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We develop a model where agents obtain information about job opportunities
through an explicitly modeled network of social contacts. We show that employment
is positively correlated across time and agents. Moreover, unemployment exhibits
duration dependence: the probability of obtaining a job decreases in the length of
time that an agent has been unemployed. Finally, we examine inequality between
two groups. If staying in the labor market is costly and one group starts with a worse
employment status, then that group’s drop-out rate will be higher and their em-
ployment prospects will be persistently below that of the other group. (JEL A14,
J64, J31, J70)

The importance of social networks in labor
markets is pervasive and well documented.
Mark Granovetter (1973, 1995) found in a sur-
vey of residents of a Massachusetts town that
over 50 percent of jobs were obtained through
social contacts. Earlier work by Albert Rees
(1966) found numbers of over 60 percent in a
similar study. Exploration in a large number of
studies documents similar figures for a variety
of occupations, skill levels, and socioeconomic
backgrounds.1

In this paper, we take the role of social net-
works as a manner of obtaining information
about job opportunities as a given and explore
its implications for the dynamics of employ-
ment. In particular, we examine a simple model
of the transmission of job information through a
network of social contacts. Each agent is con-
nected to others through a network. Information

about jobs arrives randomly to agents. Agents
who are unemployed and directly hear of a job
use the information to obtain a job. Agents who
are already employed, depending on whether
the job is more attractive than their current job,
might keep the job or else might pass along
information to one (or more) of their direct
connections in the network. Also, in each period
some of the agents who are employed randomly
lose their jobs. After documenting some of the
basic characteristics and dynamics of this
model, we extend it to analyze the decision of
agents to drop out of the labor force based on
the status of their network. This permits us to
compare the dynamics of drop-out rates and
employment status across groups.

The fact that participation in the labor force is
different across groups such as whites and
blacks is well documented. For instance, David
Card and Alan B. Krueger (1992) see a drop-out
rate 2.5 to 3 times higher for blacks compared to
whites. Amitabh Chandra (2000) provides a
breakdown of differences in participation rates
by education level and other characteristics, and
finds ratios of a similar magnitude. Moreover,
the analysis of James Heckman et al. (2000)
suggests that differences in drop-out rates are an
important part of the inequality in wages across
races and that accounting for dropouts actually
increases the black-white wage gap.2,3
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1 See James Montgomery (1991) for further discussion
and references.

2 Ignoring dropouts biases estimated wages upwards.
Given much higher drop-out rates for blacks, this can bias
the wage differential.

3 The persistent inequality in wages between whites and
blacks is one of the most extensively studied areas in labor
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One is then left to explain why drop-out rates
should differ across races. An analysis of social
networks provides a basis for observing both
higher drop-out rates in one race versus another
and sustained inequality in wages and employ-
ment rates, even among those remaining in the
labor force, as follows.4 The starting point of
our model is that the better the employment
status of a given agent’s connections (e.g., rel-
atives, friends, acquaintances), the more likely
it is that those connections will pass information
concerning a job opening to the agent. This
might be for any number of reasons. One is that
as the employment status of a connection im-
proves it is less likely that the connection will
want to keep a new job for him or herself.
Another is that as the employment status of
other agents in the network improves, the more
likely that a given agent’s connections will be
employed and a source of information, and the
more likely that they will choose to pass news to
the given agent rather than to some other agent
who already has a job. This sort of information
passing leads to positive correlation between
the employment status of agents who are di-
rectly or indirectly connected in the network,
within a period and across time, as we establish
below.

Such correlation of employment is ob-
served in the data, both in the indirect form of
the inequality mentioned previously, and also
in terms of direct measured correlation pat-
terns. Giorgio Topa (2001) demonstrates geo-
graphic correlation in unemployment across
neighborhoods in Chicago, and also finds a
significantly positive amount of social inter-
actions across such neighborhoods. Timothy
Conley and Topa (2001) find that correlation
also exists under metrics of travel time, oc-
cupation, and ethnicity; and that ethnicity and

race are dominant factors in explaining cor-
relation patterns.

The positive correlation that we establish be-
tween the employment of agents in a network
then provides a basis for understanding the sus-
tained difference in drop-out rates and resulting
inequality in employment rates. Consider two
identical networks, except that one starts with
each of its agents having a better employment
status than their counterparts in the other net-
work. Now consider the decision of an agent to
either remain in the labor market or to drop out.
Remaining in the labor market involves some
costs, which could include things like costs of
skills maintenance, education, and opportunity
costs. Agents in the network with worse initial
starting conditions have a lower expected dis-
counted stream of future income from remain-
ing in the network than agents in the network
with better initial starting conditions. This mi-
nor difference might cause some agents to drop
out in the worse network but remain in the
better network. The important observation is
that dropping out has a contagion effect. When
some of an agent’s connections drop out, that
agent’s future prospects worsen since the
agent’s network is no longer as useful a source
of job information. Thus, some agents con-
nected to dropouts also drop out due to this
indirect effect. This can escalate, so a slight
change in initial conditions can lead to a sub-
stantial difference in drop-out decisions. As a
larger drop-out rate in a network leads to worse
employment status for those agents who remain
in the network, we find that slight differences in
initial conditions can lead to large differences in
drop-out rates and sustained differences in em-
ployment rates.5

Before proceeding to the model, let us also
mention a fourth feature that is also exhibited by
the model. Unemployment exhibits duration de-
pendence and persistence. That is, when condi-
tioning on a history of unemployment, the
expected probability of obtaining a job de-
creases in the length of time that an agent has
been unemployed. Such duration dependence is
well documented in the empirical literature, for
example, in studies by Stuart O. Schweitzer and

economics. James P. Smith and Finis R. Welch (1989),
using statistics from census data, break the gap down across
a variety of dimensions and time. The gap is roughly on the
order of 25 percent to 40 percent, and can be partly ex-
plained by differences in skill levels, quality of education,
and other factors [e.g., see Card and Krueger (1992);
Chandra (2000)]. See Reynolds Farley (1990) for a com-
parison of labor market outcomes for 50 racial-ethnic
groups in the United States.

4 In this paper we focus on differences in drop-out rates
and employment, and we refer the reader to Calvó-
Armengol and Jackson (2003) for an analysis of wage
inequality.

5 Similarly, small differences in network architectures
may also lead to sharp differences in drop-out patterns
across two groups with identical starting conditions.
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Ralph E. Smith (1974), Heckman and George
Borjas (1980), Christopher Flinn and Heckman
(1982), and Lisa M. Lynch (1989). To get a
feeling for the magnitude, Lynch (1989) finds
average probabilities of finding employment on
the order of 0.30 after one week of unemploy-
ment, 0.08 after eight weeks of unemployment,
and 0.02 after a year of unemployment.

The reason that we see duration dependence
in a networked model of labor markets is a
simple one. A longer history of unemployment
is more likely to come when the direct and
indirect connections of an agent are unem-
ployed. Thus, seeing a long spell of unemploy-
ment for some agent leads to a high conditional
expectation that the agent’s contacts are unem-
ployed. This in turn leads to a lower probability
of obtaining information about jobs through the
social network. This network explanation is or-
thogonal to standard explanations such as un-
observed heterogeneity.

At this point, let us preview a policy predic-
tion that emerges from a networked model. Due
to the network effects, improving the status of a
given agent also improves the outlook for that
agent’s connections. This is the contagion effect
discussed above in reverse. As a result, in a
networked model there are local increasing re-
turns to subsidizing education, and other poli-
cies like affirmative action.6 One implication is
that it can be more efficient to concentrate sub-
sidies or programs so that a cluster of agents
who are interconnected in a network are tar-
geted, rather than spreading resources more
broadly.

Before presenting the model, we note that we
are certainly not the first researchers to recog-
nize the importance of social networks in labor
markets. Just a few of the studies of labor mar-
kets that have taken network transmission of job
information seriously are Scott A. Boorman
(1975), Montgomery (1991, 1992, 1994), Ken-
neth Arrow and Ron Borzekowski (2001), Topa
(2001), and Calvó-Armengol (2004)—not to

mention the vast literature in sociology.7 The
contribution here is that we are the first to study
an explicit network model and prove some of
the resulting implications for the patterns and
dynamics of employment, as well as the in-
equality across races.

I. A Simple Network Model

The model we consider here is one where all
jobs are identical. We refer the reader to a
companion paper, Calvó-Armengol and Jackson
(2003), for a more general model that nests this
model, and also looks at wage dynamics, and
allows for heterogeneity in jobs, decisions as to
whether to switch jobs, repeated and selective
passing of information, competing offers for
employment, and other extensions of the model
presented here. In short, the results presented
here extend to wage inequality as well, and are
quite robust to the formulation.

There are n agents. Time evolves in discrete
periods indexed by t. The vector st describes the
employment status of the agents at time t. If
agent i is employed at the end of period t, then
sit � 1 and if i is unemployed then sit � 0.

A period t begins with some agents being
employed and others not, as described by the
status st�1 from the last period. Next, informa-
tion about job openings arrives. In particular,
any given agent hears about a job opening with
a probability a that is between 0 and 1. This job
arrival process is independent across agents. If
the agent is unemployed, then he or she will
take the job. However, if the agent is already
employed then he or she will pass the informa-
tion along to a friend, relative, or acquaintance
who is unemployed. This is where the network
pattern of relationships is important, as it de-
scribes who passes information to whom, which
is ultimately crucial in determining a person’s
long-term employment prospects. We now de-
scribe these network relationships and the pro-
cess of information exchange.

Any two people either know each other or do
not, and in this model information only flows
between agents who know each other. A graph
g summarizes the links of all agents, where
gij � 1 indicates that i and j know each other,

6 In our model, improving the status of one agent has
positive external effects on other agents’ expected future
employment. There are, of course, other factors that might
counterbalance this sort of welfare improvement: for in-
stance, the difficulty that an agent might have adapting to
new circumstances under affirmative action as discussed by
George A. Akerlof (1997).

7 Some related references can be found in Montgomery
(1991) and Granovetter (1995).
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and gij � 0 indicates that they do not know each
other. It is assumed that gij � gji , meaning that
the acquaintance relationship is a reciprocal
one.

