Available online at www.sciencedirect.com

) SCIENCE@DIRECT’ GAMES an.d
™ Economic
ELSEVIER Games and Economic Behavior 51 (2005) 391-419

www.elsevier.com/locate/geb

Storable votes

Alessandra Casella

Department of Economics, Columbia University, 420 West 118th Street, New York, NY 10027, USA
GREQAM
NBER
CEPR

Received 28 October 2003

Available online 10 December 2004

Abstract

Motivated by the need for more flexible decision-making mechanisms in the European Union, the
paper proposes a simple but novel voting scheme for binary decisions taken by committees that meet
regularly over time. At each meeting, committee members are allowed to store their vote for future
use; the decision is then taken according to the majority of votes cast. The possibility of shifting
votes intertemporally allows agents to concentrate their votes when preferences are more intense, and
although the scheme will not achieve full efficiency, storable votes typically lead to ex ante welfare
gains over non-storable votes. Welfare gains can be proven rigorously in the case of 2 voters. With
more voters, counterexamples can be found, but the analysis suggests that the welfare improvements
should continue to hold if one of the following conditions is satisfied: (i) the number of voters is
above a minimum threshold; (ii) preferences are not too polarized; (iii) the horizon is long enough.
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1. Introduction

Consider a committee that meets regularly over time to vote up or down proposals that
affect all of its members. The committee members are heterogenous and have different
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preferences over the policy to be enacted. Decisions are taken by majority vote, and as
always a majority with weak preferences will win over a minority with more strongly held
opinions. Think of this simple alternative: although each member continues to accrue one
new vote at each meeting, he now has the option of storing his vote for future use. If
a member abstains at the first meeting, he will be able to cast either 0, 1 or 2 votes at the
second; were he to abstain again, he would have up to 3 votes available for the next meeting.
In other words, suppose votes are storable. Would this plausible procedural change improve
the efficiency of the committee? If asked at some preliminary constitutional stage, would
committee members prefer a system of storable votes? The purpose of this paper is to
propose such a mechanism and begin addressing the questions it raises.

Its main results, in the simplified setting the paper studies, are promising. By allowing
voters to shift their votes intertemporally, storable votes lead them to concentrate their
votes on times when preferences are more intense, and therefore increase the probability of
obtaining the desired decision when it is more important. Counterexamples can be found,
but under plausible assumptions, ex ante welfare is higher than with standard majority
voting with non-storable votes. In addition, storable votes appear to behave well even if
voters follow plausible rules-of-thumb, as opposed to fully rational strategies. Finally, at
least in the examples analyzed in the paper, storable votes have better welfare properties
than tradable votes, besides being more transparent and procedurally simpler and thus less
objectionable both ethically and practically.

The research project was motivated by concerns with the mechanisms through which
the European Union coordinates (or attempts to coordinate) the policies of its members.
The problem of achieving a unified policy while respecting the sovereignty of hetero-
geneous countries is very difficult, and all reforms of European Union’s institutions are
caught between the need for the faster decision-making that majority voting provides and
the importance of respecting each country’s priorities lest the whole process of integration
comes to an end. Intuitively, a country should be able to weigh more heavily when a fun-
damental interest is threatened, but at a price: as in the case of money, the choice to obtain
control over one item should come at the cost of smaller disposable resources available in
the future. Storable votes fulfill this function. Other mechanisms may do so too, but stor-
able votes have the advantage of being extremely simple: the mechanism is very natural,
can be explained in a few words and induces very intuitive behavior. Storable votes are not
an optimal mechanism, but they are so simple that they could realistically be implemented.

Of course the importance of preserving strongly felt minority preferences extends much
beyond the immediate challenges of the European Union, to the design of most democratic
institutions. The paper refers to the specific example of the European Central Bank because
it provides a concrete example of a repeated binary voting game with fixed agenda, and itis
this simple setting that this first model studies. But it should be clear that there is no reason
why storable votes should not be studied eventually for potential applications to generic
committees.

The idea of using more resources, here more votes, when a decision is valued more is
very natural, but storable votes have no clear precedent in the literature. The two closest
relations are vote trading (see, for example, Buchanan and Tullock, 1962; Coleman, 1966;
Brams and Riker, 1973; Ferejohn, 1974; Philipson and Snyder, 1996; Piketty, 1994) and
cumulative voting (Dodgson, 1884; Sawyer and MacRae, 1962; Brams, 1975; Cox, 1990;
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Guinier, 1994; Gerber et al., 1998, among others). But storable votes are different from
both.

Storable votes differ from vote trading (without monetary exchanges) on two main
grounds. First, because they rely on individuals acting alone, storable votes are a simpler
and more transparent institution. When votes are exchanged interpersonally, traders must
find each other, competitors must outbid one another and future promises must be enforced.
How these steps take place depends on auxiliary, but essential, instittidffesent al-
ternatives are possible and affect the outcome, creating potential sources of manipulation.
These complications do not exist in the case of storable votes. Second, vote trading results
in coalitions, and individuals unable to trade votes find their influence reduced both today
and in the future. In the absence of side-payments, each voter faces a non-negligible prob-
ability of being rationed out of the market—a very costly outcome. With storable votes,
on the other hand, when an individual chooses to cast more than 1 vote in any period, the
other committee members are automatically compensated by their increased influence in
the other periods. At least in the simple example studied in the paper, storable votes are
unambiguously welfare superior.

Cumulative voting is a system by which voters who are called to elect a subset of can-
didates in an election are free to allocate a given stock of votes among them as they see
fit. It is a static mechanism where all voters choose simultaneously how to cast all their
votes in a single election with multiple options. Storable votes on the contrary are a dy-
namic mechanism that applies to a series of binary choices taking place over time. As time
passes, uncertainty is resolved both with respect to the voters’ evolving preferences, and to
the stock of votes still available to one’s opponents.

Other voting schemes have some of the flavor of storable votes, but again all are dif-
ferent. The observation that introducing a cost to voting selects voters with more intense
preferences and thus may be efficiency-enhancing has been made before (for example,
Borgers, 2001). But storable votes make that cost endogenous by allowing voters to choose
how much future influence to renounce, and at the same time grant voters a richer set of
options than the simple vote/abstain choice. Voting by successive veto (Mueller, 1978;
Moulin, 1982) and voting by successive pair-wise elimination (Moulin, 1979) are schemes
where one of several possible alternatives is selected through a dynamic process of elimi-
nation. All information is known at the beginning, and the dynamic aspect allows to select
subgame perfect equilibria (and hence restrict the set of possible outcomes). The main con-
cern is the theoretical design of desirable schemes when voters must choose among more
than two alternatives. Here instead, information is acquired over time, and the decision is
binary each period.

The paper proceeds as follows. Section 2 describes the assumptions of the model. Sec-
tion 3 presents the main intuition behind storable votes in the simplest setting, when there
are only 2 voters and 2 periods. Section 4 characterizes the equilibrium strategies. Sec-
tion 5 derives welfare results in the case of 2 voters, for arbitrary length of the horizon,
while Section 6 extends the analysisNovoters and considers in detail the case of 3 vot-

1 see, for example, the discussion in Philipson and Snyder, 1996.
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ers. Section 7 compares storable and tradable votes, and Section 8 concludes. Appendix A
presents the longer proofs.

2. Themode€

A committee ofn individuals meets regularly to take a common decisiothat can
assume two values! € {0, 1}, where we can think offl = 0 as maintaining the status
quo, andd = 1 as change. In each period, each member’s preferences are indexed by a
parametep;, drawn from a continuous distributiafi(v), defined over the suppdrt-1, 1]
and symmetric around zero. In perigdndividuali’s utility equalsv;,d;: if v;; is negative,

i prefersd; = 0; if v;, is positive,i prefersd, = 1, and the absolute value of measures
the intensity ofi’s preferences. The distributioA(v) is common across all committee
members and all periods, amg is independently distributed both across individuals and
across time. The committee takes the decision every period for a tafapefiods, where

T is finite.

For concreteness, think of the committee as the Governing Council of the European
Central Bank, meeting each month to decide whether to maintain current interest rates
(d =0), or to change thenid = 1), under the assumption that both the direction of the
possible change and, more controversially, its size are known before the meeting. Each
member of the Council has preferences over European monetary policy and these prefer-
ences need not be homogenous, reflecting different needs of the national economies. Each
member’s preferences are summarized),b;?

