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CONTRACTING WITH EXTERNALITIES*

ILYA SEGAL

The paper studies contracting between one principal and N agents in the
presence of multilateral externalities. When the principal commits to publicly
observed bilateral contracts, inefficiencies arise due to the externalities on agents’
reservation utilities. In contrast, when the principal’s offers are privately ob-
served, inefficiencies are due to the externalities at efficient outcomes. When the
principal can condition her trade with each agent on others’ messages, she
implements an efficient outcome, while threatening deviators with the harshest
possible punishment. However, in the presence of noise that goes to zero more
slowly than N goes to infinity, asymptotically agents become nonpivotal, and
inefficiency obtains.

INTRODUCTION

Many contracting situations involve multilateral externali-
ties. To give a few examples, a shareholder tendering his shares to
a superior corporate raider has a positive externality on other
shareholders [Grossman and Hart 1980], a creditor exchanging
debt for equity in a distressed firm has a positive externality on
the firm's other creditors [Gertner and Scharfstein 1991], a buyer
of a VCR has a positive “network” externality on owners of
compatible VCRs [Katz and Shapiro 1986b], a merger of compet-
ing firms has a positive externality on other competing firms
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[Lewis 1983], a private contributor to a public good has a positive
externality on other consumers of the good [Bergstrom, Blume,
and Varian 1986], a buyer signing an exclusive dealing contract
that hinders competition imposes a negative externality on other
buyers [Rasmusen, Ramseyer, and Wiley 1991], a downstream
firm purchasing an intermediate input from a manufacturer
imposes a negative externality on competing firms [Hart and
Tirole 1990; Katz and Shapiro 1986a], a principal designing an
incentive scheme in a common agency setting imposes an external-
ity on other principals dealing with the same agent [Pauly 1974;
Bernheim and Whinston 1986]. In all these situations it has been
shown that even when all agents participate in contracting, it may
fail to internalize externalities and may yield inefficient outcomes.
However, the connections among existing models, and the general
nature of arising inefficiencies, have not been well understood.

This paper develops and studies a general model of contract-
ing with externalities which unifies the above examples. In the
model, outlined in Section I, one party (the principal) makes
contract offers to N other parties (agents). The utility of each
agent depends on all agents’ trades with the principal. This model
incorporates many existing models, described in Section I, as
special cases.

Section 111 studies a contracting game in which the principal
commits to a set of publicly observed bilateral contract offers.
Since the principal’s profit can be written as the difference
between total surplus and the sum of agents’ reservation utilities,
contracting distortions are due to the principal’s incentive to
reduce these reservation utilities. Therefore, inefficiencies arise
whenever externalities on nontraders (i.e., on agents’ reservation
utilities) are present.

To identify the effect of the principal’s rent-extraction motive
on the contracting outcome, | assume that the total surplus
depends only on the aggregate trade (the sum of all agents’
trades), and that all agents’ trades are measured in identical
increments. Under these assumptions, which are satisfied in
almost all applications, the aggregate trade is socially insufficient
or excessive depending on whether the externalities on nontrad-
ers are positive or negative. Using the techniques of monotone
comparative statics [Topkis 1998; Milgrom and Shannon 1994], |
establish this and subsequent results in considerable generality,
thus unifying and systematizing existing results in specific
applications.
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Section 1V studies a contracting game in which the principal’s
offer to each agent is privately observed by this agent. As the
principal is now unable to commit to compensate an agent for the
externalities imposed on him, she has an incentive to deviate from
an efficient trade profile whenever externalities are present at
this trade profile. In particular, under the same assumptions as
before, the aggregate trade is insufficient or excessive depending
on whether the externalities at the efficient trade profiles are
positive or negative. The outcomes of private contracting are
compared with those of public contracting in Section V. Not
surprisingly, the comparison hinges on the relative magnitudes of
the externalities on agents who trade with the principal and those
on nontraders.

In the rest of the paper | return to the assumption that the
principal is able to make public commitments, but allow her to
commit to a mechanism in which her trade with each agent may
be contingent on other agents’ messages. Examples of such
mechanisms studied in the literature include auctions [Katz and
Shapiro 1986a] and conditional bids [Bagnoli and Lipman 1988].
Section VI studies conditions under which the results of Section
I11 generalize to such contracting situations. It shows that if the
principal is restricted to choose from a family of mechanisms in
which agents’ participation constraints bind, she again has an
incentive to distort the outcome to reduce agents’ reservation
utilities. On the other hand, if the principal’s choice of mechanism
is not restricted, she optimally offers the agents an efficient trade
profile, while threatening any agent who rejects the mechanism
with the harshest possible punishment. In this way, the principal
maximizes total surplus and minimizes agents’ reservation utili-
ties at the same time.

The principal’s fully optimal mechanism makes each agent
pivotal, which seems implausible when the number of agents is
large. Some studies instead assume that small agents are nonpiv-
otal, i.e., take the aggregate trade as given, which generally yields
inefficient contracting outcomes. However, this assumption has
generated much controversy in the setting of takeovers. Section
VII clarifies the issue, by providing two sets of conditions under
which Grossman and Hart's [1980] assumption that small share-
holders are nonpivotal is justified. The first result shows that if
the principal is restricted to use mechanisms in which small
agents have a small effect on the aggregate trade (which include
bilateral contracts), then asymptotically a nonpivotal outcome
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obtains, provided that agents’ payoffs are continuous in the
aggregate trade. Therefore, a raider’s ability to appropriate some
of the takeover surplus with bilateral contracting discovered by
Bagnoli and Lipman [1988] and Holmstrom and Nalebuff [1990] is
due to their assumption that the firm’s value is discontinuous in
the raider’s stake.

The second result of Section VII shows that even when agents
payoffs are discontinuous or the principal can use discontinuous
mechanisms, such as conditional bids [Bagnoli and Lipman 1988],
small agents will still be asymptotically nonpivotal as long as
there is some noise in the execution of the mechanism. Specifi-
cally, I suppose that each agent is exogenously unable to respond
to the principal’s offer with a small probability ey (for example, his
acceptance message may be lost in the mail). AsN— xand ey — 0
in such a way that Ney — o, asymptotically a nonpivotal outcome
obtains. This result, which supports and extends the conjecture of
Grossman and Hart [1980], demonstrates that contracting ineffi-
ciencies with a large number of agents are robust to the introduc-
tion of general contracting mechanisms, given small frictions in
the execution of these mechanisms.

I. THE MODEL

Consider a model in which one party, “the principal,” can
contract with N other parties, “agents.”* (With a slight abuse of
notation, N will represent the set as well as the number of agents.)
The principal’s “trade” with each agent i is denoted by x; € X;,
where X; is a compact subset of the set ), of nonnegative real
numbers, with 0 € X;. Letthe vector x = (X;, . . . , Xn) E X1 X -+ - X
X\ denote the agents’ trade profile. Externalities among agents
arise because each agent’s utility depends not only on his own
trade with the principal, but also on other agents’ trades. Namely,
each agent i’s payoff is u;(x) — t;, and the principal’s payoff is f (x) +
2 ti, where t; € N is the monetary transfer from agent i to the
principal. The default (“no trade”) point for each agentiist; =
Xi = 0

In some applications described in the next section, the
principal “sells” x; to agent i, in which case both u;(x) and [—f (X)]
(the principal’s cost of producing x) are increasing in x;, and one

1. For lack of better unifying terminology, these labels are used to reflect the
paper’s focus on games in which the “principal” offers contracts to “agents.”
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can expect agent i's payment t; to be positive. In other applica-
tions, the principal “buys” x; from agent i, in which case [—u;(x)]
and f(x) (the principal’s net benefit of x) are increasing in x;, and
one can expect t; to be negative. This distinction between buying
and selling will prove immaterial for the results to follow. What
will be important is the dependence of an agent’s utility on other
agents’ trades; i.e., whether externalities are positive or negative.
For future reference, let Jt* denote the set of trade profiles
maximizing the total surplus of the N + 1 parties:
(1) M* = arg max f(x) + >, u;(x).
XEX1XXXN i
The set t* will serve as a benchmark against which contracting
outcomes are compared, and the contracting parties’ failure to
maximize their joint surplus will be referred to as “inefficiency.”?
Many of this paper’s results will use additional structure of
the parties’ payoffs and trade domains. Here | state some assump-
tions that will prove useful. In the next section I will point out
which assumptions are satisfied in specific applications.

ConpITioN W. f(X) + 3 ui(x) = WS X;)-

In words, Condition W (for “welfare”) says that the total
surplus is a function W(X) of the aggregate trade X = X; x; only. In
most applications, Condition W will hold by virtue of the parties’
payoffs satisfying the following “linearity” condition:

ConpiTioN L. f(x) = F(X) and u;(x) = x;a(X) + Bi(X) forall i € N,
where X = 2 X;.

Indeed, under Condition L we have W(X) = F(X) + X a(X) +
% Bi(X).

ConbITioN D. Either X; = [0,X;]or X; = [kz: k = 0,1, . . ., k;] for all
iEN,

Condition D (for “domains”) says that all agents’ trades are
measured in the same increments, which could be either infinitesi-
mal or finite.

2. In some economic applications, the contracting outcome affects the welfare
of some parties who do not participate in contracting (e.g., final consumers in
vertical contracting [Hart and Tirole 1990; Katz and Shapiro 1986a] and mergers
for monopoly [Lewis 1983]). In such situations our notion of “efficiency” does not
have a normative appeal.
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ConpiTioN S. X; = (0,1} for all i. Furthermore, for any trade profile
x € {0,1/N and any permutation = of N, letting x,, denote the
permuted trade profile (X.qy, . - ., Xzn)), We have f(x;) = f(x),
and u;(X,) = U (x) for all i.

The second part of Condition S (for “symmetry”) states that
agents are identical, in the sense that the parties’ payoffs are
symmetric with respect to permutations of agents. Note that
Condition S implies all the other conditions.3

Il. APPLICATIONS

Al: Vertical Contracting [Hart and Tirole 1990; O'Brien and
Schaffer 1992; McAfee and Schwartz 1994; Rey and Tirole 1996;
Katz and Shapiro 1986a; Kamien, Oren, and Tauman 1992]. The
principal supplies an intermediate good to N agents (downstream
firms), who then produce substitute consumer goods. x; = 0 is firm
i's purchase of the intermediate good, and t; is its payment to the
supplier. Due to downstream competition, each firm i's utility
u;(X;, X_;) is decreasing in other firms' purchases x_;.

In the more specialized models of Hart and Tirole [1990] and
Rey and Tirole [1996], downstream firms produce a homogeneous
final good, transforming each unit of the intermediate good into a
unit of the final good at a cost c. After purchasing their inputs x;,
the firms play the Bertrand-Edgeworth game of downstream price
competition with capacity constraints. Assuming that all pur-
chased inputs are utilized in equilibrium,* and letting P(:) denote
the inverse demand function for the final good, each firm i’s profit
is given by u;(x) = [P(X) — c]xi, where X = 3; x;. Therefore, the
parties’ payoffs satisfy Conditions L and W.

While the first four papers assume that a downstream firm
cannot produce without using the principal’s input, and therefore
u;(0,x_;) = 0, Katz and Shapiro [1986a] and Kamien, Oren, and
Tauman [1992] study models in which each downstream firm has
access to an inferior technology which does not use the principal’s
input. In these models, u;(0, X_;) can be positive and can depend on
X_i (the importance of this will be shown in Section I11). The two

3. Indeed, the imposed symmetry among agents implies that the total surplus
and the principal’s profit are fully determined by the number X = 3; x; of agents
who have x; = 1. Similarly, by considering all permutations = that hold i fixed, it is
easy to see that agent i's utility can be written as U;j(x;, X). In addition, Condition S
implies that the function U;(:,-) is the same for all agents. Condition L then follows
since any function of x; € {0,1] is linear in x;. Condition D also follows trivially.

4. See Tirole [1988, Ch. 5] for more detail.
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papers assume that the intermediate good is a fixed input (a
license to use the principal’s patent), and that downstream firms
are identical. Then Condition S holds, and with it all the other
conditions.

A2: Exclusive Dealing [Rasmusen, Ramseyer, and Wiley 1991,
Segal and Whinston forthcoming]. The principal is an incumbent
monopolist who offers exclusive dealing contracts to N identical
buyers (agents). The contract obliges a buyer not to buy from a
rival seller. Let x; = (0,1} indicate whether buyer i signs such a
contract, and (—t;) be the compensation paid to him by the
incumbent. After observing the number X of signers, a potential
entrant decides whether to enter. Due to the entrant’s economies
of scale, the probability of entry, p(X), is a nonincreasing function
of X. In the case of no entry, in the second stage the incumbent
makes the monopoly profit #™ on each buyer by charging him the
monopoly price p™. In the case of entry, the entrant and incumbent
compete for the buyers who have not signed in the first stage, and
the incumbent, whose marginal cost is higher than the entrant’s,
makes no profit on these buyers. The incumbent still charges p™ to
the buyers who have signed exclusives, and earns ™ on each of
them.