If an agent hears about a job and is already
employed, then this agent randomly picks an
unemployed acquaintance to pass the job infor-
mation to. If all of an agent’s acquaintance are
already employed, then the job information is
simply lost. The probability of the joint event
that agent i learns about a job and this job ends
up in agent j’s hands, is described by pij(s),
where

pij �s�

� �
a if si � 0 and i � j,

a

¥
k:sk�0

gik
if si � 1, sj � 0, and gij � 1; and

0 otherwise,

and where the vector s describes the employ-
ment status of all the agents at the beginning of
the period.

In what follows, we will also keep track of
some indirect relationships, as friends of a
friend will play a couple of roles. First, they are
competitors for job information in the short run.
Second, they help keep an agent’s friends em-
ployed, which is a benefit in the longer run. We
say that i and j are path-connected under the
network g if there exists a sequence of links that
form a path between i and j.

Finally, the last thing that happens in a period
is that some agents lose their jobs. This happens
randomly according to an exogenous breakup
rate, b, between 0 and 1. This is the probability
that any given employed agent will lose his or
her job at the end of a given period, and this is
also independent across agents.

II. The Dynamics and Patterns of Employment

As time unfolds, employment evolves as a
function of both past employment status and
the network of connections which, together,
randomly determine the new employment.
Employment thus follows a finite state
Markov process, where the state is the vector
of agents’ employment status at the end of a
period and transition probabilities are depen-
dent on the network of relationships. We wish

to characterize the behavior of this stochastic
process.

The relationship between the one-period-
ahead employment status of an agent and his
pattern of connections, as described by the
pij(s)’s above, is clear. Having links to em-
ployed agents improves i’s prospects for hear-
ing about a job if i is unemployed. In addition,
decreasing the competition for information
from two-link-away connections is helpful.
That is, if friends of my friends are employed
rather than unemployed, then I have a higher
chance of being the one that my friends will
pass information to. Further indirect relation-
ships (more than two-links away) do not enter
the calculation for the one-period-ahead em-
ployment status of an agent. However, once we
take a longer time perspective, the evolution of
employment across time depends on the larger
network and status of other agents. This, of
course, is because the larger network and status
of other agents affect the employment status of
i’s connections.

We first present an example which makes it
clear why a full analysis of the dynamics of
employment is subtle.

Example 1 (Negative Conditional Correlation):
Consider Figure 1, a network with three agents,
and suppose the employment from the end of
the last period is st�1 � (0, 1, 0). In the picture,
a darkened node represents an employed agent
(agent 2), while unemployed agents (1 and 3)
are represented by empty nodes. A line between
two nodes indicates that those two agents are
linked.

Conditional on this state st�1, the employ-
ment states s1t and s3t are negatively correlated.
This is due to the fact that agents 1 and 3 are
“competitors” for any job news that is first
heard by agent 2.

Despite this negative (conditional) correla-
tion in the shorter run, agent 1 can benefit from
3’s presence in the longer run. Indeed, agent 3’s
presence helps improve agent 2’s employment

FIGURE 1. NEGATIVE CORRELATION IN CONDITIONAL

EMPLOYMENT
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status. Also, when agent 3 is employed, agent 1
is more likely to hear about any job that agent 2
hears about. These aspects of the problem
counter the local (conditional) negative correla-
tion, and help induce a positive correlation be-
tween the employment status of agents 1 and 3.

The benefits from having other agents in the
network outweigh the local negative correlation
effects, if we take a long-run perspective. The
following examples illustrate the long-run be-
havior of the Markov process regulating em-
ployment as shaped by the underlying network
of contacts between agents.

Example 2 (Correlation and Network Structure):
Consider an example with n � 4 agents and let
a � 0.100 and b � 0.015. If we think about
these numbers from the perspective of a time
period being a week, then an agent loses a job
roughly on average once in every 67 weeks, and
hears (directly) about a job on average once in
every ten weeks. Figure 2 shows unemployment
probabilities and correlations between agents’
employment statuses under the long-run steady-
state distribution.8

If there is no network relationship at all, then
we see an average unemployment rate of 13.2
percent. Even moving to just a single link
(g12 � g21 � 1) substantially decreases the
probability (for the linked agents) of being un-
employed, as it drops by more than a third, to
8.3 percent. The resulting unemployment rate

aggregated over the four agents is 10.75 per-
cent. As we see from Figure 2, adding more
links further decreases the unemployment rate,
but with a decreasing marginal impact. This
makes sense, as the value to having an addi-
tional link comes only in providing job infor-
mation when all of the existing avenues of
information fail to provide any. The probability
of this is decreasing in the number of
connections.

The correlation between two agents’ employ-
ment is (weakly9) decreasing in the number of
links that each an agent has, and the correlation
between agents’ employment is higher for di-
rect compared to indirect connections. The de-
crease as a function of the number of links is
due to the decreased importance of any single
link if an agent has many links. The difference
between direct and indirect connections in
terms of correlation is due to the fact that direct
connections provide information, while indirect
connections only help by indirect provision of
information that keeps friends, friends of
friends, etc., employed.

Also, note that the correlation between agents
1 and 3 in the third row of Figure 2 is positive
(1.9 percent). Thus, even though agents 1 and 3
are in competition for information from both
agents 2 and 4 in the shorter run, their employ-
ment is positively correlated in the long run.
This will be true more generally, as stated in the
propositions below.

Next, Figure 3 examines some eight-person
networks, with the same information arrival and
job breakup rates, a � 0.100 and b � 0.015.10

Here, again, the probability of unemployment
falls with the number of links, and the correla-
tion between two employed agents decreases
with the distance of the shortest path of links
(geodesic) between them.

Also, we can see some comparisons to the
four-person networks: an agent has a lower un-
employment rate in a complete four-person net-
work than in an eight-person circle. In this
example, the direct connection is worth more
than a number of indirect ones. More generally,

8 The numbers for more than one agent are obtained
from simulations in Maple�. We simulate the economy over
a large number of periods (hundreds of thousands) and
calculate observed unemployment averages and correla-
tions. The programs are available upon request from the
authors. The correlation numbers are only moderately ac-
curate, even after several hundred thousand periods.

9 In some cases, the correlations are indistinguishable to
the accuracy of our simulations.

10 We know from Propositions 1 and 2 that Corr(s1, s5)
is positive for the top network in Figure 3. However, it is too
small to accurately report its numerical value based on our
simulations.

FIGURE 2. CORRELATION AND NETWORK STRUCTURE I
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the trade-off between direct connections and
indirect ones will depend on the network archi-
tecture and the arrival and breakup rates. In this
example, agents rarely lose jobs, and hear about
them relatively frequently, and so direct con-
nections are employed with a high probability
regardless of the number of their neighbors, and
so indirect connections are less important than
direct ones. In situations with higher breakup
rates and lower arrival rates, indirect connec-
tions can become more important.

The model also provides a tool for analyzing
asymmetries in the network.

Example 3 (Bridges and Asymmetries): Con-
sider the network in Figure 4. Again we calcu-
late employment from simulations using the
same arrival and breakup rates as in the previ-
ous examples.

In this network the steady-state unemploy-
ment probabilities are 4.7 percent for agents 1
and 6, 4.8 percent for agents, 2, 5, 7, and 10, and
5.0 percent for the rest. While these are fairly
close, simple differences of an agent’s position
in the network affects his or her unemployment
rate, even though all agents all have the same
number of connections. Here agents 1 and 6
have lower unemployment rates than the others,

and 3, 4, 8, and 9 are the worst off. If we
compare agent 3 to agent 1, we note the follow-
ing: the average geodesic (minimum path) dis-
tance between any two agents who are directly
connected to agent 3 is 4/3. In a sense, the
agents that agent 3 is connected to are not “well
diversified.” In contrast, the average geodesic
(minimum path) distance between any two
agents who are directly connected to agent 1 is
2. Moreover, agents 5 and 6 are only path-
connected through agent 1. In fact, 1 and 6 form
what is referred to as a “bridge” in the social
networks literature.11

Example 4 (Structure Matters: Densely Versus
Closely Knit Networks): The model can also
show how other details of the network structure
matter. Compare the long-run average unem-
ployment rates on two eight-person networks
with 12 links each. In both networks, all agents
have exactly three links. But, the average length
of the paths connecting agents is different
across networks. Again, we run simulations
with a � 0.100 and b � 0.015; see Figure 5.

The average path length is lower for the circle
with diameters than for the circle with local

11 The lower unemployment (higher employment) rate of
these agents is then consistent with ideas such as Ronald S.
Burt’s (1992) structural holes, although for different reasons
than the power reasoning behind Burt’s theory.

FIGURE 3. CORRELATION AND NETWORK STRUCTURE II

FIGURE 4. A NETWORK WITH A BRIDGE

FIGURE 5. PATH LENGTH MATTERS
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four-agents clusters, meaning that the latter is
more closely knit than the former. Indeed, the
average path length decreases when the span of
network contacts spreads; that is, when the re-
lationships get less introverted or less closely
knit.12 The average unemployment increases
with closed-knittedness, reflecting the fact that
the wider the breadth of current social ties, the
more diversified are the sources of information.

The fact that the long-run employment status
of path-connected agents is positively corre-
lated in the above examples is something that
holds generally. In particular, as we divide a
and b both by some larger and larger factor—so
that we are looking at arbitrarily short time
periods—then we can begin to sort out the
short- and longer-run effects. We call this the
“subdivision” of periods. In the limit we ap-
proximate a continuous time (Poisson) process,
which is the natural situation where such tem-
porary competition for jobs is short lived and
inconsequential, while the overall status of in-
direct connections tells one a great deal about
the possible status of direct connections, and the
longer-run effects come to dominate.

PROPOSITION 1: Under fine enough subdivi-
sions of periods, the unique steady-state long-
run distribution on employment is such that the
employment statuses of any path-connected
agents are positively correlated.13

The proposition shows that despite the short-
run conditional negative correlation between
the employment of competitors for jobs and
information, in the longer run any intercon-
nected agents’ employment is positively corre-
lated. This implies that there is a clustering of
agents by employment status, and employed
workers tend to be connected with employed
workers, and vice versa. This is consistent with
the sort of clustering observed by Topa (2001).
The intuition is clear: conditional on knowing
that some set of agents are employed, it is more
likely that their neighbors will end up receiving
information about jobs, and so on.

