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Abstract

In Dekel and Feinberg (2004) we suggested a test for discovering whether a potential

expert is informed of the distribution of a stochastic process. This category test requires

predicting a “small”– category I – set of outcomes. In this paper we show that under

the continuum hypothesis there is a category test that cannot be manipulated, i.e.

such that no matter how the potential expert randomizes his prediction, there will be

realizations where he will fail to pass the test with probability 1. The set of realizations

where he fails can be made large – a category II set. Moreover, this result holds for

the finite approximations of the category test where the non-expert is failed in finite

time and the expert is failed with small probability. JEL Classification: K9

1 Introduction

In Dekel and Feinberg (2004) we suggested a test to determine whether a potential expert

knows the distribution governing a stochastic process. The tester is completely uninformed

and non-Bayesian, in the sense that she does not have a prior distribution over the possible

distributions that may govern the stochastic process, nor does she have a prior over the

probability that she is facing an expert. We showed that for each predicted probability

measure P there exists a (category I) set SP such that P (SP ) = 1 and that, for any such

(category I) set, the set of measures that assign positive probability to SP is small, in the

sense that it is a category I set of measures in the space of probability measures.1 Thus we
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Israel. e-mail: dekel@northwestern.edu
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§Please contact authors before quoting.
1A category I set of outcomes is a countable union of nowhere dense sets (i.e., sets whose closure has an

empty interior).
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showed the existence of a class of tests such that “most” predictions—other than predicting

the actual distribution (or one of the other members in a category I set of distributions)—will

almost surely fail any such test, and the knowledgeable expert will almost surely pass. We

also provided a finite approximation for these tests: for any given ε > 0 any prediction can

be tested with a set that will fail all but a category I set of predictions in finite time and

will fail the expert with probability of no more than ε.

However, it is conceivable that an uninformed expert might still be able to make a

randomized prediction that would pass a test on every realization of the process almost

surely (with respect to his randomized strategy), i.e., one could potentially manipulate the

test. In fact, in response to our paper, Sandroni (2005a) argued that there exists a category

test that can be manipulated. In this paper we provide a category test that cannot be

manipulated: a test from the class of tests presented in Dekel and Feinberg (2004) such that

no matter what randomized prediction a non-expert makes, he is guaranteed to fail the test

on some realizations. Moreover, the set of realization on which a potential manipulator will

fail can be made larger than the set of realizations where the expert passes, specifically it

can be guaranteed to be a category II set. It turns out that the finite approximation of this

test also is not manipulable: the uninformed expert is assured to fail on a category II set

of realizations even though the test must determine the non-expert in finite time while not

failing the expert with high probability.

These results distinguish such “category” tests from the well studied calibration tests not

only in the formal interpretation of what a test is supposed to accomplish, but also in whether

a non-expert can manipulate the test.2 As was shown by Lehrer (2001), Kalai, Lehrer

and Smorodinsky (1999), Fudenberg and Levine (1999), Sandroni, Smorodinsky and Vohra

(2003), and Sandroni (2003) large classes of generalizations and variations of calibration

tests can be manipulated. Such manipulation results tell us these tests require a large set of

outcomes on which a prediction passes the test. This can be seen in Sandroni (2005b) who

considers tests that not only reject a non-expert in finite time but also must pass the expert

in finite time. This amounts to asking the predictor to pick a finite number of periods and

determine the outcome of the test by the prediction up to that period. In particular, the

predicted set of outcomes must be an open set, hence is “too large”. In all these papers,

a randomized strategy by the non-expert can pass a calibration test on every realization

with probability 1 (with respect to the random prediction). In contrast, our category test

guarantees failure on a set of outcomes that is not small no matter what randomized strategy

the non-expert uses (obviously without hindering the guarantee that the informed expert will

pass the test with high probability).

2See Dawid (1982,1985) and Foster and Vohra (1998) for early papers on calibration.
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2 An Unmanipulable Test

Consider the set of realizations of a stochastic process Ω = {0, 1}ℵ0 governed by a probability

distribution. Let ∆(Ω) denote the set of probability measures over Ω endowed with the σ-

field generated by the finite cylinders. Let t : ∆(Ω) −→ 2Ω denote a test. The interpretation

is that if a predictor proposes the distribution P then he passes the test t if and only if the

realization ω ∈ Ω of the process satisfies ω ∈ t(P ).

A test does not reject the true expert with probability 1 if:

P (t(P )) = 1 for every P ∈ ∆(Ω), (1)

i.e., the probability of passing the test when the distribution that governs the realization is

P and the reported prediction is also P must be one.