Since all buyers are identical, Condition S holds, and with it
all the other conditions. The incumbent’s net profit can be written
as f(x) = [p(X)X + (1 — p(X))N]=™. Normalizing each buyer’s
surplus under price p™ to zero, and letting b denote his surplus
under the competitive price, his utility can be written as u;(x) =
(1 — x3)p(X)b. Since this utility is nonincreasing in X, by signing
an exclusive contract, a buyer imposes a negative externality on
other buyers.

A3: Selling an Indivisible Object [Jehiel and Moldovanu 1996;
Jehiel, Moldovanu, and Stachetti 1996]. The principal has one
unit of an indivisible good for sale to the agents. (This could, for
example, be a nuclear weapon, patent, or asset to be sold to one of
several competing nations or firms.) Let x; € {0,1} indicate whether
agent i receives this good, and t; denote the agent’s payment to the
principal. The principal’s inability to sell more than one unit can
be modeled by setting f(x) = —K, with K very large, whenever
3 X; = 2. Letting v;; denote the utility of agent i if agent j gets the
good, we can write uj(x) = ; vijx;. The literature studies situa-
tions with “identity-dependent” externalities, in which the utility
vij of agent i depends on which agent j # i receives the good. Such
situations do not satisfy Condition W.
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A4: Common Insurance [Pauly 1974]. The principal is a
risk-averse individual who contracts with N risk-neutral insur-
ance firms (agents). There are two possible outcomes: the “acci-
dent” state, in which the individual suffers a monetary loss a > 0,
and the “no accident” state, in which she suffers no loss. The
individual’s insurance contract with each firm i specifies a pre-
mium (—t;) and a compensation x; = 0 in the “accident” state.

Externalities among insurance firms are due to the individu-
al's moral hazard. For example, suppose that the individual
chooses the probability p of accident, at a private monetary cost
c(p). If her preferences satisfy Constant Absolute Risk Aversion,®
her certainty equivalent is

1
V(p.X) = c(p) + X t, with v(p,X) = — ~log [1— p + pe 0],

where X = 3;x;, and r > 0 is her coefficient of absolute risk
aversion. Letting p*(X) denote the individual’s optimal choice of p,
the parties’ expected utilities net of lump-sum transfers are given
by f(x) = v(p*(X),X) — c(p*(X)) and u;(x) = —p*(X)x;. These
payoffs satisfy Conditions L and W. Since p*(X) is hondecreasing
in X,8 by increasing the individual’s insurance and thereby raising
the probability of accident, each company imposes a negative
externality on other companies.

A5: Common Agency [Bernheim and Whinston 1986].7 Modify
the previous model in two respects. First, the individual herself
suffers no monetary loss in either state (i.e., a = 0). Second, in one
of the states, called the “good” state, each firm i receives a benefit
b;. As in the previous application, the individual’s contract with
each firm i specifies a lump-sum payment t; to the individual and a
“bonus” payment x; in the “good” state. Unlike in the previous
application, however, the motivation for contracting is not to
insure the individual, but to make her choose an action that is
more desirable for the firms.

The parties’ expected utilities net of lump-sum transfers are

5. Pauly considers more general risk preferences, which may exhibit wealth
effects (in particular, the individual's optimal choice of p may depend on X t;).
Wealth effects are neglected in this paper.

6. This can be seen, for example, by observing that the individual’s utility is
strictly supermodular in (p, X), and applying the Monotone Selection Theorem
[Milgrom and Shannon 1994].

7. Common agency models in which asymmetric information is present at the
?ontractinkg stage (see, e.g., Martimort and Stole [1994]) fall outside of this paper’s

ramework.
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given by f(x) = v(p*(X), X) — c(p*(X)) and u;j(x) = p*(X)[b; — x].
These payoffs satisfy Conditions L and W. Assume that b; = 0 for
all i, and restrict attention to contracts with x; € [0,b;] (higher
bonuses will not arise in equilibrium). Then by increasing its
bonus and thereby raising the probability of the good state, each
firm has a positive externality on other firms.8

A6: Takeovers [Grossman and Hart 1980; Bagnoli and Lip-
man 1988; Holmstrom and Nalebuff 1992; Burkart, Gromb, and
Panunzi, 1998]. The principal is a corporate raider, who makes a
tender offer to N shareholders (agents). x; = 0 is the number of
shares tendered by shareholder i, and (—t;) is the raider’s pay-
ment to this shareholder. Let v(X) denote the expected value of
the firm’s public shares as a function of X, the total number of
shares tendered. Finally, let c(X) denote the raider’s “transaction
cost” of acquiring X shares (it could also be negative, reflecting her
private benefit from controlling X shares). Then the parties’
utilities net of monetary transfers are given by f(x) = Xv(X) —
c(X) and u;(x) = (X; — x;)V(X), where X; is shareholder i's endow-
ment of shares. These payoffs satisfy Conditions L and W.

Say that the raider is superior if v(X) is nondecreasing in X,
which may be due to the raider’s greater ability or incentive to
enhance the firm’s value when she holds a larger stake in the firm.
In this case, a tendering shareholder has a positive externality on
other shareholders. On the other hand, say that the raider is
inferior if v(X) is nonincreasing in X, which may be due to the
raider’s greater ability to “loot” the firm’'s assets or “freeze out”
other shareholders when she owns a larger stake in the firm. In
this case, a tendering shareholder imposes a negative externality
on other shareholders.

A7: Debt Workouts [Gertner and Scharfstein 1991]. The
principal is the collective of shareholders of a financially dis-
tressed firm, which offers a debt-equity swap to the firm’s credi-
tors (agents), assumed to be of equal seniority. Let X; denote the
face value of debt initially held by creditor i, and suppose that the
swap results in the creditor forgiving an amount x; € [0, X;] of debt
in exchange for an equity stake s; in the firm. Let v(X) denote the
expected value of the firm’'s equity, and d(X) denote the expected

8. The model of Bernheim and Whinston [1986] is substantially more general.
First, the individual’s risk preferences may exhibit wealth effects (see footnote 5).
Second, there may be more than two possible outcomes, which requires consider-
ing contracts of more than two dimensions. Third, firms’ preferences over outcomes
may diverge, e.g., we may have b; < 0 for some firms, in which case contracting
may have negative, as well as positive, externalities.
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value of a $1 face value of debt, as functions of the total amount X
of debt tendered. Then we can write the shareholders’ payoff as
(1 — Zisi)v(X), and each creditor i's payoff as (X; — x;)d(X) +
s;v(X). If offers are made publicly, each creditor i knows the value
t; = s;v(X) of the equity stake offered to him. In this notation, the
parties’ payoffs satisfy Conditions L and W.

The function d(X) can be expected to be increasing, since a
less leveraged firm (i) has a greater debt repayment ratio in each
state of the world, ceteris paribus, and (ii) is less prone to engage
in rent-seeking activities, such as risky investments or costly
bankruptcy. Thus, a creditor who exchanges debt for equity has a
positive externality on other creditors.®

A8: Acquisition for Monopoly [Lewis 1983; Kamien and Zang
1990; Krishna 1993]. The principal makes acquisition offers to N
capacity owners (agents). These capacities can be used to produce
a homogeneous consumer good. Let x; € (0,1} indicate whether
owner i sells his capacity to the principal, and let (—t;) be the
principal’'s payment to this owner. If the capacities are identical,
the model satisfies Condition S, and with it all the other condi-
tions. An owner who sells his capacity cannot produce—hence
u;(1,x_;) = 0. Since acquisitions increase the market’'s concentra-
tion and the resulting market price, the profit u;(0,x_;) of an
owner who does not sell his capacity is increasing in other owners’
sales x_;.

A9: Network Externalities [Katz and Shapiro 1986b]. The
principal is the seller of a good for which each agent (buyer) has a
unit demand. x; € [0,1] denotes buyer i's purchase of the good, and
t; denotes his payment to the seller. Since all buyers are assumed
to be identical, Condition S is satisfied, and with it all the other
conditions. When the seller’s good exhibits “network externali-
ties,” the utility u(l,x_;) of each consumer i of the good is
increasing in other buyers’ purchases x_;. A consumer who does
not buy the seller’s good uses an old substitute technology, which
we assume here to be “unsponsored,” i.e., supplied by a competi-
tive market. If the old technology also exhibits network effects, its
users’ utility, u(0, x_;), is decreasing in x_;. Thus, a consumer who

9. Gertner and Scharfstein [1991] also consider exchanges of debt for cash or
senior debt. These exchanges cannot be captured by our simple model, since both of
the goods exchanged involve externalities on other creditors. For example, a
creditor has a positive externality on other creditors by forgiving his debt, but he
imposes a negative externality on them by accepting cash or senior debt in
exchange. Gertner and Scharfstein find that the net external effect of such
exchanges may be negative.
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buys from the seller has a positive externality on other consumers
who buy, but a negative externality on those who do not buy.

A10: Pure Public Good/Bad [Bergstrom, Blume, and Varian
1986; Neeman 1997]. The principal is a provider of a public
good/bad, who can contract with N consumers of the good (agents).
Let x; = 0 be the amount of the public good/bad “contributed by
agent i,” and let t; be agent i's payment to the provider. Then each
consumer i’'s utility net of monetary transfers is a function v;(X) of
the total provision X of the public good/bad. The model satisfies
Conditions L and W. In the public good model of Bergstrom,
Blume, and Varian, v;(X) is increasing in X; i.e., each consumer’s
contribution has a positive externality on other consumers. Nee-
man considers a formally similar model of “public bads,” in which
vi(X) is decreasing in X. His examples include vote trading (voters
sell their votes to the principal who implements an inefficient
policy) and “yellow dog” employment contracts (workers agree not
to join labor unions which would increase their joint bargaining
strength).

Note that all the applications satisfy Conditions L, W, and D,
with the exception of Al (Vertical Contracting) in the general case
of differentiated final goods, and A3 (Indivisible Object).

I11. BILATERAL CONTRACTING WITH PuBLIC OFFERS

This section analyzes the following two-stage game: in the
first stage the principal commits to a set |(x;,tj)}ien Of publicly
observable bilateral contract offers to agents. In the second stage
agents simultaneously decide whether to accept or reject their
respective offers. | will study the principal’s preferred Subgame-
Perfect Nash Equilibria (SPNE) of the game.©

Since the principal can always offer (x;,t;) = (0,0), without loss
of generality we can restrict attention to equilibria in which every
agent accepts his offer. This play constitutes a second-stage Nash
equilibrium if and only if the following participation constraints
are satisfied:

2 u;(X) — t; = u;(0,x_;) for all i € N.

10. Segal [1998] shows that the game may have multiple SPNE, and the
equilibrium preferred by the agents may differ from that preferred by the
principal. However, this section’s qualitative results are preserved when agents
coordinate on their preferred equilibrium.
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The right-hand side of the inequality represents the reservation
utility of agent i, i.e., the utility he would obtain by rejecting his
offer, provided that everyone else accepts. In the principal’'s
preferred SPNE, all agents’ participation constraints must bind
(otherwise her profit could be increased by raising some transfers
without upsetting the constraints). Expressing transfers from the
binding constraints and substituting them in the principal’s
objective function, the set of her profit-maximizing trade profiles
can be defined as

3 I = arg max f(x) + 2 u;j(x) — E u;(0, x_;).

N i

XEX1X XX

The principal’s objective function differs from the total sur-
plus in (1) by its last term, which is the sum of the agents’
reservation utilities. If each agent’s reservation utility does not
depend on other agents’ trades (in which case we will say that
there are no externalities on nontraders), then the profit-
maximization program (3) is equivalent to the surplus-maximiza-
tion program (1), and we have

ProrosiTioN 1. If u;(0, x_;) does not depend on x_; € X_; for all i,
then ¢ = N>,

Intuitively, when externalities on nontraders are absent, and
the principal can commit to compensate traders for the externali-
ties imposed on them, she internalizes these externalities and
implements efficient outcomes. Externalities on nontraders are
absent in application Al (Vertical Contracting) in the absence of a
substitute technology, application A4 (Common Insurance), and
application A9 (Network Externalities) when the old technology
exhibits no network effects. In these situations the principal’'s
commitment to public offers yields efficient outcomes. Proposition
1 also demonstrates the role of excludability in the provision of
Public Goods (A10). By excluding noncontributors, a public good
provider eliminates externalities on nontraders and provides an
efficient level of the good despite the remaining externalities on
contributors.

When externalities on nontraders are present, on the other
hand, the principal has an incentive to distort the trade profile x to

11. The possibility of efficient provision of an excludable public good has also
been demonstrated by Moldovanu [1996] in a symmetric-information setting and
by Maskin [1994] in a private-information setting.
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reduce the sum of agents’ reservation utilities. The direction of
this distortion will depend on the sign of the externalities:

DeriniTioN 1. Externalities on nontraders are positive [negative]
if u;(0, x_;) is nondecreasing [nonincreasing] inx_; € X _; for all i.