Every period each committee member is given one vote. He can cast it in favor of the
option he prefers, or store it for use at a later time. Thus in period 1, a member can cast
either 0 or 1 votes; if he decides to save his vote, in period 2 he will have a total of 2 votes
at his disposal and will decide how many of these, if any, to use; and so on in all successive
periods until timeT when the game ends. We assume that votes can be stored but not
borrowed to avoid the difficult problems that could arise in practice if one member were
to run out of votes, but we will show later that the assumption is unimpottanbject to
the budget constraint that the votes cast cannot exceed the number of votes available, each
member is asked to indicate his preferred decision and the number of votes he is willing
to spend to support his choice. When individuals vote, they know the realization of their
currenty; ; and the probability distributiorF, but cannot observe the preferences of the
other members and do not know their own future valuations. On the other hand, because
the initial allocation of votes and the history of the game are known, the number of votes
that each player has at his disposal is common knowledge.

2 The assumption of i.i.d. shocks is not ideal in this context.

3 The constraint on borrowing is common to existing policy mechanisms that rely on market-type behavior (for
example, environmental regulation through tradable pollution licences), because it reduces the costs of mistakes
and inexperience, and increases the credibility of the rules. In addition, when members are subject to appointments
or elections, the inability to borrow from the future limits the extent to which current members can expropriate
the power of their successors.
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The committee select according to which of the two alternatives has received more
votes. If the votes are equal, the preferences of members who have cast zero votes are con-
sidered; if the tie is still not broken, the decision is taken with a coin toss. The tie-breaking
mechanism seems plausible and has some advantages in deriving analytical solutions, but
does not affect the substance of the restilts.

The individuals’ objective is to announce a policy preference and choose a number
of votes each period so as to maximize the expected flow of utility over the whole time
horizon. Given a common discount factyrthe problem amounts to maximizingl’ =
E(}_,8"vi:d;), whereE is the expectations operator, subject to the constraint that for each
committee member the stock of available votgsequals the votes stored the previous
period plus the allocation of 1 new vote; (= k;;—1 — x;;—1 + 1, wherex;;_1 are votes
cast byi atr — 1). Call X, the vector of strategies, i.e. the number of votes cast by the
voters at time. The state of the game is given by the profile of available votes among all
members and calendar timg, ). We restrict attention to strategies that depend only on
the current statex; (K, ). The ex ante value of the game to individuathen all players
follow optimal strategies is denote‘ﬂVt"(Kt, 1).

The goal of the paper is to compare the storable votes scheme to the more traditional
case where votes are not transferable over time, and thus each individual always casts one
vote in favor of his preferred alternative. The two games are identical if the time horizon
reduces to a single period, but differ otherwise. The storable votes game requires some
thought: the choice of how many votes to cast reflects not only the current intensity of
preferences, relative to expected future preferences, but also the probability that a vote
be pivotal, today or in the future, and thus the expectation of the other players’ voting
behavior over time. It is a non-stationary dynamic game, where each individual’s optimal
strategy will be conditioned on the realization of his preference shock, on the distribution of
available votes among all players and on calendar time. A simple example builds intuition
for the results that follow.

3. An example

Consider the simplest case where two voteasid j must take decisiod in two con-
secutive periods. In peridgl — 1, they are endowed with 1 vote each; they will both receive
an additional vote in period’, but the game will then end. At they will both spend all
available votes on their preferred alternativi@aus the only problem each player must solve
is what preference to announce and whether to cast 1 or 0 votes in its support &t

4 Other tie-break rules—no weight on zero voters; status quo wins when votes are tied (with or without con-
sidering zero voters)—always yielded the same qualitative results. In the application of the game to the European
Central Bank, we could assume that the decision is between @ ett-1) and an increasé/ = 1) in interest
rates, with the status qu@ = 0) prevailing in case of ties. However, this set-up minimizes the role of the status
quo, which in fact is often the preferred option for most central bankers. In any case, the results of the two models
are identical up to a factor of proportionality in expected payoffs.

5 The only possible exception is the voter left with a single vote if Staté) is realized aff. We can appeal
to undominated strategies, but note also that in any case his voting decision is always irrelevant, both for his
opponent’s strategy and for payoffs.
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Because preferences and votes are announced simultaneously, and preferences shocks are
i.i.d., a voter will always announce preferences truthfully: he cannot manipulate his op-
ponent’s strategy and with 2 voters each always has a positive probability of affecting the
outcome. The choice reduces to the number of votes to cast.

Consider individual, and suppose;r—1 > 0 (thusi prefersd = 1). His expected utility
from casting O or 1 vote is given By:

: 3 1 ) .
Eufp j(xi=0)=v; , <ijo + él’jl) +8(pjoEV} (2.2 + pj1EV(2, D), (1)

. 3 . .
Eup_(xi=1) =vj_, (PjO + ijl) +8(pjoEVy (L 2+ pjnEV(L D), (2)
wherep;, is the probability thatj castsy votes atT” — 1, andE V} (s, k) is i's expected
value of the game in the next and final period, given stocks of available s{fasplayer:)

andk (for playerj). Comparing (1) and (2), we see thawill cast 1 vote atl’ — 1 if and
only if:

vir /42 8(pjo(EV4(2,2) — EV4(1,2) + pja(EV;(2,1) — EVE(L D). (3)

Solving next period’s expected values, we can obtain an explicit solution for the optimal
strategy. In period’, both players cast all votes they have, and the one with most votes
wins with probability 1. Thus:

0 1 1
EV}(Z, 1)=/vdF(u)(O)—I—/vdF(v)(l):/vdF(v) 4
-1 0 0

since whenever; 7 is negativej will be able to imposel = 0, and whenever; 7 is posi-
tive, d will be equal 1. The player with fewer votes will not be able to influence the choice
of d, but half of the times his opponent’s preferred choice matches his own. Hence:

0 1

EVi(1,2) = 1/2f vdF(v) + 1/2/ vdF(v) =0. (5)
-1 0

Finally, when the two players have the same number of votes, the value of the game at
period T is identical to the value of the one-period non-storable votes game (with equal
votes). Call the value of this latter ganié, noticing that it is time independent and that
any number of equal votes is equivalent. For any realization; ©of playeri expects to
obtain his preferred value afwith probability 3/4. That is,

0 1
EVi(1,1)=EVi(2,2) :/udF(v)G 0) + % (1)) +/vdF(v)(§1 1+ % (0))
0

6 \oter i obtains his desired outcome with probability 1 if his opponent casts fewer votes; with probability
3/4 if j casts the same number of votes (either becaws®l j agree—with probability 22—or because they
disagree but wins the coin toss—uwith probability1/2)(1/2) = 1/4), and with probability }2 if j casts more
votes (because/2 is the probability that and j agree).
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or
1

) ) 1
EVi(L,1)=EVL(2,2) = > / vdF(v) = W. (6)
0
Substituting (4)—(6) into (3), we obtain:
Vir_1/4238(pjo+ pjDW
or
Vip_, 24W  if v, , >0. (7)

It is easy to verify that ifv;7_1 is negative the same logic leads votdo cast his vote
if and only if —v;7_1 > 48W.” Thusi’s optimal strategy is to identify a threshold value
a =45W > 0 and cast 1 vote whenevar,7_1]| is larger or equal ter, and cast 0 votes
whenevetv;r_1] is smaller thary. Notice that in this two-period example the equilibrium
is uniqgue—in fact it is an equilibrium in dominant strategies. The threshaduals the
average intensity of preferences (discounted), and is strictly smaller than 1 as long as there
is any probability mass outside the extreme valadsand 1. In the simple case where
F()isuniformands =1,a =1/2.

The conclusion was expected:iié policy preference is particularly strong today, he
will be willing to sacrifice some of his possible future power to increase his chances of
obtaining the desired outcome; vice versa, if his policy preference is weak, he will prefer
to abstain today and increase his influence tomorrow. It was this intuition that motivated
the paper.

To evaluate the welfare effect of storable votes, consider their impact on ex ante utility.
Before the preference shock is realized, the expected value of the game fori@ayeis:

EVr_1(1,1)
0

[ 3 1 3 1
= [ vdF(v) gPiotspin)+ vdF(v) 1= pio—5pri
0

1
3
+ (2F (@) —1)sW(pjo+ 2pj1) + / vdF(V)(Pjo-l- ijl)

o

—

3
+/vdF(v)<1—pjo—ij1)+2(1—F(ot))6ij1. (8)
-1

7 If v;7_1 is negative;'s expected utility from playing 1 or 0 is analogous to Egs. (1) and (2) above, but the
negative preference shock now multiplies the corresponding probability of losing, as opposed to winning (since
instantaneous utility is then different from zero only floes not succeed in imposing his preferenceifer0).