Moreover, the positive correlation holds not
only under the steady-state distribution, but also
across any arbitrary time periods. That is, agent
i’s employment status at time t is positively
correlated with agent j’s status at time t� for
general values of t and t�.

PROPOSITION 2: Under fine enough subdivi-
sions of periods, starting under the steady-state
distribution, the employment statuses of any two
path-connected agents are positively correlated
across arbitrary periods.14

III. Duration Dependence and Persistence in
Unemployment

As mentioned in the introduction, there are
some other patterns of unemployment that have
been observed in the data and are exhibited by
a networked model. To see this, let us examine
some of the serial patterns of employment that
emerge.

Again, consider job arrival and breakup rates

12 Here, close-knittedness is measured by the average
path length, which is just the average across all pairs of
agents of the length of the shortest path between them. An
alternative measure of the tightness of a network is, for
instance, the clustering coefficient, which reflects the level
of intraconnectedness among agents with a common friend.
Both measures are roughly equivalent, though in some
cases, when network links are randomly rewired, the aver-
age path length drops sharply, in contrast with a lower
corresponding decrease of the clustering coefficient, a phe-
nomenon often termed a “small world” effect (see, e.g.,
Duncan J. Watts and Steven H. Strogatz, 1998).

13 More formally, any network g on the population of n
agents, arrival probability a � (0, 1) and breakdown prob-
ability b � (0, 1) define a finite-state irreducible and ape-
riodic Markov process M � (g, a, b) on employment
statuses. Denote by � the (long-run) steady-state distribu-
tion associated to this process, which is uniquely defined.
By dividing a and b by some common T, we obtain an
associated Markov process MT � (g, a/T, b/T), that we
name the T � period subdivision of M, with steady-state
distribution �T. We show that there exists some T� such that,

for all T � T�, the employment statuses of any path-
connected agents are positively correlated under �T.

14 More formally, we show that there exists some T� such
that Cov(Sit, Sjt�) � 0 for any path-connected i and j and
periods t and t�, under the Markov process MT for any
subdivision of T � T�. “Starting under the steady-state
distribution” means that the starting state is randomly drawn
according to the steady-state distribution, and then all ex-
pectations account for the dependence of the process on this
initial randomness. This is necessary, as Example 1 shows
that starting from some particular states, one cannot escape
short-run negative correlation. Starting from the steady-
state distribution is “as if” our expectations are taken where
we let the process run for a long time and average over all
dates that are t � t� apart from each other.
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of a � 0.100 and b � 0.015.15 Ask the follow-
ing question: suppose that a person has been
unemployed for at least each of the last X peri-
ods. What is the probability that he or she will
be employed at the end of this period? We
examine the answer to this question in Figure
6 as we vary the number of periods of observed
past unemployment and the network. The en-
tries represent the probability that agent 1 will
be employed next period, conditional upon the
network structure and having been unemployed
for at least the given number of consecutive
previous periods.

In the case where there is no network, the
probability of becoming employed is indepen-
dent of the observed history—it is simply the
probability that an agent hears about a job (and
then does not lose it in this period). Once there
is a network in place, the length of the unem-
ployment history does give us information: it
provides insight into the likelihood that the
agents’ connections are unemployed.

The patterns observed here are not particular
to the example but hold more generally.

PROPOSITION 3: Under fine enough subdivi-
sions of periods and starting under the steady-
state distribution, the conditional probability
that an individual will become employed in a
given period is decreasing with the length of
their observed (individual) unemployment spell.

Indeed, longer past unemployment histories
lead to worse inferences regarding the state of
one’s connections and the overall state of the
network. This leads to worse inferences regard-

ing the probability that an agent will hear indi-
rect news about a job. That is, the longer i has
been unemployed, the higher the expectation
that i’s connections and path connections are
themselves also unemployed. This makes it
more likely that i’s connections will take any
information they hear of directly, and less likely
that they will pass it on to i. In other words, a
longer individual unemployment spell makes it
more likely that the state of one’s social envi-
ronment is poor, which in turn leads to low
forecasts of future employment prospects.

As we mentioned in the introduction, this
explanation for duration dependence is comple-
mentary to many of the previous explanations.
For instance, one (among a number of) expla-
nations that has been offered for duration de-
pendence is unobserved heterogeneity.16 A
simple variant of unobserved heterogeneity is
that agents have idiosyncratic features that are
relevant to their attractiveness as an employee
and are unobservable to the econometrician but
observed by employers. With such idiosyncratic
features some agents will be quickly reem-
ployed while others will have longer spells of
unemployment, and so the duration dependence
is due to the unobserved feature of the worker.
While the network model also predicts duration
dependence, we find that over the lifetime of a
single worker, the worker may have different
likelihoods (which are serially correlated) of
reemployment depending on the current state of
their surrounding network. So, it also predicts
that controlling for the state of the network
should help explain the duration dependence. In
particular, it offers an explanation for why
workers of a particular type in a particular lo-
cation (assuming networks correlate with loca-
tion) might experience different employment
characteristics than the same types of workers in
another location, all other variables held con-
stant. So for example, variables such as location
that capture network effects should interact with

15 These calculations are also from simulations, where
here we can directly calculate these conditional probabili-
ties, by looking at conditional frequencies on observed
strings of unemployment of X periods long. The limit num-
bers are obtained analytically, and are simply the same as
having no network.

16 Theoretical models predicting duration dependence,
though, are a bit scarcer. In Olivier J. Blanchard and Peter
Diamond (1994), long unemployment spells reduce the re-
employment probability through a stigma effect that induces
firms to hire applicants with lower unemployment durations
(see also Tara Vishwanath, 1989, for a model with a stigma
effect). In Christopher A. Pissarides (1992), duration depen-
dence arises as a consequence of a decline in worker skills
during the unemployment spell.

FIGURE 6. DURATION DEPENDENCE
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other worker characteristic variables which
would not be predicted by other models.17

A. Comments on Stickiness in the Dynamics
of Employment

The duration dependence for individuals is
reflective of a more general persistence in em-
ployment dynamics. This persistence can be
understood by first noting a simple feature of
our model. When aggregate employment is rel-
atively high, unemployed agents have relatively
more of their connections employed and face
relatively less competition for job information,
and are more likely to hear about jobs. Con-
versely, when aggregate employment is rela-
tively low, unemployed agents are relatively
less likely to hear about jobs.

To illustrate this point, consider the bridge
network in Figure 4 that connects ten agents.
We calculate the (average) individual probabil-
ity that an unemployed agent finds a job within
the current period, conditional on the total num-
ber of employed agents in the network. We
provide calculations for two different pairs of
parameter values, a � 0.100, b � 0.015, and
a � b � 0.050. The probabilities are expressed
in percentage terms.

When there is no network connecting agents,
the probability that an unemployed agent finds a
job is simply the arrival rate a. In contrast, when
agents are connected through a network (here,
the bridge network of Figure 4), the probability
of finding a job varies with the employment
state. This conditional probability is a when
everybody is unemployed, but then increases
with the number of employed agents in the
network, as shown in Table 1.

This state dependence of the probability of
hearing about a job, then implies a persistence
in aggregate employment dynamics. As a net-
work gets closer to full employment, unem-
ployed agents become even more likely to

become employed. Symmetrically, the lower
the employment rate, the lower the probability
that a given unemployed agent hears about a
job.18 Although the process oscillates between
full employment and unemployment, it exhibits
a stickiness and attraction so that the closer it
gets to one extreme (high employment or high
unemployment) the greater the pull is from that
extreme. This leads to a sort of boom and bust
effect, as illustrated in Figure 7.

Starting from full employment, Figure 7 plots
the dynamics of a simulation of aggregate em-
ployment over 100 periods for an empty net-
work (the dotted line) and for the bridge
network of Figure 4 (the plain line). We ran the
dynamics for two different parameter pairs.
First, when a � 0.100 and b � 0.015, the
economy oscillates between full and high em-
ployment in the bridge network while it oscil-
lates more widely between high and low
employment in the empty network. An impor-
tant feature is that the spells of unemployment
are shorter in the bridge network; this is reflec-
tive of the fact that unemployed agents hear
about jobs more quickly when the economy is
near full employment. The fact that the arrival
rate is relatively high compared to the breakup
rate means that the bridge network stays very
close to full employment most of the time. In
the second simulation, a � 0.050 and b �
0.050, and so the arrival rate and breakup rates
are equal, and the economy oscillates more
widely between high and low employment in
both networks. Still the empty network experi-
ences lower average employment as we should
expect; but more importantly, the bridge net-
work snaps back to full employment more

17 We thank Eddie Lazear for pointing this out to us.

18 We have not explicitly modeled equilibrium wages
and the job arrival process. Incorporating these effects
might mitigate some of the effects our model exhibits.
However, taking the arrival process as exogenous helps us
show how the network pushes the process to have certain
characteristics. See Randall Wright (1986) for a search
model that generates fluctuating dynamics in a proper mar-
ket setting.

TABLE 1—PROBABILITY OF FINDING EMPLOYMENT FOR AGENTS IN THE BRIDGE NETWORK

Number of employed 0 1 2 3 4 5 6 7 8 9

a � 0.100; b � 0.015 10.0 10.4 12.0 14.5 17.9 20.7 25.4 25.7 28.7 34.4
a � 0.050; b � 0.050 5.0 5.9 6.2 6.9 8.6 9.3 11.3 12.2 15.0 18.5
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quickly when pushed away from it. In line with
the stickiness of the process, note that the only
situation where more than two agents are un-
employed for more than five periods appears
between periods 60 and 80, and there we hit the
lowest employment overall—which is illustra-
tive of the relationship between level of unem-
ployment and duration.

We also point out that employment need not
be evenly spread on the network, especially in a

network such as the bridge network from Figure
4. As a result temporal patterns may be asyn-
chronous across different parts of the network,
with some parts experiencing booms and other
parts experiencing recessions at the same time.
This asynchronous behavior is illustrated in Fig-
ure 8, which plots separately over 100 periods the
aggregate employment of agents 1 to 5 (the dotted
line) and that of agents 6 to 10 (the plain line) in
the bridge network from Figure 4 from a simula-
tion with a � 0.050 and b � 0.050.