Intuition suggests that with positive [negative] externalities
on nontraders, the principal will optimally reduce agents’ reserva-
tion utilities by trading too little [too much] from the social
viewpoint. However, this intuition is not correct in general:

ExampPLE 1. LetN = 2, "{l = ./{2 = [0,20], ui(Xilei) = a;Xj + biX,i -
cix? + dix;x_; for i = 1,2, and f(xq,x,) = 0. Consider the
parameterized program,

max f(xy, X))+ D Uil X_) =z > Ui(0,X).

x1,X2€[0,20] i=12 i=12

Here z = 0 corresponds to the surplus maximization program
(1), and z = 1 corresponds to the principal’'s profit-maximiza-
tion program (3). Assume that ¢; > 0 for i = 1,2, and A =
4cqc, — (d; + dy)2 > 0, so that the objective function is strictly
concave. Then, assuming that the solution is interior (which
will be true for parameter values suggested below), it is
characterized by the following first-order conditions:

ai + b—i + dX_i - Zb_i
B 2

X fori=1,.2,

where d = d; + d,. Suppose that externalities on nontraders
are positive, which here means that b; > 0 for i = 1,2. The
first-order conditions then show that, in accordance with
intuition, the principal has an incentive to distort x; down-
ward given x_;. However, the principal’s optimal choice of x;
depends on x_;, which will also in general differ from its
efficient level. In particular, the above first-order condition
shows that when d < 0, and the principal’'s choice of x_; is
below its efficient level, she has an incentive to increase X;.
This indirect effect may outweigh the direct effect, in which
case the principal’s choice of x; exceeds the efficient level.
Moreover, there exist cases in which the aggregate trade
X(2) = x1(2) + X,(2) is increased by movingfromz =0toz = 1.
To see this, compute X' (z) = [—2(b,c, + byCy) — (by + by)d]/A,
and consider the following parameter values: ¢c; = 1, ¢, = 9,
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d= -5b;,=5,b,=1, a; = 14, a, = 43. For these values, all
the above assumptions are satisfied, and X'(z) = %11 > 0, i.e.,
the principal implements a socially excessive aggregate trade,
despite positive externalities on nontraders.

The example demonstrates that interactions between differ-
ent dimensions of the principal’'s maximization program may
preclude a definitive comparison with efficient outcomes. It turns
out, however, that under Conditions W and D, a comparison can
be obtained by reducing the principal’s problem to the one-
dimensional problem of choosing the aggregate trade X. Indeed,
under Condition W, which requires that the total surplus be a
function W(X) of the aggregate trade X only, we can use the
“aggregation method” of Milgrom and Shannon [1994] to rewrite
the principal’s profit-maximization program (3) as?

4) max W(X) — R(X),

Xe3iXi
where R(X) = minycxx..xx,, 1Zi Ui(0,x —j) : 2 x; = X] is the mini-
mum sum of agents’ reservation utilities that is consistent with
the aggregate trade X.13

A key step in comparing efficient aggregate trades with the
principal’s profit-maximizing aggregate trades is given by the
following lemma:

LeEmmA 1. If Condition D holds and externalities on nontraders
are positive [negative], then R(X) is nondecreasing [nonin-
creasing] on its domain.

Proof. Consider the case of positive externalities on nontrad-
ers. Take any X', X € 3; X;, with X’ = X. Takex € X; X - - - X Xy
such that 3; x; = X and R(X) = 2; u;(0,x_;). Under Condition D
there exists x’ € X; X - - - X Xy such that x’ = x and 3; x| = X'.
With positive externalities on nontraders, this implies that
R(X') = % u;(0,x-) = 2 ui(0,x_;) = R(X) whenever R(X') is
defined. The proof for the case of negative externalities is similar.l

The proof relies on the fact that under Condition D, the
principal can always reduce or increase the aggregate trade while
weakly reducing or increasing all agents’ trades at once. For
example, with positive externalities, this implies that the princi-

12. Where3; X = [Si X i X € X1 X -+ X X

13. When the functions u;(:) are not continuous, the minimum may not exist
for some aggregate trade X. However, note that such aggregate trade cannot arise
at a profit-maximizing outcome.
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pal can always reduce the aggregate trade while reducing all
agents’ reservation utilities, and therefore R(:) is nondecreasing.
Note the importance of Condition D for this result. For example,
suppose that N = 2, and that agents 1 and 2 are only allowed to
trade in multiples of 3 and 5, respectively. Then X = 10 can be
implemented by trading with agent 2 only. In order to reduce X to
8, the principal would have to increase her trade with agent 1 to
three units. With positive externalities this increases agent 2’s
reservation utility, and possibly the sum of agents’ reservation
utilities.

Once the dependence of the sum of agents’ reservation
utilities on the aggregate trade X is known, the effect of the
principal’s rent-seeking incentive on X is immediate. To formulate
the result, let M* = [3; x; : x € It*} be the set of efficient aggregate
trades, and M = [3;x;: x € I} be the set of the principal’s
profit-maximizing aggregate trades. The assumptions required to
ensure that the sets M and M* are single-valued (such as strict
concavity of the objective function and convexity of the feasible
set) would not be natural in many applications. Instead of
imposing such assumptions, I compare the two sets using the
strong (induced) set order (see, e.g., Milgrom and Shannon [1994]
and Topkis [1998]). Namely, for two sets A, B, we will say that A =
B if whenever a € A, b € B, and a = b, we must also have a € B
and b € A. Note that when A, B C i, A = B if and only if A\B lies
below A N B, which in turn lies below B\A. Armed with this
concept, we have

PropPosiTION 2. If Conditions W and D hold, then with positive
[negative] externalities on nontraders, M = [=] M *.

Proof. Consider the parameterized program maxxes x, W(X) —
zR(X), where z = 0 corresponds to the surplus-maximization
program, and z = 1 corresponds to the principal's profit-
maximization program. Lemma 1 implies that with positive
(negative) externalities on nontraders, the objective function is
supermodular in (=X,2) [in (X,2)]. The result follows by Topkis’
Monotonicity Theorem [Topkis 1998, Theorem 2.8.1].1

A glance at the applications in Section Il shows that Proposi-
tion 2 unifies many existing inefficiency results. For instances of
positive externalities on nontraders, it predicts that an individu-
al’s compensation scheme in a common agency situation is flatter
than the second-best compensation scheme (A5), that takeovers
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by superior raiders and debt-equity swaps are less likely to occur
than is socially optimal (A6 and A7), that acquisitions for mo-
nopoly may not occur even though they increase industry profits
(A8), and that a public good may be privately underprovided
(A10). For instances of negative externalities on nontraders, the
proposition predicts that an intermediate good manufacturer may
sell more than the vertical profit-maximizing quantity when a
substitute is available (Al), that socially inefficient exclusion may
occur (A2), that takeovers by inferior raiders are more likely to
occur than socially optimal (A6), that a sponsored technology may
be excessively adopted when the competing unsponsored technol-
ogy exhibits network effects (A9), and that a public bad may be
overprovided (A10).4

1V. BILATERAL CONTRACTING WITH PRIVATE OFFERS

Some of the literature described in Section 11 studies contract-
ing games in which the principal does not have as much commit-
ment power as assumed in the previous section. Thus, in the
context of Network Externalities (A9), Katz and Shapiro [1986b]
study a game in which the principal approaches two different
groups of agents in two periods, and cannot commit to the second
period’s price in the first period. The literature on Vertical
Contracting (Al) studies a game in which the principal makes
offers to all agents simultaneously, but each agent only observes
his own offer. In the context of Common Agency (A5), Bernheim
and Whinston [1986] study a game in which it is the agents (firms)
who make simultaneous offers to the principal (a risk-averse
individual). In these situations, even in the absence of externali-
ties on nontraders, the principal’s inability to commit to compen-
sate traders for the externalities imposed on them may give rise to
inefficient outcomes:

ExampLE 2. Consider the setting of Vertical Contracting (A1) with
two downstream firms (agents) producing a homogeneous
good, the inverse demand for which is given by P(X) = 1 — X.
Let X, = X, = [0,1]. For simplicity let all costs be zero, so that
f(x) = 0 and u;(X,X) = XP(Xy + %,) for i = 1,2. Since
externalities on nontraders are absent, Proposition 1 implies

14. While suggestive of distortions, the comparison in Proposition 2 is weak;
i.e., it does not rule out the possibility that contracting outcomes are efficient.
Numerous examples of strict inefficiencies can be found in the literature described
in Section I1.
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that the principal's commitment to bilateral offers would
yield efficient (vertical profit-maximizing) outcomes, here
given by t* = {(xq, X;) € [0,1]2: X; + X = L.

If the principal cannot publicly commit to her bilateral
offers, however, vertically efficient outcomes can no longer be
sustained. For example, suppose that the principal offers an
efficient trade profile (x7,x3) € 9* with xT > 0. Once agent 1
has accepted his offer, the principal and agent 2 have an
incentive to renegotiate to a trade x, that maximizes their
bilateral surplus, f (X7, X,) + Ux(X1,X) = Xo(1 — X7 — X,). Their
optimal choice is x, = (1 — x7)/2 > % — x7 = x3. Intuitively,
because x, has a negative externality on agent 1 who has
already purchased x7, the principal and agent 2 together have
an incentive to trade excessively from the viewpoint of joint
vertical profits.

In order to understand the nature of the inefficiency arising
when the principal is unable to commit, this section analyzes a
particular contracting game, which has been considered in the
Vertical Contracting setting.'®> The game consists of two stages: in
the first stage, the principal makes each agent i an offer (x;,t;),
which is privately observed by the agent. In the second stage,
agents simultaneously decide whether to accept or reject.16

Each agent’s acceptance decision in this game depends on his
beliefs about offers extended to other agents. In a Perfect Bayesian
Equilibrium, arbitrary beliefs can be assigned following the
principal’s out-of-equilibrium offers, which gives rise to an enor-
mous multiplicity of equilibria. To make a more precise prediction,
I follow the Vertical Contracting literature by restricting agents to
hold so-called “passive beliefs” [McAfee and Schwartz, 1994]: even
after observing an unexpected offer from the principal, an agent
believes that other agents face their equilibrium offers.

Consider the principal’s incentive to deviate from an equilib-

15. While | expect that this section’s qualitative results would generalize to
other bargaining games in which the principal lacks full commitment power, a
comprehensive study of such games is left to future research.

16. The literature on vertical contracting (Al) usually considers a more
complicated contracting game, in which the principal offers each agent i a tariff
ti(xi) (often restricted to be a two-part tariff), and upon accepting this tariff, the
agent chooses his trade x;. If this choice is made without observing other agents’
tariffs (the ex post unobservability case of McAfee and Schwartz [1994]), this game
yields the same equilibrium outcomes as the game I study.

Our model of Debt Workouts (A7) assumed that each creditor knows the
expected value of the equity he is offered. This assumption is not legitimate when
the creditor does not observe the offers extended to other creditors. Therefore, this
section’s analysis will not be valid for this application.
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rium outcome ()‘(,f). Since she can always offer (x;,t;) = (0,0), just as
in the previous section, without loss of generality we can restrict
attention to deviations in which all agents accept their offers. If
agent i holds passive beliefs, he accepts an offer (x;,t;) if and only if
u; (X;,X_;) — t; = u;(0,X_;). The principal’s optimal deviation should
maximize her profit subject to these participation constraints:

max f(x) + E t;

XEX XX XN, teRN
subject to u;(x;, X_;) — t; = u;(0,%_;) foralli & N.

()‘(,f) is an equilibrium outcome if and only if the principal does not
want to deviate from it; i.e., it solves this program. In particular,
note that the outcome must satisfy the same participation con-
straints (2) as in the commitment program, and thus the principal
can never do better here than in the commitment case. Moreover,
she is likely to suffer from her lack of commitment, due to the
additional requirement that X be her best response to agents’
beliefs.”

All participation constraints in the above program must bind,
since otherwise the principal could profitably deviate by increas-
ing transfers for some agents. Expressing transfers from the
binding constraints and substituting them in the objective func-
tion, and taking into account that the principal takes agents’
reservation utilities u;(0, X_;) as given, we find that trade profile X
can be sustained in equilibrium if and only if it satisfies the
following condition:8
(5) % € arg max f(x) + E Ui (X, X_;).

XEX1X - XXN
Let € denote the set of such trade profiles. The nonemptiness of €
is only ensured under additional assumptions, which are dis-
cussed in Appendix 2. All of this section’s results will be vacuous
(but formally correct) when € is empty.

