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This paper considers a class of two-player dynamic games in which each player controls a
one-dimensional action variable, interpreted as a level of cooperation. The dynamics are due to an
irreversibility constraint: neither player can ever reduce his cooperation level. Payoffs are decreasing in
one’s own action, increasing in one’s opponent’s action. We characterize efficient symmetric equilibrium
action paths; actions rise gradually over time and converge, when payoffs are smooth, to a level strictly
below the one-shot efficient level, no matter how little discounting takes place. The analysis is extended
to incorporate sequential moves and asymmetric equilibria.

1. INTRODUCTION

We consider a model in which, in every period, there is a Prisoner’s Dilemma structure: agents
have some mutual interest in cooperating, despite the fact that it is not in any agent’s individual
interest to cooperate. We suppose that this situation is repeated over time, and, crucially, subject
to irreversibility, in the sense that an agent can never reduce her level of cooperation, only
increase it or leave it unchanged. In this setting, irreversibility has two opposing effects. First,
it aids cooperation, through making deviations in the form of reduced cooperation impossible.
Second, it limits the ability of agents to punish a deviator. We consider the complex interplay of
these two forces.

The key role of irreversibility in affecting cooperation can be explained more precisely as
follows. In the above model, suppose that every player has a scalar action variable, which we
interpret as a level of cooperation. We say thatpartial cooperationoccurs in some time period if
some player chooses a level of this action variable higher than the stage-game Nash equilibrium
level. Due to the Prisoner’s Dilemma structure, the latter is the smallest feasible value of the
action variable.Full cooperationoccurs when both players choose a level of this action variable
that maximizes the joint payoff of the players.1 In general, partial or full cooperation in any
time-period can only be achieved if deviation by any agent can be punished by the other agents
in some way.

Without reversibility, the above model is just a version of a repeated Prisoner’s Dilemma,
and in that case, it is well-known that the most effective (credible) punishments take the form of
“sticks”, i.e. reductionsin cooperation back to the stage-game Nash equilibrium, temporarily or
permanently. With irreversibility, such punishments are no longer feasible. Instead, deviators can
only be credibly punished by withdrawal of “carrots”, that is, withdrawal of promisedincreasesin
cooperation in future. It follows immediately from this fact that irreversibility causesgradualism:

1. Our model is symmetric,i.e.players have identical per-period payoffs given a permutation of their actions, so
we assume that both players choose the same level of the action variable in full cooperation (see Section 2 for details).
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any (subgame-perfect) equilibrium sequence of actions cannot involve an immediate move to full
cooperation, since there can be no carrot to enforce such a move.

Our first contribution is to refine and extend this basic insight. First, we show that any
(subgame-perfect) symmetric2 equilibrium sequence of actions involving partial cooperation
must have the level of cooperation always rising, that is, not attaining its limit value, which
in turn cannot exceed full cooperation. We focus on the symmetric equilibrium sequence that
is efficient within the set of all symmetric equilibria, and refer to it as theefficient symmetric
equilibrium path. A key question then is: to what value does this efficient symmetric equilibrium
path converge? It turns out that if payoffs are smooth (differentiable) functions of actions,
convergence will be to a levelstrictly belowthe full cooperation level,no matter how patient
agents are.3 For the case where payoffs are linear up to some joint cooperation level, and constant
or decreasing thereafter (the linear kinked case), the results are different—above some critical
discount factor, equilibrium cooperation can converge asymptotically to the fully efficient level.
Below this critical discount factor, no cooperationat all is possible. So, even for discount factors
close to one, the efficient path in our model is quite different from that in the same model
without irreversibility: in the latter case, above some critical discount factor, the fully efficient
cooperation level can be attained exactly and immediately as an equilibrium outcome.

The reason for the asymptotic inefficiency in the smooth payoff case is that close to full
cooperation, returns from additional mutual cooperation aresecond-order, whereas the benefits
to deviation (not increasing cooperation when the equilibrium path calls for it) remainfirst-order.
The future gains from sticking to an increasing mutually cooperative path will be insufficient to
offset the temptation to deviate. It follows that it will be impossible to sustain equilibrium paths
that become too close to full cooperation.

