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Abstract

This paper explores the connection between bounded memory and biases in information

processing. An infinitely-lived decision maker receives a sequence of signals which provide partial

information about the true “state of the world”; when this process terminates, which happens

with probability η after each signal, he must make a decision whose payoff depends on the true

state. We consider an agent with a bounded memory: he has a finite set of available memory

states, and a memory process specifies which memory state to go to after new information is

received (as a function of the current memory state). We show that with more than three memory

states, the optimal memory process involves ignoring information with probability close to one,

once the decision-maker is as convinced as his finite memory will allow. As a result, the behavior

which is optimal in the long run creates many of the observed information processing biases in

the short run. In particular, the agent appears to display a confirmatory bias (tendency to

interpret information as supporting his current beliefs), and an overconfidence/underconfidence

bias (tendency to read too much into ambiguous information, too little into highly diagnostic

information).
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1 Introduction

Psychologists have observed many systematic biases in the way that individuals update their be-

liefs as new information is received. Many studies have suggested a first impressions matter bias:

exchangeable signals are processed in a way which puts too much weight on the initial signals.1

In particular, people tend to pay too much attention to information which supports their initial

hypotheses, while largely disregarding (or even misinterpreting) information which opposes these

hypotheses.2 As they become more convinced that their beliefs are correct, the problem becomes

even more severe: many individuals seem to simply ignore all information once they reach a “con-

fidence threshold”.

A related phenomenon is belief polarization. Several experiments have taken two individuals

with opposing initial beliefs, then given them exactly the same sequence of information. In many

cases, both individuals became even more convinced of their initial position. Obviously this is

in contrast to Bayes’ rule, which says that the prior should not affect the way in which the new

information is interpreted.3

A third bias is overconfidence/underconfidence: belief adjustments tend to be more extreme

than those of a Bayesian after a sequence of relatively uninformative signals (overconfidence), but

too conservative after a highly informative sequence of information.4

Several recent papers in behavioral economics have focused on identifying some of these biases,

and exploring their implications for the standard economic models; see Rabin (1998) for a compre-

hensive survey. Mullainathan (1998) made the potential connection between memory and biased

information processing, in a model which makes several explicit (psychology-based) assumptions

on the memory process. In particular, he assumes that the agent’s ability to recall a past event

depends on how similar it is to the current environment, how similar it is to a randomly drawn

event, and how often he has recalled the event in the past. The goal of this paper is to develop
1There is also a lot of “popular evidence” for this phenomenon; a quick internet search will locate many businesses

devoted entirely to teaching people to make a good first impression.
2Rabin and Schrag (1999) model this behavior using a modified version of Bayes’ rule, which explicitly assumes

that new evidence is weighted according to the prior.
3See Rabin (1999) for more examples and references.
4See Kahneman, Slovic, and Tversky (1982, pp.287-387) for many related experiments, and Rabin (1999) for a

summary of the results.
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a more primitive model of limited memory, and to demonstrate how these biases can arise from

optimal behavior.

The paper considers an infinitely lived decision maker, who receives a sequence of signals. Each

signal provides partial information about the “state of the world”, which may be either H or L.

At the start of each period, there is a probability η that this process will terminate, in which case

the decision-maker must take an action; the correct action depends on the true state of the world.

The paper will focus on the case where η is close to zero; this approximates a situation in which

the agent expects to receive a long sequence of signals, but is not exactly sure when the process

will end (and assigns an almost equal probability to all possibilities).

A standard Bayesian decision-maker would be able to base his decision on the entire sequence

of signals. In contrast, we study a decision-maker with a bounded memory: he is restricted to a

finite set N = {1, .., N} of available memory states. A memory process on N consists of an initial

distribution g0 (which tells the agent where to start), a transition rule σ (which tells him which

state to go to when he receives new information, as a function of the current state), and an action

rule a (which tells him what to do in the terminal period, as a function of the current state). This

model of memory bears some resemblance to several others proposed in the literature. Dow (1991)

studies an agent who searches sequentially for the lowest price, but can only remember each price

as being in one of a finite number of categories. Lipman (1995) and Rubinstein (1998) also discuss

related models.5

The basic idea of the model is that the decision-maker cannot recall all of the information that

he receives, and he cannot perform and recall an exact Bayesian update after each new signal. The

finite-state memory system just describes the heuristic that he uses to process and store information.

For example, suppose that there are two possible signals in the world: a low signal, and a high

signal. Then each state might correspond to a set of signals that the decision-maker can recall

(e.g., i high signals, N − i low signals in state i).6 The N memory states might also correspond

to a set of N different beliefs that the decision-maker can have; in this sense, the transition rule
5The memory process also resembles standard finite automata models of decision-making. See, for instance,

Piccione and Rubinstein (1993), and Rubinstein (1998).
6Note that if we interpret each possible sequence of signal realizations as a memory state, then a standard Bayesian

agent must have an infinite number of available states.
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σ describes his version of Bayesian updating. Since the decision-maker must behave the same way

every time he reaches a particular memory state, the memory rule which is optimal in the long

run may perform poorly in the short run. This accounts for many of the “biases” described above,

which may simply result from the optimal long-run behavior when memory is bounded.

The paper characterizes optimal behavior for agents with bounded memory. As Rubinstein

and Piccione (1997a,b) point out, the correct notion of optimality is not necessarily unambiguous

in decision problems with imperfect recall. In particular, there may be an incentive to deviate

from the rule which would be optimal under full commitment. Rubinstein and Piccione propose

an alternative solution concept - modified multi-self consistency - which says that the agent cannot

have any incentive for single deviations from his strategy, assuming that he follows the strategy at

all other information sets. For the problem considered in this paper, there is no conflict between

the two solution concepts: every ex-ante optimal strategy is modified multi-self consistent, so the

agent has no incentive to deviate.

Section 2 introduces the basic model, and the simple binary signal structure that will be used

in Sections 3-5: There are two possible signals, {l, h}, with the probabilites of receiving signal l in
state L, h in state H both equal to ρ > 1

2 . (Section 6 will allow for more general signal structures).

We define optimality and modified multi-self consistency for the decision problem considered, and

show in Theorem 1 that the ex ante optimal solution is modified multi-self consistent.

Section 3 characterizes optimal strategies when η is small. First, the states 1, ...,N are ordered

such that higher memory states assign higher probabilities to the event that H is the true state of

the world. In particular, the decision-maker is most strongly convinced that state H is true when

in memory state N, and that L is true when in memory state 1. Theorem 3 contains the main

result of the paper: we show that if N ≥ 3 and η is close to zero, then optimality requires leaving

the states 1,N with probability close to zero. In other words, once the decision-maker reaches one

of his two extreme states, he ignores all information with probability near 1. (In all other memory

states, he moves to the next highest state with probability 1 after receiving a high signal, h, and

to the next lowest state after receiving signal l).

An intuition for this result is as follows: the DM prefers to make all of his decisions in the

two extreme states, where he has the best information (and hence obtains the highest expected

payoff). This creates an incentive to avoid switching out of the extreme states, and implies that a
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pure strategy (switching out of the extreme states with probability 1) is not optimal. On the other

hand, it is not optimal to actually get stuck in the extreme states: ignoring information is costly,

in the sense that it makes each state less informative. The optimal solution is to leave states 1, N

with a positive probability γ which goes to zero as η → 0, but at a much slower rate. For small

η, this strategy implies that the decision-maker is almost always in one of the two extreme states,

and that over finite sequences of signals, it may appear as though he is completely unresponsive to

information. However, the probability of leaving states 1, N before the decision problem terminates

is in fact strictly positive; this makes the extreme states considerably more informative than if they

were absorbing states.

In a corollary to Theorem 3, we obtain a simple formula for the payoff: In the limit as η → 0,

the optimal strategy yields an expected payoff of
µ
1 +

³
1−ρ
ρ

´N−1¶−1
. For comparison, a strategy

which never leaves the extreme states would yield a payoff of only
µ
1 +

³
1−ρ
ρ

´N−1
2

¶−1
, as if there

were half as many states. Note that the expected payoff is strictly increasing in N, but remains

bounded below 1 as long as N is finite, and the signals are not perfectly informative (ρ 6= 1).

This implies that even in the limit as η → 0, corresponding to an infinite sequence of signals, the

probability of ultimately choosing the correct action is bounded below 1 for an agent with bounded

memory.

We then relate the optimal finite-state memory system to some more descriptive (and psychology-

based) models. One implication of Theorem 3 is that beliefs in memory state i are as if the decision-

maker recalled a sequence of (i − 1) high signals, and (N − i) low signals. Moreover, the optimal
process does not contain any “jumps”: after receiving an h−signal, the decision-maker moves from
state i to state (i+1) - where his beliefs are as if he replaced one of the low signals in memory with

the new high signal. This is a primitive version of psychologists’ “attention and memory models”7 -

which are based on the idea that memory is an optimal storage system with limited capacity: people

can control which facts to remember by paying attention to those that seem the most important,

and knowledge which no longer seems (as) useful will get replaced by new information.

Section 4 shows how the result in Theorem 3 can create a first impressions matter/confirmatory

bias. Consider an individual with three memory states, who begins in the middle state 2. The
7See Cowan (1995).
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optimal transition rule in state 2 is to move to state 1 with probability 1 after an l-signal, and to

state 3 with probability 1 after an h-signal. Once the agent reaches one of these extreme states,

he may stay for a long time - leaving with probability γ each period, where γ is close to zero.

This means that in the short run, it will appear as though one signal was enough to make the

decision-maker ignore all opposing information. More generally, Theorem 4 shows that the order in

which information is received can matter significantly. Over short signal sequences, first impressions

matter: relative to a Bayesian, the decision-maker puts too much weight on the early signals that

he receives. In the long run, last impressions matter: the decision-maker puts too much weight on

the most recently received information.

Section 4 also discusses an experiment (conducted by Lord, Ross, and Lepper in 1979) which

demonstrated that the same sequence of information can polarize beliefs. In the experiment, two

groups of people were given a sequence of studies on the merits of capital punishment as a deterrent

to crime. Group 1 individuals initially favored capital punishment, while Group 2 individuals were

opposed. After seeing exactly the same information, Group 1 individuals were even more strongly

in favor of capital punishment, while Group 2 individuals became more strongly opposed: that is,

both groups viewed the evidence as support for their prior beliefs. Theorem 5 shows how belief

polarization can occur when memories are bounded. As an example, consider two individuals, each

with four memory states. Agent 1 starts in memory state 2, and Agent 2 starts in memory state

3. Suppose that they receive the signal sequence {l, h, h}. Agent 1 will immediately move to state
1 after the l-signal: with high probability he will remain here, ignoring the subsequent h-signals.

Agent 2 will move down from state 3 to state 2 after the initial l-signal, but will then move up to

state 4 after the subsequent two h-signals. That is, both individuals become even more convinced

of their initial beliefs after the same sequence of information.

Section 5 demonstrates that the bounded-memory agent will display an overconfidence/underconfidence

bias: For short sequences of signals, his beliefs are typically too extreme, relative to a Bayesian;

while after long sequences of information, his beliefs are typically too conservative. Section 6 will

discuss another type of overconfidence/underconfidence, showing that if one signal is more infor-

mative than another, then the decision-maker’s beliefs will appear to respond too much to the less

informative signal, and too little to the more informative signal.

Finally, Section 6 provides some results for a general signal structure K = {1, 2, ..,K}, where
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signal K provides the strongest support for state H, and signal 1 provides the strongest support

for state L. We show that for sufficiently small η, the agent ignores all but the two most extreme

signals, 1 and K. Moreover, regardless of the asymmetry between signals 1 and K (i.e., even if

signal K provides much more compelling evidence for state H than signal 1 provides for state L),

the optimal memory system becomes almost symmetric as η → 0. Theorem 7 shows that in the

limit as η → 0, the DM attains a payoff of
µ
1 +

³
1−eρeρ
´N−1¶−1

, where eρ
1−eρ is a geometric mean of

the likelihood ratios of the two extreme signals, 1 and K.

Section 7 concludes; proofs are in the appendix.

2 The Model

The model considers a decision-maker who receives a signal in every period. The signal is infor-

mative about the state of the world, S ∈ {L,H} which remains fixed throughout the problem but

is unknown to the decision maker. We assume that the two states are ex ante equally likely. At

the beginning of every period, the process terminates with probability η and the decision-maker

(DM) must take an action, H or L. He obtains a payoff of 1 if his action matches the state, and 0

otherwise. With probability (1− η), the decision problem continues. In this case, the DM receives

a binary signal s ∈ {l, h} which provides information about the state S. The signal is i.i.d. and
symmetric, and the conditional probabilities satisfy

Pr(l|L) = Pr(h|H) = ρ >
1

2

Signal h is therefore more likely in state H and signal l is more likely in state L. Section 6 will

provide some results for more general signal structures.

The DM’s memory is described by a set N = {1, 2, ..., N} of memory states. For simplicity, we
assume that N is odd.8 In period zero, he chooses an initial state; let g0(i) denote the probability

of starting in state i (∀i ∈ N ), and let g0 ∈ ∆(N ) be the vector with ith component g0(i). When
the decision problem ends, the DM must choose an action as a function of his current memory

state. Let a : N → [0, 1] denote this action rule, where a(i) is the probability of choosing action H
8An even number of states would require slight adjustments to most of the proofs, but would not change the main

results.
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in state i. Finally, whenever the DM receives a signal, he must choose which memory state to go to.

This transition is described by the stationary signal processing rule σ : N ×K → ∆ (N ) . We write
σ(i, s)(j) to denote the probability that the agent moves from memory state i to memory state j

after receiving signal s. Note that the restriction to a finite number of memory states implies that

the DM cannot keep track of time, nor can he perform (and recall) an exact Bayesian update after

each new piece of information.

For a given transition rule σ, denote the transition probability between memory states condi-

tional on S ∈ {L,H} by τSi,j , where

τHi,j = (1− ρ)σ(i, l)(j) + ρσ(i, h)(j)

τLi,j = ρσ(i, l)(j) + (1− ρ)σ(i, h)(j)

Define T s to be the N ×N transition matrix with (i, j)th entry τSi,j .

Let gt(i|S) denote the probability that the decision-maker will be in memory state i at the start
of period t, conditional on S. Note that this notation suppresses dependence on the choice of (σ, g0).

Let gSt ∈ ∆(N ) be the vector with ith component gt(i|S). Then,

gSt = g
S
t−1T

S = g0
¡
TS
¢t

Finally, let fSi denote the probability of ending the decision problem in memory state i, con-

ditional on S ∈ {L,H}, and let fS ∈ ∆(N ) be the vector with ith component fSi . This is given
by

fS ≡
∞X
t=0

η(1− η)tgSt = lim
T→∞

Ã
ηg0

T−1X
t=0

¡
(1− η)TS

¢t!
(1)

Note that fS also describes the probability distribution over memory states when the DM does not

know how many periods have been played. Lemma 1 in the appendix argues that the sum on the

RHS converges, yielding a unique distribution fS .

The payoff of the decision-maker, as a function of the strategy (g0,σ, a), is given by

Π(g0,σ, a) =
1

2

X
i∈N

¡
fHi a(i) + f

L
i (1− a(i))

¢
Definition 1: (g0,σ, a) is an optimal memory if Π(g0,σ, a) ≥ Π(g00,σ0, a0) for all (g00,σ0, a0).
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The decision problem defined above has imperfect recall. As Rubinstein and Piccione (1997a,b)

show, such decision problems can be viewed as one-person games. Moreover, they point out that

optimal strategies (in the sense defined here) are not necessarily incentive compatible: that is, the

DM may have an incentive to deviate from the ex-ante optimal strategy. This does not happen in

the decision problem considered here. We next define incentive compatibility, and show in Theorem

1 that all optimal strategies are indeed incentive compatible.

For a given rule (g0,σ), we can determine the beliefs that the DM should associate with each

memory state. Let π(i) denote the probability that the DM assigns to state H in memory state i.

Since the states are ex ante equally likely, we have

π(i) =
fHi

fHi + f
L
i

Given the beliefs π, we can determine the agent’s expected continuation payoff in any period,

as follows. For all i ∈ N , let vSi denote the expected continuation payoff starting in memory state
i, and conditional on true state (of the world) S. This is given by the following recursion formula:

vHi = ηa(i) + (1− η)
X
j∈N

τHi,jv
H
j

vLi = η (1− a(i)) + (1− η)
X
j∈N

τLi,jv
L
j

Then, starting in state i, the DM’s expected payoff is

π(i)vHi + (1− π(i)) vLi (2)

Definition 2: (σ, a) is incentive compatible if for all i, j ∈ N and s ∈ {l, h},

1. a(i) > 0⇒ π(i) ≥ 1
2 , and a(i) = 1 if strict inequality holds

2. σ(i, h)(j) > 0 implies that for all k ∈ N ,

π(i)ρ
¡
vHj − vHk

¢
+ (1− π(i)) (1− ρ)

¡
vLj − vLk

¢ ≥ 0
3. σ(i, l)(j) > 0 implies that for all k ∈ N ,

π(i)(1− ρ)
¡
vHj − vHk

¢
+ (1− π(i)) ρ

¡
vLj − vLk

¢ ≥ 0
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This says that the DM has no incentive to deviate from his strategy, given the payoffs and beliefs

induced by the strategy. In particular, part (2) says that if σ(i, h)(j) > 0, then choosing state j must

maximize the expected continuation payoff when the probability of state H is π(i)ρ
π(i)ρ+(1−π(i))(1−ρ) .