Calibration tests can be formulated as tests that satisfy the property in (1).3 The problem

with calibration tests is that they are deemed “bad” because a non-expert can manipulate

them. That is, a non-expert can randomize among the predictions P such that for every real-

ization of the process the test will be passed with probability 1 on the realization (probability

1 with respect to the randomized prediction). Formally:

There exists µ ∈ ∆(∆(Ω)) such that, for every ω ∈ Ω, µ{P |ω ∈ t(P )} = 1. (2)

In other words, by randomly predicting P according to µ ∈ ∆(∆(Ω)) an uninformed predictor

will pass a calibration test t at every realization of the process. We say that a test can be

manipulated (sometimes referred to as passed by a non-expert) if (2) holds. Conversely, a

test t cannot be manipulated if

For every µ ∈ ∆(∆(Ω)) there exists an ω ∈ Ω, such that µ{P |ω ∈ t(P )} < 1. (3)

It is plausible to require even more, namely that a test that cannot be manipulated will

guarantee failure of a non-expert at some realization:

For every µ ∈ ∆(∆(Ω)) there exists an ω ∈ Ω, such that µ{P |ω ∈ t(P )} = 0. (4)

3By reporting a distribution P one can construct the answers to a calibration test (which is applied to
the conditional empirical distribution of the subsequent period(s) along each realized path). Similarly, any
randomization over predictions generates random answers to a calibration test. Conversely, any prediction
evaluated by a calibration test specifies a (predicted) distribution of the subsequent period(s) along every
history and hence generates an overall distribution P . Similarly, for any sequence of randomized answers to
which a calibration test can be applied one can associate a randomization over the set of measures.
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But even the requirement in (4) only asks for failure in a single realization which motivates

the following definition. A test t cannot be manipulated on a set of points that is of category

II if

For every µ ∈ ∆(∆(Ω)) there exists a category II set S ⊂ Ω (5)

such that for every ω ∈ S we have µ{P |ω ∈ t(P )} = 0.

Proposition 1 Assume the continuum hypothesis. There exists a test that does not reject

the true expert with probability 1 and that cannot be manipulated on a set of points that is

of category II.

The implication of the proposition is that there is a test which guarantees that no matter

which randomized prediction the predictor employs, he is guaranteed to fail on a “large” (in

the sense of category) set of points, while the test still passes the expert with probability

1. Obviously, the expert also passes on a small set of realizations, but this small set has

probability 1 when the true distribution is predicted.

The test that cannot be manipulated is a test from the class of tests we defined in Dekel

and Feinberg (2004). We now call these category tests and they are defined as tests t which

satisfy:

For every P we have that t(P ) is category I set such that P (t(P )) = 1 (6)

By definition category tests satisfy the property in (1). Recall that a category I set is a

countable union of nowhere dense sets, i.e., a countable union of sets such that the interior

of their closure is empty. In Dekel and Feinberg (2004) we showed that there exist category

tests. Furthermore, we showed that for every category I set H the set of measures P such

that P (H) > 0 is “small” in the sense that it is a category I set of measures in the space of

probability measures ∆(∆(Ω)).

Before we prove the proposition we establish some preliminary results.

First we note that any subset of a category I set is also a category I since any subset of

a nowhere dense set is nowhere dense. In addition, any countable union of category I sets is

a category I set. A set is called a category II set if it is not a category I set. Note, that the

complement of any category I set in Ω is a category II set, but the complement of a category

II set can be larger than a category I set.

A set L is called Lusin set if L is an uncountable set such that every uncountable subset

of L is of category II. The existence of a Lusin set in [0, 1] was shown by Lusin (1914) under

the continuum hypothesis. In fact, every category II set contains a Lusin set (see Proposition
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20.1 in Oxtoby (1980)). In the Appendix we show that there exists a Lusin set L in the

space Ω = 2ℵ0 .

Given a randomized prediction µ ∈ ∆(∆(Ω)) we define the measure µ̄ ∈ ∆(Ω) as:

µ̄(E) =

∫

∆(Ω)

P (E)dµ(P ) (7)

for every measurable set E. This measure is sometimes refereed to as the “center of gravity”

of the measure µ. Note that since Ω is a compact metric space so is ∆(Ω) in the weak*

topology (cf. Theorem 6.4 in Parthasarathy (1967)). By the definition of the weak* topology

we have that for every continuous function f ∈ C(Ω) the functional f(P ) =
∫
Ω

f(ω)dP (ω) is

a continuous functional on ∆(Ω). In particular the continuous functionals on ∆(Ω) separate

points. From the convexity and compactness of ∆(Ω) in the weak* topology we have that

the generalized integral
∫
∆(Ω)