The probability of losing when casting 1 or O votes is the complement to 1 of the probability of winning we
derived earlier, and the two expressions for expected utility are then immediately calculated.
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Voter j faces an identical problem and conditions his voting behavior on the same thres-
hold «: he will vote 0 with probability 2F («) — 1/2], and 1 with probability P1 — F («)]
(using, as in (8), the symmetry of the probability distribution). Substituting these values
for pjo andp;1, the expected value of the two-period game for either player becomes:

o 1
EVr_1(1, 1) = / vdF(v) (F(ot) — %) + / vdF()F(a)+8§W. (9)
0 o

Compare (9) to the ex ante value of the two-period non-storable votes ggme,
where the finite horizon implie®/7_1 = W + W andW is given by (6).EVy_1(1,1) =
Wr_1ata=0o0r1, and:

1

WV f(a)( f vdF () - %) (10)

o
0

where f () is the densityf (v) evaluated atr, and thus is positive. The derivative (10)
is positive ate = 0 and has a single root; withVy_1(1,1) = Wr_1 ata =0 and 1,

it follows that EVr_1(1, 1) > Wy_4 for all « € (0, 1). And sinceux is strictly positive and,

for any non-degeneraté(v), smaller than 1, we conclude that ex ante utility must indeed
be strictly higher with storable votes.

The result is again intuitive and is clearly visible in expression (9). As long &s
strictly interior, F(«) € (1/2,1) and (F(«@) — 1/2) € (0,1/2): the positive threshold
shifts probability mass from payoffs with relatively low value (whehis smaller tharnx)
to payoffs with relatively higher value (when| is larger tharnx): the possibility to store
votes increases the likelihood that a player will win when his preference is stronger, and
thus raises ex ante utility.

Notice that the argument does not rely on the equilibrium value-efany threshold
strictly between 0 and 1 would lead to welfare gains. Indeed, we can say something more
about the robustness of the welfare results if voters choose incorrect thresholds, an im-
portant consideration in practical applications. When the two thresholds are equal, as they
must be in equilibrium, the welfare gain always holds. When they differ,ccatbteri’s
threshold, ang voter j's. Then:

i r 1
EVi ,(Q, l)=/vdF(v)<F(,3)— é)
0

1

+/vdF(v)F(ﬁ) + W (14 2(F(a) — F(B))). (11)
It is not difficult to verify that if 6 = 1, EV}_l(l, 1) > Wyp_q for all @ € (0, 1), indepen-
dently of 8 (andEV}'_l(l, 1) = Wr_1 ata = 0 or 1)8 If the second period is discounted,

8 Whens =1, EV). (L 1) > Wr_q if 1/2 [2vdF () > [¢ vdF()[F(a) — 1], a condition that does not
depend org.
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o
1

0.27

0.2 0.8 1 IB
Fig. 1. Two players, two periods. Acceptable thresholds rafAge) uniform.

limits begin to appear as to how different the thresholds can be, but even for veryssmall
there is a sizable range of acceptable thresholds values, i.e. values consistent with welfare
gains. In Fig. 1, the area between two curves labeled with the 8aralee corresponds to

the acceptable area at tlfatvhen F (v) is Uniform.

4. Equilibrium

Having verified the intuitive appeal of storable votes in the simplest setting, we need
to extend the analysis to more general cases, and the first step is to characterize the equi-
librium strategies. We restrict ourselves to undominated strategies (ensuring that voters
will vote sincerely) and define a strategyraenotonic if, at a given state, the number of
votes cast is monotonically increasing|in;|, the voter’s intensity of preferences. Then
the following results must hold:

Lemma 1. At any given state, all best response strategies are monotonic.
Proposition 1.

(i) There exists a perfect Bayesian equilibriumin pure strategies.
(ii) Equilibrium strategies are monotone cutpoint strategies.

(The proofs are in Appendix A.)

Proposition 1 confirms that the intuitive nature of the equilibrium in the two-voter two-
period case holds more generally. Because the probability of obtaining the desired outcome
is increasing (if possibly weakly) in the number of votes cast, at any given state and taking
as given the other voter’s strategies the optimal number of votes cast cannot be decreasing
in the intensity of preferences. Once the existence of an equilibrium is established (in the
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first part of the proposition), the observation that equilibrium strategies must take the form
of monotone cutpoints then follows immediately. The number of votes that an individual
has at his disposal is always finite, while the suppotigf, the segmeni0, 1], is contin-
uous. At any state of the game, each voter must identify a series of thresholds that divide
the segmen[O, 1] into a finite number of intervals; for all realizations of;| in a given
interval,i casts the same number of votes, but higher intervals must correspond to a larger
number of votes. The thresholds are functions of the state of the game, including calen-
dar time, and although their number cannot be larger than the number of votes the voter
has available, it can well be smaller—some feasible number of votes may never be cast
in equilibrium. Note that Proposition 1 does not state that the equilibrium is unique, and
uniqueness is not required for what follows.

Our goal is to identify the welfare properties of the storable votes game, but for arbitrary
n andT this is very difficult. The problem is that the number of possible states grows very
rapidly with 7. Consider for example a 2-vot&rperiod game. Starting from state, s/)
atr, we need to evaluai@’ + 1)(s/ + 1) possible states at timer 1, and the ex ante value
of the game in each of these states must be solved backwards from all the possible options
it itself can give rise to, and so on at all times, using as anchor the expected values of all
possible different states in the terminal periods. The only possible solution method must
be recursive. But here we encounter another problem: the game is non-stationary, and the
equilibrium strategies depend both on the current state and on calendar time. To calculate
the expected values of future states, we need to weigh them by their probability of realiza-
tion, and hence by the probabilities of the voters’ alternative strategies in equilibrium. And
these change over time, even for given states.

In the case of two voters, it is nevertheless possible to obtain analytical results, and we
proceed to describe them in the next section.

5. Welfare—two voters

A useful implication of Proposition 1 is that we can now characterize each voter’s ex-
pected instantaneous utility in equilibrium. Consider for example the symmetrical state
(k:, k¢), where both voters enter the period with identical stocks of votes, and focus on
symmetrical equilibria where the players select the same strategy at equal valuations and
equal state (and calendar time). C&Y! (k;, k,) i’s expected one period equilibrium utility
(or payoff) before the realization of the preference shock when both players play optimal
strategies, and,_1(¢, K) < a, (¢, K) the equilibrium thresholds such thawill castx — 1
votes for all|v;;| € [ax—1(z, K), a, (¢, K)). Then in a symmetrical equilibrium:

aq(t,k)
; 1
Eg, (ki, ki) = / vdF(v) <F(Ol1(l, k) — 5)
0
ao(t,k)

+ / v dF ) (F(aa(t, b)) + F (a2(t, ) — 1) + -

oq(t,k)
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ay(t,k)
+ / vdF (v)(F (ax (2, k) + F (ox—1(1, k)) — 1)

og—1(t,k)
1

+ / vdF (V) F (a (1, k) (12)

oy (t,k)

where 0< a, (k, 1) < ayq1(k, 1) < 1,Vt,Vx € {1,..., k — 1}.° A more cumbersome but
analogous expression describes expected one-period equilibrium payoffs in asymmetrical
states. '

Voter i's expected value of the game at stétg k;) before the realization of the pref-
erence shock, is given by:

EVi(si.k]) = Egi(si. k) +8EV/ 3 (s) —xI* + Lk —x/* +1) (13)

where the asterisk indicates the equilibrium strategy, with abuse of notation, we use a single
expectations operator althoug@tV; 1 must be calculated by taking expectations over both
x{ (j's current strategy) andf, ;. x; ).

Expressions (12) and its analogue in asymmetrical states, and expression (13) allow us
to establish:

Proposition 2. For any distribution F(v) continuous and atomless, and any 7 > 1,
EVi(1,1) > W1, with EV1(1, 1)/ W1 monotonically increasingin T .

Proof. Intuitively, the objective is to reduce the ex ante value of the game at the ini-
tial period 1 to the sum of the expected one-period equilibrium payoffs corresponding
to each possible state in all future periods. Exactly as in the 2-period case, in symmetric
states the possibility of storing votes when preferences are weak results in higher expected
one-period payoffs than in the game with non-storable votes. The problem comes in non-
symmetrical states: it is the prospect of being the weaker player in these states, possibly
protracted over time and absent by assumption from the game with non storable votes, that
creates concerns. But notice that in any symmetrical equilibrium and from any symmetri-
cal state(k,, k;), the probability of reaching state;' . k! ) is identical to the probability

of reaching staték._, ., s/, .). Thus when evaluating possible future states, we should give
the same weight to the two opposite asymmetrical states and in effect consider their mean
expected payoff. All we require then is that this mean payoff be higher, or at least not
smaller, than the expected payoff with non-storable votes. It is this observation that allows
us to establish the Proposition.