Part (3) is the analogous incentive compatibility condition for σ(i, l)(j), and part (1) says that the

action rule must be optimal, given the probabilities π (·) . This definition corresponds exactly to the
definition of modified multi-self consistency in Piccione-Rubinstein (1997), which requires that the

agent cannot gain by deviating at a single information set, assuming that he follows his strategy

at all other information sets.

Theorem 1 states that for the problem considered in this paper, there is no conflict between the

ex ante optimality and incentive compatibility.

Theorem 1: If (g0,σ, a) is an optimal memory rule, then (σ, a) is incentive compatible.

This result relies on the constant termination probability, η. We interpret η as measuring the

amount of information that the decision-maker expects to acquire before having to make a decision.

As η → 0, the expected number of signals goes to infinity; while if η is close to 1, then he expects

to make a decision almost immediately. The effect of the termination probability is that the DM

cannot figure out how long he has been in the ‘game’: all periods look the same to him, and his

expected continuation payoff does not depend on how long he has already been playing. Rubinstein

and Piccione (1997a, Proposition 3) obtained the same result, under similar conditions: they showed

that if a decision problem is repeated infinitely often, and the agent has no memory of how many

periods have already been played, then optimality and incentive compatibility coincide.

In a finite-horizon game, with no probability of termination before the last period, the optimal

rule may depend on the number of periods remaining. This means that optimal rules are generally

not incentive compatible: information sets may arise in which the DM can infer something about

the number of periods left, in which case he may want to deviate from the best full-commitment

strategy.

The result also relies on the fact that the decision-maker does not discount his payoffs: he only

cares about the probability distribution over terminal nodes, not when these nodes are reached. In

models with perfect recall, there is no need for a discount factor on top of a termination probability

- any discounting can be incorporated into η. In the problem here, on the other hand, η is used

10



both to “discount” the future, and to figure out the beliefs that should be associated with each

memory state (i.e., to form expectations about the possible histories that led to each information

set). In particular, note that if payoffs were discounted at rate δ, then the expected payoff would

change to
1

2

X
i∈N

h
fH,δi a(i) + fL,δi (1− a(i))

i
, with fS,δ ≡

∞X
t=0

ηδt(1− η)tgSt

Since the decision-maker’s beliefs are unchanged at π(i) = fHi
fHi +f

L
i
, an incentive compatible solution

does not maximize this expression when δ < 1. Essentially, payoff discounting requires using a

different η in the past than in the future, which creates a distortion between optimality and incentive

compatibility.

Convention: In what follows, order the memory states such j < i implies π(j) < π(i). Thus the

decision-maker is most strongly convinced that L is true in state 1, and that H is true in

state N.

3 Optimal Behavior

Theorem 2 establishes the existence of an optimal strategy, and says that the decision-maker’s payoff

is increasing in the number of memory states N, and decreasing in the termination probability η.

We denote with Π∗(η,N) the DM’s optimal payoff as a function of η, N.

Theorem 2: An optimal memory process exists. The decision-maker’s expected payoff Π∗(η,N)

is continuous and strictly decreasing in η, increasing in N.

Theorem 3 contains the main result of the paper. In it, we characterize behavior for small η.

We show that for a memory process to be optimal, it must satisfy the following conditions: (i) the

probability of leaving the two extreme states, 1 and N, goes to zero as η → 0; (ii) at any memory

state i ∈ N\{1,N}, the decision-maker moves with probability 1 to the next highest state (i+ 1)
after an h-signal, and to the next lowest state (i − 1) after an l-signal; (iii)the DM starts in the

middle state N+1
2 with probability 1; (iv) the action rule is deterministic, choosing action L or H

in the middle state, action L in all lower states, and action H in all higher states.
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Let (bg0, bσ,ba)denote an optimal strategy, and let bτSi,j be the transition probability (i→ j) induced

by bσ. For N ≥ 3 memory states, optimal behavior for small η can be described as follows:
Theorem 3: Let N ≥ 3. For every ε > 0, there exists η such that whenever 0 < η < η,

(i) 1 > bτS1,1 > 1− ε, 1 > bτSN,N > 1− ε;

(ii) For all i ∈ N\{1, N}, bσS(i, h)(i+ 1) = bσS(i, l)(i− 1) = 1;
(iii) bg0 ¡N+12 ¢

= 1;

(iv) ba(i) =
 0 if i ≤ N−1

2

1 if i ≥ N+3
2

, and ba ¡N+12 ¢ ∈ {0, 1}.
Part (i) implies that the probability of leaving states 1, N is positive for η > 0, but goes to

zero as η → 0. One implication is that for small η, the decision-maker will spend most of his time

in these two extreme memory states. Of course, an outsider cannot observe the decision-maker’s

memory state: this means that from his point of view, the decision-maker is simply unrespon-

sive to information most of the time. This result will generate the confirmatory and overconfi-

dence/underconfidence biases discussed in the subsequent sections. However, it is important to

note that the probability of leaving the extreme states is strictly positive for η > 0; in fact, the

probability of moving from state 1 to N (or vice versa) before the end of the decison problem goes to

1 as η → 0. If the decision-maker actually got stuck in the extreme states, then they would become

much less informative - reducing the expected payoff to as if there were only N−1
2 memory states.

To see this, note that if states 1, N are both absorbing, then the limiting payoff conditional on H

is simply the probability of reaching state N before state 1. This can be calculated by comparison

with a classical “gambler’s ruin” problem: Suppose that the gambler starts in state N+12 , and state

1 represents “ruin”; the probability of winning each round is ρ, and the probability of losing is

(1−ρ). Then the probability of attaining goal N from N+1
2 before ruin is

µ
1 +

³
1−p
p

´N−1
2

¶−1
(see,

for example, Billingsly p.93).

The proof of Theorem 3 also calculates bounds on the maximized expected payoff Π∗(η, N),

and on the beliefs associated with an optimal strategy. We obtain the following corollary:

Corollary: For any ε > 0, there exists η such that whenever 0 < η < η,

(i)
µ
1 +

³
1−ρ
ρ

´(N−1)¶−1 − ε < Π∗(η, N) <
µ
1 +

³
1−ρ
ρ

´(N−1)¶−1
12



(ii)

¯̄̄̄
fHi
fLi
−
³

ρ
1−ρ
´(i−1) ³

1−ρ
ρ

´(N−i) ¯̄̄̄
< ε.

The limiting payoff expression is the probability that the DM will correctly identify the state

after an infinite sequence of signals. Part (i) implies that this is strictly below 1 when N is finite,

but goes to 1 in the limit as N → ∞. Also note that the expected payoff is strictly increasing in
the information content of the signal: a completely uninformative signal (ρ = 1

2) yields an expected

payoff of 12 for all N, while the expected payoff goes to 1 as the signal becomes perfectly informative

(ρ→ 1).

Part (ii) implies that the relative likelihood of state H is finite and bounded away from 0 in

all memory states (provided that N is finite, and that ρ is bounded away from one). This means

that although the DM ignores information with high probability in states 1, N, his probability

assessments π(1),π(N) are bounded away from 0,1 (respectively). Therefore, the key difference

between the bounded memory agent and a Bayesian is that the bounded memory DM starts to

ignore information more quickly. In particular, note that a Bayesian will also eventually become

unresponsive to information, but only when he is virtually certain that his beliefs are correct.

In contrast, the bounded memory agent ignores information with high probability once he is as

confident as his memory will allow - even though his beliefs are far from certain.

Part (ii) also implies that in the limit as η → 0, the beliefs in state i satisfy f
H
i

fLi
=
³

ρ
1−ρ
´(i−1) ³

1−ρ
ρ

´(N−i)
.

Note that these are exactly the Bayesian beliefs for a sequence containing (i − 1) h-signals, and
(N − i) l-signals. Moreover, recall from Theorem 3 part (ii) that the optimal transition rule bσ does
not have any jumps: the decision-maker moves to the next highest memory state after an h-signal,

and to the next lowest memory state after an l-signal. This means that in memory state i, the DM

behaves as if he remembers (i− 1) h-signals, and (N − i) l-signals; after receiving a new h-signal,
he moves up to state (i + 1) - where his new beliefs are as if he replaced one of the l-signals in

memory with the new h-signal.

This suggests that the optimal finite-state memory behaves like a “fact-based” memory with

limited capacity, in which the DM stores (N − 1) signals (facts) at a time. If he receives new
information when his memory is full, he can either ignore it, or replace a previously stored fact

with the new signal.
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This closely resembles standard psychological theories of attention and memory. These theories

are based on the idea that memory is an optimal information storage/retrieval system with limited

capacity. Individuals can (to some extent) control what they remember, by focusing their attention

on what seems the most important. The main features of these models are that in order for a

stimulus to enter short-term memory, individuals must pay attention to it - i.e., try to remember

it. From here, the brain decides whether to store the information in the long-term memory. This

depends on how useful it is; information which no longer seems important will eventually be replaced

by more relevant knowledge.9 This seems like a very intuitive notion. For example, consider a

student studying for an exam. He will typically go over material repeatedly, while trying to block

out all other distractions: that is, choose which facts to store in memory. If he continues to use the

material after the exam, then he will continue to remember it. If not, then he will quickly forget

everything - replacing the information with something more important. There is also considerable

evidence that people are much better at recalling events that they have actually experienced,

and that they typically store the event as a whole - rather than extracting a particular piece of

information to remember. For example, Anderson et al (1976) describe an experiment in which one

group of individuals memorized a list of words while on land, and the other group memorized the

list while under water. Then they were asked to try to recall the list - both while on land, and while

in water. The first group performed much better when on land again, while the second group did

much better in water. For the model studied here, this would suggest that individuals are largely

restricted to remembering signals as they are received - rather than just extracting the useful part

of the information (e.g., rather than performing and recalling an exact Bayesian update).

To provide an intuition for Theorem 3, we now sketch the proof using a simple 3-state example,

with N = {1, 2, 3}.
Recall that gt(·|S) is the probability distribution over memory states at the start of period t.

This can be described recursively by

gt(i|S) = (1− η)
X
j∈N

gt−1(j|S)τSj,i (3)

Lemma 1 in the appendix shows that fS is equal to the steady-state distribution for this process,

g (·|S), and therefore solves fSi = (1− η)
P
j f

S
j τ

S
j,i.

9See Cowan (1995) for a discussion of “attention and memory” models.
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Suppose first that τS1,3 = τS3,1 = 0; then this yields

fH3
fL3

=
τH2,3

τL2,3

Ã
η + (1− η)τL3,2

η + (1− η)τH3,2

!
fH2
fL2

(4)

Note that for fixed fH2
fL2
, the likelihood ratio fH3

fL3
is maximized if

τH2,3
τL2,3

=
τL3,2
τH3,2

= ρ
1−ρ ; this suggests that

to make the states as informative as possible, the DM should only switch to higher states after

an h-signal, and to lower states after an l-signal. Lemma 2 argues that this must be true of any

optimal rule bσ.
Since the states are ordered such that f

H
1

fL1
<

fH2
fL2
<

fH3
fL3
, the probability of error is the highest in

state 2 (where the DM has the least information). This implies that the DM would like to minimize

the probability of ending the decision problem in state 2, while making states 1,3 as informative

as possible. Note first that if the only objective was to minimize the probability of ending in state

2, then the DM would set τS1,2 = τS3,2 = 0 - that is, never leave the extreme states once he arrives.

However, ignoring all information is very costly, in that it substantially reduces the informativeness

of states 1 and 3. For example, consider equation (4); if τS3,2 = 0, then
fH3
fL3
= ρ

1−ρ
fH2
fL2
∀ η; while any

positive value for τS3,2 would yield lim
η→0

fH3
fL3
=
³

ρ
1−ρ
´2 fH2

fL2
, clearly the upper bound on fH3

fL3
relative to

fH2
fL2
. This suggests that the optimal solution requires randomization in the extreme states - switching

out with a probability that is positive (to maintain informativeness), but below 1 (to reduce the

likelihood of ending in a middle state).

In the limit as η → 0, the DM does not expect to make a decision for a long time: this

makes it almost costless to ignore information almost all the time. In particular, suppose that

lim
η→0 τ

S
3,2 = lim

η→0 τ
S
1,2 = 0, but lim

η→0
η

τS3,2
= lim

η→0
η

σS1,2
= 0; so the probability of leaving the extreme states

1,3 goes to zero as η → 0, but at a much slower rate. Then fS2 → 0 as η → 0, while at the same

time, equation (4) shows that the upper bound lim
η→0

fH3
fL3
=

fH2
fL2

³
ρ
1−ρ
´2
is still achieved in the limit.

Using a similar argument for τS1,2, we conclude that the optimal solution is to switch out of the

extreme states 1,3 with a positive probability that goes to zero as η → 0, but at a slower rate;

this reduces the probability of making a decision in state 2 to almost zero, without affecting the

limiting informativeness of the states.

This is argued more generally in the appendix. Lemma 5 calculates an upper bound on the

expected payoff, and Lemma 8 shows that this bound can only be achieved if the probability of
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leaving states 1, N goes to zero as η → 0, but at a slower rate. Lemma 7 then shows that the

optimal solution does not contain any “jumps”; that is, each state moves only to adjacent states

after new information is received. This maximizes the number of h-signals, l-signals (respectively)

required to reach states N, 1, making them as informative as possible. (And since the probability

of making a decision in state 1 or N is close to 1 for small η, this maximizes the expected payoff).

To see that the optimal solution is state-symmetric, solve (3) for the limiting distribution fS,

to obtain

lim
η→0

fS3
fS1

= lim
η→0

Ã
τS2,3

τS2,1

!Ã
η + (1− η)τS1,2

η + (1− η)τS3,2

!
=


σ(1,h)(2)
σ(3,l)(2)

³
ρ
1−ρ
´2

if S = H

σ(1,h)(2)
σ(3,l)(2)

³
1−ρ
ρ

´2
if S = L

(5)

Define α∗ ≡ σ(1,h)(2)
σ(3,l)(2) , and recall from above that limη→0 f

S
2 = 0 in an optimal solution. Then the DM’s

expected payoff is

1

2

£
fH3 + f

L
1

¤
=
1

2

·
fH3

fH1 + f
H
3

+
fL1

fL1 + f
L
3

¸
=
1

2

 1

1 + 1
α∗

³
1−ρ
ρ

´2 + 1

1 + α∗
³
1−ρ
ρ

´2


So as α∗ → 0, the DM obtains an expected payoff (in the limit as η → 0) of 0 in state H, and 1

in state L.10 Similarly, a solution with α∗ →∞ would yield a limiting payoff of 1 in state H, 0 in

state L. However, given that the prior is 12 , it is easily verified that the expression is maximized at

α∗ = 1; this is shown more generally in Lemma 4.

The intuition for part (iii) is quite straightforward: Since the optimal strategy is symmetric in

the limit as η → 0, beliefs in the middle state, π
¡
N+1
2

¢
, are very close to the prior 1

2 . Incentive

compatibility requires that state N+1
2 maximize the expected continuation payoff at the beliefs

π
¡
N+1
2

¢
, implying that state N+1

2 also maximizes the ex ante expected payoff when H,L are

equally likely.

For part (iv), it is clear that if the states are ordered such π(i) < 1
2 for i <

N+1
2 , and π(i) > 1

2

for i > N+1
2 , then the DM must set a(i) = 1 whenever i > N+1

2 , and a(i) = 0 whenever i < N+1
2 .

Lemma 9 shows that randomization in the middle state is not optimal, implying that there are two

10Note that this does not imply a perfectly informative memory state: fH3
fL3
,
fH1
fL1

remain bounded away from 0 and

∞. However, if the probability of leaving state 1, relative to the probability of leaving state 3, is almost zero, then the
DM ends up in memory state 1 with probability close to 1. This implies that conditional on L, he is almost always

right; conditional on H, he is almost always wrong.
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optimal solutions: one with a
¡
N+1
2

¢
= 1, and one with a

¡
N+1
2

¢
= 0. In the limit as η → 0, the

associated optimal transition rules converge; moreover, any asymmetry in the prior or the signals

would yield a unique equilibrium.

Finally, note that the Theorem assumes N ≥ 3. For N = 2 there is no bad middle state to

avoid, so the optimal solution switches out of both states with probability 1.

4 Belief Perseverance and Confirmatory Bias

After forming sufficiently strong initial beliefs, people tend to pay too little attention to opposing

evidence; they may simply ignore it, or even interpret it as supporting evidence. Experiments have

suggested the following stylized facts:11

1. People tend to display a confirmatory bias: as they become more convinced of their initial

hypotheses, it becomes more likely that they will disregard any information which contradicts

these hypotheses.

2. First impressions matter: exchangeable information is processed in a way that puts too much

weight on early signals.

3. Providing the same evidence to people with different initial beliefs can move their beliefs even

further apart.