Pdµ(P ) exists in the sense that for every linear functional Λ

on ∆(Ω) we have

Λ(µ̄) =

∫

∆(Ω)

(Λ(P ))dµ(P ) (8)

and µ̄ is a probability measure. See Theorems 3.27 and 3.28 in Rudin (1991). Since the

measure µ̄ must satisfy

∫

Ω

f(ω)dµ̄ =

∫

∆(Ω)

(

∫

Ω

f(ω)dP )dµ(P ) (9)

for every continuous function f we have that regularity implies that (7) is well defined.4

To see this, consider first a closed set E, we have that ν(E) = inf{∫ fdν|f ≥ χE} where

χE is the characteristic function of E. In particular, this holds for ν = µ̄ as well. By

regularity ν(G) = sup{ν(E)|E is closed, E ⊂ G} for every measurable set G. Hence we have

measurability of P (E) for measurable sets E and
∫

∆(Ω)
P (E)dµ(P ) is defined and coincides

with µ̄ as required.

Proof of Proposition 1. Fix an arbitrary category test t̄ and a Lusin set L ⊂ Ω. We

define the test t as follows:

t(P ) = (t̄(P ) \ L) ∪ {ω ∈ L|P ({ω}) > 0}. (10)

The test t maps a probability measure P to a set that only contains points from L if

these are atoms of the distribution P . We need to show that t as defined in (10) is indeed a

category test and that t cannot be manipulated on a set of category II points.

4Since Ω is a separable metric space so is ∆(Ω) and the Borel probability measures in ∆(Ω) and ∆(∆(Ω))
are regular (see Parthasarathy (1967).
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First note that t̄(P ) \ L is a category I set since it is a subset of the category I set t̄(P ).

Since P has at most a countable number of atoms the set {ω ∈ L|P ({ω}) > 0} is countable

and a union of a category I set with a countable (hence category I) set is also a category I

set. We conclude that t(P ) is a category I set.

Since t̄(P ) ∩ L is a category I set included in the Lusin set L we have that t̄(P ) ∩ L is

a countable set. Hence the set t̄(P ) \ L = t̄(P ) \ (t̄(P ) ∩ L) is measurable since it is the set

difference of a measurable set and a countable set. We have

P (t̄(P )) = P (t̄(P ) \ L) + P (t̄(P ) ∩ L) = P (t̄(P ) \ L) +
∑

{ω∈t̄(P )∩L|P ({ω})>0}
P ({ω}). (11)

since t̄(P ) ∩ L is countable. Since t̄ is a category test we have P (t̄(P )) = 1 and so P has no

atoms outside t̄(P ) which together with (11) implies

P (t(P )) = P (t̄(P ) \ L) +
∑

{ω∈L|P ({ω})>0}
P ({ω}) = P (t̄(P )) = 1. (12)

We have shown that for all P the set t(P ) is a category I set and P (t(P )) = 1 hence t is

a category test.

Consider any given randomized prediction µ ∈ ∆(∆(Ω)) where we consider ∆(Ω) endowed

the Borel σ-field generated by the weak* topology. We now show that for every randomized

prediction µ there is a category II set of realizations S such that for all ω ∈ S we have

µ({P |ω ∈ t(P )}) = 0. Let ω ∈ L be a point in the Lusin set. We first note that the set

{P |ω ∈ t(P )} ⊂ ∆(Ω) is measurable. Since ω ∈ L we have that ω ∈ t(P ) if and only if

P ({ω}) > 0 by the definition in (10). Hence for every ω ∈ L

{P |ω ∈ t(P )} = {P |P ({ω}) > 0} (13)

so {P |ω ∈ t(P )} is the set of all measures with an atom at ω from the Lusin set.5

The randomized prediction µ will pass the test t when the realization is ω ∈ L with

positive probability if and only if µ({P |ω ∈ t(P )}) > 0. From (13) we have

µ({P |ω ∈ t(P )}) = µ({P |P ({ω}) > 0}) (14)

5This subset of ∆(Ω) is measurable in the Borel σ-field generated by the weak* topology since it is the
countable union of the sets {P |P ({ω}) ≥ 1/n}, n = 1, 2, 3... Each set {P |P ({ω}) ≥ 1/n} is a closed set in
the weak* topology since if Pi −→

i→∞
P with {Pi}∞i=1 ⊂ {P |P ({ω}) ≥ 1/n} then Pi = αiδω + (1− αi)Qi is a

convex combination of a probability measure and the Dirac measure at ω with αi ≥ 1/n. Taking a converging
subsequence of both the αi’s and the Qi’s (the latter has a converging subsequence by the compactness of
∆(Ω) in the weak* topology) we find a limit with an atom of at least size 1/n at δω (note the continuity of
the multiplication and addition operators in the weak* topology).
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so the randomized prediction will pass the test t at ω ∈ L with positive probability only if

