target outcome function on each problem. As before, there is

an approximately truthful equilibrium where agents tell the truth to the maximal extent

possible, given that it is possible that they will not have a given valuation on exactly 1/5

of the problems. Again, for large K, the fraction of problems where the correct decision is

made goes to one in probability.

3 A General Theorem on Linking Decisions

Decision Problems

An n-agent decision problem is a triple D = (D,U, P ). Here D is a finite set of possible

alternative decisions; U = U1 × · · · ×Un is a finite set of possible profiles of utility functions

(u1, . . . , un), where ui : D → IR; and P = (P1, . . . , Pn) is a profile of probability distributions,

where Pi is a distribution over Ui.
6 We abuse notation and write P (u) for the probability of

5One can get a faster rate of convergence with modifications to the mechanism.
6Our setting is thus one of private values. If values are interdependent (but still independently distrib-

uted), then some of our results still go through while others do not. With interdependent valuations there still
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u, and we assume that the ui’s are drawn independently.7

Social Choice Functions

A social choice function on a social decision problem D = (D,U, P ) is a function

f : U → ∆(D), where ∆(D) denotes the set of probability distributions on D. This is

interpreted as the target outcome function. We allow f ’s to randomize over decisions since

such randomizations admit tie-breaking rules that are common and sometimes needed to

define attractive (e.g., neutral and/or anonymous) social choice functions. Let fd(u) denote

the probability of choosing d ∈ D, given the profile of utility functions u ∈ U .

A social choice function f on a decision problem D = (D,U, P ) is ex ante Pareto efficient

if there does not exist any social choice function f ′ on D = (D,U, P ) such that

∑
u

[
P (u)

∑
d

(f ′
d(u)ui(d))

]
≥ ∑

u

[
P (u)

∑
d

(fd(u)ui(d))

]

for all i with strict inequality for some i.

Linking Mechanisms

Given a base decision problem D = (D,U, P ) and a number K of linkings, a linking

mechanism (M, g) is a message space M = M1 × · · · × Mn and an outcome function g :

M → ∆(DK). In the linking mechanisms that we use to prove our results, Mi consists of

announcements of utility functions for each decision problem. Let gk(m) denote the marginal

distribution under g on the k-th decision, where m ∈ M is the profile of messages selected

by the agents.

When we link K versions of a decision problem D = (D,U, P ), an agent’s utility over a

set of decisions is simply the sum of utilities. So, the utility that agent i gets from decisions

(d1, . . . , dK) ∈ DK given preferences (u1
i , . . . , u

K
i ) ∈ UK

i is given by
∑

k uk
i (d

k). We assume

that the randomness is independent across decision problems. Given independence and

additive separability, there are absolutely no complementarities across the decision problems,

and so any improvements in efficiency obtained through linking must come from being able

to trade decisions off against each other to uncover intensities of preferences.

A strategy for agent i in a linking mechanism (M, g) on K copies of a decision problem

D = (D,U, P ) is a mapping σK
i : UK

i → ∆(Mi). We consider Bayesian equilibria of such

mechanisms. Given a decision problem D = (D,U, P ) and a social choice function f defined

on D, we say that a sequence of linking mechanisms defined on increasing numbers of linked

problems, {(M1, g1); (M2, g2), . . . , (MK , gK), . . .}, and a corresponding sequence of Bayesian

equilibria, {σK}, approximate f if

limK

[
maxk≤KProb

{
gK

k (σK(u)) �= f(uk)
}]

= 0.

exists an approximately truthful equilibrium to our mechanism (which extends as is), but for some settings
there may also exist other equilibria that are far from being approximately truthful both in announcements
and outcomes.

7While restrictive, this requirement ensures that our efficiency results are not obtained by learning some-
thing about one agent’s type through the reports of others (for instance, as in Crémer and McLean (1988)).
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Strategies that Secure a Utility Level

Given a mechanism (M, g) on K linked decision problems, a strategy σi : UK
i → Mi

secures a utility level ui for agent i if for all strategies of the other agents σ−i

E

⎡⎣ ∑
k≤K

ui(g
k(σi, σ−i))

⎤⎦ ≥ Kui.