The confirmatory bias described in Fact 1 follows directly from Theorem 3. Part (i) of the

theorem states that once the decision-maker reaches a “threshold of confidence” (memory state

1 or N), he ignores any opposing evidence with probability close to 1. Since he does not ignore

evidence in the intermediate states N\{1, N}, this implies that an initial string of h-signals can
make it appear (in the short run) as though he’s convinced that state H is true. Moreover, as his

initial position gets closer to state N (so his initial impression favors H more strongly), it becomes

more likely that he will receive a sequence of information which contains enough h-signals to take

him to state N.
11This closely follows the description in Rabin (1999) and Rabin-Schrag (1999); see also Kahneman, Slovic, and

Tversky (1982, pp.144-149) for a summary.
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The next two results show how the biases described in Facts 2 and 3 can arise as a result of

the optimal behavior described in Theorem 3. Fix an optimal strategy ( bg0, bσ,ba), and choose bη
small enough that the characterization in Theorem 3 holds for η < bη. Let it be a random variable

describing the DM’s memory state in period t, so Pr{it = i|S} ≡ gt(i|S) (where gt (·|S) is as
defined in Section 2). Let st be a random variable describing the signal received in period t, and let

st ∈ {l, h}t denote a t-period sequence of signals. For any sequence st, define gt(i|st) ≡ Pr{it = i|st}.
The first result considers T -period sequences of signals, which differ only in the order in which

the signals are received. Fix positive integers T, τ. Define [T, τ ] as the set of all T−period sequences
which end in a block hτ of τ consecutive h-signals, and [τ, T ] as the set of all T -period sequences

which begin with a block of τ consecutive h-signals. More precisely,

[T, τ ] ≡ {sT ∈ {l, h}T | st = h for t = T − τ + 1, ..., T}
[τ, T ] ≡ {sT ∈ {l, h}T | st = h for t = 1, 2, ..., τ}

For any sequence sT and collection of signal sequences A, define Pr{sT |A} as the probability of
sequence sT , conditional on A. Recall that π(i) is the probability of H in memory state i. Therefore,

the individual’s expected probability assessment to state H in period T, conditional on A, is

E (π(iT ) | A) =
X
i∈N

π(i)

X
sT∈A

gT
¡
i|sT ¢Pr©sT | Aª


Clearly, there is a 1-1 map from elements of [T, τ ] to elements of [τ, T ] which leaves the number of

h- and l-signals unchanged. Therefore, for a standard Bayesian decision-maker, E (π(iT ) | [T, τ ]) =
E (π(iT ) | [τ, T ]) . However, this is not true for the bounded-memory DM considered here. Theorem

4 says that if η < bη (where bη, as defined above, is such that Theorem 3 holds for η < bη), then
for any τ, T, (i) First impressions matter in the short run: if η is small enough relative to T, then

a block of τ consecutive h-signals has a larger effect on expected period T beliefs if it occurs in

period 0, rather than in period T − τ +1; (ii) Last impressions matter in the long run: if T is large

enough relative to η, then the block of h-signals has a larger effect on beliefs if it occurs at the end.

Theorem 4: (i) For any T ≥ N+1
2 , there exists η∗ such that whenever η < η∗, E (π(iT ) | [τ, T ]) >

E (π(iT ) | [T, τ ])
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(ii) For any η < bη, there exists T ∗ such that whenever T > T ∗, E (π(iT ) | [T, τ ]) >
E (π(iT ) | [τ, T ]) .

The intuition for this result follows directly from Theorem 3. First consider part (i), which

says that for fixed T, τ, it is possible to choose η small enough that first impressions matter. This

follows from part (i) of Theorem 3, which says that for small enough η, the probability of leaving

states 1, N can be made arbitrarily close to zero. Then for finite sequences of information, we can

choose η small enough that once the DM reaches an extreme state, the probability of leaving this

state before time T is arbitrarily close to zero. Note that if states 1,N are essentially absorbing,

then after any signal sequence the DM will either get stuck in state N (if he reaches state N before

1), or get stuck in state 1 (if he reaches 1 before N), or never reach an extreme state. The proof

argues that if the DM reaches state N before state 1 after a sequence (sT−τ , hτ ), where hτ is a

block of τ consecutive h-signals, then he will also reach state N before 1 if the sequence starts with

the block hτ : moving the initial state closer to N cannot reduce the probability of reaching N first.

However, there are sequences sT−τ such that the DM will get stuck in state N following (hτ , sT−τ ),

but not following (sT−τ , hτ ). For example, if τ ≥ N−1
2 (implying that any sequence which starts

with the block hτ will cause the DM to get stuck in state N, starting in state N+1
2 ), then this

will happen for any sequence sT−τ which causes the DM to get stuck in state 1, starting in state

N+1
2 . Therefore, changing the order of each sequence (sT−τ , hτ ) ∈ [T, τ ] to (hτ , sT−τ ) cannot reduce

the posterior memory state, but may cause it to increase; this implies an increase in the expected

posterior beliefs.

Next, consider part (ii): this says that for fixed η, it is possible to choose T large enough that

last impressions dominate first impressions. This is true by the ergodic theorem: for T sufficiently

large, the probability distribution gT over memory states is independent of the initial distribution.

In particular, this means that an initial block of τ consecutive h-signals, which simply increases the

initial state by τ, does not affect the expected beliefs (T − τ) periods later. However, for any fixed

probability distribution over N , adding a sequence of h-signals at the end will cause an increase
in the posterior memory state (for fixed η > 0). In other words, the first impressions effect wears

off after sufficiently long sequences; but the last impressions effect is independent of the sequence

length.
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Theorem 4 matches the stylized facts. The phrase “first impressions matter” appears every-

where, and is supported by both experimental evidence and “popular evidence”. For example, a

job candidate will typically pay a lot of attention to the small details of his appearance, resume,

etc., and is repeatedly told that his chances of being hired are very small if he does not make a good

first impression. Rabin describes the first impressions matter/confirmatory bias in the context of

a school teacher, trying to assess the competence of a student: “a teacher can often interpret a

question or answer by a student as either creative or just plain stupid; he will often interpret ac-

cording to his previous hypothesis about the student’s aptitude”. Since the previous hypothesis is

likely based on the student’s initial performance, this creates a confirmatory bias: a few bad initial

exams make it more likely that subsequent exams will be judged unfavorably, which strengthens

the teacher’s beliefs in the student’s incompetence, which makes it even more likely that subsequent

exams will be judged unfavorably.

However, these are short-run examples. There is also substantial evidence that people tend to

remember recent events the most vividly, while information which was learned a long time ago

eventually fades from memory: this suggests that in the long run, there should be a bias towards

last impressions.

The third result shows how the same sequence of information can polarize the beliefs of two

different individuals, as described in the third fact above. An experiment by Lord, Ross, and Lepper

(1979) provided an example of this bias. They asked a group of 151 students about their attitudes

toward capital punishment, then selected 24 opponents, 24 proponents. The students were then

given exactly the same sequence of studies on capital punishment, and asked again about their

beliefs. Nearly all of the proponents became even more convinced that capital punishment deters

crime, while the opponents became even more convinced that it does not. (Additionally, the graph

on p.146 of Kahneman, Slovic, and Tversky (1982) shows that the overall change in beliefs for both

types was the largest when they first received the supporting evidence). The study concluded that

“there is considerable evidence that people tend to interpret subsequent evidence so as to maintain

their initial beliefs...Indeed, they may even come to regard the ambiguities and conceptual flaws in

the data opposing their hypotheses as somehow suggestive of the fundamental correctness of those

hypotheses. Thus, completely inconsistent or even random data - when “processed” in a suitably
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biased fashion - can maintain or even reinforce one’s preconceptions”.

To illustrate how this can occur with bounded memories, consider the following experiment.

There are two states of the world: state H corresponds to “capital punishment deters crime”,

and state L to “it does not”. There are two inviduals, each with N = 5 memory states: state 1

contains the strongest evidence for state L, and state 5, the strongest evidence for state H. Agent

1 is currently in state i10 = 2 (weakly opposed to capital punishment), and Agent 2 is currently in

state i20 = 4 (weakly in favor of capital punishment). The experimentor has a collection of studies

on capital punishment which fall into two categories, H and L. Conditional on state H being true

(capital punishment does deter crime), any study will yield a type H report with probability ρ > 1
2 ,

and a type L report with probability 1− ρ. Conditional on state L, any study will yield a type L

report with probability ρ. Both individuals agree on the probability ρ, and can correctly identify a

report as type H or L.

Each individual is given the collection of studies; he can take as much time as needed to review

the reports, and will then be asked whether they favor state L or state H. The analysis below will

assume that η is close to zero, as the individual can reasonably expect to collect information for a

long time (perhaps forever) before being asked to make a payoff-relevant decision.

In fact, there is an equal number τ of each type of report - so the overall evidence is completely

ambiguous. The individuals, of course, are unaware of this; they only know that they will receive a

total of 2τ reports. The experimenter shuffles the reports to obtain a random ordering, and sends

the reports to each individual in the same order.

To see how divergence can occur, suppose that τ = 4, so there are
¡4
2

¢
= 6 possible orderings

of the reports. Consider the sequences {L,H,H,L} and {H,L,L,H}. In the first sequence, Agent
1 will immediately get stuck in state 1 and stay there; Agent 2 will initially move down to state

3, but then the subsequent two high signals will cause him to end up at state 5. This means that

both individuals view the evidence as confirming their prior beliefs. The sequence {H,L,L,H} will
similarly cause beliefs to diverge. (Actually for this small sample size, every sequence will result

in partial divergence. There are two other sequences starting with L : both will move agent 1 to

state 1, while agent 2 will remain at state 4 - correctly identifying the sequence as uninformative.

Similarly, both sequences starting with H will move agent 2 up to state 5, while agent 1’s beliefs

will not change).
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Although divergence becomes less likely as memory and sample sizes increase, it continues to

occur with positive probability. To see this, let ijt be a random variable representing the “posterior”

memory state after t periods, for an agent who starts in state j. As in the model, assume that reports

are randomly generated according to the distribution Pr{type H report| state H} = Pr{type L
report|state L} = ρ; assume further that the two agents observe exactly the same sequence of

reports. The following theorem says that (i)for any pair of priors which are distinct and not on the

memory boundaries, there is a positive probability of divergence; (ii)the probability of divergence

strictly increases as either prior moves closer to the boundary.

Theorem 5: (i)If 1 < j < k < N and t ≥ N − 1 − (k − j), then Pr{ijt < j < k < ikt } > 0;

(ii)Pr{ijt < j < k < ikt } is strictly decreasing in j, (N − k).

Proof. For (i), note that a sequence of (j−1) consecutive low signals, followed by (j−1+N−k)
consecutive high signals, will result in ijt = 1 and ikt = N. For (ii), note that any sequence

which causes agent 1 to reach state 1 from j, will also take him to state 1 if he starts in j− 1;
at this point, the probability of leaving state 1 is independent of the initial position. However,

he is strictly more likely to reach state 1 if he starts at j−1 : for example, an initial sequence
of (j − 2) low signals, followed by long sequence of high signals, will only cause divergence
starting at j − 1.

Finally, note that from an ex ante point of view, these biases becomes very unlikely as N →∞.
If an agent starts with basically no information and N is very large, then he requires an almost

infinite sequence of high signals to reach the extreme high memory state, N. This is infinitely more

likely to occur in state H than state L. Thus, with probability near 1, any agent will eventually

reach the extreme high state. For large N, remaining here is close to the unconstrained optimal

(i.e. Bayesian) behavior, and beliefs are almost Bayesian.

5 Overconfidence/Underconfidence

People tend to be overconfident after receiving weak information, and underconfident after receiving

strong information.
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Rabin (1996) states that “there is a mass of psychological research that finds that people are

prone towards overconfidence in their judgements”. (A related phenomenon is the “law of small

numbers” - people infer too much from too little evidence). A series of experiments in Kahneman,

Slovic, and Tversky (1982) demonstrate that this bias works in both ways: while people tend to be

overconfident of relatively ambiguous information, their beliefs are typically too conservative after

receiving highly diagnostic information.

The decision-maker with bounded memory will display two types of overconfidence/underconfidence:

one based on sample size, and one based on the quality of the information that he receives. In this

section we illustrate the first type, showing that the decision-maker will typically be overconfident

after short sequences of information, and underconfident after long sequences. This matches the

empirical findings: Griffin and Tversky state that “Edwards and his colleagues, who used a sequen-

tial updating paradigm, argued that people are conservative in the sense that they do not extract

enough information from sample data. On the other hand, Tversky and Kahneman (1971), who

investigated the role of sample size in researchers’ confidence...concluded that people ...make radical

inferences on the basis of small samples. In some updating experiments conducted by Edwards,

people were exposed to large samples of data..This is the context in which we expect undercon-

fidence or conservatism. The situations studied by Tversky and Kahneman, on the other hand,

involve..fairly small samples. This is the context in which overconfidence is likely to prevail”.

To illustrate the overconfidence/underconfidence bias, consider the set of T -period sequences

of signals. For any sequence sT ∈ {l, h}T , define ∆(sT ) as the number of h-signals in sT , less the
number of l-signals in sT . Fix δ ≥ 0, and define |T, δ| as the set of all T -period signal sequences sT

such that
¯̄
∆(sT )

¯̄
= δ. Note that this definition only depends on the “net” information content of

the sequence, without specifying whether there are more h- or l-signals.

For any sT , define iT (sT ) as the DM’s posterior memory state after the sequence sT (which

may be random); then his probability assessment to state H is π
¡
iT (s

T )
¢
. For any probability

assessment π, define the confidence of the assessment as¯̄̄̄
π − 1

2

¯̄̄̄
That is, confidence is increasing in π if the DM believes that H is the more likely state, and

decreasing in π (increasing in Pr{L} = 1− π) if the DM believes that L is more likely. Note that
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after any sequence sT ∈ |T, δ| , the correct probability assessment depends only on ∆(sT ), and is
given by

π∗
¡
∆(sT )

¢
=


1

1+
³
1−ρ
ρ

´δ if ∆(sT ) = δ

1

1+
³

ρ
1−ρ

´δ if ∆(sT ) = −δ

Then define overconfidence/underconfidence as follows:

Definition: The DM is overconfident after sT ∈ |T, δ| if ¯̄π ¡iT (sT )¢− 1
2

¯̄
>
¯̄
π∗(∆

¡
sT
¢
)− 1

2

¯̄
.

Choose bη small enough that Theorem 3 holds for η < bη.We have the following result for η < bη :
Theorem 6: Fix T, δ, and let η < bη. For any sequence sT ∈ |T, δ| :

(i) If T < N−1
2 and δ > 0, then the decision-maker is overconfident after sT with probability

1.

(ii) If T > N−1
2 and 0 < δ < N − 1, then for every ε > 0 there exists η such that whenever

η < η, the decision-maker is overconfident after sT with probability 1− ε.

(iii) If δ > N − 1, then the decision-maker is underconfident after sT with probability 1.

Proof: Recall from the Corollary to Theorem 3 that in the limit as η → 0, beliefs in state i are

as if the DM recalled a sequence of (i − 1) h-signals, and (N − i) l-signals. This implies that in
moving from state i to i + 1 after an h-signal, beliefs adjust as if he had received two h-signals;

and in moving from state i to (i − 1), beliefs adjust as if he had received two l-signals. Also note
that beliefs in state N are equivalent to the beliefs of a Bayesian who observes a sequence sT with

∆(sT ) = (N − 1), and beliefs in state 1 are equivalent to those of a Bayesian who observes sT with
−∆(sT ) = N − 1.

For part (i): if T < N−1
2 , then the sequence contains fewer than N−1

2 of each type of signal, so it is

impossible for the DM to reach either state 1 or state N. Then he ends up in state N+12 +∆(sT ) with

probability 1, with the overconfident beliefs π∗
¡
2∆(sT )

¢
. For part (iii): if δ > N−1, then the correct

beliefs are more confident than the beliefs in either state 1 or state N, implying underconfidence

with probability 1. For part (ii): for η sufficiently small, with probability close to 1 the DM will

end up in state 1, state N, or state N+1
2 +∆(sT ). Then for

¯̄
∆(sT )

¯̄
< N − 1, the confidence of his
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probability assessment is at least
¯̄
π∗
¡
2∆(sT )

¢− 1
2

¯̄
>
¯̄
π∗
¡
∆(sT )

¢− 1
2

¯̄
, implying overconfidence.

This result states that for sequences in which the difference between the number of h- and l-

signals is small, the DM is almost always overconfident (parts (i) and (ii)); while if the difference is

large, then he is almost always underconfident (part (iii)). The underconfidence simply results from

the fact that bounded memory implies bounded probability assessments; if the number of memory

states is small relative to the informativeness of the signal sequence, then the correct beliefs are

more extreme than the DM is able to accomodate. The overconfidence after short (uninformative)

sequences results from the fact that beliefs adjust by too much after each signal - in particular,

as if two signals had been received (in the limit as η → 0). This overadjustment is created by the

optimal long-run behavior. More precisely, recall the sketch of the proof of Theorem 3. For a 3-state

example, we showed that long-run beliefs satisfy fH3
fL3
=
³

ρ
1−ρ
´µ

η+(1−η)τL3,2
η+(1−η)τH3,2

¶
fH2
fL2
, with

τL3,2
τH3,2

= ρ
1−ρ .

If σ(3, l)(2) is large relative to η, then in the limit as η → 0 this becomes f
H
3

fL3
=
³

ρ
1−ρ
´2 fH2

fL2
. This

implies that if the DM begins in state 2, an h-signal will take him to state 3, where his beliefs

adjust by a factor of
³

ρ
1−ρ
´2
- as if he had received two h-signals. The only way to avoid this

overadjustment is to set τS3,2 = 0; but this substantially reduces the long-run information content

in state 3, and therefore reduces the decision-maker’s expected payoff. For large N, the argument

is a bit more complicated, but the intuition is the same: maximizing the long-run probability of a

correct action, requires that beliefs overadjust in the short run.