In many economic applications, irreversibility arises more naturally when the level of
“cooperation” is a stock variable which may benefit both players, and it is (costly) incremental
investment in cooperation that is non-negative, implying the stock variable is irreversible.
Therefore, in Section 4, we present an “adjustment cost” model with these features, and show that
it can be reformulated so that it is a special case of our base model. We then apply the adjustment
cost model to study sequential public good contribution games (Admati and Perry (1991), Marx
and Matthews (1998)).

In Section 5 we relax the restriction to symmetric equilibrium paths. Moreover, the base
model also assumes that the (two) players move simultaneously. In Section 6 we show that if
players are constrained to move sequentially, the equilibrium payoffs in this game are a subset of
those in the simultaneous move game, but that as discounting goes to zero, the efficient symmetric
payoff in the symmetric move game can be arbitrarily closely approximated by equilibrium
payoffs in the sequential game, so that asymptotically, the order of moves has little effect on
achievable payoffs. Further extensions are analysed in Section 7, where we briefly discuss partial
reversibility (considered in detail in Lockwood and Thomas (1999)).

Turning to related literature, there is a small literature on games with the features we
consider here. The basic insight that irreversibility implies gradualism is not entirely new;
perhaps Schelling (1960, p. 45) was the first to make the point. Admati and Perry (1991) and
Marx and Matthews (1998) present equilibria of dynamic voluntary contribution games which
exhibit gradualism, although in the first paper, gradualism is partly due to the strict convexity
of the player’s cost functions. The “level” of cooperation in these models is the sum of an

2. Due to the symmetry of the model, we focus initially onsymmetricequilibrium sequences, where in
equilibrium both players choose the same level of the cooperation variable at all dates.

3. Despite this result, inefficiency disappears in the limit as players become patient in the sense that the limit
value of the efficient symmetric equilibrium path, and player payoffs from this path, both converge to fully efficient levels
as discounting goes to zero.
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individual’s past contributions, and this is irreversible. Gale (2000) has considered a quite general
class of sequential move games with irreversible actions which he calls “monotone games”.
For games with “positive spillovers”, which include the class of games considered here, he
characterizes long-run efficient outcomes when there is no discounting. In particular, his results
imply that in a sequential-move version of our model without discounting, first-best outcomes are
eventually attainable.4 Finally, Salant and Woroch (1992) study a game between a regulator and
a firm, where the former can set a price ceiling, and latter can make irreversible investments to a
(depreciating) capital stock. In their model, the efficient level of capital is never achieved, but is
approached asymptotically at a rate that depends on the discount factor. However, there are also
convex costs of adjustment of capital in their model. So, to the best of our knowledge, our paper
provides the firstgeneraltreatment of a class of gameswith discountingin which gradualism in
cooperation due to irreversibility arises naturally (see however Compte and Jehiel (1995) for a
related idea in a bargaining context).

Of the papers just mentioned, possibly the closest is Marx and Matthews (1998). The
relationship between the two papers is as follows. The two papers consider quite different
models, although there is some overlap. Marx and Matthews consider a wide class of voluntary
contribution games, where a number of players simultaneously make contributions to a public
project overT periods, and whereT may be finite or infinite. Each player gets a payoff that
is linear in the sum of cumulative contributions, plus possibly a “bonus” when the project is
completed. One case of their model (T infinite, two players, no bonus) can be reformulated
as an “adjustment cost” variant of our model with linear kinked payoffs, as argued in detail
in Section 4. In this version of their model, Marx and Matthews construct a subgame-perfect
equilibrium which is approximately efficient when discounting is negligible,5 whereas we are
able to characterise efficient subgame-perfect equilibria foranyfixed value of the discount factor.
Specifically, our results show that in their model, the equilibrium with completion which they
construct is in fact efficient foranydiscount factor above a critical value, and conversely when
the discount factor is below the critical value, there areno contributions made in the efficient
equilibrium.