IV. Dropping Out and Inequality in
Employment

We now turn to showing how the network
model has important implications for inequality
across agents, and how that inequality can
persist.

Our results so far show that an agent’s em-
ployment status will depend in important ways
on the status of those agents who are path-
connected with the agent. This leads to some
heterogeneity across agents, as their networks
and the local conditions in their networks will
vary. Note, however, that in the absence of
some structural heterogeneity across agents,
their long-run prospects will look similar. That
is, if the horizon is long enough, then the im-
portance of the starting state will disappear.

However, expanding the model slightly can
introduce substantial and sustained inequality
among agents, even if their network structures
are identical. The expansion in the model comes

FIGURE 7. TIME SERIES OF EMPLOYMENT FOR NETWORKED

VERSUS DISCONNECTED AGENTS

FIGURE 8. ASYNCHRONOUS PATTERNS OF EMPLOYMENT

ACROSS NETWORK SECTIONS
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in the form of endogenizing the network by
allowing agents to “drop out” of the network.
This decision can be sensitive to starting con-
ditions, and have lasting and far-reaching ef-
fects on the network dynamics. Let us take a
closer look.

Suppose that agents have to decide whether
to be in the labor market network or to drop out.
We model this as a once-and-for-all decision,
with no reentry allowed for agents choosing to
drop out. Staying in the labor market results in
an expected present value of costs ci � 0. These
include costs of education, skills maintenance,
opportunity costs, etc. We normalize the outside
option to have a value of 0, so that an agent
chooses to stay in the labor force when the
discounted expected future wages exceed the
costs.

There are two simplifications made here. One
is that we model this as if all agents make their
decisions simultaneously. In reality although
the bulk of a given agent’s connections may be
at similar stages of their lives, the agent may
also be connected to other agents at different
stages in their lives. The second simplification
is that the drop-out decision is made just once.
Implicit in this is the idea that the bulk of the
costs (education and opportunity) appear at an
early stage of an agent’s career, and once those
costs are sunk there is little incentive to drop
out. These are both clearly crude approxima-
tions, but reasonable starting points.

There are some obvious comparative statics.
Drop-out percentages will be decreasing in
wages and increasing in costs. Drop-out deci-
sions also depend on how well an agent is
connected. With better connections (for in-
stance, larger numbers of links holding all else
constant), there is a larger chance of hearing
about jobs and so the future prospects of em-
ployment are higher, leading to a higher thresh-
old of costs where the agent would choose to
drop out.

The part that is less transparent, but still quite
intuitive, is the interaction between the deci-
sions of different agents. Positive correlation of
employment for path-connected agents both
within and across periods implies that having
more agents participate is better news for a
given agent as it effectively improves the
agent’s network connections and prospects for
future employment. Therefore, the decisions to
stay in the labor force are strategic comple-

ments, implying that the drop-out game is su-
permodular. That is, as more of the other
players decide to stay in, a given player’s deci-
sion to stay in is increasingly favored relative to
dropping out. The theory of supermodular
games then guarantees the existence of a max-
imal Nash equilibrium in pure strategies. A
maximal equilibrium is such that the set of
agents staying in the market is maximal, so that
the set of agents staying in at any other equi-
librium of the game is a subset of those staying
in at the maximal equilibrium. We restrict at-
tention to such maximal equilibria.19,20

This supermodular aspect of the drop-out de-
cisions is where we see the emergence of the
contagion effects discussed in the introduction.
The fact that an agent drops out leads to worse
future employment prospects for that agent’s
connections. This in turn increases the chance
that those agents drop out, and so forth. Thus,
drop-out decisions are not independently and
identically distributed (i.i.d.), even when the
costs of staying in the labor force are i.i.d.
across agents. This effect, as well as how the
initial condition of the network affects drop-out
rates, are illustrated in the following example.

Example 5 (Initial Conditions, Dropouts, and
Contagion): To measure the contagion effect,
we first ask how many people would drop out
without any equilibrium effect, that is, if they
each did the calculation supposing that every-
one else was going to stay in. Then we can
calculate how many people drop out in equilib-
rium, and any extra people dropping out are due
to somebody else dropping out, which is what
we attribute to the contagion effect.

For these calculations, we take the cost of
staying in the network, ci, to be uniformly dis-
tributed on [0.8, 1] and fix the per period wage
to be w � 1. We do the calculations with
complete networks, where each participating
agent is directly linked to every other agent. We

19 Formally, let di � {0, 1} denote i’s decision of
whether to stay in the labor market, where di � 1 stands for
staying in. A vector of decisions, d**, is a maximal equi-
librium if it is an equilibrium and, for every other equilib-
rium d*, we have d** � d*, where � is the component-
wise ordering on {0, 1}n.

20 There is a coordination game going on (players may
all wish to drop out if all others do, etc.), and here looking
at the maximal equilibrium eliminates coordination errors,
and allows us to focus on the network effects of the model.
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compute the percentage of dropouts for differ-
ent values of n, and we also calculate the per-
centage of dropouts due to contagion. We do the
calculation for two initial states: everybody em-
ployed, s0 � (1, ... , 1), and everybody unem-
ployed, s0 � (0, ... , 0).

For Tables 2 and 3, the calculations are done
for a discount rate of 0.9, where we simplify
things by assuming that an agent starts in the
initial state, and then jumps to the steady state in
the next “period.” This just gives us a rough
calculation, but enough to see the effects. So, an
agent who stays in gets a net payoff of 0.1si �
0.9pi � ci, where pi is the agent’s steady-state
employment probability in the maximal equilib-
rium. We again set a � 0.100 and b � 0.015.21

So, for instance, in Table 3, when n � 16
and everybody is initially unemployed, we
have 68 percent of the people dropping out on
average. This means that we expect about 11
people to drop out on average and about 5
people to stay in. The 8.7 percent due to
contagion means that about 1.5 (�0.087 	
16) of the people dropping out are doing so
because others drop out, and they would be
willing to stay in if all the others were willing

to. Thus about 9.5 of the 11 people would
drop out even if all stayed in, and 1.5 of the
11 drop out because of the fact that some
others have dropped out.

Note that the contagion effect is larger for
the worse starting state and is also larger for
smaller networks (although not entirely
monotone). This is true because the impact of
someone dropping out is more pronounced in
worse starting states and smaller networks. In
the limit, the impact of having people drop
out is negligible and so the contagion effect
disappears when agents have very large num-
bers of connections (holding all else fixed).
For n � 1, there cannot be a contagion effect,
so the number is 0 there as well.

The nonmonotonicity of the contagion ef-
fect in n is a bit subtle. The possibility of
contagion is initially nonexistent. It then in-
creases as the number of connections in-
creases, since there are more possible
combinations of neighbor dropouts that can
take place with three connections (when n �
4) than one connection (when n � 2), and
any single dropout can then trigger another.
Eventually, with large numbers of connec-
tions, the marginal impact of an additional
connection to a given agent is already very
low, and in fact becomes second order in the
number of agents. The fact that it shrinks so
much means that eventually the contagion
effect disappears as even having some frac-
tion of one’ s connections drop out is no
longer a problem if there are still a large
number of connections staying in.

The previous example shows that different
social groups with identical network relation-
ships but differing by their starting employment

21 In these calculations we estimate pi by an approxima-
tion formula, to save on calculations, as we need to iterate
on both the ci’s and the number of agents. The approxima-
tion formula leads to some slight biases. In the simulations,
for any given n, we first randomly draw the ci’s. We then
calculate the pi’s if all agents stay in. From this we can find
out which agents would drop out. We can then recalculate
the pi’s for the new network, and see which agents drop out
with the new pi’s. We continue this process until no addi-
tional agents drop out. This provides the maximal equilib-
rium for this draw of ci’s. We then run iterations on this
algorithm for new draws of ci’s and calculate sample aver-
ages over the iterations.

TABLE 2—DROPOUTS AND CONTAGION—STARTING EMPLOYED

s0 � (1, ... , 1) n � 1 n � 2 n � 4 n � 8 n � 16 n � 32 n 3 


Drop-out percentage 58.3 44.5 26.2 14.7 9.7 7.8 6.8
Percentage due to contagion 0 8.8 5.0 1.4 0.4 0.2 0

TABLE 3—DROPOUTS AND CONTAGION—STARTING UNEMPLOYED

s0 � (0, ... , 0) n � 1 n � 2 n � 4 n � 8 n � 16 n � 32 n 3 


Drop-out percentage 100 97.8 92.9 82.2 68.0 60.6 56.8
Percentage due to contagion 0 12.1 21.7 18.9 8.7 3.0 0
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state, have different drop-out rates. Because
dropping out hurts the prospects for the group
further, this can have strong implications for
inequality patterns. We now show that this
holds more generally.

In analyzing the drop-out game for the
proposition below we do not alter the network
structure when an agent drops out; instead we
simply set the dropout’ s employment status to
be 0 forever. Thus a dropout’ s social contacts
do not change and his or her contacts still pass
on news about jobs. It is as if the agent’ s
connections still pass the agent information
thinking that the agent is simply unemployed
rather than a dropout. This might introduce a
bias to the extent that information is no longer
passed on to someone who has dropped out.
Accounting for such effects would complicate
the analysis as one would need to keep track
of any modifications of the network structure
as agents drop out.

PROPOSITION 4: Consider two social
groups with identical network structures. If
the starting state person-by-person is higher
for one group than the other, then the set of
agents who drop out of the first group in the
maximal equilibrium is a subset of their coun-
terparts in the second group. These differ-
ences in drop-out rates generate persistent
inequality in probabilities of employment in
the steady-state distributions, with the first
group having weakly better employment prob-
abilities than their counterparts. There is a
strict difference in employment probabilities
for all agents in any component of the net-
work for which the equilibrium drop-out de-
cisions differ across the two groups.

So we have established that a networked
model can generate persistent differences
among two social groups with identical eco-
nomic characteristics except that they differ in
their starting state. As mentioned in the intro-
duction, this is consistent with documented dif-
ferences in drop-out rates among blacks and
whites, as well as studies that show that ac-
counting for voluntary dropouts from the labor
force negatively affect the standard measures of
black economic progress (e.g., Chandra, 2000,
Heckman et al., 2000). While this comparison is
stylized, the fact that we consider two com-
pletely identical networks except for their start-

ing states emphasizes how important starting
conditions can be.22

Just to show that the inequality we are seeing
is not due to the isolation of the groups of agents
with different starting conditions, let us exam-
ine drop-out decisions when there is a bridge
between two groups.