Note also that when T is large, ∆(sT ) is expected to be large whenever ρ 6= 1
2 ; therefore, the

underconfidence result in part (iii) is likely to arise for large sample sizes.

Moreover, small values of ∆(sT ) are expected when T is small, or ρ is close to 1
2 . Theorem 6

then implies that we are most likely to see overconfidence when either the sample size is small, or

the signal is not very informative. This addresses both types of overconfidence/underconfidence

mentioned at the beginning of the section, and closely matches the empirical evidence: many exper-

iments (see Edwards (1965), Lichtenstein and Fischhoff (1977)) have suggested that overconfidence

is most likely to arise after small samples, in which each signal provides very little diagnostic

information (in this context, where ρ is close to 1
2). Lichtenstein and Fischhoff, for example, inves-

tigated the effect of task difficulty on confidence: as summarized by Griffen and Tversky (1992),
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“Their “easy” items produced underconfidence through much of the confidence range,...and their

“impossible” task (discriminating European from American handwriting, accuracy = 51%) showed

dramatic overconfidence through the entire range”. Griffen and Tversky interpret “difficult tasks”

as inference problems in which the information is of relatively poor quality (that is, when the sig-

nals provide very little evidence for one hypothesis over the other). With this interpretation, the

empirical results closely resemble the predictions in Theorem 6.

Section 6, which introduces a more general structure, will provide a further explanation for

this second type of overconfidence/underconfidence: when signals are asymmetric, beliefs appear

to adjust by too much after the relatively uninformative signals, and by too little after the more

informative signals.

6 Generalized Signal Structures

This section shows that the results derived in Sections 3-5 are not special to the symmetric binary

signal structure. Consider the model described in Section 2, but now assume that the set of possible

signals is K = {1, 2, ...,K}. Denote by µSk the probability of receiving signal k in state S ∈ {L,H},
and order the signals such that i < j ⇒ µHi

µLi
<

µHj
µLj
. Let bσ be an optimal transition rule, and bτSi,j the

associated transition probabilities i→ j. As in Section 2, bσ is also incentive compatible.
It continues to hold that for small η, the probability of switching out of the extreme states is

close to zero. The new result is that for η sufficiently small, the DM completely ignores all but the

two most extreme signals. More precisely:

Theorem 7: For every ε > 0, there exists η such that whenever 0 < η < η,

(i) 1 > bτS1,1 > 1− ε, 1 > bτSN,N > 1− ε;

(ii) For all i ∈ N\{1, N} and s ∈ K\{1,K}, bσ(i, s)(i) = 1;
(iii) For all i ∈ N\{1, N}, bσ(i,K)(i+ 1) > 0, bσ(i, 1)(i− 1) > 0, and bτSi,i+∆ = 0 whenever ∆ ≥ 2

or ∆ ≤ −2;
(iv) bg0 ¡N+12 ¢

= 1;

(v) ba(i) =
 0 if i ≤ N−1

2

1 if i ≥ N+3
2

, and ba ¡N+12 ¢ ∈ {0, 1}.
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Moveover, in the limit as η → 0, the optimal rule bσ yields a symmetric set of memory states,
and a state-symmetric payoff. Defining eρ by eρ

1−eρ ≡
r

µL1
µH1

µHK
µLK
, we obtain the following corollary:

Corollary: For any ε > 0, there exists η such that whenever 0 < η < η,

(i)
µ
1 +

³
1−eρeρ
´N−1¶−1 − ε < Π∗(η,N) <

µ
1 +

³
1−eρeρ
´N−1¶−1

;

(ii) For all i ∈ N ,
¯̄̄̄
fH(i)
fL(i)

−
³ eρ
1−eρ
´i−1 ³

1−eρeρ
´N−i ¯̄̄̄

< ε, where eρ
1−eρ ≡

r
µL1
µH1

µHK
µLK

The intuition for part (i) of the Theorem is exactly the same as in Theorem 3: the DM prefers to

avoid intermediate states, and can do so almost costlessly when η is small (by leaving the extreme

states with a probability that goes to zero, but at a slower rate than η). Part (ii) says that for

small η, the DM ignores all signals other than 1 and K. To see why this is optimal, note that as the

probability of being in one of the extreme states (in the terminal period) goes to 1, the optimization

problem reduces to maximizing the payoff in the two extreme states. This, in turn, is accomplished

by ignoring all but the two most extreme signals: this makes the extreme states as informative as

possible, by requiring the most informative possible sequence of signals to reach them. (Of course,

this rule would not be optimal for large η; if the DM is almost sure that the problem will end

tomorrow, then he should pay attention to any information that he can get today - rather than

trying to maximize his probability of being correct 10000 periods later). The intuition for parts

(iii)-(v) is as in Theorem 3.

The corollary is analagous to the Corollary to Theorem 3, but replacing ρ
1−ρ with

eρ
1−eρ ≡r

µL1
µH1

µHK
µLK
. The proofs of Lemmas 4 and 5 basically show that

³
µL1
µH1

µHK
µLK

´N−1
is the maximum amount

of “information” that can be stored in the memory system, and that it is optimal to split this

information equally among states H,L when they are ex ante equally likely; that is, the optimal

payoff is state-symmetric. As an intuition for why this is implied by incentive compatibility (and

hence optimality, by Theorem 1), start with the symmetric case: eρ
1−eρ = µL1

µH1
=

µHK
µLK
. Since bτS1,2 ∈ (0, 1)

and bτSN,N−1 ∈ (0, 1), the DM must be indifferent about moving from memory state 1 to 2 after signal

K, and from memory state N to N −1 after signal 1. If we now increase µL1
µH1
and decrease µ

H
K

µLK
, then

he will no longer be willing to move from state 1 to 2 after signal K, but will strictly prefer moving

from state N to N − 1 after signal 1. To make him indifferent, we need to make the beliefs in state

N slightly stronger (so that he is more convinced that H is true), and the beliefs in state 1 slightly

weaker (less convinced that L is true). This is accomplished by increasing σ(N, 1)(N − 1), and
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decreasing σ(1,K)(2) - which implies that on average, it requires more K−signals to reach state
N, than 1−signals to reach state 1. (For example, consider the extreme rule σ(N, 1)(N − 1) = 1,
and σ(1,K)(2) = 0. Then in state 1, the DM knows only that he received enough 1-signals to reach

state 1 once; after this, anything could have happened, making the state quite uninformative. In

state N, on the other hand, he knows that he never received enough 1−signals to reach state 1,
and that he did he did not receive a 1-signal in the most recent period; on average, this implies a

relatively large number of K−signals).
In the limit as η → 0, incentive compatibility requires choosing these probabilities such that

the memory states are symmetric, π(i) = π(N − i), and such that beliefs adjust by the same
amount after a K−signal as after a 1−signal. In particular, part (ii) of the Corollary implies that
the increase in the relative likelihood that the DM assigns to state H (vs L) after a K−signal,
and the increase in the relative likelihood that he assigns to state L (vs H) after a 1−signal, are
both equal to

³ eρ
1−eρ
´2
. This provides another, and possibly more intuitive, explanation for the

overconfidence/underconfidence bias. In the short run, it appears that the DM’s beliefs adjust by

relatively too much after the less informative signal, say 1 (overconfidence), and by too little after

the more informative signal K (underconfidence). This is because the DM correctly infers that in

the long run, it requires a larger number of 1−signals to reach state i, than K−signals to reach
state (N − i).

7 Conclusion

This paper has demonstrated that decision-makers with limited memory will optimally display

many of the observed biases in information processing. There are other papers (Dow (1991), Lipman

(1995), Piccione-Rubinstein (1993, 1997a,b) which discuss similar models; however, these papers

make only a limited connection between bounded memory and errors in judgement. There are also

papers (Mullainathan (1998), Rabin-Schrag (1998)) which focus on making empirical predictions

for errors in judgement; however, these papers also make very specific assumptions on the way

that information is stored and processed. In this paper, we have attempted to combine the two

approaches. We have taken a very fundamental definition of bounded memory, simply that the

decision-maker is restricted to a finite set of memory states, and made several specific predictions
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about the biases that will result. These predictions match the empirically observed behavior, and

do not require any assumptions beyond optimality.

Most of the biases are driven by Theorem 3, which states that if the termination probability η

is close to zero (so the decision is not expected to occur for a long time), then the decision-maker

will ignore almost all information once he reaches one of his two extreme memory states. The

intuition behind this result is quite straightforward. Since the decision-maker’s expected payoff in

the terminal period is the highest when he is in an extreme memory state (where he has the best

information), there is an incentive to avoid leaving these states. In general, ignoring information

makes each state less informative. However, when η is close to zero, the decision-maker is able to

do this almost costlessly. By leaving the extreme states with a probability that is close to zero,

but still much higher than η, he both avoids the middle states with high probability, and maintains

almost the maximum possible information content in the extreme memory states.

Sections 4 and 5 discuss the empirical implications of Theorem 3. The main result in Theorem

3 states that when the decision-maker is as convinced as his finite memory will allow, he behaves

as if he is virtually certain of the true state - even though his beliefs are far from certain. This is a

confirmatory bias, and implies that the order in which information is received matters significantly.

More precisely, Theorem 4 shows that for relatively short sequences of information, there is a

typically a first impressions bias: early signals have the largest effect on expected beliefs. For

longer sequences of information, the first impressions effect wears off, and is dominated by a last

impressions bias: the most recently received signals have the largest impact on beliefs. This matches

the empirically observed behavior: first impressions matter for most people, but in the long run, it

is the most recent events which are remembered the most vividly. Theorem 5 shows how the first

impressions bias can lead to polarization: two agents with opposing initial beliefs may move even

further apart after seeing exactly the same sequence of information. Theorem 6 shows that optimal

behavior involves an overconfidence/underconfidence bias: after relatively short or uninformative

sequences of signals, beliefs are typically more extreme than those of a Bayesian (overconfident);

while after longer or more informative sequences, beliefs are typically too conservative.

All of these biases result from the fact that when the decision-maker is restricted to a finite

number of memory states, and behaves the same way every time he reaches a particular memory

state, the optimal long-run behavior may perform poorly in the short run. In particular, in order
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to maximize the probability of ultimately making a correct decision, the decision-maker ignores

information with high probability once he reaches an extreme memory state, 1 or N ; in all other

memory states, his beliefs overadjust to the information received. Our interpretation is that people

typically are not sure of exactly when information will cease to be useful, or exactly when decisions

will be made. Therefore, the optimal memory system should immediately interpret and store new

information according to a rule which is optimal in the long run, but which may appear biased in

the short run. This interpretation is supported by several psychological experiments, which have

demonstrated that even information which is completely discredited will typically affect beliefs; this

suggests that individuals do not simply memorize information as given, but rather incorportate it

into an optimal long-run memory system.

Section 6 extends the results to a more general signal structure. Theorem 7 shows that with an

arbitrary set of K signals, the decision-maker will ignore all but the two most extreme signals when

η is close to zero; again, this makes the two extreme states as informative as possible. It is also

shown that regardless of the asymmetry in the signals, the optimal set of memory states is almost

symmetric when η is close to zero. This is accomplished by switching out of the memory states

which are based on weak signals (after receiving an opposing strong signal) with high probability,

and out of the memory states based on strong signals with a slightly lower probability. This means

that memories based on weak signals will appear to be overconfident; in fact, the decision-maker

is correctly inferring that if he is still in the weak memory state, he must not have received any

strong opposing information. A further implication is that a strong negative signal will have a

much greater impact on the decison-maker’s beliefs than a sequence of moderately negative signals.

This may provide an explanation for why politicians generally delay disseminating bad information:

they may expect that one huge bad signal (e.g., a press conference announcing every error that has

been made in the last year) will have a greater impact on beliefs than a sequence of less severe bad

signals (e.g., only exposing one error at a time).

The results of this paper focused on the case when η is small. As η increases, the probability

of leaving the two extreme states increases; this means that the biases described will arise less

frequently, but still with positive probability as long as η < 1. This also seems to match the

empirical findings. For example, most of the studies which demonstrate extreme polarization and

confirmatory biases have involved experiments in which individuals probably do not expect to make
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a payoff-relevant decision for a long time, if ever; this corresponds to η close to zero. In contrast,

the “herding behavior” in financial markets suggests that individuals respond to information in

basically the same way; this is a situation where η should be large, as decisions must be made very

quickly, and information quickly becomes obsolete. Finally, the paper assumed that the number of

memory states, N , is exogenous. A model which went one step further back would consider how

many memory states should be allocated to each particular decision problem. Presumably, the

optimal N would be increasing in the importance of decisions. Since the results predicted more

extreme biases for small N, this suggests they will arise less frequently as the decision problem

becomes more important.

A

A.1 Proofs of Theorems 1,4

Proof of Theorem 1: This is an almost exact adaptation of the argument of Proposition 3 in

Piccione-Rubinstein (1997a). Let Zτ =
n
S, i0, (kt, it+1)

τ−1
t=0 | kt ∈ K for t ≥ 0, it ∈ N

o
denote the

set of all τ−period histories; so a typical τ−period history is a sequence z = (kt, it+1)τ−1t=0 , where

kt ∈ K denotes the signal received at the start of period t, and it denotes the DM’s memory state at
the start of period t. For i ∈ N , let Xτ (i) = {z ∈ Zτ |iτ = i} represent the set of τ -period histories
which end in memory state iτ = i. Let φ denote the event that the game is terminated, and for

k ∈ {K,φ} and i ∈ N , define Xτ (i, k) ≡ {(z, k)|z ∈ Xτ (i)} as the set obtained by adding nature’s
action k to each history in Xτ (i). Finally, define X(i, k) ≡

∞S
τ=0

Xτ (i, k) as the DM’s information set

when he is in memory state i, then observes signal (or termination) k.

For any two histories z, z0 and a transition rule σ, define pσ(z|z0) as the probability of history
z given z0, according to σ. Now, fix a strategy ( bg0, bσ,ba), and pick any i∗, j∗ ∈ N and k∗ ∈ K such
that bσ(i∗, k∗)(j∗) > 0.

For any history z, let δ(z) denote the number of occurrances of the sequence (i∗, k∗, j∗) in z.

Note that for S ∈ {L,H} and i0 ∈ N , pσ(z|S, i0) can be written as (σ(i∗, k∗)(j∗))δ(z) CSσ (z),where
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CSσ (z) ≡
pσ(z|S, i0)

(σ(i∗, k∗)(j∗))δ(z)
is a constant which does not depend on σ(i∗, k∗)(j∗). Then

d
P

z∈X(i,φ)
pσ(z|S, i0)

dσ(i∗, k∗)(j∗)

¯̄̄̄
¯̄̄
σ=bσ

=
X

z∈X(i,φ)
δ(z)

(bσ(i∗, k∗)(j))δ(z)bσ(i∗, k∗)(j) CSbσ (z) = X
z∈X(i,φ)

δ(z)pbσ(z|S, i0)bσ(i∗, k∗)(j) (A1)

Note that for any history z,

δ(z)pbσ(z|S, i0) = X
z0∈X(i∗,k∗)

pbσ(z0|S, i0)bσ(i∗, k∗)(j∗)pbσ(z|S, (z0, j∗))
(The summand on the RHS is zero if z0 is not a subhistory of z, and otherwise is equal to pbσ(z|S, i0);
δ(z) is the number of subhistories z0 of z which end in (i∗, k∗, j∗)). Using this and summing over

all histories in X(i,φ),

X
z∈X(i,φ)

δ(z)pbσ(z|S, i0)bσ(i∗, k∗)(j∗) =
X

z∈X(i,φ)

X
z0∈X(i∗,k∗)

pbσ(z0|S, i0)pbσ(z|S, (z0, j∗))
=

X
z0∈X(i∗,k∗)

pbσ(z0|S, i0) X
z∈X(i,φ)

pbσ(z|S, (z0, j∗))
Next, note that

P
z∈X(i,φ)

pbσ(z|S, (z0, j∗)) is just the probability of ending in state i, conditional on
(S, (z0, j∗)); the stationarity of bσ and constant termination probability η imply that this does not

depend on z0. Then the above expression simplifies to

X
z∈X(i,φ)

δ(z)pbσ(z|S, i0)bσ(i∗, k∗)(j∗) =

 X
z0∈X(i∗,k∗)

pbσ(z0|S, i0)
 X

z∈X(i,φ)
pbσ(z|S, j∗)

 (A2)

Assume that bg0 is deterministic, with initial state i0 (the argument is easily modified without
the assumption). Then since

P
z∈X(i,φ) pbσ(z|S, i0) ≡ fSi , the DM’s expected payoff is

Π( bg0, bσ,ba) = 1

2

X
i∈N

a(i) X
z∈X(i,φ)

pbσ(z|H, i0) + (1− a(i)) X
z∈X(i,φ)

pbσ(z|L, i0)


By (A1) and (A2), the derivative of Π( bg0,σ,ba) w.r.t. σ(i∗, k∗)(j∗), evaluated at σ = bσ, is
1

2

X
i∈N

 a(i)
³P

z0∈X(i∗,k∗) pbσ(z0|H, i0)
´³P

z∈X(i,φ) pbσ(z|H, j∗)
´

+(1− a(i))
³P

z0∈X(i∗,k∗) pbσ(z0|L, i0)
´³P

z∈X(i,φ) pbσ(z|L, j∗)
´
 (A3)
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Recall from the text that

fSi∗µ
S
k∗ =

∞X
τ=0

η(1− η)τgτ (i
∗|S)µSk∗ =

∞X
τ=0

X
z0∈Xτ (i∗,k∗)

ηpbσ(z0|S, i0) = X
z0∈X(i∗,k∗)

ηpbσ(z0|S, i0)
So the expression in (A3) can be written as

1

η
· 1
2

X
i∈N

a(i)fHi∗ µHk∗
 X
z∈X(i,φ)

pbσ(z|H, j∗)
+ (1− a(i))fLi∗µLk∗

 X
z∈X(i,φ)

pbσ(z|L, j∗)


=
1

2η

fHi∗ µHk∗
X
i∈N

a(i)
X

z∈X(i,φ)
pbσ(z|H, j∗)

+ fLi∗µLk∗
X
i∈N

(1− a(i))
X

z∈X(i,φ)
pbσ(z|L, j∗)


=
1

2η

£
fHi∗ µ

H
k∗v

H
j∗ + f

L
i∗µ

L
k∗v

L
j∗
¤

(A4)

(for the final equality, recall that vSj∗ is defined as the expected payoff conditional on S and initial

state j∗). Since bσ is optimal and bσ(i∗, k∗)(j∗) > 0, it must be that for any j0 6= j∗,
dΠ

dσ(i∗, k∗)(j∗)

¯̄̄̄
bσ ≥

dΠ

dσ(i∗, k∗)(j0)

¯̄̄̄
bσ , with equality if bσ(i∗, k∗)(j0) > 0

By (A4), this says

fHi∗ µ
H
k∗
¡
vHj∗ − vHj0

¢
+ fLi∗µ

L
k∗
¡
vLj∗ − vLj0

¢ ≥ 0
which is exactly the condition for incentive compatibility of bσ(i∗, k∗)(j∗), by Definition 2. Since
i∗, k∗, j∗ were chosen arbitrarily, this implies that any optimal strategy is incentive compatible.