The General Linking Mechanisms: A First Look

Consider K linked problems. Each agent announces utility functions for the K problems,

as in a direct revelation mechanism. However, the agent’s announcements across the K

problems must match the expected frequency distribution. That is, the number of times

that i can (and must) announce a given utility function ui is K × Pi(ui). With a finite set

of problems, K × Pi(ui) may not be integer valued for all i and ui, and so we approximate

Pi. The choice is then made according to f based on the announcements.

More formally, our K-th linking mechanism, (MK , gK), is defined as follows. Find any

approximation PK
i to Pi such that PK

i (vi) is a multiple of 1
K

for each vi ∈ Ui, and the

Euclidean distance between PK
i and Pi (viewed as vectors) is minimized.

Agent i’s strategy set is

MK
i = {ûi ∈ UK

i s.t. #{k : ûk
i = vi} = PK

i (vi)K for each vi ∈ Ui}.

The decision of gK for the problem k is simply gK(m) = f(ûk), where ûk
i is i’s announced

utility function for problem k under the realized announcement m = û. (The mechanism

here is refined in the proofs, since modifications are needed to rule out collusive equilibria

in the case of more than three agents.)

The constraint of announcing a distribution of utility functions that approximates the

true underlying distribution of types will sometimes force an agent to lie about their utility

functions on some problems, since their realizations of utility functions across problems may

not have a frequency that is precisely Pi. Nevertheless, strategies that are as truthful as

possible subject to the constraints, turn out to be useful strategies for the agents to employ,

and so we give such strategies a name. An agent follows a strategy that is approximately

truthful if the agent’s announcements always involve as few lies as possible. Formally, σK
i :

UK
i → MK

i is approximately truthful if

#{k |
[
σK

i (u1
i , . . . , u

K
i )

]k �= uk
i } ≤ #{k | mk

i �= uk
i }

for all mi ∈ MK
i and all (u1

i , . . . , u
K
i ) ∈ UK

i .

A Theorem on Approximating Efficient Decisions through Linking

Let ui = E [ui (f(u))], and let u = (u1, . . . , un) denote the ex ante expected utility levels

under the target social choice function. These are the targets for the utility level that we

would like to implement.
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Theorem 1 Consider a decision problem D and an ex ante Pareto efficient social choice

function f defined on it. There exists a sequence of linking mechanisms (MK , gK) on linked

versions of the decision problem such that:

(1) There exists a corresponding sequence of Bayesian equilibria that are approximately

truthful.

(2) The sequence of linking mechanisms together with these corresponding equilibria ap-

proximate f .

(3) Any sequence of approximately truthful strategies for an agent i secures a sequence of

utility levels that converge to the ex ante target level ui.

(4) All sequences of Bayesian equilibria of the linking mechanisms result in expected utilities

that converge to the ex ante efficient profile of target utilities of u per problem.

(5) For any sequence of Bayesian equilibria and any sequence of deviating coalitions, the

maximal gain by any agent in the deviating coalitions vanishes along the sequence.

We remark that the ex ante Pareto efficiency of the social choice function is essential to

the result. There are two aspects to the proof. One is that with large numbers of linked

problems there is a high probability that the realized distribution of agents’ types will closely

match the underlying distribution. This is a standard result of laws of large numbers that

has been exploited in the literature in many ways before. The second aspect is establishing

that agents have an incentive to be as truthful as possible when faced with our mechanism.

This is key to our results and relies on the ex ante Pareto efficiency of the social choice

function. An agent cannot gain by, for instance, reversing their announced types across two

problems since the social choice function is already picking something which maximizes an

agent’s ex ante expected utility given the distribution of other agents’ types, or else it would

not have been ex ante Pareto efficient.

4 Participation Constraints

Theorem 1 holds for any ex ante efficient social choice functions that we target. As such,

f can satisfy any number of auxiliary properties, such as participation constraints (also

commonly referred to as individual rationality constraints), fairness, etc. The interest in

participation constraints often arises in settings where agents have a choice of whether or

not to participate in the mechanism, and this might occur after they already know their

preferences. This, for instance, is often a constraint in any contracting setting, including the

bargaining setting we considered in Example 2. If such participation decisions are relevant,

then it is important to demonstrate that they will be satisfied by linking mechanisms all along

the sequence, and not just in the limit; especially since in some settings the conflict between
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incentive compatibility and efficiency only arises when an interim participation constraint is

in place.