Example 6 (Connected Social Groups and
Dropouts): Consider the network structure
from Example 3; see Figure 9.

Agents 1 to 5 start employed and agents 6 to
10 start unemployed.

We do drop-out calculations as in Example 5.
We take the ci to be uniformly distributed on
[0.8, 1], fix w � 1, use a discount rate of 0.9,
and have agents who stay in get a net payoff of
0.1si � 0.9pi � ci, where pi is the agent’s
steady-state employment probability in the
maximal equilibrium of the drop-out game, and
si is their starting employment state.

The drop-out probabilities for the different
agents are illustrated in Table 4.

Note that the drop-out rates are significantly
higher for the agents who start in the unem-
ployed state, even though the network is con-
nected. The agent who forms the bridge from
the unemployed side is less likely to drop out
than the other unemployed agents: while the
counterpart agent who forms the bridge from

22 Differences in network structure, rather than differ-
ences in starting conditions, can also lead to different drop-
out decisions and sustained inequality. For instance, as we
saw in Example 2, under exactly the same a and b and with
each agent having two links, the expected long-run unem-
ployment of an agent in a network of four agents is 6.3
percent while it is 6 percent for an agent in a network of
eight agents. While the difference in this example is small
(on the order of a 5-percent change in unemployment), it
can easily become amplified through the contagion effect.

FIGURE 9. THE BRIDGE NETWORK WITH ASYMMETRIC

STARTING STATES
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the employed side is more likely to drop out
than other employed agents.23 While this exam-
ple is clearly highly stylized, it does provide
some intuitive predictions, and shows that start-
ing conditions can lead to sustained differences
across groups even in a connected network.

Let us discuss the relation of our analysis of
drop-out rates to theories of discrimination.
Classical theories of discrimination, such as that
of Gary Becker (1957) or Thomas C. Schelling
(1971), postulate that individuals have an intrin-
sic preference for individuals in their own soci-
etal group.24 Because of such preferences and
externalities, individuals end up segregated in
the workplace, and the resulting sorting patterns
by group affiliation can breed wage inequal-
ity.25 Our model offers an alternative and novel
explanation for inequality in wages and em-
ployment.26,27 Two otherwise identical individ-

uals embedded in two societal groups with
different collective employment histories (or
with different networks as discussed below)
typically will experience different employment
outcomes. In other words, social networks in-
fluence economic success of individuals at least
in part due to the different composition and
history of individuals’ networks. When coupled
with drop-out decisions, sustained inequality
can be the result of differences in history. We
discuss some policy implications of this net-
work viewpoint below.

V. A Look at Policy Implications

Let us mention some lessons that can be
learned from our model about policy in the
presence of network effects, and some of which
we will illustrate with some examples below.
One obvious lesson is that the dynamics of the
model show that policies that affect current
employment will have both delayed and long-
lasting effects.

Another lesson is that there is a positive exter-
nality between the status of connected individuals.
So, for instance, if we consider improving the
status of some number of individuals who are
scattered around the network, or some group that
are more tightly clustered, there will be two sorts
of advantages to concentrating the improvements
in tighter clusters. The first is that this will im-
prove the transition probabilities of those directly
involved, but the second is that this will improve
the transition probabilities of those connected with

23 There may also be differences between the drop-out
rates of agents 2 and 3, or 8 and 9, as things are not
symmetric; but these differences are beyond the accuracy of
our simulations.

24 There is also an important literature on “statistical”
discrimination that follows Arrow (1972), John J. McCall
(1972), Edmond S. Phelps (1972), and others. Our work is
quite complementary to that work as well.

25 We use the word “can” because it may be that some
employers discriminate while the market wages do not end
up unequal. As Becker (1957) points out, the ultimate
outcome in the market will depend on such factors as the
number of nondiscriminating employers and elasticities of
labor supply and demand.

26 While we have not included “fi rms” in our model, note
that to the extent to which the job information comes
initially from an employee’s own firm, there would also be
correlation patterns among which firms connected agents
work for. That is, if an agent’s acquaintance is more likely
to be getting information about job openings in the acquain-
tance’s own firm, then that agent has a more than uniformly
random likelihood of ending up employed in the acquain-
tance’s firm. This would produce some segregation patterns
beyond what one would expect in a standard labor market
model.

27 Two other important explanations for inequality can be
found in Glenn C. Loury (1981) and Steven Durlauf (1996). As
in our model, both papers relate social background to individ-
ual earning prospects. In Loury’s paper, the key aspect of

social background is captured by family income which then
determines investment decisions in education. In Durlauf’s
work, education is modeled as a local public good, and com-
munity income, rather than family incomes, affects human
capital formation. In both cases, because the social background
imposes constraints on human capital investment, income dis-
parities are passed on across generations. In our paper, we
focus instead on the larger societal group within which one is
embedded, its network structure, collective employment his-
tory, and access to information about jobs. This offers a com-
plementary, rather than competing, explanation for sustained
inequality.

TABLE 4—DROP-OUTS RATES IN THE BRIDGE NETWORK WITH ASYMMETRIC STARTING

STATES

Agent 1 2 3 4 5 6 7 8 9 10

Drop-out rate 0.47 0.42 0.42 0.42 0.42 0.91 0.93 0.93 0.93 0.93
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these individuals. Moreover, concentrated im-
provements lead to a greater improvement of the
status of connections than dispersed improve-
ments. This will then propagate through the
network.

To get a better picture of this, consider the
drop-out game. Suppose that we are in a situa-
tion where all agents decide to drop out. Con-
sider two different subsidies: in the first, we
pick agents distributed around the network to
subsidize; while in the second we subsidize a
group of agents who are clustered together. In
the first case, other agents might now just have
one (if any) connection to an agent who is
subsidized. This might not be enough to induce
them to stay in, and so nobody other than the
subsidized agents stay in the market. Here the
main impact on the drop-out rate is directly
through the subsidy. In contrast, in the clustered
case, a number of agents now have several
connections who are in the market. This may
induce these other agents to stay in. This can
then have a contagion effect, carrying over to
agents connected with them and so on. Beyond
the direct impact of the subsidy, this has an
indirect contagion effect that decreases the
drop-out rate, and then improves the future sta-
tus of all of the agents involved even further
through the improved network effect.

Exactly how one wants to distribute subsidies
to maximize their impact is a subtle matter. We
look at an example to highlight the subtleties.

A. Concentration of Subsidies

Let us again consider a society of eight indi-
viduals, again where a � 0.100 and b � 0.015.
Suppose the costs of staying in the network, ci,
are drawn at random from a uniform distribu-
tion with support [0.8, 1]. Initially, everybody is
unemployed, so s0 � (0, ... , 0). We work with
drop-out decisions when the discount rate is 0.9,
as in the previous examples.

The experiment we perform here is the fol-
lowing. In each case we subsidize two agents to
stay in the market—simply by lowering their
cost ci to 0.28 The question is which two agents

we subsidize. In the network, each agent has
four connections. The network structure is as
follows. Each agent has three links—two imme-
diate neighbors and one that is slightly further
away. This is pictured in Figure 10.

Table 5 provides the percentage of agents
who stay in the network as a function of who is
subsidized (two agents in each case) and what
the range of costs (randomly drawn) are.29

There are some interesting things to note.
In the highest cost range, even having one

neighbor stay in is not enough to induce an
agent to stay, and so the only agents staying in
are the subsidized ones. Here it is irrelevant
which agents are subsidized as they are the only
ones staying in.

In the lowest two cost ranges, having one
neighbor stay in has a big impact, and so
spreading the subsidies out has the maximal
impact. Agents 1 and 5 are on opposite ends
of the circle and have no direct contact in
common. Subsidizing agents 1 and 5 thus
amounts for spreading subsidies out, and it is
indeed the best policy in terms of maximizing

28 This might in fact overestimate the necessary subsidy
costs, as one might not need to lower ci by so much.
Moreover, we would end up with even lower subsidy costs
by concentrating subsidies which increases the future pros-
pects of the subsidized agents. Thus, lower costs of subsi-

dization would be a further reason for concentrating
subsidies.

29 Note that the different cases of who are subsidized
cover all possible configurations, up to a relabeling of the
agents.

FIGURE 10. THE STARTING NETWORK STRUCTURE
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the number of agents who stay in the market
when the cost is at its lowest level.30 When
the cost is in the 0.82 to 1 range, we begin to
see a slight change, where now subsidizing
agent 1 and 6 is better, and these agents are
slightly closer together.

The places where things favor a different
sort of policy is in the middle range of costs.
Here costs are high enough so that it is quite
likely that an agent will drop out if she has
only one neighbor who stays in, but is less
likely if she has two neighbors who stay in,
and so contagion effects are relatively high.
Spreading the subsidies out to agents 1 and 5,
or 3 and 7, etc., does worse than having them
close together (1 and 2, 1 and 3, 1 and 4) and
the best possible subsidy here is of the form 3
and 8. What matters is the number of contacts
subsidized agents have in common. Agents 3
and 8 are well-placed since both 1 and 2 are
connected to both of them. Thus, this concen-
trates subsidies in a way that provides a high
probability that 1 and 2 will stay in. Without
such a concentration of subsidies, we get a
higher drop-out rate.

What this suggests is that, in designing sub-
sidy or affirmative action programs, attention to
network effects is important. Concentrating ef-
forts more locally can end up having a higher or
lower impact, depending on the network
configuration.

VI. Possible Empirical Tests

While as we have discussed, the model gen-
erates patterns of employment and dropouts that
are consistent with the stylized facts from a
number of studies, one might want to look at
some additional and more direct tests of the
model’s predictions.

Note that drop-out rates and contagion effects
depend both on the costs ranges and on the
values for the arrival rate and breakup rate.
Some comparative statics are quite obvious: (1)
as the expected cost increases (relative to
wages), the drop-out rate increases; (2) as the
breakup rate increases, the drop-out rate in-
creases; and (3) as the arrival rate increases, the
drop-out rate decreases. However, there are also
some more subtle comparisons that can be
made.