Proof of Theorem 4: Let hτ denote a block of τ consecutive h-signals; decompose the set [T, τ ]

as
©¡
sT−τ , hτ

¢ |sT−τ ∈ {l, h}T−τª , and the set [τ, T ] as ©¡hτ , sT−τ¢ |sT−τ ∈ {l, h}T−τª .
For part (i), choose any sequence sT =

¡
sT−τ , hτ

¢
. Recall that in the limit as η → 0, bτS1,1 =bτSN,N = 1. Then iT depends deterministically on sT , with three possible outcomes: iT (sT ) = 1,

iT (s
T ) = N, or iT (sT ) = N+1

2 + ∆(sT ), where ∆(sT ) is the difference between the number of h-

and l-signals in sequence sT .

Suppose first that iT (sT ) = N : then either iT (sT−τ ) = N (the DM moved from state N+12 to N

after sT−τ and got stuck), or iT (sT−τ ) = N+1
2 +∆(sT−τ ) < N, and N+1

2 +∆(sT−τ ) + τ ≥ N (the

DM never reached state 1 or N after sT−τ , kept track of ∆(sT−τ ), then moved to N after hτ ). Now

change the order to (hτ , sT−τ ), so the DM observes sT−τ starting in state max{N+12 + τ, N}. If the
DM reaches state N before state 1 after sT−τ starting at N+12 , then he also reaches state N before
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1 starting at N+12 + τ ; so if the first case above holds, iT (sT−τ ) = N, then also iT (hτ , sT−τ ) = N.

If the DM does not reach state 1 after sT−τ starting in state N+12 , then he also will not reach state

1 starting in state N+1
2 + τ. So if the second case above holds, then the DM never reaches state 1,

and therefore again ends up in state iT = N (since N+1
2 + τ +∆(sT−τ ) ≥ N). So in the limit as

η → 0, iT (s
T−τ , hτ ) = N ⇒ iT (h

τ , sT−τ ) = N .

Now, suppose that iT (sT−τ , hτ ) = max
©
1, N+12 +∆(sT−τ ) + τ

ª
< N. Then changing the order

to (hτ , sT−τ ) cannot reduce iT : this is trivially true if iT (sT−τ , hτ ) = 1, and if iT (sT−τ , hτ ) > 1,

implying that sT−τ does not take the DM from state N+1
2 to 1, then sT−τ also does not take

him from N+1
2 + τ to 1. However, there are sequences sT−τ such that iT (sT−τ , hτ ) < N, but

iT (h
τ , sT−τ ) = N : for instance, any sT−τ which starts with max{0, N−12 −τ} consecutive h-signals,

then ends with T − τ − max{0, N−12 − τ} consecutive l-signals (this number is positive by the
assumption T > N−1

2 ).

Since Pr[T, τ ] = Pr[τ, T ] (by the assumption of conditionally independent signals), we have

E (π(iT ) | [τ, T ])−E (π(iT ) | [T, τ ]) =
X
i∈N

π(i)


P
sT−τ

Pr{sT−τ} · ¡gT ¡i|(hτ , sT−τ )¢− gT ¡i| ¡sT−τ , hτ¢¢¢
Pr[T, τ ]


In the limit as η → 0, gT (·|sT ) is deterministic; we showed above that gT

¡
i| ¡sT−τ , hτ¢¢ = 1 implies

that for some j ≥ i, gT (j|(hτ , sT−τ )) = 1; while there exist sequences sT−τ ∈ [T, τ ] such that
gT (i|(sT−τ , hτ )) = 1 for i < N, but gT

¡
N |(hτ , sT−τ )¢ = 1. Since π (N) > π(i), this implies that the

above expression is strictly positive. For any ε0, part (i) of Theorem 3 implies that there exists η0 such

that for all η < η0, and for all T -period sequences sT and i ∈ N ,
¯̄̄̄
gT (i|ST )− lim

η→0 gT
¡
i|sT ¢¯̄̄̄ < ε0;

hence, the above expression is also strictly positive for sufficiently small η.

For part (ii): fix an optimal transition rule σ, and let S be the true state of the world; define

gt(i|S, i0) ≡ Pr{it = i|S, i0} as the probability of memory state i after t periods, conditional on
S, i0 (as in Section 2, with i0 instead of g0). Fix η < bη, so that Theorem 3 holds. Then an

initial sequence of τ h-signals changes the initial state to min
©
N, N+12 + τ

ª
, so E [π(iT ) | [τ, T ]] =P

i∈N π(i)gT−τ
¡
i | S,min©N, N+12 + τ

ª¢
. For sequences in [T, τ ], note that if the DM ignored the

final block hτ , then his expected belief would be E [π(iT ) | [T, τ ]] =
P
i∈N π(i)gT−τ

¡
i | S, N+12

¢
.

Since hτ will in fact increase the final memory state with strictly positive probability for η > 0,

there exists some constant c∗ such that E [π(iT ) | [T, τ ]] =
P
i∈N π(i)gT−τ

¡
i | S, N+12

¢
+c∗. Lemma
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5 argues that all memory states are ergodic. Then by Theorem 11.4 of Stokey-Lucas, for any initial

state i0, the period-T distribution gT (·|i0) converges to a unique limit, and convergence is at a
geometric rate that is independent of i0. This implies that for any ε0 > 0,there exists T 0 such that

whenever T > T 0,
¯̄
gT−τ

¡
i | S,max©N, N+12 + τ

ª¢− gT−τ ¡i | S, N+12 ¢¯̄
< ε0. Therefore, for any

ε∗ > 0, there exists T ∗ such that whenever T > T ∗,

X
i∈N

π(i)gT−τ
µ
i | S, N + 1

2

¶
>
X
i∈N

π(i)gT−τ
µ
i | S,max

½
N,
N + 1

2
+ τ

¾¶
− ε∗

For ε∗ < c∗, this implies E [π(iT ) | S, [T, τ ]] > E [π(iT ) | S, [τ, T ]] , as desired.

A.2 Lemmas 1-8, for Theorems 2,3 and 7

Lemmas 1-8 provide the results which will be used to prove Theorem 2, and all parts of Theorems

3,7 except part (v) of Theorem 7, and part (ii) of Theorem 3. Lemma 1 shows that the distribution

fS (defined as an infinite sum in equation (1) of the text) is well-defined and unique, by constructing

an auxiliary Markov process with stationary distribution fS ; most of the subsequent proofs will use

this auxiliary process. Lemmas 2 and 3 prove some basic monotonicity, concavity, and continuity

properties of an optimal solution, which are used in subsequent proofs. Lemma 4 shows that the

maximized payoff is state-symmetric; Lemma 5 (using Lemma 4) calculates an upper bound on the

expected payoff, and constructs a strategy which achieves this bound in the limit as η → 0. Lemmas

6, 7, and 8 provide some basic characterizations of an optimal strategy: they consider sequences

of transition rules ση with η → 0, and show that in order for ση to obtain the upper bound in

Lemma 5, it must be that (Lemma 6) each state moves to both higher and lower states with a

probability that is strictly positive, and goes to zero at a slower rate than η (if at all); (Lemma

7) each state moves only to adjacent states, and ignores all signals k /∈ {1,K}; and (Lemma 8)
the probability of leaving states 1, N must go to zero as η → 0. We then prove Theorem 7 and its

corollary, using the continuity established in Lemma 3 to conclude that an optimal sequence must

satisfy the conditions in Lemmas 6-8.

Let ΩS be an N ×N Markov matrix, with (i, j)th element

ωSij = ηg0(j) + (1− η)τSij (A5)
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Recall that TS is the matrix of transition probabilities τSij . Let y
S
i denote the determinant of

the matrix obtained from
¡
I − (1− η)TS

¢
by replacing the ith row with the initial distribution

vector, g0 :

ySi =
¯̄
I − (1− η)TS

¯̄
i

(A6)

Lemma 1: For any (g0,σ), the sum fS ≡ lim
T→∞

ηg0

³PT−1
t=0

¡
(1− η)TS

¢t´ converges to a unique
limit. This limit fS is equal to the stationary distribution of a Markov process with the

transition probabilities ωSij defined in (A5), and solves (with y
S
i as defined in (A6))

fSi =
ySiP

j∈N
ySj

(A7)

Proof: From equation (1) in the text, fS is given by

fS = lim
T→∞

ηg0

Ã
T−1X
t=0

¡
(1− η)TS

¢t!
Now consider the Markov process with initial distribution ηg0, and transition probabilities ωSij .

Then for a state i0 with g0(i0) > 0, ωSi,i0 ≥ ηg0(i0) ∀i; so by Theorem 11.4 in Stokey and Lucas,

there exists a unique ergodic set and long-run distribution. For this process, the distribution egt
over states in period t can be described by the following recursion formula:

eg0 = ηg0; egt = ηg0 + egt−1 ¡(1− η)TS
¢

(A8)

⇒ egT = ηg0

Ã
T−1X
t=0

¡
(1− η)TS

¢t!
+ ηg0

¡
(1− η)TS

¢T
Since the process converges to a stationary distribution, it must be that limT→∞

¡
(1− η)TS

¢T
= 0.

This implies

lim
T→∞

egT = ηg0

Ã
lim
T→∞

Ã
T−1X
t=0

¡
(1− η)TS

¢t!! ≡ fS
Using the first line of (A8), the stationary distribution fS solves

fS = ηg0
¡
I − (1− η)TS

¢−1
Then by Cramer’s rule,

fSi =
ySi

|I − (1− η)TS |
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Summing this equation over all i ∈ N , and noting that the probabilities must sum to 1, we obtain¯̄
I − (1− η)TS

¯̄
=
P
i∈N y

S
i , as desired.

For any transition rule σ, let TS be the induced transition matrix in state S (as defined in the

text), and define ΩS as in equation (A5). Define eN (T ) as the set of ergodic states for the Markov
process with transition probabilities τSij , and eN (Ω) as the set of ergodic states for the Markov
process with transition probabilities ωSij (as in (A5)).

Lemma 2: If (σ, a) is incentive compatible, then for all i, j ∈ eN (Ω) : 12
1. π(i)vHi + (1− π(i))vLi ≥ π(i)vHj + (1− π(i))vLj

2. If j < i, then vHi ≥ vHj , and vLi ≤ vLj
3. If j < i, then for any signal k, σ (i, k) (j) > 0⇒ µHk

µLk
≤ 1, and σ (j, s) (i) > 0⇒ µHk

µLk
≥ 1

4. ∀i, (i− 1), (i+ 1) ∈ eN (T ), vHi+1 − vHi
vLi − vLi+1

≤ v
H
i − vHi−1
vLi−1 − vLi

.

(For the symmetric 2-signal case, part 3 states that the DM will only switch to higher memory

states after signal h, and to lower states after l. Parts 2 and 4 (respectively, monotonicity and

concavity conditions on the optimal vi’s) will be used in subsequent lemmas).

Proof: Pick any two states i and j. For k ∈ K, define

i(k) = argmax
i0

£
π(i)µHk · vHi0 + (1− π(i))µLk · vLi0

¤
and define j(k) similarly. For all k ∈ K, pick i∗k ∈ i(k) and j∗k ∈ j(k). By the definition of vH , vL,
and incentive compatibility, the expected payoff V (i) ≡ π(i)vHi + (1− π(i))vLi is

V (i) = η (π(i)a(i) + (1− π(i))(1− a(i))) + (1− η)
X
k∈K

h
π(i)µHk · vHi∗k + (1− π(i))µLk · vLi∗k

i
≥ η (π(i)a(j) + (1− π(i))(1− a(j))) + (1− η)

X
k∈K

h
π(i)µHk · vHj∗k + (1− π(i))µLk · vLj∗k

i
= π(i)vHj + (1− π(i))vLj

12 If i, j are not part of this ergodic set, then they are never chosen with positive probability; hence, any behavior

is incentive compatible.
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This proves part (1). For part (2), order i, j such that j < i. By part (1),

π(i)
¡
vHi − vHj

¢
+ (1− π(i))

¡
vLi − vLj

¢ ≥ 0 (A10)

−π(j) ¡vHi − vHj ¢− (1− π(j))
¡
vLi − vLj

¢ ≥ 0 (A11)

Adding the inequalities,

(π(i)− π(j)) · £¡vHi − vHj ¢− ¡vLi − vLj ¢¤ ≥ 0
Since j < i ⇒ π(j) < π(i), this implies

³
vHi − vHj

´
≥
³
vLi − vLj

´
. Thus the LHS of (A10) is

at most
³
vHi − vHj

´
, so the inequality requires vHi ≥ vHj . Similarly the LHS of (A11) is at most

−
³
vLi − vLj

´
, requiring vLi ≤ vLj ; this proves part (2).

For part (3): pick i, j ∈ N with j < i such that for some k ∈ K, σ (i, k)(j) > 0. By part (1),

π(i)
¡
vHi − vHj

¢
+ (1− π(i))

¡
vLi − vLj

¢ ≥ 0
⇔ π(i)

(1− π(i))

³
vHi − vHj

´
³
vLj − vLi

´ ≥ 1 (by part (2)
So µHk

µLk
> 1 implies π(i)

(1−π(i))
µHk
µLk

(vHi −vHj )
(vLj −vLi )

> 1. Thus after receiving signal k, a DM in memory state i

strictly prefers state i to state j; so incentive compatibility requires σ (i, k) (j) = 0, a contradiction.

The proof that σ(j, k)(i) > 0⇒ µHk
µLk
≥ 1 is identical.

For part (4): suppose not, so for some i,
vHi+1−vHi
vLi −vLi+1

>
vHi −vHi−1
vLi−1−vLi

. Since i ∈ eN (T ), there must
exist j ∈ N and k ∈ K such that σ(j, k)(i) > 0. Suppose first that j > i; then by part (3),

incentive compatibility requires π(j)
1−π(j)

µHk
µLk

µ
vHi+1−vHi
vLi −vLi+1

¶
≤ 1. But then the above inequality implies

π(j)
1−π(j)

µHk
µLk

µ
vHi −vHi−1
vLi−1−vLi

¶
< 1; again by part (3), this contradicts incentive compatibility of σ(j, k)(i) > 0

(the DM would prefer state (i − 1) to i). So, it must be that j < i. Then incentive compatibiltiy
requires π(j)

1−π(j)
µHk
µLk

µ
vHi −vHi−1
vLi−1−vLi

¶
≥ 1; by the above inequality, this implies π(j)

1−π(j)
µHk
µLk

µ
vHi+1−vHi
vLi −vLi+1

¶
> 1;

but then the DM would rather switch to state (i+1), contradicting optimality of σ(j, k)(i) > 0.

Using Lemma 2 and the fact that π(i)
(1−π(i)) =

fHi
fLi
, incentive compatibility (hence optimality) of
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σ(i, k)(j) > 0 requires

i < j :
fHi
fLi

µHk
µLk

Ã
vHbi − vHbi−1
vLbi−1 − vLbi

!
≥ 1 ∀bi ∈ {i+ 1, i+ 2, ..., j} (A12)

i > j :
fHi
fLi

µHk
µLk

Ã
vHbi+1 − vHbi
vLbi − vLbi+1

!
≤ 1 ∀bi ∈ {j, j + 1, ..., i− 1}

Lemma 3: For all η, an optimal rule ση exists. The set of optimal rules ση is upper hemi-

continuous in η, and the DM’s maximized expected payoff Π∗(η,N) is continuous and strictly

decreasing in η.