The intuition is formalized in the following two results:

9 Wheni castsy; votes, he obtains the decision he prefers with probabiligPi(x; < x;) + 3/4* Pr(x; =
x;)+1/2%Pr(x; > x;) or, exploiting Proposition 1,/R[F («;) + F (o; 1.1)]. For each interval of; values corres-
ponding to a given strategj/s expected valuation is weighted by the probability of the decision he prefers minus
the probability of the decision he opposes (to account for negative realizatiops of [F («;) + F (xj+1) — 11.
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Lemma 2.

() Egi(ki, ki) = W Vr, with strict inequality at 7 — 1.
(i) Egi(si.k))+ Egi(ki.s!) > 2w vr.

Lemma 3. Suppose the following inequalities hold at 7 + 1:

(i) EV, +1(kt+1»k1+1) > Wita,
(i) EV/ (g k) + EVE ki, z+1) 2Wi 1.

Then they must hold at ¢.

The proofs of the two lemmas amount to manipulating expected equilibrium payoffs
(expression (12) and its counterpart in asymmetrical states) and the dynamic programming
equation (13). They can be found in Appendix A.

Once the two lemmas are established, Proposition 2 follows immediately. Because at
T all votes are castE Vr (sh., k) + EVr (k. s7.) = 2W; in addition in all symmetrical
equilibria atT — 1, EVp_1(kr, kr) = Egr_1(kr, k7) + W > Wr_1 by Lemma 1. By
induction, the inequalities hold at all previous timeand in particula® V1 (1, 1) > Wy for
all T > 1. Notice thatt V1(1, 1)/ W1 cannot be decreasing because a larger number of
periods means a larger number of states, each of which is associated with mean expected
payoffs that are not smaller than the corresponding expected utilities with non-storable
votes. O

The result confirms that the intuition that emerges so clearly in the 2-period example
extends to a longer horizon. As in the 2-period case, the proof of Proposition 2 makes no
use of the exact values of the equilibrium thresholds, but holds for all monotone symmet-
rical thresholds. For example, some positive welfare gains would still be realized if a voter
holding k votes followed this simple rule of thumb: at anydivide the interval0, 1] in
k + 1 subintervals of equal size, and onges realized cask; votes, wherex; satisfies:
xi/tk+1D <|vil < +D/k+1),x; €{0,1,...,k}. If instead off equilibrium voters’
strategies are not symmetric, we can use the proof of Lemma 2(ii) to show that the average
ex ante one-period payoff (averaged over the two voters) cannot be inferior to the expected
payoff under non-storable votes. By induction this will hold for the average ex ante value
of the full game (although not necessarily for each individual player).

Finally, we have assumed so far that votes accrue to voters over time and future alloca-
tions cannot be borrowed. Relaxing this constraint would increase the set of possible states,
but at any state equilibrium strategies would still take the form of monotone thresholds (see
the proof of Lemma 1). Because this is all is needed in Proposition 2, both the proof and
the proposition would remain identicH.

10 This does not mean that the welfare gain would remain identical. But notice that the second best nature of the
problem implies that borrowing need not increase the expected value of the game.
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Fig. 2. Two periodsi voters; F (v) uniform; s = 1.

6. Welfare—N voters

With a larger number of voters, the properties of the mechanism are less clear-cut.
Figure 2 depicts the rati@ V1(1,1,1,...,1)/W1i(n) of the 2-period game whe# (v)
is uniform ands = 1, as function of the number of voters. Three features are particularly
noticeable: First, the ratio is larger than 1, i.e. the welfare gains are positive, fodil
ferent from 3 or 5. Second, the ratio behaves differently:feadd andn even: especially
when the number of players is small, the welfare gains from the scheme are much higher
for n even than fo — 1 orn + 1. Third, the ratio increases with the number of players
if n is odd and decreasesiifis even, finally converging to a value larger than 1 formall
large enough?! The plot is sensitive to the distribution: although the difference between
odd and even numbers of voters is preserved, the plot shifts upwar@jfis unimodal
with a peak at 0, and downward if it bimodal at 1 and (in both cases, more so the more
concentrated is the distribution).

The sensitivity of the welfare comparisonitadd or even reflects for the most part the
sensitivity of non-storable votes. As expected, non-storable votes do reasonably well when
the number of voters is odd, but are very inefficient when the number is even and small:
they improve over randomness only because they are able to recognize unanimity, but
when voters are equally split, valuations are irrelevant and the tie-break rule determines
the outcomé? The efficiency of storable votes, on the other hand, is quite stable over
differentn: the problem posed by an even number of voters is less severe because it does not
translate necessarily into a correspondingly even number of votes. Figure 3 plots separately
the ex ante value of the 2-period game with storable (the darker dots) and non-storable votes

11 The relevant formulas are in Appendix A. F(v) is uniform, it can be shown analytically that the ratio
EVy_1(1,1,1,...,1)/Wyr_1(n) converges to a number higher than 1 as the number of players becomes very
large. (In the limit, if the distribution of valuations is symmetric, a random choice is efficient, and so are non-
storable votes (Ledyard and Palfrey, 2002) and storable vidtes, converges to expected welfare with random
choice from aboveE Vy_41 converges taV_1 from above.)

12 The problem is mitigated asincreases because the probability of a split into two equally sized group falls.
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Fig. 3. Expected 2-period payoff as share of efficienfeyy) uniform; s = 1.

(the lighter dots), wherF (v) is uniform ands = 1, for n between 2 and 11. Both values

are expressed as shares of first best efficiency, defined as expected per capita payoff over
the 2 periods if the decision is always taken in favor of the side having higher absolute
valuation (see Appendix A for the relevant formulas). The storable votes curve is quite flat
while non-storable votes give rise to two very different curves corresponding to even and
odd numbers of voters.

The figure explains the sensitivity of the relative welfare gains twdd or even, but
does not explain why storable votes should perform less well than non-storable votes at
low, oddr. The intuition for the previous results with= 2 relied on storable votes’ ability
to elicit and reward strongly held preferences. This should presumably remain true, but we
see now that it is possible to find examples where storable votes do not generate welfare
gains. Why?

The short answer is that rewarding the intensity of preferences raises efficiency, in our ex
ante sense, if the stronger intensity of the minority is more than sufficient to compensate for
the higher probability of belonging to the majority—a complication that does not exist in
the case of 2 voters. Preferences and the resulting equilibrium strategies must be such that
a sufficient wedge exists between the expected valuations when losing and when winning.
If the horizon is short, as in our 2-period example, or if the distribution of valuations is
very concentrated, difficulties can arise.

This can be seen clearly in the expressionBdf; (1, 1, 1) in the 2-period, 3-voter game:

oy
EVi(1.1,1) = / vdF(v)(% — 41— F(al)][F(al) _ %D
0
1

2
+/vdF(v)<%+2|:F(a1)— %} )

o1
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+aw<1 — 41— F(al)]z[F(oq) - %]) (14)

By Proposition 1, in the first period each player votes 0 if his drawofs less than a
thresholdxy, and 1 otherwiseW = 1/2 fol vdF (v) is the expected one-period payoff with
non-storable votes® With non-storable votes, both terms in parenthesis after the integrals
equal ¥2 and the terminal period expected payoff, the last term of (14), is sigiply
With storable votes, each term is modified to capture the new possibility that a single voter
be the winner. In line with all previous results, storable votes reduce the probability of
obtaining the desired outcome at low valuations, in exchange for an increase in such a
probability at high valuations: the term in the first parenthesis is now smaller ttan 1
while the term in the second is larger. However, contrary to the 2-voter case, the decline in
the first probability can be larger than the increase in the second, and thus the overall effect
of the switch in probabilities will be positive if the difference in expected valuation when
abstaining or casting one’s vote is sufficiently large. In other words, the effect of storable
votes on one-period expected payoff is now sensitive to the shape of the distribution of
valuations. The gain is larger the less polarized is the distribution.