For instance, let us examine what happens as
job turnover increases. Here, as the arrival and
breakup rates are both scaled up by the same
factor, we can see the effects on the drop-out
rates. Note that such a change leaves the base
employment rate (that of an isolated agent) un-
changed, and so the differences are attributable
entirely to the network effects. Table 6 pulls out
various rescalings of the arrival and breakup
rates for the two cost ranges when n � 4 and
agents are related through a complete network.
As before, the first figure is the drop-out rate
and the second is the amount attributable to
contagion effects.

As we can see, higher turnover rates (higher
rescalings of a and b) lead to higher drop-out
rates. The intuition behind this is as follows.

30 It is almost a tie with 1 and 6, but slightly ahead in the
next decimal.

TABLE 5—SUBSIDIZATION STRUCTURE AND PERCENTAGE OF AGENTS WHO STAY IN

Agents subsidized

Cost range

0.80 to 1 0.82 to 1 0.84 to 1 0.86 to 1

1 and 2 52.9 39.4 27.8 25.0
1 and 3 53.6 39.4 27.1 25.0
1 and 4 57.2 43.4 27.9 25.0
1 and 5 57.9 43.8 27.0 25.0
1 and 6 57.9 44.0 27.0 25.0
1 and 7 57.1 43.4 27.8 25.0
1 and 8 53.5 39.4 27.1 25.0
3 and 4 54.5 39.3 26.1 25.0
3 and 7 57.7 43.6 27.4 25.0
3 and 8 56.2 42.9 29.1 25.0
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With higher turnover rates, when an agent
becomes unemployed it is more likely that
some of his neighbors are unemployed. This
is actually quite subtle, as the base unem-
ployment rate has not changed. However,
higher turnover makes it more likely that sev-
eral agents lose their jobs at the same time, and
end up competing for information. This effect
then lowers the employment rate, which in turn
feeds back and results in less valuable
connections.

This effect provides for a testable implica-
tion: industries with higher turnover rates, all
else held equal, should have higher drop-out
rates. Operationalizing this requires some care,
however, as we do not model the career choices
for workers or an equilibrium in wages. None-
theless, it is clear that the prediction is that the
wage to education cost ratio must be relatively
higher in order to induce workers to enter ca-
reers where the turnover rate is high compared
to those where it is low, even after correcting
for any risk aversion or income-smoothing
motives.

Let us briefly mention some other possible em-
pirical tests of the model. To the extent that direct
data on network relationships is available, one can
directly test the model. In fact, such information in
the form of survey data (the General Social Sur-
vey) has been used extensively in the sociology
literature and also in conjunction with wage data
(e.g., Troy Tassier, 2001).

There are also other tests that are possible.
For instance, there is data concerning how the
reliance on networks for finding jobs varies
across professions, age, and race groups, etc.
(see the table in Montgomery, 1991, for in-
stance, to see some differences across profes-
sions). Our model then predicts that the
intensity of clustering, duration dependence,
and drop-out rates should also vary across these
socioeconomic groups. Moreover, even within a
specific socioeconomic group, our model pre-
dicts differences across separate components of

the network as the local status of the connec-
tions changes.

VII. Concluding Discussion

As we have mentioned several times, we treat
the network structure as given, except that we
consider drop-out decisions. Of course, people
have more specific control over whom they
socialize with both in direct choice of their
friendships, as well as through more indirect
means such as education and career choices that
affect whom they meet and fraternize with on a
regular basis. Examining the network formation
and evolution process in more detail could pro-
vide a fuller picture of how the labor market and
the social structure co-evolve by mutually in-
fluencing each other: network connections
shape the labor market outcomes and, in turn,
are shaped by them.31

In addition to further endogenizing the net-
work, we can also look deeper behind the in-
formation exchange procedure.32 There are a
wide variety of explanations (especially in the
sociology literature, for instance see Granovetter,
1995) for why networks are important in job
markets. The explanations range from assortive
matching (employers can find workers with

31 There is a growing literature on the formation of
networks that now provides a ready set of tools for analyz-
ing this problem. See Jackson (2004) for a survey of models
applying to networks of the form analyzed here, as well as
Sanjeev Goyal (2004), Frank Page (2004), and Anne van
den Nouweland (2004) for issues relating to learning, far-
sightedness, and cooperation structures.

32 Recall that the results stated so far extend to a frame-
work more general than the simple communication protocol
where only direct contacts can communicate with each other
and unemployed direct contacts are treated on an equal
footing. In particular, the general framework accommodates
a priori ranking among contacts, indirect passing of job
information, heterogeneous jobs with different wages, idio-
syncratic arrival and breakup rates, information passing, and
job turnover dependent on the overall wage distribution, etc.
See Calvó-Armengol and Jackson (2003) for more details.

TABLE 6—DEPENDENCE OF DROPOUTS AND CONTAGION ON ARRIVAL AND BREAKUP RATES

Scaled by a and b 1 3 5 7 9

0.05, 0.015 0.15, 0.045 0.25, 0.075 0.35, 0.105 0.45, 0.135
ci � [0.8, 1] 69:27 76:27 83:26 88:24 96:20
ci � [0.6, 1] 24:3 28:3 34:5 37:5 42:5

442 THE AMERICAN ECONOMIC REVIEW JUNE 2004



similar characteristics by searching through
them), to information asymmetries (in hiring
models with adverse selection), and simple in-
surance motives (to help cope with the uncer-
tainty due to the labor market turnover). In each
different circumstance or setting, there may be a
different impetus behind the network. This may
in turn lead to different characteristics of how
the network is structured and how it operates.
Developing a deeper understanding along these
lines might further explain differences in the
importance of networks across different
occupations.

Another aspect of changes in the network over
time is that network relationships can change as
workers are unemployed and lose contact with
former connections. Long unemployment spells
can generate a desocialization process leading to a
progressive removal from labor market opportu-

nities and to the formation of unemployment
traps. This is worth further investigation.

Another important avenue for extension of
the model is to endogenize the labor market
equilibrium so that the probability of hearing
about a job depends on the current overall em-
ployment and wages are equilibrium ones. This
would begin to give insights into how network
structure influences equilibrium structure.

Finally, we point out that although our focus
in this paper is on labor markets, this model can
easily be adapted to other sorts of behaviors
where social networks play a key role in infor-
mation transmission. An example is whether or
not individuals take advantage of certain avail-
able welfare programs. Recent studies by Mari-
anne Bertrand et al. (2000) and Anna Aizer and
Janet Currie (2002) point to the importance of
social networks in such contexts.

APPENDIX

We first provide some definitions that are necessary for the proofs that follow. Here we specialize
the definitions to random vectors S � (S1, ... , Sn) whose components take on values of 0 or 1. We
follow the convention of representing random variables by capital letters and realizations by small
letters.

Association
While first-order stochastic dominance is well suited for capturing distributions over a single

agent’s status, we need a richer tool for discussing interrelationships between a number of agents at
once, and this is needed in the proofs that follow. The following definition is first due to James D.
Esary et al. (1967).

Let � be a joint probability distribution describing S.
� is associated if Cov�( f, g) � 0 for all pairs of nondecreasing functions f : {0, 1}n 3 � and

g : {0, 1}n 3 �, where Cov( f, g) is the covariance E�[ f(S)g(S)] � E�[ f(S)]E�[g(S)].
If S1, ... , Sn are the random variables described by a measure � that is associated, then we say that

S1, ... , Sn are associated. Note that association of � implies that Si and Sj are nonnegatively correlated
for any i and j. Essentially, association is a way of saying that all dimensions of S are nonnegatively
interrelated.33

Strong Association
As we often want to establish strictly positive relationships, and not just nonnegative ones, we

need to define a strong version of association. Since positive correlations can only hold between
agents who are path-connected, we need to define a version of strong association that respects such
a relationship.

Consider a partition � of {1, ... , n} that captures which random variables might be positively
related; which here will be determined by the components of the graph g.

A probability distribution � governing S is strongly associated relative to the partition � if it is
associated, and for any � � � and nondecreasing functions f and g

33 This is still a weaker concept than affiliation, which requires association for all conditionals. It is imperative that we
work with the weaker notion as affiliation will not hold in our setting.
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Cov��f, g� � 0

whenever there exist i and j such that f is increasing in si for all s�i , g is increasing in sj for all s�j ,
and i and j are in �.

One implication of strong association is that Si and Sj are positively correlated for any i and j in �.

Domination
Consider two probability distributions � and �.
� dominates � if

E� �f
 � E� �f


for every nondecreasing function f : {0, 1}n 3 �. The domination is strict if strict inequality holds
for some nondecreasing f.

Domination captures the idea that “higher” realizations of the state are more likely under � than
under �. In the case where n � 1, domination reduces to first-order stochastic dominance.

LEMMA 5: Consider two probability distributions � and � on {0, 1}n. � dominates � if and only
if there exists a Markov transition function � : {0, 1}n3 P({0, 1}n) [where P({0, 1}n) is set of all
the probability distributions on {0, 1}n] such that

��s�� � �
s

�ss���s�,

where � is a dilation (that is �ss� � 0 implies that s� � s). Strict domination holds if �ss� � 0 for
some s� � s.

Thus, � is derived from � by a shifting of mass “upwards” (under the partial order �) over states
in S. This lemma follows from Theorem 18.40 in Charalambos Aliprantis and Kim C. Border (2000).

Let

E � �E � �0, 1�n�s � E, s� � sf s� � E�.

E is the set of subsets of states such that if one state is in the event then all states with at least as
high employment status (person by person) are also in. Variations of the following useful lemma
appear in the statistics literature (e.g., see Section 3.3 in Esary et al., 1967). A proof of this version
can be found in Calvó-Armengol and Jackson (2003).

LEMMA 6: Consider two probability distributions � and � on {0, 1}n.

��E� � ��E�

for every E � E, if and only if � dominates �. Strict domination holds if and only if the first
inequality is strict for at least one E � E. The probability measure � is associated if and only if

��EE�� � ��E���E��

for every E and E� � E. The association is strong (relative to �) if the inequality is strict
whenever E and E� are both sensitive to some � � �.34

34 E is sensitive to � if its indicator function is. A nondecreasing function f : {0, 1}n3 � is sensitive to � � � (relative
to �) if there exist s and s̃� such that f(s) � f(s��, s̃�) and s and s��, s̃� are in the support of �.