Proof: Given an action rule a, an optimal transition rule ση maximizes
P
i∈N (1− a(i)) fLi +P

i∈N a(i)f
H
i . By Lemma 1, the probability distribution f

S is equal to the limiting distribution

of a Markov process with transition probabilities given by ΩS. Thus, choosing σ (hence τSij) is

equivalent to choosing ωSij , subject to the constraint σ(i, k)(j) ≥ ηg0(j) for all signals k and states

j. Note that fSi is a polynomial (and hence continuous) in ωSij ; so the problem is to maximize a

continuous objective function over a compact constraint set which is continuous in η. Then the

theorem of the maximum implies that an optimal solution exists, the set of optimal solutions is

upper hemi-continuous in η, and the maximized payoff is continuous in η. Finally, Lemma 2 part

(3) implies that σ(i, k)(j) > 0 is not incentive compatible for all k ∈ K. Then by Theorem 1, the

constraint σ(i, s)(j) ≥ ηg0(j) ∀s must be binding, establishing that payoffs are decreasing in η.

Lemma 4: The DM’s expected payoff is at most 1
1+r∗ , where r

∗ is a lower bound on

r(σ) ≡
vuutP

i<i∗ y
H
iP

i<i∗ y
L
i

·
P
i≥i∗ y

L
iP

i≥i∗ y
H
i

, with ySi as defined in (A6)

The payoff 1
1+r(σ) is attained iff

P
i<i∗ y

H
iP

i≥i∗ y
H
i
=

P
i≥i∗ y

L
iP

i<i∗ y
L
i
.

Proof: Assume that there exists i∗ ∈ N such that a(i) = 1 for i ≥ i∗, and a(i) = 0 for i < i∗.

(The argument does not rely on this, aside from the notation). Then the expected payoff is

1
2

hP
i≥i∗ f

H
i +

P
i<i∗ f

L
i

i
; write the bracketed term asP
i≥i∗

yHiX
j

yHj
+

P
i<i
yLiX

j

yLj
=

1

1 +
P
i<i∗ y

H
iP

i≥i∗ y
H
i

+
1

1 +
P
i≥i∗ y

L
iP

i<i∗ y
L
i
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Let x ≡
P
i<i∗ y

H
iP

i≥i∗ y
H
i
. Then using the definition of r(σ), the expected payoff is 1

2

µ
1
1+x +

1

1+
(r(σ))2

x

¶
.

Then observe that

(1 + r(σ)) (1 + x)

Ã
1 +

(r(σ))2

x

! 2

(1 + r(σ))
−
 1

(1 + x)
+

1³
1 + (r(σ))2

x

´


=
1− r(σ)
x

· (x− r(σ))2

Since fHi
fLi
(therefore also yHi

yLi
) is increasing in i, it follows easily from the definition that r(σ) < 1.

Then the above expression is non-negative, and equal to zero iff x = r(σ) ⇔
P
i<i∗ y

H
iP

i≥i∗ y
H
i
=

P
i≥i∗ y

L
iP

i<i∗ y
L
i
.

This implies that 1
(1+x) +

1³
1+

(r(σ))2

x

´ ≤ 2
1+r(σ) , with equality iff the condition in the Lemma holds.

Lemma 5: There exists a sequence of strategies ση in which lim
η→0 r(σ

η) = r∗ ≡
³
µH1 µ

L
K

µL1 µ
H
K

´N−1
2
, and

lim
η→0Π

∗(η, N) = 1
1+r∗ . This is an upper bound on the expected payoff, which is attained only

if (i) limη→0
yS,ηi

yS1
= limη→0

ySi
ySN

= 0 ∀i ∈ N\{1, N}; (ii) lim
η→0

yH,η1

yL,η1

=
³
µH1
µL1

´N−1
, lim
η→0

yH,ηN

yL,ηN

=³
µHK
µLK

´(N−1)
; (iii) there exists bη such that for all η < bη, all states are ergodic.

Proof: Lemma 3 established that the set of optimal transition rules is upper hemi-continuous in

η; this implies that there exists a convergent sequence of transition rules ση with η → 0. Fix such

a sequence, and define ωS,ηij as in (A5), now making explicit the dependence on η; let ΩS,η be the

associated transition matrix. Since ση converges, there exists bη such that whenever η ∈ (0, bη), the
ergodic set eN (Ωη) is constant. Fix such an bη, and let eN be the ergodic set.

Using the characterization of Markov processes given in Freidlin and Wentzell (see also Kandori,

Mailath, Rob (1993)), yS,ηj is given by

yS,ηj =
X
q∈Qj

Y
(i→i0)∈q

ωS,ηi,i0 (A13)

where Qj is the set of all j−trees, and a j−tree is a directed graph on eN such that (i)each state

except j has a unique successor; (ii)there are no closed loops. Suppose that eN = {1, 2, ..., N}
(without loss of generality; if eN is strictly contained in N , renumber the states such that eN =

40



{1, 2, ..., N 0}, where N 0 ≡ # eN 0). Now, consider the following strategy:

τS,η12 =
√
ηµSK ; τ

S,η
N,N−1 =

√
η

µ
µHKµ

L
K

µH1 µ
L
1

¶N−1
2

µS1 ; for i ∈ eN\{1, N}, τS,ηi,i+∆ =


µSK if ∆ = 1

µS1 if ∆ = −1
0 otherwise

Under this process,

lim
η→0

ωS,η12√
η
= µSK ; lim

η→0
ωS,ηN,N−1√

η
=

µ
µHKµ

L
K

µH1 µ
L
1

¶N−1
2

µS1 ; for i ∈ eN\{1, N}, lim
η→0ω

S,η
i,j =


µSK if j = i+ 1

µS1 if j = i− 1
0 otherwise

Note that if ωS,ηij = 0 whenever j /∈ {i − 1, i + 1}, while ωS,ηi,i+1 > 0 and ωS,ηi,i−1 > 0, then ∀j ∈ eN
there is exactly one j-tree - namely, in which each state i < j goes to i + 1, and each state i > j

goes to i− 1. Then in the process just described,

lim
η→0

yS,η1√
η
= lim

η→0
ωS,ηN,N−1√

η
lim
η→0

Y
i∈N\{1,N}

ωS,ηi,i−1 =
¡
µS1
¢N−1µµHKµLK

µH1 µ
L
1

¶N−1
2

Similarly, lim
η→0

yS,ηN√
η =

¡
µSK
¢N−1

; and for i ∈ eN\{1,N}, lim
η→0

yS,ηi√
η
= 0 (since both ωS,η1,2 and ωS,ηN,N−1

go to zero at rate
√
η). Therefore

lim
η→0

P
i<i∗ y

H,η
iP

i<i∗ y
L,η
i

= lim
η→0

P
i<i∗

yH,ηi√
ηP

i<i∗
yL,ηi√

η

= lim
η→0

yH,η1√
η

yL,η1√
η

=

µ
µH1
µL1

¶N−1
, and lim

η→0

P
i≥i∗ y

L,η
iP

i≥i∗ y
H,η
i

=

µ
µLK
µHK

¶N−1

⇒ lim
η→0 r(σ) = lim

η→0

vuutÃPi<i∗ y
H,η
iP

i<i∗ y
L,η
i

!ÃP
i≥i∗ y

L,η
iP

i≥i∗ y
H,η
i

!
= r∗

Furthermore, note that limη→0
P
i<i∗ y

H,η
iP

i≥i∗ y
H,η
i

= limη→0
yH,η1 /

√
η

yH,ηN /
√
η
=
³
µH1 µ

L
K

µHKµ
L
1

´N−1
2
= limη→0

P
i≥i∗ y

L,η
iP

i<i∗ y
L,η
i

. So

by Lemma 4, this implies that ση attains the limiting payoff 1
1+r∗ .

To see that this is the upper payoff bound, we just need to show that r∗ is a lower bound on

r(σ). To see this, note that each k−tree is a product of (N − 1) entries ωS,ηi,j ≡ ηg0(j)+ (1− η)τS,ηi,j .

Since
ωH,ηi,j

ωL,ηi,j

≥ µH1
µL1
and

ωL,ηi,j

ωH,ηi,j

≥ µLK
µHK

and likelihood ratios y
H,η
i

yL,ηi

are increasing in i, it is then clear from

(A13) that ∀j ∈ eN , yH,ηj

yL,ηj

≥ yH,η1

yL,η1

≥
³
µH1
µL1

´N−1
,
yL,ηj

yH,ηj

≥ yL,ηN

yH,ηN

≥
³
µLK
µHK

´N−1
; this implies lim

η→0 r(σ
η) ≥r

yH1
yL1

yLN
yHN
≥ r∗. This inequality is strict unless (i) for all i ∈ eN\{1, N}, limη→0

yS,ηi

yS1
= limη→0

ySi
ySN
= 0;
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(ii) lim
η→0

yH1
yL1

=
³
µH1
µL1

´N−1
and lim

η→0
yHN
yLN

=
³
µHK
µLK

´N−1
; this establishes conditions (i) and (ii) of the

Lemma. Finally, note that if eN is strictly contained in N , then the upper bound for lim
η→0 r(σ

η) is

as above, but replacing N with N 0 < N. Since
³
µH1 µ

L
K

µL1 µ
H
K

´
< 1, this implies a strictly lower payoff. So

r∗ can only be attained if eN = N , establishing (iii).

Lemma 6: Fix a convergent sequence ση.The bound lim
η→0 r(σ

η) = r∗ is attained only if lim
η→0

ηP
j>i ω

S,η
i,j

=

ηP
j<i ω

S,η
i,j

= 0 ∀i ∈ N .

Proof: Suppose that the condition does not hold: there exist i ∈ N and δS > 0 such that

limη→0
ηP

j>i ω
S,η
i,j

= δS. By the definition of ωS,ηij , this is equivalent to requiring that the limit

lim
η→0

τS,ηij

η
exists for all j ∈ N . If there is no N−tree q∗N with limη→0

Q
(i→j)∈qN

ωL,ηi,j

ωH,ηi,j

=
³
µLK
µHK

´N−1
, then

(A13) implies that y
L
N

yHN
is bounded above

³
µLK
µHK

´N−1
, so by Lemma 5 (ii) we are done. So, assume

that there is such q∗N ; if there are several, then choose one which goes to zero at the slowest rate.

Note that limη→0
Q

(i→j)∈q∗N

ωL,ηi,j

ωH,ηi,j

=
³
µLK
µHK

´N−1
requires limη→0 ωS,ηi,j = µ

S
K for all edges (i → j) ∈ q∗N ;

by Lemma 2 part (3), this implies that all states in q∗N switch up to higher states.

Choose an initial state i0 (such that g0(i0) > 0). The proof will argue that there is another treebq which goes to zero at least as slowly as q∗N , with limη→0
Q

(i→j)∈bq
ωL,ηi,j

ωH,ηi,j

bounded above the desired

limit
³
µLK
µHK

´N−1
; this implies lim

η→0
yHN
yLN
>
³
µLK
µHK

´N−1
, so lim

η→0 r(σ
η) > r∗.

Suppose first that i < i0, and let j be i0s successor in q∗N . Consider the tree bqN which is identical
to q∗N , but has the edge (i→ i0) instead of (i→ j); since i0 switches up to a higher state, this does

not create any closed loops, and hence bqN is also an N−tree. By hypothesis (see paragraph 1),
lim
η→0

τS,ηi,i0

η
is finite: this implies that there exists δ0 such that lim

η→0
ωL,ηi,i0

ωH,ηi,i0

≡ lim
η→0

η+(1−η)τL,ηi,i0

η+(1−η)τH,ηi,i0

>
µLK
µHK
+ δ0.

Thus, limη→0
Q

(i→j)∈bqN
ωL,ηi,j

ωH,ηi,j

is bounded above
³
µLK
µHK

´N−1
. Since ωS,ηi,i0 ≡ η+(1−η)τS,ηi,i0

obviously does

not go to zero faster than η, while by assumption, ωS,ηi,j goes to zero at least as quickly as η, it must

be that bqN goes to zero at least as slowly as q∗N . By construction, this rate is at least as slow as

any other N -tree which achieves the ratio
³
µLK
µHK

´N−1
. Then by (A13), lim

η→0
yL,ηN

yH,ηN

is bounded above³
µLK
µHK

´N−1
.
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Now suppose that i > i0, and remove the edge (i→ j) from q∗N . There are two cases to consider:

(i) if the remaining graph contains a path from i0 to N, then it must be that q∗N does not contain

a path from i0 to i (all states in q∗N go up to higher states; so if there is a path from i0 to i,

then removing (i → j) breaks the path to N). In this case, there is a tree bqN which is identical

to q∗N , but with the edge (i→ i0) instead of (i → j); at this point, the analysis is identical to the

previous paragraph. (ii) If the remaining graph does not contain a path from i0 to N, then consider

the tree which is identical to q∗N , but removes the edge (i → j), and adds the edge (N → i0).

By construction, adding the edge (N → i0) does not create any closed loops, so we now have an

i0-tree. Since ω
S,η
N,i0

goes to zero at rate η or slower (as above), this tree cannot go to zero faster

than q∗N . Since limη→0
yLi0
yHi0
is bounded above

³
µLK
µHK

´N−1
, this implies (by Lemma 4 (ii)) that lim

η→0 r(σ
η)

is bounded above r∗. The argument for limη→0
ηP

j<i ω
S,η
i,j

= 0 is identical.

Lemma 7: Let ση be a convergent sequence of incentive compatible transition rules, and τS,ηi,j the

associated sequence of transition probabilities. Then lim
η→0 r(σ

η) = r∗ only if there exists η

such that for all i ∈ N , η < η implies (i) ση(i, k)(i) = 1 whenever k ∈ K\{1,K}; (ii)
τS,ηi,i+∆ = τS,ηi,i−∆ = 0 whenever ∆ ≥ 2.

Proof: Let η < bη, with bη as defined in Lemma 5 (iii). Then all states are ergodic, so incentive
compatibility requires that (A12) hold for all i, j ∈ N and k ∈ K with σ(i, k)(j) > 0. For all

i ∈ N\{N}, Lemma 6 implies that for η < bη, (1) there exists j > i with τ s,ηi,j > 0: by (A12),

this requires f
H,η
i

fL,ηi

µHK
µLK

vH,ηi+1−vH,ηi

vL,ηi −vL,ηi+1

≥ 1; (2) there exists j0 < i + 1 such that τS,ηi+1,j0 > 0; by (A12), this

requires
fH,ηi+1

fL,ηi+1

µH1
µL1

vH,ηi+1−vH,ηi

vL,ηi −vL,ηi+1

≤ 1. Combining inequalities, it must be that for all i,

fH,ηi

fL,ηi

µHK
µLK
≥ f

H,η
i+1

fL,ηi+1

µH1
µL1
⇒ yH,ηi

yL,ηi
≥ y

H,η
i+1

yL,ηi+1

µ
µH1
µL1

µLK
µHK

¶
(A14)

Fix a state i. Applying (A14) to every pair (j, j + 1) with j < i, and then to every pair (j, j + 1)

with j ≥ i+ 1, yields
yH,η1

yL,η1
≥
µ
µH1
µL1

µLK
µHK

¶i−1
yH,ηi

yL,ηi
;
yH,ηi+1

yL,ηi+1
≥
µ
µH1
µL1

µLK
µHK

¶(N−i−1)
yH,ηN

yL,ηN
(A15)

For part (i), suppose not. Then there exist i ∈ N , k ∈ K\{1,K}, and j > i such that we can
construct a subsequence with ση(i, k)(j) > 0. By (A12), this requires f

H,η
i

fL,ηi

µHk
µLk

vH,ηi+1−vH,ηi

vL,ηi −vL,ηi+1

≥ 1. By (2)
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above, we also need
fH,ηi+1

fL,ηi+1

µH1
µL1

vH,ηi+1−vH,ηi

vL,ηi −vL,ηi+1

≤ 1. Combining inequalities,

fH,ηi

fL,ηi

≥ f
H,η
i+1

fL,ηi+1

µ
µH1
µL1

µLk
µHk

¶
⇒ yH,ηi

yL,ηi
≥ y

H,η
i+1

yL,ηi+1

µ
µH1
µL1

µLk
µHk

¶
Using this in (A15), we obtain

yH,η1

yL,η1
≥
µ
µH1
µL1

µLK
µHK

¶N−2µ
µH1
µL1

µLk
µHk

¶
yH,ηN

yL,ηN
(A16)

Recall (established in the final paragraph of the proof of Lemma 5) that r(σ) ≥
r
yH1
yL1

yLN
yHN
. Since

µLk
µHk
>

µLK
µHK
, (A16) then implies

lim
η→0 r(σ

η) ≥ lim
η→0

vuutyH,η1

yL,η1

yL,ηN

yH,ηN

≥

vuutµµH1
µL1

µLK
µHK

¶N−2µ
µH1
µL1

µLk
µHk

¶
> r∗

So the limit r∗ cannot be attained if σ(i, k)(j) > 0 for some k /∈ {1,K}; this proves part (i) for
j > i, and the argument for j < i is symmetric.