17. By the same logic, a player prefers being a Stackelberg leader to moving
simultaneously with other players.

18. The condition implies (but is stronger than) “pairwise proofness”
[McAfee and Schwartz 1994], which requwes that for each agent i, Xi €
arg maxyex, f(xi, X-i) + u;j(x;, X-;). Indeed, “pairwise proofness” only ensures that
the principal cannot profltably deviate by changing her offer to a single agent, and
does not check the profitability of multiagent deviations. See footnote 20 to
Example 3 below, and Rey and Verge [1997].
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Example 2 demonstrates that in the presence of externalities
at an efficient trade profile, the principal, who is unable to commit
to compensate agents for these externalities, has an incentive to
deviate from this trade profile. Conversely, it turns out that when
externalities are absent at an efficient trade profile, private
contracting produces efficient outcomes, regardless of any exter-
nalities that might exist at other trade profiles:

ProposITION 3. If there exists x* € 9* such that u;(x}, x_;) does
notdependon x_; € X_; for all i, then & C Jk*.

Proof. For any X € €, the equilibrium condition (5) implies
that

FR) + 2 Ui(R) = FO*) + X ui(x%, %) = F(x*) + ) ui(x*).

Therefore, X € i*.1

In applications A5 (Common Agency), A6 (Takeovers), and A8
(Acquisition for Monopoly), externalities are absent on agents who
trade the maximum amount (“sell out”). In certain cases, this
outcome is efficient: in Common Agency with a risk-neutral
individual, in Takeovers with a superior raider and low bidding
costs, in Acquisition for Monopoly when monopoly maximizes
industry profits. For these cases, Proposition 3 establishes that all
equilibrium outcomes are efficient.1®

ExampLE 3. Consider the setting of Takeovers (A6) where the
firm’s value v(X) is strictly increasing in X, and c¢(X) = 0 (i.e.,
bidding costs are absent). Then at the unique efficient out-
come, all shares are sold to the raider: x* = (X, ..., Xy). At
this trade profile there are no externalities on traders:
u;(X;,x_;) = 0 for all x_;. Therefore, according to Proposition 3,
x* is the only candidate equilibrium outcome. It is easy to
check that indeed x* € €.20

On the other hand, when externalities are present at all
efficient trade profiles, they must distort the contracting outcome.

19. In the Common Agency setting, this result parallels Theorem 2 of
Bernheim and Whinston [1986], established for a contracting game in which firms
make simultaneous offers to the individual.

20. However, note that with a sufficiently large fixed bidding cost, x* is not an
equilibrium outcome (even though it is “pairwise proof” [McAfee and Schwartz
1994]), since the raider is better off not acquiring any shares at all. Hence, in this
case no equilibrium exists.
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To identify the direction of distortion, consider the following
definition:

DerFiniTION 2. Externalities on efficient traders are positive [nega-
tive] if for all x* € IM* and each agent i, u;(x7,x_;) is
nondecreasing [nonincreasing] in x_; € X _;.

One is tempted to conjecture that with positive [negative]
externalities on efficient traders, the equilibrium trade is lower
[higher] than socially optimal. However, just as in the case of
public offers, this conjecture can be undermined by interactions of
different dimensions of the principal’s problem (see Example 1). A
definitive comparison again requires Conditions W and D. Letting
E = {3 x; : x € €] denote the set of equilibrium aggregate trades,
we have

ProposiTION 4. If Conditions W and D hold, then with positive
[negative] externalities on efficient traders, E U M* = [=] M™*.

Proof. Consider the case of negative externalities on efficient
traders. Suppose that X* € M* and X € E U M*, and that
Ry, ..., Xn) € €, with 3 & = X = X*. Since X* € E U M* trivially,
the strong set order comparison only requires proving that X €
M*.

Under Condition D there exists x* € X; X - - - X Xy such that
X* =3, xTand x* = X. Then we can write

W(X) = f(R) + 2w X5) = F(x*)
+ 20 WX &) = F(X) + 2 ui(xEx) = W(X¥).

The first inequality obtains from the equilibrium condition (5), the
second from the fact that externalities on efficient traders are
negative, and the last equality from Condition W. Therefore, X €
M=*, which implies the result. The proof for the case of positive
externalities on efficient traders is similar.ll

The established comparison between the sets E and M* is
somewhat weaker than the strong set order. For example, with
positive externalities on efficient traders, the comparison means
that EXM* lies below M*, but allows some elements of E N M* to
lie above M*\E. When M* # Q, the comparison implies, in
particular, that sup E = sup M*.
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V. CoMPARISON BETWEEN PuBLIC AND PRIVATE CONTRACTING

As shown in the two preceding sections, with publicly ob-
served offers contracting distortions stem from the externalities
on nontraders, while with privately observed offers they stem
from the externalities on efficient traders. In the particular case in
which the externality imposed on an agent by changing other
agents’ trades does not depend on his own trade, the two contract-
ing regimes yield the same outcomes:

ProrosITION 5. Ifforeach agentiandall x_;, x"; € X _;, ui(xj, X") —
Ui (i, x_;) does not depend on x; € %;, then € = .

Proof. By (5), X € € ifand only if
FR) + 2 ui(& %) = F0) + 2 uix, %) forall x € X, % X Xy,

By the proposition’s assumption, we can write u;(x;,X_;) =
u; (X;, X)) + u;(0,X;) — u;(0, x_;). Substituting in the above inequal-
ity and subtracting 3; u;(0, X_;) from both sides yields

f(%) + 2 [ui®, X-) — Ui (0,%)]
=f(x) + X [Ui(,x-) = ui(0,x)] forallx € ¥, XX Xy

By (3) this holds if and only if K € ).l

The proposition’s assumption, which is equivalent to the
additive separability of u;(x;,x_;) in x; and x_;, is quite strong: out
of all the applications described in Section I1, it is only satisfied in
application A10 (Pure Public Good/Bad) with linear benefit func-
tions v;(X). In order to study the general case where the externali-
ties on nontraders differ from those on efficient traders,?! consider
the following definition:

DerFiniTiON 3. Externalities are increasing [decreasing] if for each
agent i, u;(x;,x_;) has increasing differences in (X;, X_;) [(—X;,X-;)]
[Topkis 1998; Milgrom and Shannon 1994], i.e., for all x_;,
X' € X ;with x'_; = x_;, ui(x;,x"_;) — uj(xj,X_;) is nondecreas-
ing (nonincreasing) in x; € X;.

21. These externalities may even have opposite signs: for example, in the
context of Network Externalities (A9), assuming that full adoption of the new
technology is efficient, the externalities on efficient traders are positive, while the
externalities on nontraders are negative.
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In words, with increasing [decreasing] externalities, the
externality imposed on agent i by increasing other agents’ trades
is more [less] positive when he trades more.?? It is easy to verify
that externalities are increasing in applications A9 (Network
Externalities) and A2 (Exclusive Dealing), and they are decreas-
ing in applications A4 (Common Insurance), and A8 (Acquisition
for Monopoly). In application Al (Vertical Contracting), externali-
ties must be decreasing in the absence of a substitute technology,
but may be increasing in other cases (see Katz and Shapiro
[1986a]). In application A6 (Takeovers), externalities are decreas-
ing [increasing] when the raider is superior [inferior] to the
incumbent management and X; = (0, X;| for all i. In application A10
(Pure Public Good/Bad), externalities are increasing [decreasing]
when the functions v;(-) are convex [concave].

Intuition suggests that with increasing (decreasing) externali-
ties, the principal’'s incentive to trade with private offers falls
short of [exceeds] that with public offers. Unfortunately, just as
with similar intuitions in the previous sections, this conjecture is
not generally true because of the interaction between different
dimensions of the principal’'s multidimensional program. More-
over, unlike in previous sections, even Conditions W and D do not
ensure a definitive comparison here. The problem is that even
when the allocation of a given aggregate trade X does not affect
total surplus, it may still affect the principal’s profit with both
public and private offers. For this reason, a definitive comparison
can only be established under the stronger Condition S, which
ensures that the allocation of a given X among agents is always
irrelevant:

ProprosiTioN 6. When Condition S holds and externalities are
increasing [decreasing], E U M = [=] M.

Proof. Under Condition S we can write u;(x) = U(x;,%; X;) and
f(x) = F(Zj %), and

.....

Consider the case of increasing externalities. Suppose that X € M

22. An equivalent formulation of this property is that agent i's willingness to
increase his trade from x; to xj = X;, Ui(Xi,X=i) — ui(Xj, X—j), is nondecreasing
[nonincreasing] in other agents’ trades x_;. As shown in Segal [1998], this property
determines whether the public contracting game of Section Il has multiple
equilibria (see footnote 10).
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and X € E, and X = X. Since we trivially have X € E U M, to
establish the strong set order comparison, we only need to prove
that X € M. Since agents’ participation constraints bind in the
private-offer equilibrium X, each agent i with x; = 1 pays t; =
U(1,X) — U(0,X — 1). Consider a deviation from the equilibrium
in which the principal offers x; = t; = 0 to X — X agents who
previously had x; = 1. Since the deviation must be unprofitable,
we have

F(X) + X[U(L, X) — U(0,X — 1)]
= F(X) + X[(U(L,X) — U, X — 1)]
= F(X) + X[U(L, X) — U@, X — 1)],

where the second inequality follows from the condition of increas-
ing externalities. Therefore, X € M. The proof for decreasing
externalities is similar, except that we consider the principal’s
deviation to offer x; = 1 to X — X agents who previously had
Xi = O.

Another way to compare the contracting outcomes with
private and public offers is to focus on situations in which N is
large. As shown in the working paper version [Segal 1997], when
Condition L holds with differentiable functions F(-) and «(-) and a
continuous function B(-), the above comparison between M and E
holds in the asymptotic setting described in Section VII below
when N is sufficiently large.

What do these comparisons imply for the relative efficiency of
public and private contracting outcomes? The implications are
unambiguous when the total surplus W(X) is quasi concave in X.
Under this assumption, which is reasonable in all applications
listed in Section 11, W(X) is always (weakly) increased by moving
X closer to its efficient value. Therefore, our comparative statics
results imply that when the externalities on traders are of the
same sign, but of greater [smaller] absolute value, than those on
nontraders, private contracting is less [more] efficient than public
contracting (for a formal proof, see Segal [1997, Subsection 5.3]).

The former case includes settings in which externalities are
negative and decreasing, such as Vertical Contracting (Al) with-
out substitute technologies and Common Insurance (A4), and
settings in which externalities are positive and increasing, such
as Network Externalities (A9) when the old technology exhibits no
network effects. In fact, in these three settings there are no
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externalities on nontraders, and inefficiencies can be ascribed to
the principal’s inability to commit. This point has been made in
the respective literatures.

Perhaps more surprisingly, the principal’s inability to commit
can raise the total surplus of the contracting parties. This
happens when the externalities on traders are of the same sign,
but of smaller magnitude, than those on nontraders. This includes
settings in which externalities are positive and decreasing, such
as Takeovers (A6) with a superior raider and Acquisition for
Monopoly (A8), and settings in which externalities are negative
and increasing, such as Takeovers (A6) with an inferior raider and
Exclusive Dealing (A2). In these cases, welfare would be enhanced
by legal restrictions on the principal’s commitment.23

V1. GENERAL COMMITMENT MECHANISMS

In this section | return to the assumption that the principal is
able to make public commitments, but generalize the analysis of
Section 111 by allowing the principal to commit to mechanisms in
which one agent’s trade can be made contingent on other agents’
messages. For example, in the context of Vertical Contracting
(A1), Katz and Shapiro [1986a] and Kamien, Oren, and Tauman
[1992] study an auction in which the seller commits to sell X units
of the good to the highest bidders. Unlike with bilateral contract-
ing, whether buyer i obtains the good now depends on other
buyers’ bids. In the context of Takeovers (A6), Bagnoli and
Lipman [1988] study conditional bids, in which the raider com-
mits to purchase exactly X shares at a certain price if at least X
shares are tendered by stockholders, and to buy no shares
otherwise. Unlike with bilateral contracting, the number of

23. In the context of takeovers with a superior raider, a similar observation
has been made by Harrington and Prokop [1993], who study multiperiod bidding
by a raider. Their numerical simulations show that the raider’s inability to commit
to a bid increases the likelihood of takeover and expected total surplus. An analogy
can be found in the “Coase conjecture,” which states that a durable good
monopolist who is unable to commit sells a larger quantity (see, e.g., Tirole [1988,
Chapter 1]). Harrington and Prokop also note that the raider’s inability to commit
reduces her surplus, and so may prevent her from recouping the sunk cost of a
takeoveé. In this case, social welfare is reduced, and our policy recommendation is
reversed.

Our policy recommendations may also be reversed when the contracting
outcome affects the welfare of some parties who do not participate in contracting,
?uct)w as final consumers in Vertical Contracting (A1) and Acquisition for Monopoly

A9).
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shares sold by shareholder i now depends on other shareholders’
tenders.

A. Characterization and Examples

A general mechanism (game form) used by the principal can
be described asT" = (S, . . ., Sn, (), where S; is agent i's message
space,andg:S; X - -+ X Sy— X1 X - - - X Xy X NN is the outcome
function, which prescribes the trade and transfer profiles for any
message profile. The fact that participation in the mechanism is
voluntary can be reflected by endowing each agent i with a special
“reject” message s; = 0, guaranteeing him the bundle (x;,t;) = (0,0):

DEFINITION 4. A mechanism I' = (Sy, ..., S\, g () is voluntary if
0 € S;for all i, and g;(s) = (0,0) whenevers; = 0.