We see our model as being applicable to a variety of situations. For example, in an earlier
version of this paper (Lockwood and Thomas (1999)) we applied our “adjustment cost” model
to capacity reduction in a declining industry, under the assumption usually made in this literature
that capacity reductions are irreversible (Ghemawat and Nalebuff (1990)). While it may be
desirable to move immediately to reduce capacity in an industry to some level, this is not an
equilibrium because either firm would prefer to have the other reduce capacity while retaining
its own capacity. In other situations, increases in co-operation may not be irreversible, but
very costly to reverse, in which case our basic results about gradualism continue to hold (see
Section 7). Disarmament between two warring parties is one example—here cooperation would
be measured by the extent of disarmament, which may be very difficult to reverse, as complex
weapons, once destroyed, may be difficult to rebuild. A further application is to environmental
problems. Environmental cooperation may take the form of installation of costly abatement
technology. Once installed, this technology may be very expensive to replace with a “dirtier”
technology,e.g. conversion of automobiles to unleaded fuel would be expensive to reverse.

4. In fact, for the two-person case, Gale (2000) shows that any individually-rational point on the Pareto-frontier
can be eventually attained. Gale’s set-up is considerably more general than ours, and in particular, allows for the
possibility that a player’s payoff may be increasing in his or her own cooperation level (on completion of the project
in the public good model). The lack of this feature here allows us to obtain sharp results without the need to impose no
discounting.

5. Corollary 3(ii), Marx and Matthews (1998). Note that their results are stated forn > 2 players also, and hold
even when only the sum of past contributions is observable.
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Consequently it will again be difficult to punish deviants by reversing the investment. Similarly,
destruction of capital (e.g.fishing boats) which leads to over-exploitation of a common property
resource will also fit into the general framework of the paper if it is difficult to reverse.

There are, of course, alternative explanations for gradualism. For example, GATT
negotiations on tariff reductions are notable for their gradualism, and a small theoretical literature
now rationalizes this in terms of self-enforceability (Staiger (1995), Devereux (1997), Furusawa
and Lai (1999)). The general idea6 is that initially, full liberalization cannot be self-enforcing,
as the benefits of deviating from free trade are too great to be dominated by any credible
punishment. But if there is partial liberalization, some structural economic change induced by
the initial liberalization reduces the benefits of deviation from further trade liberalization, and/or
raises the costs of punishment to the deviator.7 So, in this case, irreversibility is neither plausible
(tariff cuts can always be reversed) nor required to explain gradualism.

2. THE MODEL AND PRELIMINARY RESULTS

There are two players8 i = 1,2. In each period,t = 1,2, . . . both playersi = 1,2 simultaneously
choose an action variableci ∈ <+, measuringi ′s level of cooperation.9 The per-period payoff
to player 1 isπ(c1, c2) with that of player 2 beingπ(c2, c1). So, payoffs of the two players are
identical following a permutation of the pair of actions. Also, we assume thatπ is continuous,
strictly decreasing inc1 and strictly increasing inc2. The last two conditions ensure that the one-
shot game has a Prisoner’s Dilemma structure. Payoffs over the infinite horizon are discounted
by common discount factorδ, 0 < δ < 1. Finally, our crucial assumption is that the choice of
action is irreversible in every period,i.e.

ci,t ≥ ci,t−1, i = 1,2, t = 1,2, . . . , (2.1)

whereci,t is i ’s action in periodt . Without loss of generality, we setc1,0 = c2,0 = 0. These
irreversibility constraints imply that the game is dynamic, rather than repeated.

We now make the following further weak assumption onπ . First, definew(c) := π(c, c),
and letc∗ be the smallest value ofc that maximisesw, if it exists.10 In what follows, we refer to
c∗ as thefirst-best efficient level of cooperation. Our interest inc∗ follows from the fact that we
focus on symmetric equilibrium paths, as defined below.