For part (ii): suppose that for some i ∈ N and j ≥ i + 2, τS,ηi,j > 0. By (A12), this requires
fH,ηi

fL,ηi

µHK
µLK

vH,ηj −vH,ηj−1
vL,ηj−1−vL,ηj

≥ 1. By Lemma 6, there exists j0 < j such that τS,ηj,j0 > 0; by (A12), this requires

fH,ηj

fL,ηj

µH1
µL1

vH,ηj −vH,ηj−1
vL,ηj−1−vL,ηj

≤ 1. Combining inequalities, f
H,η
i

fL,ηi

≥ fH,ηj

fL,ηj

³
µH1
µL1

µLK
µHK

´
. Since j ≥ i+ 2, this implies

yH,ηi

yL,ηi
≥ y

H,η
i+2

yL,ηi+2

µ
µH1
µL1

µLK
µHK

¶

Substituting this into (A16) implies y
H,η
1

yL,η1

yL,ηN

yH,ηN

≥
³
µH1
µL1

µLK
µHK

´N−2
, which implies lim

η→0 r(σ
η) ≥

r
yH,η1

yL,η1

yL,ηN

yH,ηN

>

r∗. This proves part (ii) for j ≥ i+ 2, and the argument for j ≤ i− 2 is symmetric.

Lemma 8: Fix a sequence ση. Then lim
η→0 r (σ

η) = r∗ only if lim
η→0 τ

S,η
1,2 = lim

η→0 τ
S,η
N,N−1 = 0.

Proof: Suppose that lim
η→0 τ

S,η
1,2 6= 0. By Lemma 6, limη→0

η

τS,ηi,j

= 0 ∀i, j ∈ N ; then to calculate lim
η→0

yS,ηi

yS,η1

(i ∈ N ) using (A13), we can replace ωS,ηi,j with τS,ηi,j . By Lemma 7, τ
S,η
i,j = 0 (for small η) whenever

i, j are not adjacent states. As noted in the proof of Lemma 5, there is only one i−tree (∀i ∈ N )
when all states switch only to adjacent states. Hence,

lim
η→0

yS,η2

yS,η1
= lim

η→0
τS,η1,2 ·

Q
i>2 τ

S,η
i,i−1

τS,η2,1 ·
Q
i>2 τ

S,η
i,i−1

= lim
η→0

τS,η1,2

τS,η2,1
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The assumption limη→0 τS,η1,2 6= 0 implies that the that the final ratio is positive. By Lemma 5 (i),
this implies that the bound r∗ is not attained. Similarly if lim

η→0 τ
S,η
N,N−1 6= 0, then limη→0

yS,ηN−1
yS,ηN

> 0, so

lim
η→0 r(σ

η) > r∗.

A.3 Proof of Theorems 2,7 and Corollary to Theorem 7

Proof of Theorem 2: Lemma 3 contains all of the results except for the final part, Π∗(η,N)

increasing in N. Weak monotonicity is clear by revealed preference (the DM could always choose

to not use an extra state), and strict monotonicity for small η is established in Lemma 5 (iii) -

which proves that all states must be used to achieve the optimal payoff (hence, it is increasing in

the number of available states).

Proof of Theorem 7, parts (i),(ii),(iii): Consider a sequence ση of transition rules, with η → 0.

Lemma 5 calculated an upper bound on the expected payoff, 1
1+r∗ , and showed that this limit is

attainable in the limit as η → 0; since the set of optimal strategies is upper hemi-continuous in η

(Lemma 3), this implies that ση can only be optimal if it achieves the limiting payoff, 1
1+r∗ . By

Lemma 8, this requires lim
η→0 τ

S,η
1,2 = lim

η→0 τ
S,η
N,N−1 = 0; this establishes part (i) of Theorem 7. By

Lemma 6, there exist j0 < i < j such that τSi,j0 > 0 and τSi,j > 0, ∀i ∈ N . Then by Lemma 7, if the
sequence ση is incentive compatible (which is a necessary condition for optimality, by Theorem 1),

it can only attain the limiting payoff 1
1+r∗ if parts (ii) and (iii) of Theorem 7 hold.

Proof of the Corollary to Theorem 7: For part (i): Lemma 5 established that the payoff

1
1+r∗ =

Ã
1 +

³
µH1
µL1

µLK
µHK

´N−1
2

!−1
=

µ
1 +

³
1−eρeρ
´(N−1)¶−1

is attainable in the limit as η → 0. Then

the result follows from Theorem 2, which established that Π∗(η, N) is continuous and strictly

increasing in η. For part (ii): as argued in the above proof of Theorem 7, a sequence ση can only

be optimal if it attains the limiting payoff 1
1+r∗ . By Lemma 4, this requires

lim
η→0

P
i<i∗ y

H,η
iP

i≥i∗ y
H,η
i

= lim
η→0

P
i≥i∗ y

L,η
iP

i<i∗ y
L,η
i

(A17)

By Lemma 5, we need lim
η→0

ySi
yS1

= lim
η→0

ySi
ySN

= 0 for i ∈ N\{1, N}, which also implies lim
η→0

fSi
fS1

=

lim
η→0

fSi
fSN
= 0. Then the LHS of (A17) is

lim
η→0

P
i<i∗ y

H,η
iP

i≥i∗ y
H,η
i

= lim
η→0

yH,η1

yH,ηN

= lim
η→0

yH,η1 /
P
yH,ηi

yH,ηN /
P
yH,ηi

= lim
η→0

fH,η1

fH,ηN

= lim
η→0

fH,η1

1− fH,η1
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Similarly, the RHS of (A17) is equal to lim
η→0

fL,ηN

1−fL,ηN

. Then (A17) requires lim
η→0

fH,η1

1−fH,η1

= lim
η→0

fL,ηN

1−fL,ηN

,

which implies lim
η→0 f

H,η
1 = lim

η→0 f
L,η
N , and fL,η1 = 1− fL,ηN = 1− fH,η1 = fH,ηN . This yields

1 = lim
η→0

fH,η1

fL,η1

fH,ηN

fL,ηN

= lim
η→0

yH,η1 yH,ηN

yL,η1 yL,ηN

Ã
yL,η1 + yL,ηN

yH,η1 + yH,ηN

!2
By (A15),

yH,η1

yL,η1

µ
µL1µ

H
K

µH1 µ
L
K

¶i−1
≥ yH,ηi

yL,ηi
≥
µ
µH1
µL1

µLK
µHK

¶(N−i)
yH,ηN

yL,ηN

By Lemma 5, an optimal sequence ση satisfies lim
η→0

yH,η1

yL,η1

=
³
µH1
µL1

´N−1
, lim
η→0

yH,ηN

yL,ηN

=
³
µHK
µLK

´N−1
. Using

this and taking limits in the above equation, we obtain lim
η→0

yH,ηi

yL,ηi

=
³
µH1
µL1

´N−i ³µHK
µLK

´(i−1)
. So

lim
η→0

fH,ηi

fL,ηi

= lim
η→0

yH,ηi

yL,ηi

Ã
yL,η1 + yL,ηN

yH,η1 + yH,ηN

!
=

µ
µHK
µLK

¶i−1µ
µH1
µL1

¶N−iµ
µL1
µH1

µLK
µHK

¶N−1
2

This simplifies to
³ eρ
1−eρ
´i−1 ³

1−eρeρ
´N−i

, as desired.

Proof of Theorem 7, part (iv): Choose i with g0(i) > 0. By the above Corollary to Theorem

7, an optimal sequence of strategies ση has lim
η→0

fH,η(i)
fL,η(i)

=
³ eρ
1−eρ
´(i−1) ³

1−eρeρ
´(N−i)

; this is equal to 1

at i = N+1
2 , is at least

³ eρ
1−eρ
´2
for i ≥ N+3

2 , and is at most
³
1−eρeρ
´2
for i ≤ N−1

2 . If g0 (i) > 0,then

it must be that vHi + v
L
i ≥ vHj + v

L
j ∀j ∈ N (otherwise, starting in state j instead of i would

increase the expected payoff, at prior 12). Applying this inequality to j ∈ {i − 1, i + 1} and using
the monotonicity condition in Lemma 2 part (2), we obtain

vHi+1 − vHi
vLi − vLi+1

≤ 1 ≤ v
H
i − vHi−1
vLi−1 − vLi

If i ≤ N−1
2 , then the LHS of this inequality implies that

fHi
fLi

µHK
µLK

vHi+1 − vHi
vLi − vLi+1

≤
µ
1− eρeρ

¶2 µHK
µLK
(1) =

µH1
µL1

< 1

So incentive compatibility (hence optimality) requires bσ(i,K)(i+ 1) = 0, contradicting Lemmas 7
and 8 (which together imply bτS,ηi,i+1 > 0 ∀η). Similarly if i ≥ N+3

2 , then the RHS of the inequality

implies f
H
i

fLi

µH1
µL1

vHi −vHi−1
vLi−1−vLi

> 1; so bσ(i, l)(i− 1) > 0 is not optimal, contradicting Lemmas 7 and 8. So,
it must be that i = N+1

2 .
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Proof of Theorem 7, part (v): Since fHi
fLi

> 1 for i > N+1
2 and fHi

fLi
< 1 for i < N+1

2 (by

the corollary to Theorem 7), it is clear that incentive compatibility, and hence optimality, requires

ai = 0 if i ≤ N−1
2 , and ai = 1 if i ≥ N+3

2 . So, we just need to show that optimality requires

aN+1
2
∈ {0, 1}. The DM’s expected payoff is half of X

i<N+1
2

fLi +
³
1− baN+1

2

´
fLN+1

2

+
 X
i>N+1

2

fHi + baN+1
2
fHN+1

2


Using

P
i f
S
i = 1, rewrite this as

fL1

1 + N−1
2X
i=2

fLi
fL1
+
³
1− baN+1

2

´ fLN+1
2

fL1

− fH1
1 + N−1

2X
i=2

fHi
fH1

+
³
1− baN+1

2

´ fHN+1
2

fH1

+ 1 (A22)

Suppose, by contradiction, that there is an optimal solution ( bg0, bσ,ba) with baN+1
2
∈ (0, 1); this

requires dΠ(bg0,bσ,ba)dbaN+1
2

= 0. Since Π (bg0, bσ,ba) is linear in ba, this implies that Π (bg0, bσ,ba) would not change
if we increased ba ¡N+12 ¢

to 1. Then to prove that (bg0, bσ,ba) is not optimal, it is sufficient to show
that bσ does not maximize the expected payoff when ba ¡N+12 ¢

= 1.

By Theorem 7 (i), bσN,N−1 ∈ (0, 1), so the derivative of (A22) w.r.t. σN,N−1 must equal zero.
Noting that fSi

fS1
is independent of σN,N−1 (easily established by induction, noting that fSi solves

the recursion fSi
³
η + τSi,i−1 + τSi,i+1

´
= fSi−1τ

S
i−1,i + f

S
i+1τ

S
i+1,i), this FOC can be written as

dfL1
dσ1N,N−1
dfH1

dσ1N,N−1

=
1 +

PN−1
2

i=2
fHi
fH1
+
³
1− baN+1

2

´ fHN+1
2

fH1

1 +
PN−1

2
i=2

fLi
fL1
+
³
1− baN+1

2

´ fLN+1
2

fL1

=
fL1
fH1

µPN−1
2

i=1 f
H
i +

³
1− baN+1

2

´
fHN+1

2

¶
µPN−1

2
i=1 f

L
i +

³
1− baN+1

2

´
fLN+1

2

¶
The LHS is independent of baN+1

2
, while

fHi
fLi
strictly increasing in i implies that the RHS is strictly

increasing in
³
1− baN+1

2

´
. This implies that if bσ is optimal at baN+1

2
∈ (0, 1), it cannot satisfy the

F.O.C. at baN+1
2
= 1.

A.4 Proof of Theorem 3 (ii)

For this section, let σi,i+1 ≡ σ(i, h)(i + 1), and σi,i−1 ≡ σ(i, l)(i − 1). Note that all results in
Theorem 3 (and the corollary) are special cases of the results in Theorem 7, except for part (ii):

Theorem 7 only implies that σi,i+1 and σi,i−1 are strictly positive, not that they are equal to 1.
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Fix an optimal strategy (σ, g0, a). For any i with ai = 0, define ∆̂Si,i+1 ≡
Ã

iQ
j=2

τSj,j+1

!
vSi+1−vSi
vS2−vS1

;

and for any i ≤ N+1
2 , define ffSi ≡

Ã
iQ
j=2

τSj,j−1

!
fSi
fS1
.

Claim 0: In an optimal solution, the following conditions must hold:

(i) For any i with ai = 0 :
ffHiffLi

∆̂H
i,i+1

∆̂L
i,i+1

≥ 1, with equality if σi,i+1 ∈ (0, 1)

(ii) For any i ≤ N+1
2 :

ffHiffLi 1−ρ
ρ

∆̂H
i−1,i

∆̂L
i−1,i
≤ 1, with equality if σi,i−1 ∈ (0, 1).

Proof: The inequality
ffHiffLi

∆̂H
i,i+1

∆̂L
i,i+1

≥ 1 is exactly equivalent to the optimality condition for σi,i+1,

noting that (i) in a symmetric solution,
τHi,i+1
τLi,i+1

= ρ
1−ρ =

τLi,i−1
τHi,i−1

; (ii) optimality for σ1,2 requires

fH1
fL1

ρ
1−ρ

vH2 −vH1
vL1 −vL2

= 1. Similarly, (ii) is equivalent to the optimality condition for σi,i−1, given that

σ1,2 ∈ (0, 1) is optimal.

Claim 1: ffSi , ∆̂Si,i+1 satisfy the following recursion formulas:
∆̂Si,i+1 =

¡
η + τSi,i−1 + τSi−1,i

¢
∆̂Si−1,i − τSi−1,i−2τ

S
i−1,i∆̂Si−2,i−1 (A23)ffSi = ¡η + τSi−1,i−2 + τSi−1,i

¢ gfSi−1 − τSi−2,i−1τ
S
i−1,i−2

gfSi−2 (A24)ffSi = ∆̂Si,i+1 − τSi,i−1∆̂Si−1,i, and η∆̂Si,i+1 =
gfSi+1 − τSi,i+1

ffSi (A25)

Proof: For equation (A23): recall that if ai = 0, then vHi satisfies

vHi =
τHi,i−1v

H
i−1 + τHi,i+1v

H
i+1

η + τHi,i−1 + τHi,i+1

Subtracting this from vHi+1, and solving for (v
H
i+1 − vHi ), yields

τHi,i+1
¡
vHi+1 − vHi

¢
= ηvHi + τHi,i−1

¡
vHi − vHi−1

¢
(A26)

= ηvHi−1 +
¡
η + τHi,i−1

¢ ¡
vHi − vHi−1

¢
(A27)

Now lag (A26) by one, to obtain ηvHi−1 = τHi−1,i(v
H
i − vHi−1)− τHi−1,i−2(v

H
i−1− vHi−2); substituting this

into (A27) yields

τHi,i+1
¡
vHi+1 − vHi

¢
=
¡
η + τHi,i−1 + τHi−1,i

¢ ¡
vHi − vHi−1

¢− τHi−1,i−2(v
H
i−1 − vHi−2)
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Now multiply both sides by
Qi−1
j=2 τ

H
j,j+1

vH2 −vH1
, to obtain the desired expression for H; the calculation for

L is identical.

For equation (A24): for all i < N+1
2 , fSi solves

fSi =
τSi+1,if

S
i+1 + τSi−1,if

S
i−1

η + τSi,i−1 + τSi,i+1

Solving for fSi+1 yields τ
S
i+1,if

S
i+1 = f

S
i

³
η + τSi,i−1 + τSi,i+1

´
− τSi−1,if

S
i−1; then multiplying both sides

by
Qi
j=2 τ

S
j,j−1

fS1
yields the desired expression.13

For equation (A25) (by induction from (A23) and (A24)): Since ffS1 = g∆S1,2 = 1 (by definition),
and evaluating equation (2) at i = 2 yields ffS2 = η + τS1,2, it follows that

ffS1 = g∆S1,2, and ηg∆S1,2 = ffS2 − τS1,2
ffS1

verifying equation (A25) for i = 1. Now suppose (A25) holds for all j ≤ i− 1. To show that it also
holds for j = i, rewrite (A23) as

∆̂Si,i+1 =
¡
η + τSi,i−1

¢
+ τSi−1,i

µ
∆̂Si−1,i − τSi−1,i−2∆̂Si−2,i−1

¶
By the first equation in (A25) (at i− 1), the second bracketed term is equal to gfSi−1; by the second
equation in (A25) (at i− 1), τSi−1,igfSi−1 = ffSi − η∆̂Si−1,i; so, we obtain ∆̂

S
i,i+1 =

³
η + τSi,i−1

´
∆̂Si−1,i+ffSi − η∆̂Si−1,i, which verifies the first equation in (A25) for j = i. A similar calculation verifies the

second equation for j = i.

Claim 2: Suppose that for all j < i, σj,j−1 = σj,j+1 = 1. Then the following inequalities hold:

(i)
∆̂H
i,i+1

∆̂L
i,i+1

≤ ρ
1−ρ

∆̂H
i−1,i

∆̂L
i−1,i

; (ii)
ffHiffLil > 1; (iii)

∆̂H
i−1,i

∆̂L
i−1,i

< 1; (iv)
∆̂H
i,i+1

∆̂L
i,i+1

> 1−ρ
ρ

∆̂H
i,i−1

∆̂L
i,i−1

; (v)
gfHi+1gfLi+1 < ρ

1−ρ
ffHiffLi .