Consider a decision problem (D,U, P ), where some decision e ∈ D has a special desig-

nation, which may be thought of as a status-quo, an endowment, or an outside option. The

interpretation is that e will be the default decision if some agent(s) choose not to participate.

A social choice function f satisfies an ex ante participation constraint if E[ui(f(u))] ≥
E[ui(e)] for all i. f satisfies an interim participation constraint if E[ui(f(u))|ui] ≥ ui(e)

for all i and ui. f satisfies an ex post participation constraint if ui(f(u)) ≥ ui(e) for all i

and u. We say that f satisfies a strict ex ante, interim, or ex post participation constraint,

respectively, if in addition for each i the respective constraint holds strictly (for at least one

ui in the interim case and at least one u in the ex post case).

Let us discuss why one needs some modification of the linking mechanism in order to

satisfy a participation constraint. Reconsider Example 2. Suppose that we have linked

500 problems, and by chance the seller happens to be of a type that is at least .7 on all

of the problems. By participating in the mechanism (under any subsequent equilibrium

play) with this type, she has a negative expected utility. Thus, in order to satisfy the

interim participation constraint (or the ex post constraint), we need to modify the linking

mechanism.

Consider a decision problem (D,U, P ) with an option of not participating that results

in a status quo option, denoted e. Consider the following variation on the mechanism

(MK , gK) that is used in the proof of Theorem 1. In a first stage, the agents submit their

announcements from MK
i , and decisions on all problems are given by gK(mK). In a second

stage, agents are each asked (say simultaneously) whether they wish to participate or not.

If any agent chooses not to participate, then e is selected on all problems and otherwise the

outcomes are gK(mK). We say that a strategy for an agent is approximately truthful, if mi

is approximately truthful and an agent chooses not to participate only in situations where

his or her utility from non-participation (getting e on all problems) exceeds the utility of

gK(mK).

So, we have modified the linking mechanism to explicitly allow agents an option to not

participate. We have done this at the ex post stage, which will provide for the strongest

of the three forms of a participation constraint. It is important to note, however, that an

agent must decide to participate in the whole linking mechanism or not to participate at all.

We discuss allowing an agent to pick some problems to participate in and not others in the

appendix.

Corollary 1 Consider any ex ante efficient f that satisfies a strict participation constraint

of any sort: ex ante, interim or ex post. Consider the two-stage linking mechanisms with a

participation decision as described above. For every K, there exists an approximately truthful

perfect Bayesian equilibrium of the modified two-stage linking mechanism such that the re-

sulting social choice function satisfies an ex post (and thus interim and ex ante) participation
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constraint, and the sequence of these equilibria approximate f .8

5 Remarks

We have discussed our linking mechanisms as if all of the decisions were to be taken at

the same time. When decisions are implemented across time, discounting is the effective

determinant of the number of linked problems K.

To link K problems over time, consider the obvious variation of our previous mechanism

made to operate over time. An agent is budgeted to announce a type of ui exactly Pi(ui)K

times. Once an agent has used up his or her announcements of a given type, he or she cannot

announce that type in any of the remaining periods. A stream of decisions (d1, . . . , dK) results

in a utility of
∑

k δk
i u

k
i (d

k) for agent i, where δi ∈ (0, 1] is a discount factor. The following

corollary follows from the security part of Theorem 1, with some special attention needed to

treat the case of n ≥ 3.9

Corollary 2 Consider a decision problem (D,U, P ) and an ex ante efficient social choice

function f with corresponding ex ante expected utility levels (u1, . . . , un). For any ε > 0 there

exists K such that for each K ≥ K there exists δ such that, for every δ ≥ δ, every Bayesian

equilibrium of the mechanism operating over time leads to an ex ante expected utility for each

agent i that is above ui − ε (per problem).

How Large is Large?