444 THE AMERICAN ECONOMIC REVIEW JUNE 2004



The proof of the following lemma is straightforward and omitted.

LEMMA 7: Let � be associated and have full support on values of S. If f is nondecreasing and is
increasing in Si for some i, and g is a nondecreasing function which is increasing in Sj for some j,
and Cov�(Si, Sj) � 0, then Cov�( f, g) � 0.

Fix M � (g, a, b). Let PT denote the matrix of transitions between different s’s under the T-period
subdivision MT � (g, a/T, b/T). So Pss�

T is the probability that St � s� conditional on St�1 � s. Let

PsE
T � �

s��E

Pss�
T .

LEMMA 8: Consider an economy M � (g, a, b). Consider s� � S and s � S such that s� � s, and
any t � 1. Then for all T and E � E

Ps�E
T � PsE

T .

Moreover, if s� � s then the inequality is strict for at least one E.

PROOF OF LEMMA 8:
Let us say that two states s� and s are adjacent if there exists � such that s��� � s�� and s�� � s�

(that is, s�� � 1 and s� � 0). We show that Ps�E
T � PsE

T for adjacent s and s�, as the statement then
follows from a chain of comparisons across such s� and s.

Let � be such that s�� � s�. By adjacency, s�i � si, for all i � �.
Since s�k � sk for all k � �, it follows by our definition of pij(s) that pij(s�) � pij(s) for all j � �

and for all i. These inequalities imply that Probs�
T (S��,t) dominates Probs

T(S��,t), where Probs
T is the

probability distribution conditional on St�1 � s. Given that 1 � s�� � s� � 0, we then have that
Probs�

T (St) dominates Probs
T(St). The conclusion that Ps�E

T � PsE
T follows from Lemma 6.

To see the strict domination, consider E � {s̃�s̃� � s��}. Since there is a positive probability that
� hears 0 offers under s, the inequality is strict.

Given a measure � on {0, 1}n , let �PT denote the measure induced by multiplying the (1 	 n)
vector � by the (n 	 n) transition matrix PT. This is the distribution over states induced by a starting
distribution � multiplied by the transition probabilities PT.

LEMMA 9: Consider an economy M � (g, a, b) and two measures � and � on S. For all T, if �
dominates �, then �PT dominates �sT. Moreover, if � strictly dominates �, then �PT strictly dominates
�PT.

PROOF OF LEMMA 9:

��PT
�E� 	 ��PT
�E� � �
s

PsE
T ��s 	 �s�.

By Lemma 5 we rewrite this as

��PT
�E� 	 ��PT
�E� � �
s

PsE
T ��

s�

�s��s�s 	 �s�.

We rewrite this as
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��PT
�E� 	 ��PT
�E� � �
s

�
s�

�s��s�sPsE
T 	 �

s

�sPsE
T .

As the second term depends only on s, we rewrite that sum on s� so we obtain

��PT
�E� 	 ��PT
�E� � �
s�
��

s

�s��s�sPsE
T 	 �s�Ps�E

T �.

Since � is a dilation, �s�s � 0 only if s � s�. So, we can sum over s � s�:

��PT
�E� 	 ��PT
�E� � �
s�

�s���
s�s�

�s�sPsE
T 	 Ps�E

T �.

Lemma 8 implies that PsE
T � Ps�E

T whenever s � s�. Thus since �s�s � 0 and ¥s�s� �s�s � 1, the result
follows.

Suppose that � strictly dominates �. It follows from Lemma 5 that there exists some s � s� such
that �s�s � 0. By Lemma 8, there exists some E � E such that PsE

T � Ps�E
T . Then [�PT](E) � [�PT](E)

for such E, implying (by Lemma 6) that �PT strictly dominates �PT.

We prove Proposition 1 and Proposition 2 as follows.

PROOF OF PROPOSITION 1:
Since PT represents an irreducible and aperiodic Markov chain, it has a unique steady-state

distribution that we denote by �T. The steady-state distributions �T converge to a unique limit
distribution (see H. Peyton Young, 1993), which we denote �*.

Let P� T be the transition matrix where the process is modified as follows. Let pi(s) � ¥j�N pji(s).
Starting in state s, in the hiring phase each agent i hears about a new job (and at most one) with
probability pi(s)/T and this is independent of what happens to other agents, while the breakup phase
is as before with independent probabilities b/T of losing jobs. Let �� T be the associated (again unique)
steady-state distribution, and �� * � limT�� T (which is well defined as shown in the proof of Claim 1
below).

The following claims establish the proposition.

Claim 1: �� * � �*.

Claim 2: �� * is strongly associated.

The following lemma is useful in the proof of Claim 1.
Let P be a transition matrix for an aperiodic, irreducible Markov chain on a finite-state space Z.

For any z � Z, let a z-tree be a directed graph on the set of vertices Z, with a unique directed path
leading from each state z� � z to z. Denote the set of all z-trees by Tz. Let

(A1) pz � �

�Tz

�	z�,z��
 Pz�z�
.

LEMMA 10 Mark Freidlin and Alexander D. Wentzell (1984)35: If P is a transition matrix for
an aperiodic, irreducible Markov chain on a finite-state space Z, then its unique steady-state
distribution � is described by

35 See Chapter 6, Lemma 3.1; also see Young (1993) for the adaptation to discrete processes.
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�(z)�
pz

¥
z��Z

pz�

,

where pz is as in (A1) above.

PROOF OF CLAIM 1:
Given s � {0, 1}n , we consider a special subset of the set of Ts, which we denote T *s. This is the

set of s-trees such that if s� is directed to s� under the tree 
, then s� and s� are adjacent. As Ps�s�
T goes

to 0 at the rate 1/T when s� and s� are adjacent,36 and other transition probabilities go to 0 at a rate
of at least 1/T2, it follows from Lemma 10 that for large enough T�T(s) may be approximated by

¥

�T *s

�	s�,s��
 Ps�s�
T 


¥
ŝ

¥

�T *ŝ

�	s�,s��
Ps�s�
T 


.

Moreover, note that for large T and adjacent s� and s�, Ps�s�
T is either b/T � o(1/T2) (when s�i � s�i for

some i) or pi(s�)/T � o(1/T2) (when s�i � s�i for some i), where o(1/T2) indicates a term that goes to
zero at the rate of 1/T2. For adjacent s� and s�, let P̃s�s�

T � b/T when s�i � s�i for some i, and pi(s�)/T
when s�i � s�i for some i.37 It then follows that

(A2) �*�s� � lim
T3


¥

�T *s

�	s�,s��
Ps�s�
T 


¥
ŝ

¥

�T *ŝ

�	s�,s��
P̃s�s�
T 


.

By a parallel argument, this is the same as �� *(s).

PROOF OF CLAIM 2:
Equation (A2) and Claim 1 imply that

�� *�s� � lim
T3


¥

�T *s

�	s�,s��
P̃s�s�
T 


¥
ŝ

¥

�T *ŝ

�	s�,s��
 P̃s�s�
T 


.

Multiplying top and bottom of the fraction on the right-hand side by T, we find that

(A3) �� *�s� �

¥

�T *s

�	s�,s��
P̂s�s�


¥
ŝ

¥

�T *ŝ

�	s�,s��
P̂s�s�

,

where P̂ is set as follows. For adjacent s� and s� (letting i be the agent for whom s�i � s�i), P̂s�s� � b when
s�i � s�i, and P̂s�s� � pi(s�) when s�i � s�i,

38 and P̂s�s� � 0 for nonadjacent s� and s�.
The proof of the claim is then established via the following steps.

36 Note that, since s� and s� are adjacent, then Ps�s�
T � 0.

37 We take T high enough such that all coefficients of the transition matrix P̃ are between 0 and 1.
38 If pi(s�) � 1 for some i and s�, we can divide top and bottom through by some fixed constant to adjust, without changing

the steady-state distribution.
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Step 1: �� * is associated.

Step 2: �� * is strongly associated.

PROOF OF STEP 1:
We show that for any T and any associated �, �P� T is associated. From this, it follows that if we

start from an associated �0 at time 0 (say an independent distribution), then �0(P� T)k is associated
for any k. Since �� T � limk�0(P� T)k for any �0 (as �� T is the steady-state distribution), and associa-
tion is preserved under (weak) convergence,39 this implies that �� T is associated for all T. Then again,
since association is preserved under (weak) convergence, this implies that limT�� T � �� * is
associated.

So, let us now show that for any T and any associated �, � � �P� T is associated. By Lemma 6,
we need to show that

(A4) ��EE�� 	 ��E���E�� � 0

for any E and E� in E. Write

��EE�� 	 ��E���E�� � �
s

��s��P� sEE�
T 	 P� sE

T ��E���.

Since St is independent conditional on St�1 � s, it is associated.40 Hence,

P� sEE�
T � P� sE

T P� sE�
T .

Substituting into the previous expression we find that

��EE�� 	 ��E���E�� � �
s

��s��P� sE
T P� sE�

T 	 P� sE
T ��E���

or

(A5) ��EE�� 	 ��E���E�� � �
s

��s�P� sE
T �P� sE�

T 	 ��E���.

Both P� sE
T and (P� sE�

T � �(E�)) are nondecreasing functions of s. Thus, since � is associated, it follows
from (A5) that

��EE�� 	 ��E���E�� � � �
s

��s�P� sE
T ���

s

��s��P� sE�
T 	 ��E����.

Then since ¥s �(s)(P� sE�
T � �(E�)) � 0 (by the definition of �), the above inequality implies (A4).

PROOF OF STEP 2:
We have already established association. Thus, we need to establish that for any f and g that are

increasing in some si and sj respectively, where i and j are path-connected,

Cov�� *�f, g� � 0.

39 See, for instance, P5 in Section 3.1 of Ryszard Szekli (1995).
40 See, for instance, P2 in Section 3.1 of Szekli (1995).
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By Lemma 7 it suffices to verify that

Cov�� *�Si , Sj� � 0.

For any transition matrix P, let Psij � ¥s� Pss�s�is�j, and similarly Psi � ¥s� Pss�s�i. Thus, these are
the expected values of the product SiSj and Si conditional on starting at s in the previous period,
respectively. Let

Covij
T � �

s

�� T�s�P� sij
T 	 �

s

�� T�s�P� si
T �

s�

�� T�s��P� s�j
T .