Proof: Part (i) is equivalent to Lemma 2 (iv). For (ii): Equation (A24) implies that gfSj+1 =ffSj − (1 − η)2ρ(1 − ρ)gfSj−1 for all 2 ≤ j ≤ i − 1, so gfHj+1gfLj+1 >
ffHjffLj ⇔

ffHjffLj >
gfHj−1gfLj−1 . Then since

ffH2ffL2 =

η+τH1,2
η+τL1,2

> 1 and
ffH1ffL1 = 1, it follows that

ffHiffLi > 1. For (iii): Equation (A23) implies that ∆̂Sj,j+1 =

∆̂Sj−1,j − (1− η)2ρ(1− ρ) ^∆Sj−2,j−1 for 2 ≤ j ≤ i − 1, so
∆̂H
j,j+1

∆̂L
j,j+1

<
∆̂H
j−1,j

∆̂L
j−1,j

⇔ ∆̂H
j−1,j

∆̂L
j−1,j

<
^∆H
j−2,j−1
^∆L
j−2,j−1

; since

13Note that the recursion equation for ∆̂S
i,i+1 relies on ai = 0, and the equation for

gfSi+1 relies on i ≤ N−1
2
.
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g∆H
2,3g∆L
2,3

=
η+τH2,1+τ

H
1,2

η+τL2,1+τ
L
1,2
< 1 =

g∆H
1,2g∆L
1,2

= 1, we then obtain
∆̂H
j,j+1

∆̂L
j,j+1

< 1 ∀j ≤ i − 1. For (iv), suppose the

inequality is false. Then by the first equation in (A25), ∆̂Si,i+1 =
ffSi + τSi,i−1∆̂Si−1,i, it must be thatffHiffLi ≤ 1−ρ

ρ

∆̂H
i,i−1

∆̂L
i,i−1

; this implies
µ ffHiffLi

¶2
≤ ffHiffLi 1−ρ

ρ

∆̂H
i,i−1

∆̂L
i,i−1

. The RHS must be at most 1 by the optimality

condition for τSi,i−1 > 0, so we need
ffHiffLi ≤ 1; this contradicts (ii). For (v): the second equation in

(A25) yields
gfHi+1gfLi+1 =

τHi,i+1
ffHi +η∆̂H

i,i+1

τLi,i+1
ffLi +η∆̂L

i,i+1

, so we need to show that
∆̂H
i,i+1

∆̂L
i,i+1

< ρ
1−ρ

ffHiffLi ; this follows from (i)

and (iii), which imply that the LHS is below ρ
1−ρ , and (ii), which implies that the RHS is greater

than ρ
1−ρ .

Claim 3: Suppose that for all j < i, σj,j−1 = σj,j+1 = 1. Then:

(i) if σi,i+1 ∈ (0, 1) is optimal, then σi,i−1 = σi+1,i = 1, and
gfHi+1gfLi+1 ,

^∆H
i+1,i+2

^∆L
i+1,i+2

are both increasing in

σi,i+1;

(ii) if σi,i−1 ∈ (0, 1) is optimal, then σi−1,i = σi,i+1 = 1, and
gfHi+1gfLi+1 ,

∆̂H
i,i+1

∆̂L
i,i+1

are decreasing in σi,i−1.

Proof: For (i): suppose that σi,i+1 ∈ (0, 1) is optimal, requiring
ffHiffLi

∆̂H
i,i+1

∆̂L
i,i+1

= 1; then parts (iv)

and (v) of Claim 2 imply that the IC conditions for τSi,i−1 > 0, τSi+1,i > 0 cannot hold with

equality, so σi,i−1 = σi+1,i = 1. To show that
gfHi+1gfLi+1 is increasing in σi,i+1, we need to show that

dgfHi+1/dσi,i+1
dgfLi+1/dσi,i+1 >

gfHi+1gfLi+1 . By (A24), using σi,i−1 = 1 and noting that ffHj is independent of σi,i+1

for j ≤ i, we obtain
dgfHi+1/dσi,i+1
dgfLi+1/dσi,i+1 = ρ

1−ρ
ffHiffLi ; this is greater than

gfHi+1gfLi+1 by Claim 2 (v). To show

that
^∆H
i+1,i+2

^∆L
i+1,i+2

is increasing in σi,i+1, we need to show that
d ^∆H

i+1,i+2/dσi,i+1

d ^∆L
i+1,i+2/dσi,i+1

>
^∆H
i+1,i+2

^∆L
i+1,i+2

. By (A23),

using σi+1,i = σi,i−1 = 1 and noting that ∆̂Hi,i+1, ∆̂
H
i−1,i are independent of σi,i+1, we obtain

d ^∆H
i+1,i+2/dσi,i+1

d ^∆L
i+1,i+2/dσi,i+1

= ρ
1−ρ

Ã
∆̂H
i,i+1−(1−η)(1−ρ)∆̂H

i,i−1
∆̂L
i,i+1−(1−η)ρ∆̂L

i,i−1

!
. This is greater than ρ

1−ρ
∆̂H
i,i+1

∆̂L
i,i+1

by Claim 2 (iv),

which is at least
^∆H
i+1,i+2

^∆L
i+1,i+2

by Claim 2 (i).

For (ii): the first statement is equivalent to the first statement in (i). To show that
∆̂H
i,i+1

∆̂L
i,i+1

is

decreasing in σi,i−1, we need to show that
d∆̂H

i,i+1/dσi,i−1

d∆̂L
i,i+1/dσi,i−1

<
∆̂H
i,i+1

∆̂L
i,i+1

. By (A23), using the fact that
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∆̂Si−1,i, ∆̂Si−1,i−2 are independent of σi,i−1, we obtain
d∆̂H

i,i+1/dσi,i−1

d∆̂L
i,i+1/dσi,i−1

= 1−ρ
ρ

∆̂H
i−1,i

∆̂L
i−1,i

; this is below
∆̂H
i,i+1

∆̂L
i,i+1

by Claim 2 (iv). To show that
gfHi+1gfLi+1 is decreasing in σi,i−1, we need to show that

dgfHi+1/dσi,i−1
dgfLi+1/dσi,i−1 <gfHi+1gfLi+1 . By (A24), using σi,i+1 = 1 and the fact that ffSi ,gfSi−1 are independent of σi,i−1,we obtain

dgfHi+1/dσi,i−1
dgfLi+1/dσi,i−1 =

³
1−ρ
ρ

´µ ffHi −(1−η)ρgfHi−1ffLi −(1−η)(1−ρ)gfLi−1
¶
; this is below 1−ρ

ρ

ffHiffLi by Claim 2 (v), which is below
gfHi+1gfLi+1

iff
fHi+1
fLi+1

>
fHi
fLi
, true by construction.

Claim 4: Define α ≡ (1− η)2ρ(1− ρ), and define coefficients γj recursively by γ1 = 0, γ2 = 1, and

γj+1 = γj − αγj−2 for j ≥ 2.14 Then:

(i) If σj,j−1 = σj,j+1 = 1 ∀ 2 ≤ j < i, then
ffHiffLi

∆̂H
i,i+1

∆̂L
i,i+1

≥ 1 ⇔ γ2i
¡
2ησ1,2 + (1− η)σ21,2 − η

¢ −
αγi−1γiσ21,2 ≥ 0.
(ii) If σj,j−1 = σj,j+1 = 1 ∀ 2 ≤ j < i, then

ffHiffLi 1−ρ
ρ

∆̂H
i−1,i

∆̂L
i−1,i
⇔ γ2i η − αγi−1γiσ21,2 ≥ 0.

Proof: If σj,j−1 = σj,j+1 = 1 ∀ 2 ≤ j < i, then solving the recursions in (A23) and (A24) yields
the following expression:

ffSi = γi
ffS2 − αγi−1σ1,2 (A28)

∆̂Si,i+1 = γi
g∆S2,3 − αγi−1 − (1− σi,i−1)(1− η)µSl ∆̂

S
i−1,i (A29)

(1− η)µSl ∆̂
S
i−1,i = γi(1− η)µSl − αγi−1(1− σ1,2) (A30)

For expression (ii), rewrite the condition
ffHiffLi 1−ρ

ρ

∆̂H
i−1,i

∆̂L
i−1,i

≤ 1 as ffHi (1 − η)µHl ∆̂
H
i−1,i − ffLi (1 −

η)µLl ∆̂
L
i−1,i ≤ 0. Using (A28) and (A30), this is

γ2i (1− η)
hffH2 (1− ρ)−ffL2 ρi− αγi−1γi

h
σ1,2(1− η)(1− 2ρ) + (1− σ1,2)

³ffH2 − ffL2 ´i ≤ 0
14Note that α < 1

4 , and that the recursion for γj is solved by γj ≡ 1√
1−4α

µ³
2α

1−√1−4α

´j−1
−
³

2α
1+
√
1−4α

´j−1¶
.

This is positive for j ≥ 2, which also implies that γj+1 = γj − αγj−1 > 0 for j ≥ 2; so
q

γi
αγi−1 ,

q
1− αγi−1

αγi
are

both real numbers. Also note that γj satisfies γj+1γj−1 − γ2j = α
¡
γjγj−2 − γ2j−1

¢
. This implies that γi

γi+1
>

γi−1
γi

iff
γi−1
γi

>
γi−2
γi−1 ; since

γ2
γ3
= 1 > 0 = γ1

γ2
, it then follows that γi

γi+1
is strictly increasing in i. Finally, a straightforward

calculation shows that lim
j→∞

µ
lim
η→0

γj
αγj−1

¶
= lim

j→∞

µ
(ρj−1−(1−ρ)j−1)

ρ(1−ρ)(ρj−2−(1−ρ)j−2)

¶
= 1

(1−ρ) . Since
γj

αγj−1 is decreasing in j ∀η,
this implies that lim

η→0

γj
αγj−1 is strictly greater than

1
(1−ρ) for finite N.
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Using (A23) and (A24) to evaluate ffH2 and ffL2 , and dividing the expression by (1−η)(2ρ−1),yields
the desired inequality.

For (i), rewrite
ffHiffLi

∆̂H
i,i+1

∆̂L
i,i+1

≥ 1 as ffHi ∆̂Hi,i+1 −ffLi ∆̂Li,i+1 ≥ 0; using (A28) and (A29), this is
0 ≤

³
γi
ffH2 − αγi−1σ1,2

´³
γi
g∆H2,3 − αγi−1

´
−
³
γi
ffL2 − αγi−1σ1,2

´³
γi
g∆L2,3 − αγi−1

´
− (1− η)(1− σi,i−1)

µffHi (1− ρ)∆̂Hi−1,i − ffLi ρ∆̂Li−1,i¶
The second line must equal zero, since optimality for σi,i−1 requires that the term in square brackets

be non-positive, with σi,i−1 = 1 whenever it is strictly negative. Using (A23) and (A24) to evaluateffS2 and g∆S2,3, then dividing the first line by (1− η)(2ρ− 1), yields the desired inequality.

Proof of Theorem: Assume that baN+1
2
= 0; the proof if baN+1

2
= 1 is symmetric.

Suppose first that σi,i+1 ∈ (0, 1) for some 2 ≤ i < N+1
2 , and choose the smallest such i. By

Claim 3 (i) and our choice of i,
gfHi+1gfLi+1

^∆H
i+1,i+2

^∆L
i+1,i+2

is bounded above by the value which would be attained

at σj,j−1 = σj,j+1 = 1 ∀ j ≤ i. So by Claim 0 and Claim 4 (i), optimality of σi,i+1 ∈ (0, 1)
requires σ1,2√

η = 1q
1−αγi−1

γi
+
√
η
, and optimality of σi+1,i+2 > 0 requires σ1,2√

η > 1q
1−αγi−1

γi
+
√
η
. But

since γi−1
γi

< γi
γi+1

(established in footnote 14), it is impossible for both of these inequalities to be

satisfied.

Next, suppose σi,i−1 ∈ (0, 1) for some 3 ≤ i < N+1
2 , and choose the smallest such i. By Claim

3 (ii) and our choice of i,
gfHi+1gfLi+1 1−ρρ

∆̂H
i,i+1

∆̂L
i,i+1

is bounded below by the value which would be attained at

σj,j−1 = σj,j+1 = 1 ∀ j ≤ i. So by Claim 0 and Claim 4 (ii), optimality of σi,i−1 ∈ (0, 1) requires
σ1,2√

η =
q

γi
αγi−1 , and optimality of σi+1,i ∈ (0, 1) requires

σ1,2√
η <

q
γi+1
αγi
. But since γi

γi−1 >
γi+1
γi
, it

is impossible for both inequalities to be satisfied. Thus, it must be that σi,i−1 = σi,i+1 = 1 ∀
2 ≤ i ≤ N−1

2 .

A symmetric argument rules out σi,i−1 ∈ (0, 1) for i ≥ N+5
2 , and σi,i+1 ∈ (0, 1) ∈ (0, 1) for

i ≥ N+3
2 . 15 So, we just need to verify that σN+1

2
,N−1

2
= σN+1

2
,N+3

2
= σN+3

2
,N+1

2
= 1. For future

15More precisely, Claims 1-4 developed optimality conditions for σi,i+1 when ai = 0, written in terms of the

optimality condition for σ1,2 ∈ (0, 1) and the behavior of states j < i. By counting states from N, rather than from 1,

we could obtain an analogous optimality condition for σN+1−i,N+1−(i+1), for any i s.t. aN+1−i = 1, in terms of the

optimality condition for σN,N−1 ∈ (0, 1) and the behavior of states j < N +1− i. Similarly, the optimality condition
for σN+1−i,N+1−(i−1) (in terms of the behavior of higher states) is analogous to the optimality condition for σi,i−1
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reference: from the proof of the Corollary to Theorem 7, an optimal solution requires

1 = lim
η→0

yH1 + y
H
N

yL1 + y
L
N

=

³QN
j=2 σj,j−1

´
(1− ρ)N +

³QN−1
j=1 σj,j+1

´
ρN³QN

j=2 σj,j−1
´
ρN +

³QN−1
j=1 σj,j+1

´
(1− ρ)N

⇔ lim
η→0

QN−1
j=1 σj,j+1QN
j=2 σj,j−1

= 1 (A31)

Suppose first that σN+3
2
,N+1

2
∈ (0, 1). By (analogy to) Claim 4 (i), evaluated at i = N−1

2 and

replacing σ1,2 with σN,N−1, this requires
σN,N−1√

η =
1r

1−
αγN−3

2
γN−1

2

+
√
η

, which is strictly below

1r
1−

αγN−1
2

γN+1
2

+
√
η

. By Claim 4 (i), optimality of σN+1
2
,N+3

2
> 0 requires σ1,2√

η ≥ 1vuut1−αγN−1
2

γN+1
2

+
√
η

. So

lim
η→0

σN,N−1
σ1,2

< 1 < 1
σN+3

2 ,N+12
σN+1

2 ,N−12
⇒ limη→0

QN−1
j=1 σj,j+1QN
j=2 σj,j−1

> 1, contradicting (A31).

So, σN+3
2
,N+1

2
= 1. Suppose next that σN+1

2
,N+3

2
∈ (0, 1). By Claim 4 (i), evaluated at i = N+1

2 ,

this requires

γ2N+1
2

¡
2ησ1,2 + (1− η)σ21,2 − η

¢− αγN−1
2
γN+1

2
σ21,2 = 0 (A32)

By analogy to Claim 4 (ii), evaluated at i = N+1
2 and replacing σ1,2 with σN,N−1, the optimality

condition for σN+1
2
,N+3

2
∈ (0, 1) can also be written as

γ2N+1
2

η − αγN−1
2
γN+1

2
σ2N,N−1 = 0 (A33)

By (A32), lim
η→0

σ21,2
η = lim

η→0
γN+1

2
γN+3

2

; by (A33), lim
η→0

σ2N,N−1
η = lim

η→0
γN+1

2
αγN−1

2

; thus,

lim
η→0

σN,N−1
σ1,2

= lim
η→0

γN+3
2

αγN−1
2

= lim
η→0

γN+1
2

αγN−1
2

− 1 > ρ

1− ρ

Where the final inequality follows from footnote (14). This is greater than 1 for ρ > 1
2 , implying

that lim
η→0

σN,N−1
σ1,2σN+1

2 ,N+32

is strictly greater than 1, contradicting (A31).

Finally, suppose σN+1
2
,N−1

2
∈ (0, 1). First, since (A32) and (A33) simply give two different ways

to write the optimality condition for σN+!
2
,N+3

2
> 0, they must be equivalent; setting the LHS’s

equal and taking limits as η → 0, this requires

2 = lim
η→0

Ã
σ21,2
η
+

αγN−1
2

γN+1
2

Ã
σ2N,N−1

η
− σ21,2

η

!!
(A34)

with i ≤ N+1
2
. Then an argument symmetric to the first paragraph above rules out σi,i−1 ∈ (0, 1) for any state i

other than the lowest with ai = 1 (here N+3
2
), and an argument symmetric to the second paragraph above rules out

σi,i+1 ∈ (0, 1) for any state other than i = N+1
2
.
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By Claim 4 (ii), σN+1
2
,N−1

2
∈ (0, 1) requiers σ21,2

η =
γN+1

2
αγN−1

2

. By (A31), we need lim
η→0

σN,N−1σN+1
2 ,N−12

σ1,2
=

1, which implies that lim
η→0

σN,N−1
σ1,2

> 1, or lim
η→0

µ
σ2N,N−1

η − σ21,2
η

¶
> 0. Then the RHS of (A34) is strictly

greater than lim
η→0

σ21,2
η , which is strictly above 2 by footnote (14), a contradiction.
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