We can put a bound on the number of problems where any mistake will be made in the

linking mechanism we have proposed here. A theorem of Kolmogorov ((13.4) in Billingsley

(1968)) implies that the proportion of problems out of K on which agents might be forced to

lie is of the order of 1√
K

. Since the secure strategies of approximate truth have a proportion

of lies that are bounded by this, the percentage distance from full ex ante efficiency is on

the order of 1√
K

. In many problems it is in fact closer, and we think that this is a fruitful

subject for further research (e.g., see Cohn (2003)).10
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Appendix 1: Proofs

Proof of Theorem 1: Consider any K and the linking mechanism (MK , gK). A strategy

σi : UK
i → ∆(MK) for i is label-free if it only depends on the realization of i’s preferences and

not the labels of the problems. Formally, given a permutation (bijection) π : {1, . . . , K} →
{1, . . . , K} and any ui = (u1

i , . . . , u
K
i ) ∈ UK

i , let uπ
i be defined by (uπ

i )k = u
π(k)
i for each

k ∈ {1, . . . , K}. Given our definition of MK
i there is a corresponding notion of mπ

i starting

from any mi ∈ MK
i . A strategy σi for i is label-free if for any permutation π : {1, . . . , K} →

{1, . . . , K}, σi(u
π
i )[mπ

i ] = σi(ui)[mi], where σi(ui)[mi] is the probability of playing mi at ui

under σi.

The modification of the linking mechanism (MK , gK) for more than two agents is as

follows.

For any subset of agents C, mC ∈ MK
C , and set of problems T ⊂ {1, . . . , K}, let

FK
C (mC , T ) ∈ ∆(UC) be the frequency distribution of announced profiles of types by C

on problems in T . Thus, this is a distribution on UC conditional on looking only at the

announcements made on problems in T . For any agent i, any coalition C such that i /∈ C,

and any announced vector of m ∈ MK , consider the following measure:

dK
i,C(m) = maxuC∈UC ,ui∈Ui

∣∣∣PK
C [uC ] − FK

C (mC , {k|mk
i = ui})[uc]

∣∣∣ ,
where PK

C = Πj∈CPK
j . If this measure differs significantly from 0, then the group C’s

announcements differ significantly from the underlying distribution. That is, this measure

looks at the distribution of the announced uC ’s conditional on the dates that i announced

some ui and checks whether it is close to what the empirical distribution should be.

Given a sequence of numbers εK > 0 to be described shortly, modify the mechanism

(MK , gK) as follows. Consider an announcement m ∈ MK . We redefine gK(m) as follos.

For each i, identify a smallest C (breaking ties in any fixed manner) for which dK
i,C(m) > εK ,

if any exists.11 Starting with the lowest index i for which there is such a C (if any), instead

of using mC , generate a random announcement m̃C to replace it, by independently picking

a message m̃j ∈ MK
j (with equal probability on each message) for each j ∈ C and then

substitute m̃C for mC . Now keep iterating on this process, until there is no i and C for which

dK
i,C(m′) > εK , where m′ is the announcement that includes all modifications from previous

steps of the process. The mechanism then uses the final announcement from this process,

and so generates gK(m′) as an outcome. By a strong law of large numbers of distributions,

such as the Glivenko-Cantelli Theorem (see Billingsley (1968)), we can find εK →K 0, such

that for any strategies σ, if any agent j’s strategies are approximately truthful, then the

probability that j’s announcements are modified under this process vanishes.

We make one further modification of the mechanism. For a given K, the distribution PK
i

may not exactly match Pi. In order to make sure that for an arbitrary decision problem we

always have an approximately truthful equilibrium, we need to be sure that the distributions

11It is important to look for smallest such subsets, as otherwise we might end up penalizing “honest”
agents along with manipulating coalitions, which would skew incentives.
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exactly match Pi and not just approximately.12 The following modification of the linking

mechanisms ensures this. Find the smallest γK ≥ 0 such that there exists another distribu-

tion P̃K
i such that (1 − γK)PK

i + γKP̃K
i = Pi. Note that γK → 0. On any given problem

k let the mechanism gK follow i’s announced (possibly modified by the above procedure)

mk
i with probability (1 − γK), and with probability γK randomly draw an announcement

according to P̃K
i , and do this independently across problems and agents.