As in Section Ill, I assume that the principal can induce
agents to play any given Nash equilibrium of the mechanism,
which gives rise to the following implementation concept:

DeriNnITION 5. An allocation (X,f) € X; X - X Xy X AN s
implementable if there exist a voluntary mechanism I" =
(S1, ..., SN g (")) and a Nash equilibrium play s of I" such that
g(s) = (X.0).

In the spirit of the revelation principle, we can focus on a
special class of voluntary mechanisms, to be called direct mecha-
nisms, in which each agent has only two possible messages,
“reject” (s; = 0), and “accept” (s; = 1). (The difference from the
standard implementation setting, described, e.g., in Mas-Colell,
Whinston, and Green [1995, Chapter 23], is that even though
agents have no private information to report, they must be
endowed with a message giving them the option not to participate
in the mechanism.) Every play s € {0,1]N in such a mechanism can
be represented with the corresponding “acceptance set” A(s) =
li € N:s; = 1. Thus, a direct mechanism can be described by set
functions x : 2N — X; X - - - X Xy and t: 2N — %N, so that g(s) =
(X(A(s),t(A(s))).2* In words, x(A) is the trade profile prescribed
when the set of accepting agents is A, and t(A) is the transfer
profile in this situation.

DEerFINITION 6. An allocation (X,t) € X; X - - X Xy X NN is directly
implementable if there exists a direct mechanism (x,t) in

24. Boldface type will be used to denote functions on 2N, e.g., x:2N —
X1 X -+ X Xy, and normal type to denote their values; e.g., x([1,2)) € X; X - - - X Xn.
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which A = N is a Nash equilibrium play and (x(N),t(N)) =

(X,1).

Since a direct mechanism (x,t) must be voluntary, we must
have x;(A) = t;(A) = 0 whenever i € A, and the requirement that
A = N be a Nash equilibrium play of (X,t) can be represented with
the following participation constraints:

(6) Ui(X(N)) — t;(N) = u;(0,x_;(N\i)) forall i € N.

The modified revelation principle can now be formulated as
follows:

ProrosiTioN 7. An allocation (X,f) € X, X - X Xy X NN is
implementable if and only if it is directly implementable.

Proof. If (x,f) is implementable, then there exists a voluntary
mechanism I' = (S;,..., Sy, 0 (1)) and a message profile 5 =
(31, - - -, Sn) €Sy X -+ - X Sy such that (i) g(3) = (X,t), and (ii)Sis a
Nash equilibrium of T', i.e., letting g(s) = (x(s),t(s)),

Ui(x(8)) — ti(S) = ui(x(s§,5-4)) — ti(si.54)
foralli € N, and all s; € S;.

Forany A C N,and any i € N, define

0, i €A,
Si(A) =1_ .
S; i €A

i

The above inequalities imply that the direct mechanism
(X(A),t(A)) = g(5(A)) satisfies participation constraints (6). Since
(X(N),t(N)) = g(3(N)) = g(s) = (X,t), the allocation is directly
implementable.l

Proposition 7 allows us to restrict attention to direct mecha-
nisms, so long as we are not concerned with the existence of
“undesirable” equilibria.?®> Then participation constraints (6) im-
ply that only equilibrium transfers t(N), and only trades x(A) for
|A| = N — 1 are relevant for implementation. Here are some
mechanisms considered in the literature, with their correspond-

25. Just as in the standard implementation setting, more complex mecha-
nisms, including possibly multistage mechanisms, may be useful for eliminating
undesirable equilibria. For example, in the setting of Exclusive Dealing (A2), Segal
and Whinston [forthcoming] find that exclusion at zero cost may be the unique
subgame-perfect equilibrium outcome of a sequential acceptance game, but the
corresponding direct mechanism, which is a simultaneous acceptance game, has
another equilibrium, preferred by all buyers, in which all of them reject exclusive
contracts.
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ing direct mechanisms (for definiteness assume that the principal
buys x; from agents):

Bilateral Contracting with Public Offers (studied in Section
11). A set {(X;,t;)]ien Of bilateral contract offers is equivalent to a
direct mechanism

R ti) ifi €A,
(xi(A).ti(A)) = .
0 otherwise.
Note that by adjusting transfers fi, the principal always optimally
makes all agents’ participation constraints bind.

Auctions [Katz and Shapiro 1986a; Kamien, Oren, and Tau-
man 1992]. The principal commits to buy a quantity X € 3, X; via
an auction. (To ensure that X can always be allocated among
participating agents, assume Condition D.) Taking into account
that the principal cannot buy more than the total endowment of
the participating bidders, the corresponding direct mechanism
satisfies X x;(A) = min [{X,2;ca max X;} for all A C N. Recall that
only acceptance sets A with [A| = N — 1 are relevant for
implementation, and we have 2; xj(A) = X for such sets as long as
X = X max X for all i. In this case each agent takes the
aggregate trade X as given when making his acceptance decision.
Then under Condition L each agent is willing to sell each unit of
the good for exactly «(X). Thus, in any deterministic auction all
trades must take place at this price. In particular, this implies
that all agents’ participation constraints bind.

Any-and-all Bids [Bagnoli and Lipman 1988; Holmstrom and
Nalebuff 1992; Katz and Shapiro 1986a]. The principal offers the
same price p to every agent for each unit of the good. Letting X; €
arg maxyez [Ui(x;, X-;) + px;] denote the equilibrium tender of
agent i, the corresponding direct mechanism is given by

(Xi,—pXi) ifi €A,
Ca(A)LA) 0 otherwise.
Note that every such bid is a bilateral mechanism, since each
agent’s trade depends only on his own message.

Under Condition S the principal will optimally set p to make
all agents with X; = 1 indifferent between selling and not. Thus, all
agents’ participation constraints will bind. More generally, how-
ever, when agents are heterogeneous or different agents trade
different positive amounts in equilibrium, the principal may not
be able to make all agents’ participation constraints bind at once.
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Conditional Bids [Bagnoli and Lipman 1988]. The principal
sets a price p at which all agents can tender their goods. If fewer
than X units are tendered, no trade takes place. If more than X
units are tendered, then the principal purchases only X units,
using some rationing rule. Suppose that in equilibrium exactly X
units are tendered, and let X; denote the equilibrium tender of
agent i. Then the corresponding direct mechanism is given by

*%i—p%)  ifA=N,
Xi(A)ti(A)) = .
Ca(A)LA) 0 otherwise.
By the same logic as in the previous example, the principal will
optimally make all agents’ participation constraints bind under
Condition S, but not necessarily in the general case.

B. Restricted Mechanisms

This subsection identifies conditions under which Section
I11's analysis of bilateral contracting can be extended to situations
where the principal can choose from a different, but still re-
stricted, family of mechanisms. The first such condition is that all
agents’ participation constraints bind in equilibrium:

DerINnITION 7. A direct mechanism (x,t) is binding if all agents’
participation constraints (6) bind.

This condition would be satisfied, for example, when the
principal can charge fixed fees for participation in the mechanism.
However, note that some of the mechanisms described in the
previous subsection do not satisfy this property when agents are
heterogeneous or trade different positive amounts in equilibrium.

In a binding direct mechanism (x,t), the equilibrium trans-
fers t(N) can be obtained from the trade component x using the
binding participation constraints (6). Since all other transfers are
irrelevant for Nash implementation, binding mechanisms can be
fully described by their trade components. Let © denote the set of
all binding direct mechanisms:

D =[x € (X, XX %)% x;(A) = 0 whenever i & Al.

We assume that the principal is restricted to choose from a subset
(“family”) & C © of such mechanisms. The set *J)%’,% of mechanisms
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that maximize total surplus within the family & can be defined
aSZG

@) M5 = arg max f(x(N)) + 2 ui(x(N)).

On the other hand, if the principal chooses a binding mecha-
nism from § to maximize her profit, the set Ji; of her optimal
mechanisms can be defined as

(8) My = arg max f(x(N)) + ) Ui(x(N)) = 2 ui(0,x_;(NN\)).

It is clear that in the absence of externalities on nontraders, the
two above programs coincide, and we obtain a generalization of
Proposition 1:

ProprosiTiON 8. If u;(0,x_;) does not depend on x_; € X _; for all i,
then for any family § of direct binding mechanisms, s =
.

For example, in the context of Vertical Contracting (Al),
Kamien, Oren, and Tauman [1992] find that when the intermedi-
ate input (patent) provides a sufficiently large productivity im-
provement so that the downstream firms who do not use it are
driven out of the market, the principal’s optimal auction yields a
vertically efficient outcome. The same result has been indepen-
dently obtained by Hart and Tirole [1990], O'Brien and Schaffer
[1992], and McAfee and Schwartz [1994] in models where the
principal uses bilateral contracts. Proposition 8 demonstrates
that due to the absence of externalities on nontraders in this
situation, the principal would make an efficient choice from any
family of binding mechanisms.

When externalities on nontraders are present, on the other
hand, the principal’s rent extraction motive affects her choice of
mechanism. With positive [negative] externalities on nontraders,
the principal reduces agent i’s reservation utility by reducing
(increasing) the trade profile x_j(N\i) following his rejection.?’

26. When the family ¥ satisfies the “full range” condition F(N) = X; X - - - X
Xn, we have i = Ni*,

27. In particular, this explains the finding of Katz and Shapiro [1986a] that in
the setting of Vertical Contracting (A1), the principal prefers auctions to any-and-
all bids. Indeed, if an agent deviates by not participating in an auction, the trade
that he forsakes goes to other agents. With negative externalities on nontraders,
given an equilibrium outcome x(N), the deviator is thus punished more severely
than under an any-and-all bid, in which other agents’ trades are not affected by the
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Our objective here, however, is to examine the effect of the
principal’s rent-extraction motive on the equilibrium trade. For
this purpose, recall that the feature of bilateral contracting
responsible for the comparative statics result of Section 111 is the
principal’s ability, under Condition D, to increase (decrease) the
equilibrium aggregate trade while increasing (decreasing) all
out-of-equilibrium trades at once. Under the assumption that
agents’ reservation utilities depend only on the aggregate trade, it
suffices to impose this requirement on aggregate out-of-equilib-
rium trades only. Formally, define the “aggregate representation”
X = 3 x; of a direct mechanism x by X(A) = 3 x;(A) forall AC N,
and the aggregate representation 25 of a family ¥ of mechanisms
by 3% = [2iXi : X € ¥|. Then the desired property can be formu-
lated as follows:

DEFINITION 8. Let % be a family of mec@nisms. Forany X € 3; X;,
define IF|X = (X € TF : X(N) = X]. We will say that & is
ascending?® if forany X, Y € 3; X;such that X = Y,

(i) for any X € SF|X there exists Y € 3F|Y such that X(A) =
Y(A) whenever |A| =N — 1;
(ii) for any Y € S®|Y there exists X € 3§ |X such that X(A) =
Y (A) whenever |A| = N — 1.

Under Condition D, this property is satisfied by all the
mechanisms described in this section. Letting M’,% = [X(N):
X e EFIR’%} be the set of equilibrium aggregate trades in mecha-
nisms that maximize equilibrium total surplus,?® and My =
X(N) : X € 203} be the set of the principal’s profit-maximizing
equilibrium aggregate trades, the comparative statics result of
Section 111 can be extended as follows:

PropPosITION 9. Suppose that Condition W holds, that u;(0,x_;) =
Bi(Zj+i xj) foralliand all x_; € X_;, and that 7§ is an ascending
family of binding direct mechanisms. Then with positive
[negative] externalities on nontraders, My = [=] M’l{

deviation; i.e., x_j(N\i) = x_j(N). Note that with positive externalities, the
principal’s preference would be reversed.

28. This property would be necessarily satisfied if 2% were a lattice (see, e.g.,
Milgrom and Shannon [1994]), but it is substantially more general. For example,
when & is the family of bilateral contracting mechanisms, 3 is ascending, but not
a lattice (this can already be seen for N = 2).

29. When the family 3 satisfies the “full range” condition (2F)(N) = % X;, we
have M3z = M*.
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Proof. Consider the parameterized program maxXxgesxzn)
W(X) — zR(X), where R(X) = minyeszx i Bi(X(N\i)) is the
minimum sum of agents’ reservation utilities consistent with the
equilibrium aggregate trade X, z = 0 corresponds to the surplus-
maximization program (7), and z = 1 corresponds to the princi-
pal’s profit-maximization program (8). When % is ascending and
the externalities on nontraders are positive [negative], R(X) is
nondecreasing [nonincreasing] in X, and the objective function is
supermodular in (=X, z) [in (X,z)]. The result follows by Topkis’
Monotonicity Theorem.H

In addition to Condition W the proposition assumes that each
agent’s reservation utility depends only on other agents’ aggre-
gate trade, which could be ensured, e.g., with Condition L. Under
these assumptions the proposition demonstrates that the relation
between the direction of distortion and the sign of externality on
nontraders is not specific to bilateral contracting; rather, it holds
quite generally when the principal can commit to a mechanism
from an ascending family of binding mechanisms. For example,
when the principal uses auctions (as in Katz and Shapiro [1986a]
and Kamien, Oren, and Tauman [1992]), the arising distortion is
of the same sign as when the principal uses bilateral contracts.