It suffices to show that for each i, j for all large enough T

Covij
T � 0.

The matrix P� T has diagonal entries P� ss
T which tend to 1 as T 3 
 while other entries tend to 0.

Thus, we use a closely associated matrix, which has the same steady-state distribution, but for which
some other entries do not tend to 0.

Let

P� ss�
T � �TP� ss�

T if s � s�
1 	 �

s��s

TP� ss�
T

if s� � s.

One can directly check that the unique steady-state distribution of P� T is the same as that of P� T, and
thus also that

Covij
T � �

s

�� T�s�P� sij
T 	 �

s

�� T�s�P� si
T �

s�

�� T�s��P� s�j
T .

Note also that transitions are still independent under P� T. This implies that starting from any s, the
distribution P� s

T is associated and so

P� sij
T � P� si

TP� sj
T.

Therefore,

Covij
T � �

s

�� T�s�P� si
TP� sj

T 	 �
s

�� T�s�P� si
T �

s�

�� T�s��P� s�j
T .

Note that P� si
T converges to P̃si, where P̃si, is the rescaled version of P̂ (defined above),

P̃ss� � �TP̂ss� if s � s�
1 	 �

s��s

T P̂ss� if s� � s.

It follows that

lim
T3


Covij
T � �

s

�� *�s�P̃siP̃sj 	 �
s

�� *�s�P̃si �
s�

�� *�s��P̃s�j .

Thus, to complete the proof, it suffices to show that
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(A6) �
s

�� *�s�P̃siP̃sj � �
s

�� *�s�P̃si �
s�

�� *�s��P̃s�j .

Viewing P̃si as a function of s, this is equivalent to showing that Cov(P̃si, P̃sj) � 0. From Step 1 we
know that �� * is associated. We also know that P̃si and P̃sj are both nondecreasing functions of s.

First let us consider the case where gij � 1.41 We know that P̃si is increasing in si, and also that
P̃si is increasing in sj for gij � 1. Similarly, P̃si is increasing in sj. Equation (A6) then follows from
Lemma 7 (where we apply it to the case where Si � Sj), as both P̃si and P̃sj are increasing in sj.

Next, consider any k such that gjk � 1. Repeating the argument above, since P̃sj is increasing sj
we apply Lemma 7 again to find that Si and Sk are positively correlated. Repeating this argument
inductively leads to the conclusion that Si and Sk are positively correlated for any i and k that are
path-connected.

Proposition 1 now follows from Claim 2 since �T 3 �� *.

PROOF OF PROPOSITION 2:
We know from Claim 2 that �� * is strongly associated. The result then follows by induction using

Lemma 9, and then taking a large enough T so that �T is close enough to �� * for the desired strict
inequalities to hold.

PROOF OF PROPOSITION 3:
For any t � t� � 0, let hi0

t�,t be the event that Sit� � Sit��1
... � Sit�1 � Sit � 0. Let hi1

t�,t be the event
that Sit� � 1 and Sit��1

... � Sit�1 � Sit � 0. So, hi0
t�,t and hi1

t�,t differ only in i’s status at date t�. We
want to show that

(A7) P�Si,t � 1 � 1�hi0
0t� � P�Si,t � 1 � 1�hi0

1t�.

Since (paying close attention to the subscripts and superscripts in the definition of h � t
� t ) P (Si,t�1 �

1�hi0
1t) is a weighted average of P (Si,t�1 � 1�hi0

0t) and P (Si,t�1 � 1�hi1
0t), (A7) is equivalent to showing

that

(A8) P�Si,t � 1 � 1�hi0
0t� � P�Si,t � 1 � 1�hi1

0t�.

By Bayes’ rule,

P�Si,t � 1 � 1�hi0
0t� �

P�Si,t � 1 � 1, hi0
0t�

P�Si,t � 1 � 1, hi0
0t� 
 P�Si,t � 1 � 0, hi0

0t�

and

P�Si,t � 1 � 1�hi1
0t� �

P�Si,t � 1 � 1, hi1
0t�

P�Si,t � 1 � 1, hi1
0t� 
 P�Si,t � 1 � 0, hi1

0t�
.

From the two above equations, we rewrite (A8) as

(A9)
P�Si,t � 1 � 1, hi0

0t�

P�Si,t � 1 � 1, hi0
0t� 
 P�Si,t � 1 � 0, hi0

0t�
�

P�Si,t � 1 � 1, hi1
0t�

P�Si,t � 1 � 1, hi1
0t� 
 P�Si,t � 1 � 0, hi1

0t�
.

Rearranging terms, (A9) is equivalent to

41 If i is such that gij � 0 for all j � i, then strong association is trivial. So we treat the case where at least two agents are
path-connected.
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P�Si,t � 1 � 1, hi0
0t�P�Si,t � 1 � 0, hi1

0t� � P�Si,t � 1 � 1, hi1
0t�P�Si,t � 1 � 0, hi0

0t�.

For any 
, let Ei0

 be the set of s
 such that si
 � 0 and Ei1


 be the set of s
 such that si
 � 1.
Letting �* be the limiting steady-state distribution, we divide each side of the above inequality by

�*(Ei0
0 )�*(Ei1

0 ) to obtain

P�Si,t � 1 � 1, hi0
0t�

�*�Ei0
0 �

P�Si,t � 1 � 0, hi1
0t�

�*�Ei1
0 �

�
P�Si,t � 1 � 1, hi1

0t�

�*�Ei1
0 �

P�Si,t � 1 � 0, hi0
0t�

�*�Ei0
0 �

.

Thus, to establish (A7) it is enough to show that

(A10)
P�Si,t � 1 � 1, hi0

0t�

�*�Ei0
0 �

�
P�Si,t � 1 � 1, hi1

0t�

�*�Ei1
0 �

and

(A11)
P�Si,t � 1 � 0, hi1

0t�

�*�Ei1
0 �

�
P�Si,t � 1 � 0, hi0

0t�

�*�Ei0
0 �

.

Let us show (A10), as the argument for (A11) is analogous.
Then,

P�Si,t � 1 � 1, hi0
0t�

�*�Ei0
0 �

� �
s0�Ei0

0

�
s1�Ei0

1

... �
st � 1�E i1

t � 1

�*�s0�

�*�Ei0
0 �

Ps0s1Ps1s2 ... Pstst � 1 ,

which we rewrite as

P�Si,t � 1 � 1, hi0
0t�

�*�Ei0
0 �

� �
s0

�
s1�Ei0

1

... �
st � 1�Ei1

t � 1

�*�s0�Ei0
0 �Ps0s1Ps1s2 ... Pstst � 1 .

Similarly,

P�Si,t � 1 � 1, hi1
0t�

�*�Ei1
0 �

� �
s0

�
s1�Ei0

1

... �
st � 1�E i1

t � 1

�*�s0�Ei1
0 �Ps0s1Ps1s2 ... Ps ts t � 1 .

Note that by Proposition 1, �*(s0�Ei1
0 ) strictly dominates �*(s0�Ei0

0 ) (with some strict inequalities
since i is connected to at least one other agent). Then, by the above equations, and Lemma 9 applied
iteratively,42 we derive the desired conclusion that (A10) is satisfied.

PROOF OF PROPOSITION 4:
Let di � {0, 1}. A vector of decisions d is an equilibrium if for each i � {1, ... , n}, di � 1 implies

42 To be careful, at each stage we are applying the lemma to P where Pss� only has positive probability on s� where s�i �
0, except at time t � 1 when s�i � 1. It is easy to see that Lemma 9 extends to this variation. Also, as seen in its proof, the
lemma preserves some strict inequalities that correspond to the employment status of agents who are path-connected to i. For
instance, for j connected to i, �*(Ej1

0 �Ei1
0 ) � �*(Ej1

0 �Ei0
0 ). Through Lemma 9 this translates to a higher probability on Ej1

t

(conditional on starting at Ei1
0 rather than Ei0

0 ) at each subsequent time through time t, which then leads to a strictly higher
probability of i receiving a job offer at time t � 1.
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E� �
t

�i
tSit	S0 � s, d�i� � ci ,

and di � 0 implies the reverse inequality. The maximal equilibrium corresponding to a starting state
S0 � s is denoted d*(s). Let s � s� and d � {0, 1}n. We first show that for any T

ET�f�St��S0 � s�, d
 � ET�f �St��S0 � s, d
.

Lemma 8 implies that any T-period subdivision and for every nondecreasing f,

ET�f�S1��S0 � s�, d
 � ET�f �S1��S0 � s, d
.

Lemma 9 and a simple induction argument then establish the inequality for all t � 1. The inequality
is strict whenever f is increasing and s� � s. Next, let d � d�. For a fine enough T-period subdivision
and for every nondecreasing f, given that dropouts have value zero it follows that

ET�f�S1��S0 � s, d�
 � ET � f �S1��S0 � s, d
.

As before, the inequality extends to all t � 1 by induction. Again, f increasing and d� � d imply a
strict inequality. Combining these observations, we find that for any T when s� � s and d� � d

(A12) ET�f�St��S0 � s�, d�
 � ET � f �St��S0 � s, d
.

Consider the maximal equilibrium d*(s). By (A12), for any T and all t

ET�Sit�S0 � s�, d*�s�
 � ET �Sit�S0 � s, d*�s�
.

Thus,

�
t

�i
tET�Sit�S0 � s�, d*�s�
 � �

t

�i
tET �Sit�S0 � s, d*�s�
.

If d*(s)i � 1, then

�
t

�i
tET�Sit�S0 � s�, d*�s�
 � �

t

�i
tET �Sit�S0 � s, d*�s�
 � ci

and so also for all d� � d*(s), if i is such that d*(s)i � 1, then

(A13) �
t

�i
tET �Sit�S0 � s�, d�
 � ci .

Set d�i � d*(s)i for any i such that d*(s)i � 1. Fixing d� for such i’s, find a maximal equilibrium at
s� for the remaining i’s, and set d� accordingly. By (A13), it follows that d� is an equilibrium when
considering all agents. It follows that d� � d*(s). Given the definition of maximal equilibrium, it then
follows that d*(s�) � d� � d*(s).
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