Consider then the expected payoff in the terminal period. The possible stateat
(1,1,1), (2,2,2), (1, 2,2) and its permutations, and, 1, 2) and its permutations. In the
last period, players always cast all their available votes. In stdtels 1), (2,2,2) and
(1,2, 2) (and the latter’'s permutations) no voter can win alone, exactly as in the case of
non-storable votes, and the expected payoff eqwalff the state iq1, 1, 2), however, the
voter controlling 2 votes can win even if the others disagree (if he wins the coin toss), and
because votes in the last period are cast independently of the intensity of preferences, the
possible victory of the minority voter in this case is unambiguously efficiency reducing—
the negative term in the last parenthesis in (14), which indeed reflects the probability of
reaching stat€l, 1, 2), i.e. the probability that a single voter abstains in peridd Minor-
ity victories that do not mirror more intense preferences are costly, and because intensity of
preferences plays no role in the terminal period, we should expect storable votes to perform
better over longer horizons.

To evaluate these intuitions, we ran numerical exercises with different time horizons
and different distributions of valuations, focusingmga:- 3. F(v) is modeled as a modified
Beta distribution, with support—1, 1] and constrained to be symmetrical relative to O
(see the lower panel in Fig. 4). A single paramdiesummarizes the curvature of the
distribution:» = 1 corresponds to the uniform; asncreases, the relative probability mass
around zero increases. The results are in Fig. 4, where the expected value of the storable

13 Notice thatw is unchanged for = 3 andn = 2. For arbitrary:

1
n—1
W(n) = / vdF(u)(l/Z)”*l ( n—2+1I, ) wherel,, = 1 if n is odd and 0 ifz is even
0 2

14 1 state(d, 1, 2), voters with a single vote obtain their preferred choice with probabili®, &nd the voter
with 2 votes with probability 78. ThusEgr(1,1,2) =1/2W, Egr(2,1,1) =3/2W,and ¥3(2Egr(1,1,2) +
Egr(2,1,1)) =5/6 W < W. The probability of reaching staid, 1, 2) is 3[(2(1 — F(al))z][Z(F(al) —1/2)]
andEVy equalsW (1 — 3[(2(1 — F(al))z][Z(F(al) —1/2)1(1/6)).
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Fig. 4. Three votersT periods;F(v) beta;s = 1.
Lower panel: beta distribution (v) = (1 — v3)?=1/ /1 (1 — v2)P~1qv.

votes game at time 1, relative to the value with non-storable votes, is plotted for different
horizons and differeniis. Two regularities emerge. First, at any horizon, an increakésin
associated with better ex ante welfare properties for storable relative to non-storable votes.
Although the figure does not show it, forhigh enough, the rati& V1 / Wy is larger than

1 for all T. Second, fob > 1 storable votes are associated with ex ante welfare gains if
the horizonT is longer than a critical valu& (b), whereT is lower the larger i$. For

b =1, the uniform case, the conclusion might still hold—for> 3 the ratioE V1/ Wy is
monotonically increasing iff’, as in the case of highéis—but the simulated horizon is

not long enough to reflect 1&

15 Three further comments. First, reducifidincreasing future discounting) raisés/,/ W1, presumably be-

cause the more asymmetrical states expected to arise at the end of the horizon are then discounted more. But the
effect is not large because it is countered in part by the reduction in vote saving, and hence the higher likelihood
of these same states. Second, as the figure shoWs/ W, reaches a minimum &t = 3 for all 5. Although a
higherT makes strategies more sensitive to intensities, even in asymmetrical states, it also multiplies the possi-
bility of such states—according to the numerical exercises, the second effect domindtes &rbut becomes
relatively less important ag increases further. Finally, multiple equilibria are possible, but only in one case did
we in fact find two equilibriab = 1 and staté5, 4, 3) at7 — 1 (which require§” = 6). In one equilibrium, voter

never plays 1 and playgrnever plays 1 or 2. In the other equilibrium, playenever plays 3 and playernever

plays 1 or 2. Although the first equilibrium leads to slightly better welfare properties, the effect washes out almost
completely in the calculation af V1 / W;. The figure uses the second equilibrium.
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Both the importance of the horizon and the role played by the shape of the distribution
should remains true at largeror whenn is even, but in these cases the positive features
of storable votes, relative to non-storable votes, are stronger. When the number of voters
is even, storable votes reduce the reliance on the tie-breaking rule, an important positive
effect whose role is larger whenis small. When the number of voters is large, storable
votes tend to reward minorities that are not too small, a source of welfare gain that holds
whetherm is even or odd.

Better welfare properties for longer time horizons pose a commitment problem; as time
passes and the end of the game approaches voters may wish to renegotiate. We ignore this
aspect here—storable votes are evaluated ex ante at some constitutional stage, and we take
the possibility of commitment as granted. This said, the conclusion is pleasing; the very
idea of storable votes relies on the possibility of intertemporal trades and we should expect
it to yield its potential benefits only if there is enough time for these trades to be possible.

7. Storablevs. tradable votes

As discussed in the Introduction, storable votes inevitably bring to mind vote trading.
How related are the two mechanisms? We rule out monetary transfers, and compare stor-
able votes to log-rolling: exchanges of current for future véfeEo study the two schemes
side by side we make them comparable through two assumptions: first, we ignore the prob-
lem of enforcement posed by vote trading in our finite horizon setting—debtors would be
sure to renege in the last period, with the usual cascading effect. We posit instead the ex-
istence of credible outside enforcement. Second, with vote trading players who buy votes
are effectively borrowing against their future voting allocation. It seems appropriate then to
allow borrowing also in the case of storable votes: we assume that when votes are storable
the entire stock of votes is allocated to each player at time 1, for him to distribute over
future decisions as he sees fit.

Begin with the simplest case: 2 voters and 2 periods. With storable votes, each player
enters the game with 2 votes. Following the usual steps, it is easy to establish that voter
will choose to cast 2 votesiif;| > 4§W and 0 votes otherwise. Although the initial number
of votes is different, the outcome is identical to the case studied earlier where each voter
was endowed with 1 new vote each period. The expected value of the game is again given
by Eq. (9).

Suppose now that votes are tradable, but not storable. At time 1, each voter has 1 vote
and three options: he can offer to sell his vote dWw(and have 2 votes next period, when
his opponent will have 0, if the trade takes place); do nothiMg (and have 1 vote each
period, just like his opponent), or offer to buy a vai®) (and have 0 votes next period,
when his opponent will have 2). Calz the probability that a player offers to buyg
the probability that he offers to sell, andy = 1 — pp — ps the probability that he does
nothing. Givenv;, positive for simplicity, the three alternatives lead to expected utilities:

16 |f neglecting concerns of practical feasibility, we allow for monetary transfers, than it seems reasonable to
focus on the optimal mechanism, which is not a voting mechanism (d’Aspremont and Gérard-Varet, 1979).
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Eu;|S =pp(v;i1/24+82W) + (1 — pp)(v; 3/44+5W),
Eu;|N =v; 3/44 W,
Eu;|B = psvi + (1 — ps)(v; 3/4+8W). (15)

It is possible of course that both voters would want to buy, or both would want to sell.
With a longer number of periods, prices would emerge, but in this simple example no
voter can offer more (or less) than a one-to-one exchange between a vote today and a vote
tomorrow. Thus if both voters find themselves on the same side of the trade no exchange
can be concluded, and this is reflected in (15). Given these equations, it is easy to see
that the optimal strategy is to offer to buy a vote whendvgr> 45W, and offer to sell
otherwise. It follows that there is a deviation from the reference case of no-trade only
when at time 1 one voter’s preference intensities are above the threshold, and the other’s
below. But this is exactly what happens with storable votes (in all other cases, the players’
strategies cancel each other). And because the threshold is the same, it is not surprising
then that the expected value of the game is given once again by Eq. (9). With 2 players and
2 periods, the two voting mechanisms are identiéahdeed, one can conjecture that with
2 voters the result should continue to hold for any arbitrary time horizon

Is this true with more than 2 voters? Consider a 3-voters, 2-period game. With storable
votes each player again enters the game with 2 votes. The optimal strategy in the first period
is to abstain ifv;| < @V and cast 2 votes otherwise, wher& = 45W (1— p3)/(1— p3),
andpo=1— p,=2[F (") — 1/2] (the superscripdV stands for “storable votes”). The
expected one period payoff &t— 1 and the ex ante value of the game are given by:

1 5 C{SV
p
Eg; =W+ / vdF(V)7°— / vdF (v) popa,
oSV 0
EVEY = EgsV +8W(1— pop3), (16)

with the probabilities defined above.