A1. There exists a maximiser ofw(c), c∗, such thatw(c) is strictly increasing in c for all
0 ≤ c ≤ c∗.

A game historyat time t is defined in the usual way as sequence of action pairs
{c1,τ , c2,τ }

t−1
τ=1, and is observable to both players att . A pure strategyfor player i = 1,2

6. The individual papers differ in their description of the structural change induced by partial liberalization.
Staiger (1995) endows workers in the import competing sector with specific skills, making them more productive there
than elsewhere in the economy. When they move out of this sector, they lose their skills with some probability. In
Devereux (1997), there is dynamic learning-by-doing in the export sector. In Furusawa and Lai (1999), there are linear
adjustment costs incurred when labor moves between sectors.

7. A formal treatment of a related idea in the negotiation context is in Compte and Jehiel (1995) who consider
the impact of outside options in a negotiation model where concessions by one party increase the payoff of the other in a
dispute resolution phase.

8. Our main results generalise straightforwardly to more than two players.
9. The action spaces can also be bounded,i.e. ci ∈ [0, c]; see the end of Section 3.

10. In general, it is possible that the sum of players’ payoffs could be made higher than 2w(c∗) by some
asymmetric pair(c∗

1, c
∗
2) with c∗

1 6= c∗
2, in which caseboth players would be better off with a 50: 50 randomization

over(c∗
1, c

∗
2) and(c∗

2, c
∗
1) than with(c∗, c∗). One assumption sufficient to rule this out is thatφ(c1, c2) := π(c1, c2)+

π(c2, c1) has a unique global maximum on<2
+

. From this assumption, and the fact thatφ(c1, c2) is symmetric, it follows
thatφ is maximised whenc1 = c2 = c∗.
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is defined as a sequence of mappings from game histories in periodst = 1,2, . . . to values
of ci,t in <+, and where every pair(ci,t−1, ci,t ) satisfies (2.1). Anoutcome pathof the game
is a sequence of actions{c1,t , c2,t }

∞

t=1 that is generated by a pair of pure strategies. We are
interested in characterizing pure-strategy subgame-perfect Nash equilibrium11 outcome paths.
For the moment, we restrict our attention tosymmetricequilibrium outcome paths where
c1,t = c2,t = ct , t = 1,2, . . . and we denote12 such paths by{ct }

∞

t=1. In view of the fact
that the underlying model is symmetric, this is a reasonable restriction. It is relaxed in Section 5.

We now derive necessary and sufficient conditions for some fixed symmetric outcome path
{ct }

∞

t=1 to be an equilibrium. Consider some deviationc′
t by playeri at t . It is clear from the fact

thatπ is decreasing in its first argument that the following is a subgame-perfect equilibrium path
in the continuation game following the deviation: both players immediately and permanently stop
increasing their levels of cooperation,i.e. ci,τ = c′

t , c j,τ = ct all τ > t . It is also clear that this
path imposes the worst punishment oni that j can inflict, given the irreversibility constraint (2.1).
The continuation payoff toi from this punishment equilibrium isπ(c′

t , ct )/(1 − δ). As π is
decreasing in its first argument, it is clear that ifi anticipates this punishment equilibrium, the
optimal deviation fori at any datet is to setc′

t as low as possible,i.e. c′t = ct−1.
Consequently, for a non-decreasing sequence{ct }

∞

t=1 to be a (symmetric) equilibrium
outcome path it is necessary and sufficient that the optimal deviation is never profitable at any
t ≥ 1, i.e. {ct }

∞

t=1 satisfies:

π(ct−1, ct )

1 − δ
≤ π(ct , ct )+ δπ(ct+1, ct+1)+ . . . , (2.2)

all t ≥ 1, where the L.H.S. is the punishment payoff, and the R.H.S. is the payoff from the non-
decreasing equilibrium path. LetCSE be the set of non-decreasing paths{ct }

∞

t=1 that satisfy (2.2).
We now note13 two basic properties of sequences inCSE.