We first prove (3). Consider the following “approximately truthful” strategy σK
i . Con-

sider a realized ui ∈ UK
i . For any vi ∈ Ui with frequency less than PK

i (vi) in the vector ui,

announce truthfully on all problems k such that uk
i = vi. For other vi’s, with equal probabil-

ity pick K × PK
i (vi) of the problems k such that uk

i = vi to announce truthfully on. On the

remaining problems randomly pick announcements to satisfy the constraints imposed by PK
i

under MK
i and place equal probability on all such announcements. Given the independence

of types, this is label-free and independent of the announcements of all other agents on all

problems. By using σ∗
i agent i guarantees him or herself an expected utility uK

i per problem

that is approaching the utility that comes under truth-telling by all agents, regardless of

the strategy of the other agents. This follows since by construction of the mechanism the

agent is guaranteed that, conditional on the problems where the agent announces any given

vi, the distribution over other agents’ types are approximately independently distributed

and approximately what should be expected if the other agents were truthful (regardless of

whether they are), and that the chance that the agent’s strategy will be replaced by an m̃i is

vanishing. This implies that the sequence uK
i converges to ui = E[ui(f(u))]. Moreover, the

same conclusion follows for any approximately truthful strategy,13 and so we have established

(3).

We next establish (4). As every agent can obtain an expected utility per problem of at

least ui in the limit, regardless of the other agents’ strategies, by following the “approximately

truthful” strategy σK
i , then it must be that the lim inf of each agent’s expected utility per

problem along any sequence of equilibria is at least ui. Next, note that by the ex ante Pareto

efficiency of f , for any profile of strategies, and any K, if some agent i is expecting a utility

higher than ui, then some other agent j must be expecting a utility of less than uj. However,

since the lim inf of each agent’s expected utility for any sequence of equilibria is at least ui,

then it must be that this is the limit of the expected utility of each agent, and thus every

equilibrium’s expected utility profile must converge to the desired limit.

12For some decision problems, it might be that f is ex ante efficient for the given Pi, but not quite for
some approximations of it. This ex ante Pareto efficiency of f relative to an agent’s expectations plays
an important role in obtaining an approximately truthful equilibrium. Note however, that for two-player
settings this modification is not needed to establish that all equilibria converge to being efficient, it is only
needed to establish existence of approximately truthful equilibria.

13Although such a strategy might not be completely independent of other player’s strategies, it still follows
from the construction of the mechanism that as K grows, conditional on the problems where the agent
announces any given type vi, other agents’ types are arbitrarily close to being independently distributed
and approximately what should be expected if the other agents were truthful, and that the chance that the
agent’s strategy will be replaced by an m̃i is vanishing.
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We now argue (5). Consider any sequence of equilibria σK and some sequence of deviating

coalitions CK . Consider any agent i who appears in the sequence CK infinitely often (as

other agents are of no consequence to the conclusion). As mentioned above, regardless of

i’s strategies, for large enough K, conditional on the problems where agent i announces any

given type ui, the distribution over other agents’ eventual types under the mechanism are

approximately independently distributed and approximately what should be expected if the

other agents were truthful (regardless of whether they are). Given the private values in the

model, it is without consequence to i’s utility as to whether the other agents’ announcements

as evaluated by the mechanism (after any modifications as described above) are truthful or

not, so without loss of generality for i’s utility we can take the other agents’ announcements

to be as if they were their true utility functions. Thus, the profile of utilities for the other

agents on the problems where i announces some type ui converge to what they should (under

truth and f) conditional on i being of type ui, on problems where i announces ui. Taking a

weighted average across i’s types, this means that the average utility for each other agent j

across problems is converging to uj. By the ex ante Pareto efficiency of f , this implies that

i’s expected utility per problem cannot converge to be more than ui.

To conclude the proof, let us show (1) and (2). We show a strong version of (1), namely

that there is a label-free approximately truthful equilibrium. Then (2) follows from a law

of large numbers. Consider any agent i. If all agents j �= i play label-free strategies, then

given the definition of the strategy spaces MK
j and the independence across problems, the

distribution of the announcements of agents j �= i on any problem is given by P−i, and

this is identically distributed across problems.14 It then follows that for any best response

that i has to label-free strategies of the other agents, there will be a label-free best response

for i.15 Note also that any best response to some label-free strategies of other agents is a

best response to any label-free strategies of the other agents; as given the independence, all

label-free strategies of the other agents induce the same distribution over announcements by

the other agents on any set of problems. Given the finite nature of the game, for any set

of label-free strategies of agents −i there exists a best response for agent i, and, as argued

above, one that is label-free. Thus there exists a label-free equilibrium.

Next, let us show that that there exists such an equilibrium that is approximately truthful

in the sense that i never permutes the announcements of her true utility functions across

some set of problems.