Consider now the case of tradable votes. The horizon continues to be 2 periods, implying
that again each player can buy or sell at most 1 vofE atl. As in the case of 2 voters,
there are three possible alternatives: each player can offer to sell, offer to buy, or do nothing.
When a transaction is proposed, it is concluded only if there is at least one other voter who
has made the complementary proposal. But now a new difficulty emerges: a voter willing
to transact may be shut out of the market because his 2 opponents trade among themselves.
Ruling out side-payments, no price and no bargaining can emerge in the 2-period game,
and we assume that if 2 willing buyers, for example, face a single seller, the successful one
will be chosen with a coin toss. Taking this into account, expected utilities from any of the

17 One important caveat. For consistency with the rest of the paper, we are maintaining the information as-
sumption made all along: a voter makes decisions knowing his preferences but not his opponent’s. In the case of
tradable votes, this can result in trades between voters on the same side of an issue, albeit with different intensi-
ties. Whether a voter would want to reveal his true position is an interesting question not pursued here (see, for
example, the discussion in Mueller, 1989).
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three actions can be calculated as usual. Consider for example yotiaring to sell his
vote. He succeeds in selling if:

(i) both other voters offer to buy (with probabilitg%);
(i) one offers to buy and one does nothing (with probabilipgy); or
(iii) one offers to buy, one offers to sell and the coin toss is favorabigwath probability

PBDS)-

If i succeeds, then he is left with O votes today in exchange for 2 tomorrow, while his
opponents have 2 and 1 votes today and 0 and 1 tomorrow. In both periods, the voter who
controls 2 votes alone determines the outcome; ifsiexpected utility, conditional on
succeeding in selling, equals/2+ 25 W (with v; positive for simplicity). Ifi’s offer is not
accepted, that may be either because no-one is interested in buying (with prolgabiity
p5)?), inwhich case no transaction takes place éméxpected utility equals; 3/4+5W,
or because the other 2 voters trade among themselves (with probaigility), in which
casel carries no weight either this period or the next and his expected utility eqy&s
Thus we can write:

Eui|S = (p% +2pppn + peps) (vi/2+ 28W)
+(1— pp)?(vi 3/4+8W) + pppsvi/2 (17)
The expected utilities associates with the two remaining alternatives are calculated analo-
gously:
Eu;|B = (p5 +2pspn + paps)vi + (1= po)?(v 3/4+ 8W) + pppsvi/2,
Eui|N = pgpsvi + (1 —2ppps)(v; 3/4+5W). 17)

Given these equations it is easy to establish that it is never optimal to do nothing. There is a
single relevant thresholg” such that voter offers to sell his vote ifv;| < «™, and offers

to buy otherwise (the superscript stands for “market”), where once agaifff = 45W.
Expected one period payoff @t — 1 and the ex ante value of the game are given by:

1 aM
2
1+
Eg%’l_l:W—f-/vdF(v)p—ZS—/vdF(v) pSpB,
0

2

aM
EVM  =EgM |+ W1 — psps). (18)

whereps =1— pp = 2[F (™) — 1/2).

Comparing Egs. (16) and (18) is very instructive. It is particularly easy wher) is
Uniform, because in that case’V = o™ = 0.5, and pg = ps, p2» = pp. The expected
value of the game is unequivocally lower with tradable than with storable votes, a result
that arises because expected payoffs are lower in both periods. And the reason is simple:
tradable votes require two sides for a trade: with 3 voters, the buyer guarantees himself
control over the public decision in the first period, and the seller in the second. The third
voter, excluded from the transaction, has no voice in either periods. With storable votes,
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on the other hand, each voter decides his allocation of votes on his own. If a voter de-
cides to abstain in the first period, the probability of being pivotal increases for both of his
opponents; nor can the abstaining voter be sure of controlling the public decision in pe-
riod 2. The intuition seems robust: the welfare results are unchanged fo6allve have
tried 18 The probability of being rationed when votes are tradable remains positive for all
finite number of players, and although the game will be more complicated, the logic is
unchanged. Similarly, the emergence of prices when trading occurs over a longer horizon
should be matched by an equivalent flexibility in the intertemporal program with storable
votes. We cannot draw general conclusions at this point, but there is no obvious reason why
the welfare results should be reversed.

8. Conclusions

This paper has discussed a very simple—indeed natural—voting mechanism for com-
mittees that meet repeatedly over time: voters are allowed to store their votes and shift
them intertemporally. As a result, voters cast more votes when their preferences are more
intense, and the probability of obtaining their preferred decision shifts from times when
preferences are weaker to times when they are stronger. Relative to non-storable votes, ex
ante welfare should rise.

This transparent intuition appears clearly, and can be proven rigorously, in the case of
two voters. When the number of voters is larger, some complications arise and counterex-
amples can be found, but the analysis suggests that the conclusion continues to hold if one
of the following conditions is satisfied:

(i) the number of voters is above a minimum threshold;
(i) preferences are not too polarized;
(iii) the horizon is long enough.

Although the rationale for the scheme is transparent, the game is in fact complicated,
and a natural question is whether in practical applications voters would be able to identify
the equilibrium strategies and reap the potential efficiency gains. We address this question
in a companion experimental paper (Casella et al., 2003). The experimental subjects did
not, for the most part, cast the equilibrium number of votes, but they consistently did cast
more votes when intensities were higher. This was enough to achieve efficiency gains that
matched almost perfectly the predictions of the theory.

The model studied here is very simple, and some of its restrictive assumptions will have
to be relaxed before the promise of the voting scheme can be confirmed. Some needed ex-
tensions are immediate generalizations of this initial model. The importance of the horizon
length suggests allowing for infinite horizon, keeping the analysis tractable, for example,
by having votes expire after a fixed number of periods, or by studying overlapping gener-
ations of committee members with fixed terms. Different information assumptions should

18 As b increasesy™ becomes larger tham®" , implying that the ex ante probability of putting one’s vote up
for sale when votes are tradable increases more than the probability of abstaining.
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be studied—what if opponents’ preferences are known? What if at least their signs, if not
their intensities, are known? In many applications, correlation among preferences should
be allowed, either over time or across voters.

Other extensions require introducing new issues. How robust are the results to en-
dogenous agenda? Because storable votes derive their value from intertemporal planning,
influencing the order in which votes will be called could be important. An individual or
a group controlling the agenda might be able, for example, to exhaust opponents’ votes
before an issue he considers crucial is decided. But the opposite can be argued too—the
ability to shift votes intertemporally provides everybody with more flexibility and might in
fact neutralize the advantage enjoyed by those who set the agenda.

A related if different question is the impact of storable votes on minorities. Advocates
of cumulative voting, the static multi-candidate counterpart of storable votes, have stressed
their potential for increasing the power of minorities (Guinier, 1994), an observation con-
firmed at least partially by formal and experimental analyses (Cox, 1990; Gerber et al.,
1998). Others have expressed concern that when voting is costly the voters most likely to
express their votes might be those with most extreme preferences (Campbell, 1999; Os-
borne et al., 2000). Would decisions be dominated by extremists? What would the welfare
implications be then? Notice that once again the outcome is not obvious: when votes are
storable, the cost of voting is endogenous and the majority can control a small minority at
relatively low cost, if the coordination problem is not too severe.

Finally, we have maintained the assumption that aggregating voters’ preferences is made
difficult by their divergence. Alternatively, we could model the voting problem as a com-
mon value problem: voters have the same preferences but receive different signals about
the optimal choice (for example, Feddersen and Pesendorfer, 1997; Piketty, 1999). Piketty
(1994) has argued that in this case market-type mechanisms applied to voting, in particular
spot markets for votes, are less efficient than simple majority voting, because they induce
abstentions and thus reduce the amount of information transmitted through voting. To what
extent would this argument apply to storable votes? What if both private and common val-
ues are present?

These questions are important and difficult, and will need to be addressed. For now,
we conclude that storable votes, although not the most efficient mechanism theoretically
possible, are very simple, could realistically be implemented and appear to take us part of
the way towards efficiency without violating our ethical priors.
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Appendix A

Proof of Lemma 1. Monotonicity. Suppose;; > 0 and call P¢w|x) the probability that
obtains the desired decision over the current proposal (“wins”) when castintes, i.e.
Pr(w|x) = Pr(d; = 1|x! = x). For any number of votens, Pr(w|x) must be monotonically
(if possibly weakly) increasing im. Given the valuatiom;,, i's expected utility from cast-
ing x votes equals;,Pr(w|x) + 8EV,4a(ki, 1, EK, ;) wherek! ; = ki —x + 1. Callx’
(x") the equilibrium number of votes cast by votavhenv;; = v'(v”) (with v/ > v’ > 0).
By definition of equilibrium, the following two inequalities must hold:

VPrw|x") +8E Vt+1(kf —x'+1, EK;ril)

> V'Pr(w|x") + 8EV,y1 (ki —x" + 1, EK,}}),

t+1
V'Pr(w|x") + 8EVipa(ki —x" + 1, EK)

> V'Pr(wlx’) + 8EViqa (ki —x'+ 1, EK ).