Lemma 2.1. If {ct }
∞

t=1 is an equilibrium path, then (i) ct < c∗, for all t ≥ 1, and (ii) if

ct > ct−1 for some t> 0, then for allτ ≥ 0, there exists aτ
′

> τ such that c
τ

′ > cτ (i.e. the
sequence never attains its limit).

Next, say that the path{̂ct }
∞

t=1 ∈ CSE is anefficientsymmetric equilibrium path if there does
not exist another sequence{c′

t }
∞

t=1 ∈ CSE such that
∑

∞

t=1 δ
t−1π(c′

t , c
′
t ) >

∑
∞

t=1 δ
t−1π(̂ct , ĉt ).

We refer to such a path simply as anefficient pathin what follows.14 Defineĉ∞ := limt→∞ ĉt

(which exists by Lemma 2.1). We now have:

Lemma 2.2. An efficient path {̂ct }
∞

t=1 exists, and any efficient path satisfies
inequalities (2.2) with equality, i.e. for all t≥ 1,

π(̂ct−1, ĉt )

1 − δ
= π(̂ct , ĉt )+ δπ(̂ct+1, ĉt+1)+ . . . . (2.3)

Lemma 2.2 does not rule out the possibility of multiple efficient paths. The next lemma
shows that any efficient path is the upper envelope of all equilibrium paths, and hence that the
efficient path is unique, as there can be only one upper envelope.

11. In the sequel, it is understood that “equilibrium” refers to subgame-perfect Nash equilibrium.
12. This is a slight abuse of notation in the interests of brevity, as in fact a symmetric outcome path is{ct , ct }

∞
t=1.

13. All Lemmas in this section are proved in the Appendix.
14. We use the term “first-best” to refer to unconstrained efficient paths (not constrained to lie inCSE).
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Lemma 2.3. The efficient path{̂ct }
∞

t=1 is unique and is the upper envelope of all
equilibrium paths, i.e. there does not exist a{c′

t }
∞

t=1 ∈ CSE with c′
t > ĉt , for some t.

We are now able to show, using Lemmas 2.1 and 2.2, that the efficient path must satisfy
a simple second-order difference equation. Say that a difference equation inct has abounded
solutionif (given the initial conditions),|ct | < b, all t , for someb ∈ <+.

Lemma 2.4. Any path{ct }
∞

t=1 with c1 ≥ 0 is non-decreasing and solves (2.3) if and only
if it is a bounded solution to the difference equation

π(ct , ct+1) =
1

δ
[π(ct−1, ct )− π(ct , ct )] + π(ct , ct ), t > 1, (2.4)

with initial conditionsc0 = 0, c1 = c1.

Now, since the efficient path is non-decreasing and solves (2.3), it must, by the above lemma,
solve the difference equation (2.4) with initial conditionsc0 = 0 andc1 yet to be determined. Let
the sequence{ct (c1; δ)}

∞

t=1 be a solution to the difference equation (2.4) with some fixed initial
conditionc1, and consider the set of initial conditionsc1 such that{ct (c1; δ)}

∞

t=1 converges to a
finite limit, i.e. C1(δ) := {c1| limt→∞ ct (c1; δ) < +∞}. Then we have our final result of this
section:

Lemma 2.5. If, for any c1 ≥ 0, {ct (c1; δ)}
∞

t=1 is a convergent sequence, then it is
also an equilibrium path. Moreover, the efficient path is the sequence{ct (̂c1; δ)}

∞

t=1, where
ĉ1 = max{c1|c1 ∈ C1(δ)}.

3. MAIN RESULTS

The first main result consolidates and extends the preliminary results to get a characterisation of
the efficient path:

Proposition 3.1. A unique efficient path{ĉt }
∞

t=1 exists, and on this path, either there is
no cooperation at all(̂ct = 0, t = 0,1, . . .), or the level of cooperation must strictly increase
in every period(̂ct+1 > ĉt , all t > 0). In either case, the efficient path solves the difference
equation(2.4) with initial conditionsc0 = 0, c1 = ĉ1 = max{c1|c1 ∈ C1(δ)}.