C. Fully Optimal Mechanisms

When the principal can use arbitrary mechanisms, i.e., § =
D, we have

PROPOSITION 10. s = Mo (N) X T Ms(NNi) X Tacy aan-1 Mo (A),

where
Wo(N) = Ve,
M (NN\i) = a)(rgegjjin u;(0,x_;) foralli € N, and
NV (A) = DA) forallACN

with |A| <N — 1.

Proof. Follows from the additive separability of the objective
function in the profit-maximization program (8) in x(N) and
x(N\i) for all i, and the fact that © = TI,cyD(A). B

CoroLLARY 1. With positive [negative] externalities on nontraders,
My DX E D:x(N) € Ve*,x(N\i) = 0[=max X;]  whenj #i}.
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According to these results, if the principal can choose any
mechanism from ®, she maximizes her profit by implementing an
efficient trade profile x(N) in equilibrium, while at the same time
minimizing each agent i's rent by choosing the harshest punish-
ment x(N\i) following his deviation.3® With positive externalities
on nontraders, the harshest punishment for agent i is x;(N\i) = 0
for all j. This punishment can be implemented with an offer that
requires unanimous acceptance: if at least one agent rejects, no
trade takes place. (In the context of Takeovers (A6) with a
superior raider, this coincides with the conditional bid suggested
by Bagnoli and Lipman [1988].) With negative externalities on
nontraders, the harshest punishment is x;(N\i) = max X; for all
Jj # 1. In words, the deviator is punished by implementing the
maximum possible trades with all other agents. (Mechanisms of
this kind have been suggested by Katz and Shapiro [1986a] and
Kamien, Oren, and Tauman [1992] in the context of Vertical
Contracting (A1), and by Jehiel, Moldovanu, and Stachetti [1996]
in the context of Indivisible Object (A3).) In both cases, the
separation of rent extraction and surplus maximization results in
efficiency.s?

VII. AsymMPTOTIC NONPIVOTALNESS

The fully optimal mechanism derived in Proposition 10 seems
unrealistic in environments with a large number of agents, where
small agents may be expected to take the aggregate trade X as
given in making their decisions, i.e., to be nonpivotal. Many
papers, including Gertner and Scharfstein [1991] in the context of
Debt Workouts (A7), Katz and Shapiro [1986b] in the context of
Network Externalities (A9), and Grossman and Hart [1980] in the
context of Takeovers (A6), indeed assume that small agents are
nonpivotal, and find that this generally gives rise to inefficient
contracting outcomes. The objective of this section is to identify
conditions under which the assumption of nonpivotalness is

30. One might wonder whether these optimal mechanisms have other Nash
equilibria that are preferred by the agents. In fact, it is easy to ensure that “all
accept” is the unique Nash equilibrium, by choosing the out-of-equilibrium
payments t;(A) for A # N to be large enough so that each agent strictly prefers to
accept if he expects at least one other agent to reject. Then acceptance becomes a
weakly dominant strategy, and it can be made strictly dominant by slightly raising
the equilibrium payments tj(N).

31. Observe that these results do not contradict Proposition 9, which only
offers a weak comparison with the first-best, and does not rule out the possibility
that an efficient outcome arises.
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justified, and, therefore, inefficiency obtains with a large number
of agents.®?

To take a concrete example, consider the setting of Takeovers,
where much controversy about pivotalness has been generated.
Suppose for definiteness that the raider is superior; i.e., the firm’'s
value v(X) is nondecreasing in X. If the raider uses a direct
mechanism whose aggregate representation is X and in which
shareholders’ participation constraints bind, (8) allows us to
express her profit as

W(X(N)) = 2 ui(0,x-(N\D))

= 20 IV(X(N)) = VOX(NNiIX; = c(X(N)).

Say that shareholder i is nonpivotal if v(X(N\i)) = v(X(N)), and
pivotal if v(X(N\i)) = v(0). Then the above expression demon-
strates that the raider fully appropriates the appreciation in the
holdings of pivotal shareholders, and does not appropriate any
appreciation in the holdings of nonpivotal shareholders. In particu-
lar, as first observed by Grossman and Hart [1980], if all sharehold-
ers are nonpivotal, the raider does not appropriate any of the
firm’s value improvement. Then, with positive takeover costs, she
optimally sets X = 0; i.e., a takeover does not take place,
regardless of its social efficiency.

In response to this observation, Bagnoli and Lipman [1988]
and Holmstrom and Nalebuff [1992] pointed out that for any finite
N, the raider is able to make shareholders pivotal and appropriate
some or all of the firm's value improvement. For example, in
accordance with our Corollary 1, Bagnoli and Lipman suggest
that the raider make a bid to buy shares at the firm’s initial value
v(0) conditional on all shareholders’ tendering all their shares.
This conditional bid ensures that each shareholder is pivotal,
which makes the raider the residual claimant of total surplus and
induces her to acquire an efficient stake X in the firm.

It has also been observed in the literature that the raider may
be able to make small shareholders pivotal even with any-and-all
bids. Specifically, suppose that, as in most of the literature, the

32. 1 will restrict attention to settings where the principal can commit to a
publicly observed mechanism. For a nonpivotalness result with privately observed
offers, see Segal [1997, subsection 5.2].
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firm’s value is given by

v when X = 0.5,
v(X) = .
v <V otherwise.

Then the raider can make each tendering shareholder pivotal by
ensuring that X = 0.5 in equilibrium. For example, suppose that
the raider bids v. If each shareholder holds one indivisible share,
and N is even, there exists an equilibrium in which exactly N/2
shareholders tender.2? In this equilibrium each tendering share-
holder is pivotal, and the raider appropriates 50 percent of the
firm’s value improvement. But the raider can do even better when
individual shareholdings are divisible. For example, if each
shareholder holds an even number of shares, the raider can take
over by bidding v — Av. Even though this bid is below the firm’s
initial value, there exists an equilibrium in which each share-
holder tenders 50 percent of his holdings. In this equilibrium each
shareholder knows that in the event of a takeover, for which he is
pivotal, his loss on the shares tendered is exactly offset by the
appreciation of his remaining shares. Since in this equilibrium all
shareholders’ participation constraints bind, and each share-
holder is pivotal, the raider appropriates 100 percent of the firm’s
value improvement, and implements the efficient takeover deci-
sion regardless of N.34

The above examples suggest that the principal may be able to
make small agents pivotal in two ways: (i) by exploiting disconti-
nuities in agents’ payoffs, or (ii) by using mechanisms that
respond discontinuously to small agents’ deviations, such as those
described in Proposition 10. In the remainder of this section |
present two sets of conditions that rule out such situations, and
ensure that small agents are asymptotically nonpivotal.

33. | assume that shareholders can be induced to coordinate on such an
equilibrium. Holmstrom and Nalebuff [1992] assume instead that such coordina-
tion is infeasible, and restrict attention to symmetric mixed-strategy equilibria, in
which the principal generally does worse than in the equilibrium we describe.
However, Holmstrom and Nalebuff identify a “focal” symmetric equilibrium in
which, as shares become infinitely divisible, randomization disappears and the
raider captures 50 percent of the firm'’s value improvement.

34. Bagnoli and Lipman only study indivisible shareholdings, and Holm-
strom and Nalebuff do not consider bids below the firm’s current value. For these
reasons, in neither paper can the raider appropriate more than 50 percent of the
firm’s value improvement with bilateral offers.
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A. The Asymptotic Setting and Nonpivotal Outcomes

Consider a sequence of environments with N identical agents,
N =1,2,...,which satisfy Condition L. Let the utility function of
each agent i in the environment with N agents be xa(X) +
(1/N)B(X), so that the total surplus function W(X) = Xa(X) + B(X)
is independent of N. Assume also that the trade domain of each
agent is X; = X/N, where X is a compact subset of i, so that the
maximum aggregate trade is independent of N. The set of feasible
aggregate trades with N agents is X; X; = NX/N, with the notation

X=X+ -+ X

J times

Asymptotically, we will allow all aggregate trades from the convex
hull of X, denoted by X. Observe that NX/N C X for all N.

To define nonpivotal outcomes, observe that when agent i
takes the aggregate trade X as given, i.e., X(N) = X(N\i) = X, his
participation constraint (6) can be written as x;a(X) — t; = 0.
Expressing transfers from the binding participation constraints
and substituting them into the principal’s profit, the profit can be
written as w..(X) = F(X) + Xa(X). The set of the principal’s
optimal nonpivotal aggregate trades can then be defined as M., =
arg max,_; m(X). Note that the principal exactly implements
these nonpivotal outcomes with a finite N when she is restricted to
use auctions. Hence, according to Proposition 9, these outcomes
are inefficient due to the externalities on nontraders.

Since X is a compact set, a sufficient condition for M., to be
nonempty is for m..(:) to be upper semi-continuous.3® This condi-
tion is more frequently met in applications than the continuity of
w..(-). For example, in the Takeover setting, m..(X) = —c(X). In the
often studied case where the raider has a fixed bidding cost, this
function is not continuous, but it is upper semi-continuous, and
the set of nonpivotal outcomes is M., = {0}.

B. Nonpivotalness with Continuous Mechanisms and Payoffs

This subsection shows that nonpivotal outcomes must obtain
asymptotically if the agents’ payoffs are continuous and the

35. Afunction g(-) is upper semi-continuous at x, if for any e > 0 there exists a
neighborhood of xp in which g(x) < g(xo) + e. For example, such a function is
obtained by taking a continuous function and increasing its value at Xo.



372 QUARTERLY JOURNAL OF ECONOMICS

principal is restricted to use continuous mechanisms (as defined
below). Consider the principal’s profit-maximization program (8)
in the asymptotic setting with N agents, supposing that the
principal chooses from a mechanism family §N. Note that Condi-
tion L allows us to express the program in terms of the mecha-
nisms’ aggregate trades only. The set My = {X(N) : X € Z0ixn} of
equilibrium aggregate trades in the principal’s profit-maximizing
mechanisms can then be described as

My = arg max my(X),
xesFN(N)

with my(X) = W(X) — Ry(X) = m.(X) + B(X) = Rn(X),

where Ry (X) = min {(I/N)SN, B(X(N\i)) : X € SFN|X| is the mini-
mum sum of agents’ reservation utilities consistent with equilib-
rium aggregate trade X.

The sequence [FV]5_, of mechanism families will be required
to have two properties. First, the families must be sufficiently
rich, so that, if agents do feel nonpivotal, these mechanisms can
asymptotically attain the principal's maximum profit in the
nonpivotal program:

DerFiNITION 9. A sequence (FN]5_; of mechanism families in
the asymptotic setting is asymptotically adequate if
sup m.(SFN(N)) — sup m..(X) as N — oo,

Since all the mechanisms described in this section satisfy the
“full range” condition SFN(N) = NX/N, they are asymptotically
adequate provided that sup m..(NX/N) — sup m..(X) as N — 0,36
The second assumption is that in these mechanisms, a single
agent asymptotically has a negligible effect on the aggregate
trade:

DerFINITION 10. A sequence [FNf5_, of mechanism families in the
asymptotic setting is asymptotically continuous if
SUPxesaNien | X(N) — X(N\i)| — 0as N — o.

This property is satisfied by bilateral contracting,®” any-and-
all bids, and auctions, but not by conditional bids.

36. This condition on agents’ trade domains is in turn satisfied, e.g., when X is
aclosed interval (in which case NX/N = X = X for all N), or when m..(-) is continuous
from a side. For an example where this condition fails, take X = (0,1} (in which case
Un=NX/N is the set of rational numbers in [0,1]), and suppose that m..(:) is
maximized at an irrational point, at which it is discontinuous.

37. More generally, it is satisfied by mechanisms in which each agent's
message affects at most k other agents’ trades with k bounded regardless of N.
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In order to study the convergence of My to M., we need a
notion of distance between two sets. For any two sets A, B C ¥,
define d(A, B) = supaea infoeg |@a — b |—a measure of how far A
extends beyond B. For example, d(A, B) = 0 whenever A C B. For
future reference, also define d, (A, B) = supaep infyeg (@ — b),—a
measure of how far A extends above B. With this notation, we
obtain

ProPOsITION 11. Suppose that the sequence [FN}5_, of mechanism
families in the asymptotic setting is asymptotically adequate
and continuous, and B(-) is continuous on X. Then (i)
sup my(EFV(N)) — sup m..(X). In addition, if m..(-) is upper
semi-continuous on X, then (ii) d(My,M.) — 0, and (iii)
d(W(My),W(M..)) — 0.