Adding the two inequalities, we obtain:
0" —v")(Pr(w|x") — Pr(w|x")) > 0.

But with v/ > v” and Pfw|x) monotonically increasing im, this impliesx’ > x”, estab-
lishing the result. The logic is identical, with the appropriate sign changesfer 0.
Notice that the proof holds for any strategies chosen by the other voters, implying that all
best response functions must be monotonically increasiog.

Proof of Proposition 1. (i) Existence of equilibrium in pure strategies. Formally, we are
looking for a perfect Bayesian equilibrium of a multi-stage game. An important simplifi-
cation is that players’ types are i.i.d. across different periods: the game has no updating of
information on players’ types, and if we restrict our focus to Markov strategies the only
intertemporal link across periods is the evolution of the state variable—the accumulation
or depletion of the votes’ stock (which is common knowledge), and the change in calendar
time. It follows that we can find a perfect equilibrium by backward induction. In pefiod

the dominant strategy is to cast all remaining votes. In pefiedl, given the stat&;_1

the continuation value of the game depends only on the strategiés-at (and on the
expected value gfvr| = 2W, an exogenous parameter); the one-period payoff depends on
the realization of one’s own typgr_1, and on the strategies &t— 1; thus, given the state,

the 2-period payoff of the game @& — 1, EUr_1(x7—1; viT—1, K7—1), depends only on
current strategies angdr_1. We can study the game &t— 1 as a one-stage simultaneous
move game. The game satisfies a number of conditions:

(i) other voters’ types do not enté&s payoff directly (their strategies do);
(i) players’ types are independently distributed,;
(i) F(v) is assumed to be continuous and atomless;
(iv) for each player, the strategies’ space is finite.

By using the notion of distributional strategies—joint distributions on actions and types—
Milgrom and Weber (1985) have shown that these conditions guarantee that an equilibrium
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exists, and that all equilibrium strategies are empirically indistinguishable from pure strate-
gies. (See also Fudenberg and Tirole, 1992, Section 6.8.) But if the gafne athas an
equilibrium, then equilibrium strategies &t— 1 can be anticipated, as function of the
types’ realizations and the state?at- 1. Again, expected types’ realizations are exoge-
nous andK7_1 is determined completely by state and strategieg at2. Hence, given

vi, 7—2 andKr_», we can study the game &t— 2 as a one-stage game and rely once more

on Milgrom and Weber’s result. With a finite horizah the complete game has a finite
number of stages and states, and using backward induction we can replicate the procedure
for each of them.

(ii) Monotone cutpoint strategies. Given existence, the result follows immediately from
Lemmal. O

Proof of Lemma 2. Begin by proving part (i) for symmetrical states. Recall that expected
one-period equilibrium payoff is given by (12), reflecting the optimal thresholds chosen by
the voters. Define a functio# («,, ..., ax) representing (fictional) expected payoff when
thresholdsys, ..., @,_1 are set to zero, and all other thresholds are kept at their equilib-
rium values (and where to simplify notation we ignore the time subscript). By construction
¥(ay,...,ar) = Eg(k, k). We can show that the following two conditions hold:

(@) ¥(o) =W,
(b) ¥(oy,...,00) =WV (Axp1s---, ).

To establish (a), note that given (12) and the definitiowé#; ), we can write:

ay

1
1
Y(ag) = / vdF(v) (F(ak) - 5) + / vdF (v) F(ag)
0 ag
whereqy, € [0, 1]. At o =0 oray = 1, ¥ (o) = W; in addition it is easy to verify that
0w (ag) /0y, is positive ato, = 0 and has a single root in the interval € (0, 1). Hence
¥ (o) > W Vay € (0,1) and¥ (ag) = W if o = 0 or 1. But from (12) we also know:

(o, ..., o) Z Y (Axq1,--.,0) < /vdF(v)(F(ax) - %)
0

Ox+1 Ox+1

1
+ / vdF (v)(F (o) + Fax1) — 1) > / vdF(v)(F(ax+l)—§). (A1)
0

(029

The left-hand side of (A.1) is identical to the right-hand side,if= 0 or o, = ay+1. At
ay = 0, the left-hand side is increasing &y and again it can easily be shown that the
derivative has a single root. Hengga,, ..., ax) > ¥ (dy41, ..., a;) Vo, € (0, ax41) and
Yoy, ...,0) =¥ (Axt1, - -, 0r) for ey =0 0oro, = a,41, and (b) is established.

Finally, it follows that (a) and (b) can both hold with equality only if all thresholds are
either 0 or 1 or if there exist an, anda, 41 such thate; =--- = o, =0 anda, 11 =
=ar =1, withx € {1,...,k — 1}, i.e. only if the same strategy is followed for all
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realizations ofi;. If at least one threshold is strictly between 0 and 1, then the inequality in
part (i) of Lemma 2 is strict. We expect that to be the case in all symmetrical states, but it
is particularly easy, and sufficient for our purposes, to show that this must be #ue at
Suppose both players are endowed witrotes atl” — 1. We show that casting votes for

all realizations ofv; cannot be an equilibrium. Givenyy_1, which we suppose positive

for S|mpI|C|ty, the expected utility of voter castlngx votes is glven byEU; l(x)

ViT— 1[Pr(x, <x)+ 3/4Pr(xt =x)+1/2 Pr(x, > x)] + SW[Pr(xt =x)+ 2Pr(x, > x)].

It is easy to establish then that:

EUL (X' +1) — EUL_1(x)) = (vir—1/4— W)[Pr(x} = x" 4+ 1) + Pr(x{ = x')],
EUS () — EUL_1(x' = 1) = (vr—1/4— sW)[Pr(x{ = x")+Pr(x/ = x' - 1)].

Recall that 4W < (0, 1). Take anyx’ such that Rir/ = x’) > 0. It is immediate to show
that if v; < 48W, then player must preferx’ — 1 tox’, and ifv; > 46W he must prefer
x" 4+ 1tox. If x’ equals O ok only one direction of deviation is feasible, but in all cases
nox can be the equilibrium strategy for all. Part (i) of Lemma 2 is established.

(i) To establish part (i) of the lemma for asymmetrical states, we follow the same logic.
Supposes > k, and denotgy1, y, ..., yk+1} the equilibrium thresholds for the player
holdings votes atr, and{g1, 82, ..., Bx} the equilibrium thresholds for the player holding
k votes (where, again, to simplify notation time subscripts are omitted). Notice that the
player holdings votes can never gain by casting more thhahn 1. We can write:

B1
Egi(ki,sj)+Egi(si,kj)=fvdF(v)(F(y1)—1/2)
0
B2 1
+/vdF(v)(F(y1) + F(y2) — 1) +---+/vdF(v)(F(yk) + F(ye1) — 1)
B Bre
Y1 Y2
+/vdF(v)(F(ﬁ1) —-1/2) +/vdF(v)(F(ﬂ1)+F(ﬂ2) -1+
0 Y1

Vx+1
+ / vdF () (F(Bx) + F(Bxt1) — 1) +
Vx

YVi+1 1
+ / vdF () (F(Bo) + / vdF(v). (A.2)
Yk Yi+1

Define a functionV (81, ..., Bx, ¥1, . . ., ¥x+1), representing the (fictional) sum of expected
payoffs in (A.2) when threshold® 1, . . ., Bk—1, Yx+2 - - - » Yk+1 are setto 1 (which is now

more convenient than setting the omitted thresholds to 0), and all other thresholds are kept
at their equilibrium values. By constructio®,(B1, . .., B, Y1, ..., vi+1) = Eg' (s’ k7) +
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Egi(k',s7). As in the symmetrical case, we proceed by first evaluating the fungtion
at the smallest threshold and then adding successively higher ones. We can show that the
following three conditions hold:

(a) ¥(yy) = 2W, ¥ (B1) = 2W;

(b) ¥(y1, 1) 2 ¥ (y1), ¥(y1, 1) = ¥ (B);

(C) (I) w(ﬁlv ) ﬂx-‘rls Y1, ..oy Vm) 2 lll(ﬁlv LR} 6)(7 Y1, .0 J/m) Where eithelﬂx-ﬁ-l > ¥Ym
or Vm = 11
@iy Y(B1, ..., Bers Y1y o os Yr1) = ¥ (B1, ..., Brs Y1y - -+ » V) Where eithery,,11 >
By or B =1.