µ({P |P ({ω}) > 0}) > 0. From the definition of µ̄ in (7) we have that

µ({P |P ({ω}) > 0}) > 0 implies µ̄({ω}) > 0. (15)

The set of realizations ω such that µ̄(ω) > 0 is countable hence the set S = L\{ω|µ̄(ω) > 0}
is a category II set and for every ω ∈ S we have µ̄(ω) = 0 which implies that µ({P |ω ∈
t(P )}) = 0. We have shown that for every µ ∈ ∆(∆(Ω)) there is a category II set satisfying

(5) as required.

2.1 Finitely determined tests

There is naturally an interest in finitely determined tests.6 Finitely determined category tests

t are those where t(P ) is a closed and nowhere-dense set and hence for every realization ω not

in t(P ) the test will fail in finite time. Obviously, these tests can only satisfy P (t(P )) > 1−ε.

We conclude by showing that there is a finitely determined category test that cannot be

manipulated on a category II set.

For every category test t and every ε > 0 we defined in Dekel and Feinberg (2004) a test

tε : ∆(Ω) −→ 2Ω such that P (tε(P )) ≥ 1 − ε and tε(P ) is a closed and nowhere-dense set

for every P ∈ ∆(Ω). Furthermore, tε(P ) ⊂ t(P ) for all P , so for every ε and category test

t there is a finitely determined test tε. These finitely determined tests are ε approximations

of category tests.

Proposition 2 Assume the continuum hypothesis. There exists a category test t such that

for every ε > 0 for every µ ∈ ∆(∆(Ω)) the randomized prediction will fail the finitely

determined test tε on a category II set of points with µ-probability 1. Formally:

For every µ ∈ ∆(∆(Ω)) there exists a category II set S ⊂ Ω (16)

such that for every ω ∈ S we have µ{P |ω ∈ tε(P )} = 0.

Proof. Let t be as in Proposition 1, that is, a category test. Since tε(P ) ⊂ t(P ) we have

for every ω and P that ω ∈ tε(P ) implies ω ∈ t(P ). Hence for every ω we find

{P ∈ ∆(Ω)|ω ∈ tε(P )} ⊂ {P ∈ ∆(Ω)|ω ∈ t(P )}. (17)

Applying (17) for every ω ∈ S where S is the category II set corresponding to µ as in

6For example, calibration tests are defined as limits of such finitely observed events.
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Proposition 1, we have

µ({P ∈ ∆(Ω)|ω ∈ tε(P )}) ≤ (18)

µ({P ∈ ∆(Ω)|ω ∈ t(P )}) = 0

where the final equality follows from Proposition 1.

3 Appendix

Proof that there exists a Lusin set in Ω. The proof follows from viewing points in

Ω = 2ℵ0 as the dyadic (binary) expansion of points in [0, 1]. The dyadic expansion of the

points in a Lusin set L ⊂ [0, 1] must be a Lusin set in Ω = 2ℵ0 .

The dyadic expansion is unique for all but a countable set of points in [0, 1]. Assume by

contradiction that the set of dyadic expansions of members of L, which we denote by L̄, is

not a Lusin set in Ω. Then we could find an uncountable category I subset of L̄ in 2ℵ0 . It

suffices to show that the inverse of the dyadic expansion maps a closed nowhere dense set in

Ω to a closed nowhere dense set in [0, 1] (hence a countable union of such sets will be mapped

to at most a countable union of such sets). This will show that a category I set is mapped

to a category I set and will contradict L being a Lusin set since the dyadic expansion and

its inverse maps uncountable sets to uncountable sets.

Consider a closed set S ⊂ Ω. Since S is closed under the product topology its map

under the inverse of the dyadic expansion is closed; this is because convergence of the dyadic

expansion implies convergence in [0, 1]. We need to show that if S is nowhere dense in Ω its

preimage is nowhere dense in the interval. Consider any point in the interval and any open

neighborhood of that point. Since the dyadic open intervals generate the same topology

generated by open intervals we can find a dyadic interval in the open neighborhood which

contains the point. The dyadic interval is open in Ω and hence contains points outside the

nowhere dense set S. Hence these points are mapped in the inverse of the dyadic expansion

to points in the dyadic interval. We conclude that every point in [0, 1] has points from

outside the image of S in any open neighborhood and the image of S is therefore nowhere

dense as required.
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[8] Lusin, N. (1914) “Sur un problèmé de M. Baire .” Comptes Rendus Hebdomadaires des
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