While complete proofs of this section’s results are given in
Appendix 1, here | outline the logic of the proof of Proposition 11.
Part (i) of the proposition follows from the continuity of B(:) and
the asymptotic continuity of mechanisms. The proof of part (ii),
which says that the equilibrium correspondence My is upper
hemi-continuous at N = «,38 s related to Ausubel and Deneckere’s
[1993] extension of Berge's “theorem of the maximum” to upper
semi-continuous objective functions. Part (iii) follows directly
from parts (i) and (ii).

Proposition 11 can help resolve the “Grossman-Hart Paradox”
inasmuch as real-life takeovers are not discrete events. For
example, a raider who acquires 49 percent of the firm might be
able and willing to implement most of the value improvements
that could be implemented by owning 51 percent of the firm. Even
if these improvements are blocked by other shareholders, the
raider’s large toehold makes it likely that she will gain full control
in the future, anticipation of which drives up the firm's market
value [Shleifer and Vishny 1986; Harrington and Prokop 1993].
Therefore, there are reasons to expect the firm’s value v(X) to be
continuous in the raider’s acquired stake X, in which case
Proposition 11 allows us to treat small shareholders as nonpiv-
otal, provided that the raider uses asymptotically continuous
mechanisms.3?

38. The correspondence need not be lower hemi-continuous: a counterex-
ample can be found in the setting of Takeovers (A6) with no bidding costs (see Segal
[1997)).

39. Another implication of Proposition 11 is that when B(-) is continuous and
N is large, the contracting outcome does not depend on which mechanisms the
principal uses, so long as they are asymptotically adequate and continuous. In
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C. Nonpivotalness with Noise

When the principal is allowed to use arbitrary mechanisms,
including discontinuous ones, the previous asymptotic result does
not apply. Indeed, according to Proposition 10, the principal then
implements an efficient outcome for any N, while responding to
each agent’s deviation with the harshest possible punishment.
However, this discontinuity of the fully optimal mechanism seems
unrealistic in environments in which N is large and the principal
cannot forecast the number of accepting agents precisely. To
formalize this intuition, | consider an asymptotic setting in which
with some probability ey > 0 any given agent is unable to respond
to the principal’s offer (and his failure to respond is taken as
rejection). I assume that agents’ abilities to respond, which are
independent across agents, are not observed by the principal, who
is therefore unable to predict the number of responders precisely.
This uncertainty will make it difficult to make agents pivotal.

An agent’s inability to respond may or may not be observed by
the agent himself. The former case is one of hidden information.
For example, the agent may be unable to respond because his
telephone is out of order, of which he is aware, but no one else is.
(Other examples: the agent has not received the offer, or he has
passed away.) The latter is a case of hidden action: an agent’s
acceptance decision is not perfectly observed by the principal. For
example, the agent’s acceptance message may be lost in the mail.
This subsection’s analysis will not depend on which of these
interpretations is adopted.

Let A C N denote the random set of agents who are able to
respond to the principal’s offer. As before, without loss of general-
ity we can restrict attention to direct mechanisms, in which all
agents who are able to respond accept in equilibrium.* For these
strategies to constitute a Nash equilibrium, each agent must
prefer to accept when he knows that others accept whenever they
can, i.e., the following participation constraints must be satisfied:

EA[Ui(X(A)) — §(A)] = EA[u;(0,%_,(A\i))] foralli € N.

Note that unlike in the case of certainty studied before, all

particular, since both auctions and bilateral contracts have these properties, the
advantage of the former over the latter which was demonstrated by Katz and
Shapiro [1986a] and Kamien, Oren, and Tauman [1992] in the context of Vertical
Contracting (Al) (see footnote 27) disappears as N — o,

40. By the logic of the modified revelation principle (Proposition 7), there is no
need for the principal to offer different acceptance options to an agent, since she
can predict which option the agent will choose if he is able to respond.
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acceptance sets A C N will be observed in equilibrium with a
positive probability. Hence, the values of x;(A) and t;(A) for all A
are relevant for agent i's acceptance decision. The principal will
optimally choose transfers t;(A) to make all agents’ participation
constraints bind, from which we can obtain each agent i's expected
payment to the principal, E5[t;(A)].*! Substituting in the princi-
pal’s objective function, her expected profit can be written as

Ea|f(X(A) + ti(A)]

iEA

:EA

FX(A) + 2 (Wi(x(A)) - Ui(O,X-i(A\i)))]-

iEA

In the asymptotic setting of this section, the principal’s expected
profit can be written as a function of the mechanism’s aggregate
representation X = 3; x; only:

9 mn(X)

= E,

1
FIX(A) + X(A)a(X(A) + 3 % [BOX(A)) — BIX(ANI))]

Letting ®y denote the set of all direct mechanisms in the
asymptotic setting with N agents, the set My of the aggregate
representations of the principal’s profit-maximizing mechanisms
can be defined as My = arg maxxes,, mn(X).

Since the acceptance set A is now random, we can think of X
as a random variable, and of My as a random set. We will
therefore use the concept of convergence in probability to estab-
lish the convergence of My to the set M.. of nonpivotal aggregate
trades.*?

This section’s result will require the domain X to satisfy the
following property:

DeriNnITION 11. The domain X is asymptotically adequate if for
some vy < 1, sup m,.(I"™X /N) — sup m.(X) as N — oo,

This assumption ensures that if agents do feel nonpivotal, the
principal can asymptotically attain her maximum profit in the
nonpivotal program despite possible discontinuities in ..(:) (see

41. Given this expected payment, the principal is indifferent about the choice
of payments t;(A) for different acceptance sets A. In particular, she could charge
noncontingent participation fees.

42. Recall that a sequence of random variables (Zn[{_; converges in prob-
ability to Z (writtenas Z & Z)ifforany 8 >0, Pr{Zy — Z|<8] > 1asN — x,
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footnote 35) or noise. The assumption is satisfied, in particular,
when M.. # {max X}, and either m..(-) is continuous from a side, or X
is a closed interval (in which case NX/N = X = X).

Finally, an important condition for this section’s result is that
noise go to zero more slowly than N goes to infinity. Intuitively, it
is hard to make an agent pivotal if the probability that any given
number of responders is realized goes to zero as N — «. This can
be ensured by assuming that the variance in the number of
signers, Ney(1 — ey), goes to infinity. Then we obtain

PropPosiTION 12. Suppose that Condition L holds, X is asymptoti-
cally adequate, and B(-) and m..(-) are bounded on X. Suppose
also that Ney — 0 and ey — 0 as N — . Then (i) sup my(Dn) —
sup m..(%X). In addition, if m.(X) is upper semi-continuous,
then (ii) d(My, M..) 2 0. In addition, if B(:) is upper semi-
continuous,* then (iii) d, (W(My),W(M..)) 2, 0. Moreover, if
B(:) is continuous, then (iv) d(W(My),W (M..)) 2 0.

To develop intuition for the result, consider the principal’s
incentives to choose aggregate trades X(A) for various acceptance
sets A C N. First observe that the choice of X(N) affects only the
total surplus in the event that A = N (all agents can respond), and
does not affect any agent’s reservation utility. Therefore, in any
profit-maximizing mechanism the principal chooses X(N) to maxi-
mize total surplus. But what is the probability of A = N? If N is
large and ey is small, this probability can be approximated by

(1~ e = [(1 ~ ) Vo] N = e

Therefore, if Ney could be bounded regardless of N, then with a
positive probability, all agents would accept, and an efficient
outcome would obtain. On the other hand, if, as we assume, Ney —
o, the probability that all agents accept goes to zeroas N — . The
principal’'s optimal choice of X(A) for acceptance sets A # N is
determined by two considerations: first, it affects the equilibrium
surplus when the set of agents who are able to respond is A; and
second, it affects the reservation utility of each agent i € N\A
when the set of agents who are able to respond is A U i. Thus,
unlike in the case of perfect certainty, the principal can no longer
distinguish perfectly between the in- and out-of-equilibrium situa-
tions, and surplus maximization and rent extraction cannot be
separated. As a result of the optimal trade-off between the two

43. Which is satisfied in all applications described in Section I1.
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motives, the principal asymptotically implements a nonpivotal
outcome.

Observe that in contrast to Proposition 11, parts (i) and (ii) of
Proposition 12 do not require B(-) to be continuous. Intuitively,
noise smooths all discontinuities, be they in mechanisms or in
payoffs. Thus, Proposition 11 supports and extends the Grossman-
Hart conjecture on takeovers: regardless of the mechanisms used
by the raider (e.g., conditional bids, any-and-all bids, restricted
bids, etc.), and regardless of how the firm's value depends on the
raider’s stake, with a large number of shareholders and noise, an
inefficient nonpivotal outcome obtains.

D. Relation to Other Noisy Asymptotics Results

This subsection relates Proposition 12 to the asymptotic
results of Rob [1989]; Mailath and Postlewaite [1990]; Levine and
Pesendorfer [1995]; Pauzner [1997]; Fudenberg, Levine, and
Pesendorfer [1998]; and Al-Najjar and Smorodinsky [1997].44 The
last two papers, in particular, suggest that many existing noisy
asymptotic results can be understood in terms of a simple
mathematical fact, here labeled the “Nonpivotalness (NP) Prin-
ciple.” The Principle says that when the actions of N agents
stochastically affect a bounded real random variable, the agents’
average expected ex ante influence on this variable is bounded by
a number that goes to zero as N — oo, provided that noise does not
vanish too quickly.

Fudenberg, Levine, and Pesendorfer [1998] apply the NP
Principle to games in which the principal controls a bounded
number of real variables, and show that small agents in such
games asymptotically take the principal’s actions as given. This
result extends the analysis of Levine and Pesendorfer [1995], who
study a Takeover game in which the raider, following sharehold-
ers’ tenders, makes a one-dimensional decision—whether to take
over (accepting all tenders) or not (accepting none)—and find that
small anonymous shareholders asymptotically take the raider’s
decision as given.

Al-Najjar and Smorodinsky [1997] show that the NP Prin-
ciple can also be applied to the setting of Pure Public Good (A10),
where the principal controls unboundedly many variables—the
level of the public good and the monetary transfers to N agents.

44. The last three papers were discovered by me, in unpublished form, after
completion of this paper’s first draft.
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Their analysis relies on the additive separability of agents’
utilities in the level of the public good and private transfers. The
fact that agents are asymptotically nonpivotal for the level of the
public good implies that they will not contribute anything to its
provision.

Neither approach, however, can be readily extended to the
general mechanism design setting of this paper, in which the
principal chooses the N-dimensional trade and transfer vectors
x(A) and t(A) for each acceptance set A. In particular, under
Condition L the utility of each agent i depends not only on the
aggregate trade X, but also on his own trade x; and payment t;.
Since the number of variables controlled by the principal is
unbounded, the result of Fudenberg, Levine, and Pesendorfer
[1998] cannot be applied: while the NP principle implies that the
average agent is asymptotically nonpivotal for the expected value
of X(A), he may still be pivotal for x;(A) and t;(A). The approach of
Al-Najjar and Smorodinsky [1997] also cannot be used here, since
agent i's private trade x; and the aggregate trade X are not in
general separable in the agent’s utility function.

It turns out, however, that due to the fact that the principal
optimally makes agents’ participation constraints bind, we can
focus on their reservation utility B(X(A)). The NP principle implies
that in any mechanism, the average agent asymptotically takes
the expected reservation utility EAB(X(A)) as given. This implies
that the third term in the expectation in (9) vanishes in the limit,
and therefore the principal’s profit converges to its nonpivotal
level. Using Condition L, we also establish that both the aggregate
trade and total surplus converge in probability to their nonpivotal
levels (Proposition 12 (ii) and (iii)). Without Condition L, total
surplus would depend on the allocation of the aggregate trade
among agents, and these results could not be obtained. (Indeed,
welfare results are absent from Fudenberg, Levine, and Pesendor-
fer [1998].)

Finally, note that Proposition 12 is substantially more gen-
eral than previous asymptotic results. Unlike in the setting of
Pure Public Good [Rob 1989; Mailath and Postlewaite 1990], this
proposition allows contracting to have a private, as well as public,
component. While agents asymptotically take the level X of the
“public good” as given, they may still trade their private good with
the principal. Also, while Levine and Pesendorfer’s [1995] result
was obtained for specific conditional Takeover bids, Proposition 12
demonstrates that the same nonpivotal outcome predicted by
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Grossman and Hart [1980] obtains asymptotically when the
principal can use arbitrary voluntary mechanisms.

VIIl. CoNncLUSION

This paper identifies and studies “transaction costs” that
arise in environments with multilateral externalities even when
all agents can participate in contracting. When the principal lacks
commitment power (Section 1V), when she uses bilateral contracts
or other restricted mechanisms (Sections 111 and V1), or when the
number of agents is large and there is some noise in the execution
of the mechanism (Section VII), inefficient contracting outcomes
arise.