Consider any K and a label-free equilibrium σ. Consider some mi = (û1
i , . . . , û

K
i ) ∈ MK

i

such that σi(ui)[mi] > 0 for some (u1
i , . . . , u

K
i ) ∈ UK

i . Suppose that there is some subset of

problems T ⊂ {1, . . . , K} such that i is permuting announcements on T under mi. That is

there exists a permutation π : T → T such that π(k) �= k and ûk
i = u

π(k)
i for all k ∈ T . So

i’s announcement under mi reshuffles the true utility functions that i has under ui on the

14Announcements are not independent across problems, as the constraints imposed by MK prevent this.
15Starting with any best response that is label dependent, given that other agents strategies are label-free

any variation based on permuting the dependence on labels will also be a best response, as will a convex
combination of such permutations, which is label-free.
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problems in T according to π. Consider replacing mi with m̃i, where this permutation on

T is replaced by truthful announcing. That is, m̃k
i = uk

i for each k ∈ T and m̃k
i = mk

i for

each k /∈ T . Then consider an alternative strategy denoted σ̃i which differs from σi only at

ui and then sets σ̃i(ui)[mi] = 0 and σ̃i(ui)[m̃i] = σi(ui)[m̃i] + σi(ui)[ mi]. The claim is that

σ̃i leads to at least as high an expected utility as σi. This follows from the ex ante Pareto

efficiency of f . To see this note that the distribution of announcements under either strategy

together with the strategies of the other agents is P on each problem and is independent

across all problems (given the label-free nature of the strategies). Thus, the other agents’ ex

ante expected utilities on any given problem are not affected by the change in strategies. If

i’s utility were to fall as a result of using σ̃i instead of σi, then it would be that f could be

Pareto improved upon by a corresponding change to some f ′ which took ui’s and remapped

them as done under π (with corresponding probabilistic weights). This would contradict the

ex ante Pareto efficiency of f . Note that we can do this in a way that preserves the label-free

nature of the strategy, by randomly picking one from all sets T where the permutation π is

used. Now we can continue to undo such permutations until we have reached a label-free

strategy which has no such permutations. This is the “approximately truthful” strategy

which we sought, and it still provides at least the utility of σi and thus is a best response,

and since it is label-free it follows that the overall equilibrium is still preserved. Iterating on

agents, leads to the desired profile of equilibrium strategies.

Sketch of the proof of Corollary 1: Have agents play the approximately-truthful and

label-free equilibrium strategy identified in the proof of Theorem 1 in the first stage of

the mechanism. Let mK be the announcements from the first stage. If agent i’s utility16∑
k uk

i (f(mk)) is at least
∑

k uk
i (e), then have i agree to participate; and have the agent choose

not to participate otherwise. Given the “label-free” nature of the first stage strategies (see the

proof of Theorem 1 for details), the choices of agents to participate are independent and do

not affect the equilibrium structure of the first stage announcements. By a strong law of large

numbers (e.g., the Glivenko-Cantelli Theorem), as K becomes large,
∑

k
uk

i (f(mk))

KE[ui(f(u))]
converges to

1 in probability, as does
∑

k
uk

i (e)

KE[ui(e)]
. Given that some version of a strict participation constraint

is satisfied by f , it follows that E[ui(f(u)) > E[ui(e)]. Thus,
∑

k uk
i (f(mk))] >

∑
k uk

i (e) with

probability approaching 1.

We remark that the corollary would not go through if we allowed agents to choose whether

to participate problem-by-problem. For some settings, an agent can manipulate such a

mechanism by lying selectively in stage one and then selectively opting out in the second

stage. Nevertheless, we can modify the mechanism so that by being approximately truthful

an agent guarantees him or herself a probability approaching one of satisfying an ex post

constraint on every problem, while getting the ex ante expected utility level. We do this by

loosening the budget constraint so that agents can slightly over-announce any of their types,

in such a way that the probability that any agent has to lie goes to zero, while the budget

16We are abusing notation slightly as f may be randomizing on outcomes, in which case we are looking
at an expected utility.
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constraint still converges to the true distribution of types. Such a mechanism has label-

free equilibria that approach truthful announcements, agents satisfy an interim constraint

on every problem with a probability approaching one, and all agents satisfy an ex post

constraint on a fraction of problems approaching one with a probability approaching one.
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