To verify (a), notice that given (A.2) we can write:

1 Y1 1
llf(yl)E/vdF(v)(F(yl)—1/2)+/vdF(v)1/2—l—/vdF(v).
0 0 vi

Differentiating¥ (1) with respect tg., itis easy to see that (y1) > 2W Vy1 € (0, 1) and
¥ (y1) =2W if y1 =0 or 1. The same reasoning, and a corresponding equation, establish
¥ (B1) = 2W. To verify (b), notice that from (A.2) we also know:
1 B1
V= e = [vdro)Fen-12)> [varoie,
0 0

an inequality that holds strictly for a1 € (0, 1), and weakly a3y = 0 or 1. Again an
equivalent condition establish€s(81, y1) > ¥ (81).
Finally, to verify (c), consider case (i) first. We can derive from (A.2):

lp(ﬁla-~~aﬁx+la)/1»~~w)/m)>l1/(/317---v,3m717---77/m) <:>

1 VYx+2
/ vdF () (F(yx42) — F(yx)) + / vdF () (F(Bx+1) — 1) >0, (A.3)
Bx+1 Vx

wherey,12 < v, and hence eithep, ;2 < Br+1 Of Y42 = 1 (and similarly, eithet, <
Brxa1 0Oryy =1, wherey, < yy12). At yy2 = 1, the inequality in (A.3) becomes:

1 1
[ veroa- o) - [vdrea- Fea) >0
Br+1 Vx

a condition that is satisfied for all, < By+1 or aty, = 1. If y,12 # 1, notice that (A.3)
holds with equality ay,.2 = ¥, and becomes:

1 /3)(+1
/ VdF W) (F(Brs1) — Fr)) — / vdF()(1— F(Brs1) >0

Bx+1 Vx
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at yy+2 = Bx+1, @n inequality that is satisfied for &1 > y,. But differentiating (A.3)
with respect toy,2, we can easily establish that for &1 < 1 the derivative has a
unique root which must be a maximum. Hence if the inequality is satisfiegd,at= y,

and aty, 2 = By+1, it must be satisfied everywhere. Féyr 1 = 1, (A.3) equals 0 for any
vr12, Yx- We conclude that condition (b) (i) is established. The proof of condition (b) (ii)
proceeds identically, and we leave it to the reader.

Proof of Lemma 3. Once again, we proceed in two steps. First, we consider symmetri-
cal states; then we prove the corresponding result for asymmetrical states. What follows
could be written in matrix form, but the expanded notation, though cumbersome, is more
transparent and is maintained here.

Consider staték;, k;). We can write:

EV/(k, k) = Eg' (k;, kr)
5] pio(PioE Vs ki + 1K+ 1)+ piE Vgl + L k) + -
+PikEV/ 1tk + 1, D) + pia(pjoE Vi g (ki ki + 1)
+pJiEVi (ke k) + -+ pir EV/ (ke D) + -+
ik (PJOE Vg Lk + 1)+ pjLEVEg (L k) + -+ 4 piEVE1 (L D)
or, more compactly:
EV/ (ki k)

k k
= Egl (k. k;) + 5[ > pix; ( > P EVig(k —x"+ Lk —x/ + 1))] (A.4)

x;i=0 xj=0

where p;, is the probability thajv;,| falls into the interval that corresponds & op-
timal strategyx. But the game is symmetric, and starting from the symmetrical state
(k;, k), pix = pjx for all x. We can thus collect terms and rewrite (A.4) as:

k-1 k
Evg(k;',k{)=Eg;'(k,,kt)+5[z[pix S pir(EVig(k—x + 1 k—r +1)
x=0 r=x+1

HEV (k—r+1k—x+ 1))}

k
+> PP EVi gk —x+ 1 k—x+ 1)]. (A5)
x=0

Substituting the conditions stated in Lemma 3, we then obtain:

k-1 k k
Ev;'<kz,kf)>Eg;'(k,,kt)wwm[zz > pixpjr+2p,-xp,-x}.
x=0r=x+1 x=0
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Once again using;. pj» = pirpjx, it is not difficult to verify that the probabilities, which
span all possible equilibrium strategies, sum up to 1. Hence:

EV! (ki k) > Egl(ke, ki) + W1,

But we know by Lemma 2 thakg! (k;, k;) > W. HenceEV; (k;, k;) > W, (k, k), and the
first part of Lemma 3 is established.

The logic of the proof is identical in the asymmetrical st(ai,’ek{). We can write:
EV] (sl k) + EV] (K, s])
= Egi(si. k) + Egi (K 57) + 8 piolst k) (paolst KV EVa (st + L.k + 1)
ot pi (s ) EV (sl +1,0)) +
+pis 51 K7 ) (Piolst KV EVE (LK +1) + - pie (st k) EVE (D) |
+5|:pi0(kfsst])(p]0(k;’st)E Lk L] 1)+
+ pis (K5 ) EVE 2 (K +1.1)) ++

+ Pik (k; sZ)(pJo(kt,s[ )E t-‘rl(l’ Stj + 1) ot Dps (k; sf)EVti+l(1, 1))]~
(A.6)

As always, the probability that a given strategy is chosen by either player is a function
of the state; and since we are considering two different states this dependence is recognized

explicitly. Using p (s, k) = pj. (ki s]) Vx, s, k, £, we can simplify (A.6):

EV(s{. k) + EV/ (K. 5])
:ng(s,i,k )+Egt(kl St)+5|:p,0 St, Zp]x st,
(E z+1(sz+1vktj_x+1)+EV,’+1(k§—x—i—l,s, +1))+

+st St, Zp]x stv ( l+1(1 k—x+l)

+EV] (K —x+1, 1))}. (A7)
More compactly, we can write:

EVi(si, k) + EV] (K, s])
s k
=Egi(s). k) + Egl(ki.s)+8>_ pir ijx(EVfH(Sf —r+ 1k —x+1)

FEVL (K —x 41 —r+1)). (A.8)
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(All probabilities are now conditional on the same state, and in absence of ambiguity the
notation is simplified.) Substituting the conditions in Lemma 3, we then derive:

EV (st k) + EV] (ki 5]) > Egi(s}, k) + Egi(kl, 5]) + 26Wixa > Y pirpjie-
r=0x=0
It is easy to verify that the probabilities sum up to 1. Hence:

EV, (5} k) + BV} (. 57) > (Egi (sl k) +5Wean) + (Egi (ki 57) +5Wen).
But by Lemma 2, the second part of Lemma 3 is then established.

Derivation of Fig. 2. When votes are storable and all players can either cast 1 vote or
abstain, the probability of obtaining one’s preferred outcome when voting equals:

Lo (") 30+ (3) ()]

wherelz =1 for z odd, and O for; even.
The corresponding probability when abstaining equals:

oo () o) ()

whereln =1 forn odd, and O forn even.
From Proposition 1, the probabilitigg (n) and po(n) continue to depend on a threshold
a(n) such thatpi(n) = 2[1 — F(a(n))] and po(n) = 2[F(x(n)) — 1/2]. On the basis of
these equations, it is possible to derive expected payoffs and the expected value of the
game.

Derivation of Fig. 3. We plot the ex ante payoff of storable and non-storable votes, as
proportion of the expected efficient payoff, which we define as the expected payoff if the
decision were always resolved in favor of the size with larger total valuation (in absolute
value). F (v) is uniform. Consider for example the case of 2 voters. Then:

L 1 1 1,1 vj

v Vi Vi
EU*(2)=§/§dv+§|:/(f Eldvi —fédvi) dvj:|,

0 0 v 0

where the first integral captures expected payoff when both agree (note that a positive
payoff is expected only if both voters have positive valuations) and the second when they
disagree, again taking into account that when the larger absolute valuation is negjative,
set to 0, and when it is positive, the voter with negative valuation suffers a loss.

The expected efficient payoff can be calculated in a similar manner for different num-
bers of voters, keeping in mind that the characteristic function of awsuoh » random
variables, each independently distributed uniformly d@ed] is given by:

n

— 1 k n—1
Pn<w>—2(n_1)!§< D ( )(w k)"~ sgnw — k).
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We then derive, for arbitrary:

1\"+2 n—1 n 1\"+1
EU*(n+1)=<§> +Z<k> (é)
k=0

1 k n k+1 1 w—k
X > /P,,(u))dw— / P, (w) dw +/ /vdv— / vdv | P, (w) dw
0 k+1 k w—k 0

The expected efficient payoff has no temporal dimension: given that valuations are i.i.d.
the expected efficient payoff in the 2-period game is simiply* (n) + SEU*(n).
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