The identified inefficiencies are distinct from, although re-
lated to, those caused by asymmetric information. To be sure, the
noise postulated for the noisy asymptotic result in Section VII is
due to agents’ private information. However, as (i) only a small
amount of private information is needed to explain large contract-
ing inefficiencies, (ii) the same inefficiencies arise when the
principal is restricted to “reasonable” mechanisms (such as bilat-
eral contracts), and (iii) these inefficiencies are important in many
economic applications, they may deserve a separate place in the
arsenal of economic theory.

This paper has made only a first step toward understanding
“transaction costs” arising in contracting with externalities. Many
guestions remain open, in particular those concerning the role of
bargaining procedures and property rights in aggravating or
alleviating contracting inefficiencies.

APPENDIX 1. PROOFS OF ASYMPTOTIC RESULTS
The following three lemmas will be used in the proofs.

LEMmAA.1 (Triangle Inequality). For any three sets A,B,C C i,
d[+](A,C) = d[ﬂ(A,B) + d[+](B,C).

Proof. Follows from the triangle inequality: |(a — ¢);| =
(@ = b)pf + (b — ¢)+y .M

LEmmA A2, If d(My, M..) — 0, M., is compact, and B(-) is upper
semi-continuous, then d, (B(My),B(M..)) — 0. Moreover, if B(:)
is continuous, then d(B(My)),B(M..)) — 0.

Proof. Suppose the first statement does not hold. Then there
exists a sequence [N,Ji_, such that d. (B(Xy,),8(M..)) = 3 > 0 and
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XN, € My, for all k. Since X is compact, we can choose this
sequence so that Xy, — X € °€ Since B(+) is u.s.c.,, d (B(X)
B(M..)) = &. On the other hand, d(X M..), = lim,_.. d(Xy,, M..) =

which together with compactness of M.. implies that X € M., and
consequently d, (B(X),B(M.,)) = 0—a contradiction. The proof of
the second statement is obtained by replacing d. (-) with d(:) and

u.s.c. with continuity.

Lemma A.3. If m,. is wupper semi-continuous, M., =
arg maxyex 7. (X), and d(m.(My),7(M.)) — 0, then
d(My, M..) — 0.

Proof. Suppose not. Then there exists a sequence [N,J;_, such
that d(Xy,, M) =8 > 0 for all k. Smce? is compact, we can choose
this sequence so that Xy, — X with d(X M..) =& > 0. On the other
hand, by assumption, m(XN ) — m-(M..), and u.s.c. of m.(-) implies
that m..(X) = m..(M..), and therefore X € M.,—a contradiction.l

Proof of Proposition 11. By the asymptotic continuity of
mechanisms and the continuity of B(-) (which is equivalent to
uniform continuity),

(10)  sup |my(X) = m(X)[ = sup [Ry(X) — B(X)|

xesFN(N) XESFVN)
= sup [B(X(N\i) — B(X)|
XEEI\ JEN

— 0as N — oo,

Therefore,
[sup my(EFN(N)) — sup m.(X)]
= [sup my(EFN(N)) — sup m.(EFV(N))| + [sup . (EFN(N))
— sup m,.(X)| = supxesyvm)| m(X) — (X))

+ [sup m.CF

and (10) and the asymptotic adequacy of mechanisms imply (i).
Now, the triangle inequality implies that

d(m(Mn),m.(M..)) = d(7r..(Mn), (M)

+ d(my (M), 7. (M-.)) <X€SU|0 )|1TN(X) — m.(X)]

+ |sup my(EFV(N)) — sup m.(X)].
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Using (10) and (i), we see that d(m.(My), 7.(M.)) — 0, which
together with Lemma A.3 implies (ii).
Finally, note that W(X) = m..(X) + B(X), and therefore
d(W(My)W(M..)) = d(m..(My),7.(M..)) + d(B(My),B(M..)).

The first term has been shown to go to zero. The second term goes
to zero by Lemma A.2, since B(:) is continuous and (ii) holds. Thus,
we obtain (iii).H

Proof of Proposition 12. The principal’s expected profit can be
rewritten as

1
m(X) = Eam.(X(A)) + EA%N [BOX(A)) — BIX(ANI)]|.

The first term is the profit in a nonpivotal mechanism. The second
term can be rearranged as

1
> 2 ph g [BOX(A) — BX(AND)]

ACN i€eA

1 1
= 2 ApR G BOX(A) — X (N = A)pR™ T BIX(A)

ACN ACN
1 1-
- 3 g A - - T oxea
ACN
A—N( — ¢
B e A

where pg = eNA(1 — €)A—probability of a given acceptance set
A CN.
This term can be bounded using Jensen’s inequality:*°

A - N( - € _ IA-N@1-¢

A|\|—€l3(x(A))HSBEAN—6

_\/ A-N1-¢p _ A

=B EA—):B var—)
Ne

- Ne(l—e)__ 1-¢€
Bk N 2¢2 - B Ne '’

45. | am grateful to Jim Powell for suggesting this bound.
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where B = sup |B(X)|. Therefore,
(11) [sup my(EDn) — SR Eam.(X(A))|

€N
NGN

= sup [my(X) — Eam(X(A)[ =B —0as N — o,
XETDN

Now write
(12) [sup my(EDy) — sup m..(X)|
= [sup myEDy) — sup Eam..(X(A))|
XeIDN

+ ngggN Eam.(X(A)) — sup m..(X)|.

The first term has been shown to go to zero, so it remains to show
that the second term goes to zero as well. For this purpose, observe
that P™NIX/N C AX/N C X when A > yN, and therefore,

(13) sup m.(X) = sup Exm..(X(A)) = E, sup . (AX/N)

= sup m,(MIX/ N) — Pr{A =yN|- 2 sup|m.(X)/.

As N — o, the first term in the last expression goes to sup ..(X )
by asymptotic adequacy of X. To bound the second term, we use
Chebyshev's inequality, which says that

‘A—N(l—e)> var (A) 1 -

14) Pr -
(14) Ne 3%2(Ne)?  $8°Ne

=

for any 3 > 0.

The inequality implies that
A—N(1 - ¢

(15) Pri{A=+yN|=Pr

Ne €

1—6—'y]
=

_ Q-9
(1 — e — v)2Ney

— 0as N — oo,

since by assumption ey — 0 and Ney — . Therefore, the double
inequality (13) implies that supxes», Eam.(X(A)) — sup m..(X) as
N — . Now (12) and (11) imply (i).

To show (ii), rewrite the principal’s problem as

A—N( - e

e BXA)|.

max E L(X(A)) +
max A |T=(X(A)) N
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The expectation can be maximized statewise, i.e., for every A,

My(A) = arg max my(X), where g (X)
XerxIN

A—N(1 - e
=m(X) + o BOX).

Using (14) and the assumption that Ney — o, we see that
supxex|m(X) — m.(X)| 2 0.
Now, by the triangle inequality, when A > yN, we can write

d(m.(My(A)), .. (M.))) = d(m.(My(A)), 73 (My(A)))
+ d(m{(My(A)),m.(M..) = sup [T (X) = (X))

+ [sup wR(AX/N) — sup m.(X)| = 2 sup [wR(X ) — m.(X)]
Xex

+ |sup m.(AX/N) — sup m..(X)| = 2 sup |7 (X) — m..(X)
XEX

+ |sup m.("NX/N) — sup m.(X)|.

The first term has been shown to go to zero in probability, and the
second term goes to zero by the asymptotic adequacy of X. Since
Pr (A > yN|— 1 by (15), we have

(16) d(m..(My),m..(M..)) 2 0.

Since m..(-) is u.s.c., LemmaA.3 now implies (ii).
For the welfare results, write W(X(A)) = m..(X(A)) + B(X(A)),
and therefore,

d, (W(My),W(M..)) = d. (m.(My),7.(M..)) + d..(B(My),B(M..)).

The first term is zero. When B(:) is u.s.c. and (ii), the second term
goes to zero in probability by Lemma A.2. Thus, we obtain (iii).
Finally, write

d(W(My),W(M.)) = d(m..(My),7..(M..)) + d(B(My),B(M..)).

When B(-) is continuous and (ii), Lemma A.2 implies that the
second term goes to zero in probability. Using in addition (16), we
obtain (iv).l
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APPENDIX 2: EXISTENCE OF EQUILIBRIA WITH PRIVATE OFFERS

A set of sufficient conditions for equilibrium existence is
provided by the following proposition.

PropPosiTION A.1. When %, is an interval for all i, and the function

g0, %) = F(9) + 2 ui(%)

is continuous in (x,X) and quasi-concave in x, we have € # Q.

Proof. Atrade profile X satisfies the equilibrium condition (5)
if and only if X € B(X) = arg max,ex,x..xx, 9(x,X). Under the
assumptions, the correspondence B(x) satisfies the conditions of
Kakutani’s fixed point theorem. Therefore, a solution X exists.H

Quasi-concavity of g(x, X) in x can be ensured by concavity of
f(x) and concavity of u;(x;,X_;) in x; for all i and all x_;. In the
context of Vertical Contracting (A1) with homogeneous final goods
and Bertrand-Edgeworth downstream competition, this means
that the supplier’'s cost function is convex and the revenue
functions are quasi concave, which generalizes the setting of Hart
and Tirole [1990] and Rey and Tirole [1996].

In an asymptotic setting with a large N, assuming that the
second derivatives of F(:), a(-), B() exist and are bounded on X, we
can write

1
i i j#i j#i
ang(Xas\() 1
T E S x| 4 2800 (X + D &+ O[]

where
1 when k =1,
8k| = .
0 otherwise.

Thus, having F(-) concave and o' (X) < 0 for all X is sufficient to
satisfy the conditions of Proposition A.1 for N large enough. On
the other hand, when «’'(X) > 0 for all X, the conditions of
Proposition A.1 are violated for a large N. This can be seen by
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checking that the 3 X 3 leading principal minor of the bordered
Hessian of gy (-, X) at the pointx = X = (X/N, ..., X/N) is positive
for N large enough. Therefore, in this case the function gy(:, X) is
not quasi concave.

Since a'(-) < 0 asymptotically corresponds to the property of
decreasing externalities, this suggests that the existence of equi-
librium is intimately tied to this property. While | do not have a
general result to this effect, | have a result under Condition S:

PropPosITION A.2. Suppose that Condition S holds. Then

(i) When externalities are decreasing and F(-) is concave, we
have € # Q.

(i) When u;(1,x-;) — u;(0,x_;) is strictly increasing in x_; (i.e.,
externalities are strictly increasing), any equilibrium X €
¢ must have X, = - - - = K\.

Proof. Under Condition S, we can write u;(x) = U(x;,Z; xI;).
Define

[F(X+ 1)+ U, X +1)] - [F(X) + U(0,X)]
AX) = when X €10,...,N — 1],
Owhen X <0or X >N — 1.

Note that A(X) can be interpreted in two ways (when agents hold
passive beliefs): (i) as the principal’s gain from trading with one
more agent when she is expected to trade with X agents, and (ii) as
the principal’s loss from trading with one fewer agent when she is
expected to trade with X + 1 agents. It is then clear that X €

[0, ..., NJis a“pairwise equilibrium” (as defined in footnote 18) if
and only if AX) = 0 and A(X—1) = 0. The point X =
min X €0, ..., NJ: A(X) = 0} satisfies this condition, and must

exist (the set is nonempty by virtue of including N, and it is finite).
Therefore, a pairwise equilibrium X must exist.

To see that X must be a true equilibrium, consider the general
multiagent deviation, in which the principal trades with k new
agents and gives up trade with | old agents. The principal’s gain
from this deviation can be written as

FX + k — 1) — F(X) + K[U(L, X + 1) — U(0, X)]
— 1[U(1, X) — U0, X — 1)].
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When k = |, this gain can be rewritten as
FOX+k—1) = F(X) + (k — D[U(L, X + 1) — U(0, X)]
+I[(U@L, X + 1) — U(0, X)) — (U(L, X) — U, X— 1))].

When F(') is concave, the first term can be bounded from
above by (k — DA(X) = 0. With decreasing externalities, the
second term must also be nonpositive. Thus, the deviation is
unprofitable. Since a similar argument works when k < I, X must
be a true equilibrium, which establishes (i).

To see (ii), suppose in negation that we have X € € with X, = 1
and X, = 0. Consider the principal’s deviation in which she trades
with one new agent and gives up trade with one old agent. Letting
X = 3, X;, the principal’s gain can be written as

[U(L, X + 1) — U(0,X)] — [U(L, X) — U0, X— 1)].

With strictly increasing externalities, the principal’s gain must be
strictly positive, which contradicts the hypothesis that x € €.l

While this result does not rule out the possibility that
private-offers equilibria exist with increasing externalities, it does
reinforce our intuition that such existence is, in some sense, less
likely than with decreasing externalities. One way to ensure
existence is to allow the agents to hold arbitrary, and not just
passive, beliefs. Segal and Whinston [forthcoming] examine such
equilibria in the context of Exclusive Dealing (A2), which exhibits
increasing externalities.
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