Proof. The first part of the Proposition is from Lemma 2.3, and the third is from
Lemma 2.5. To prove the second part, note that if there is ever any cooperation, there is a dateτ

at whichcτ > cτ−1 = 0. Then, by an induction argument as in the sufficiency part of the proof
of Lemma 2.4,ct > ct−1, all t ≥ τ . Now suppose thatτ > 1: then the path could not be efficient,
as clearly the path{c′

t }
∞

t=1 with c′
t = ct+1, all t , is an equilibrium path, and gives each player a

higher present-value payoff, as it brings each payoff forward one period.‖

This characterization of the efficient path allows the efficient path to be approximately
computed in particular examples. For example, ifπ(ci , c j ) = −c2

i /2 + c j , and δ = 0·8,
then Figure 1 shows the solution to the difference equation (2.4) for different start valuesc1.
The highest value consistent with convergence isc1 = 0·4, in which casect → 0·8. (This
is formally confirmed in Corollary 3.4 below, which implies for this case that the limit of the
efficient sequencêc∞ = δ = 0·8; for this casec∗

= 1.)
However, it is obviously of interest to have ageneralcharacterization of the limit of the

efficient sequence,̂c∞, and we now turn to this issue. Wheneverπ is differentiable at(c, c),
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Simulation of difference equation

c ∈ (0, c∗), define the function

γ (c) :=
−π1(c, c)

π2(c, c)
> 0,

whereπi denotes the derivative ofπ with respect to itsi th argument. Note thatγ (c) is the ratio
of the cost−π1, to the benefitπ2, of a small increase in cooperation bybothplayers, starting at
c. Moreover, defineγ (0) := limc↓0 γ (c) andγ (c∗) := limc↑c∗ γ (c) whenever these limits exist.
In many special cases, the cost-benefit ratio may be increasing inc. More generally, ifπ is twice
continuously differentiable, then from A1, we must havew′′(c∗) ≤ 0; if this inequality is strict
then15 γ ′(c∗) > 0 and soγ is increasing on an interval[c′, c∗

] for somec′ < c∗. We cannot
assert, however, thatγ is everywhere increasing on[0, c∗

] on the basis of assumptions made so
far.

Our main result characterisinĝc∞ can now be stated.

Proposition 3.2. Assume that A1 is satisfied. (i) Ifπ is continuously differentiable16 at
the limit of the efficient symmetric path,ĉ∞, thenĉ∞ satisfiesγ (̂c∞) = δ. (ii) Moreover, ifπ
is continuously differentiable on some interval(0, ε) with γ (0) < δ, thenĉ∞ > 0, and ifπ is
continuously differentiable on some interval(c∗

− ε, c∗) with γ (c∗) > δ, then̂c∞ < c∗.

We now have an immediate corollary, which gives quite weak sufficient conditions for
cooperation on the efficient path to be uniformly bounded below the first-best level.

Corollary 3.3. If π is continuously differentiable on some interval(c∗
−ε, c∗

+ε), ε > 0,
thenĉ∞ < c∗. So, the efficient path is uniformly bounded below the first-best efficient level of
cooperation; i.e.̂ct < ĉ∞ < c∗ for all t .

15. Note thatw′′
= π11 + 2π12 + π22, andγ ′(c) =

−1
π2

[π11 + π12 + γ (π22 + π12)]. So, the result follows from

w′′(c∗) < 0 andγ (c∗) = 1.
16. By π being differentiable atc is meant thatπ(c1, c2) is differentiable atc1 = c2 = c and byπ being

continuously differentiable on some interval(c′, c′′) is meant thatπ(c1, c2) is continuously differentiable forc1, c2 ∈

(c′, c′′).
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This follows from part (ii) of the Proposition, noting thatγ (c∗) = 1> δ in this case.

Proof of Proposition3.2. (i) By the assumption thatπ is continuously differentiable at
ĉ∞, ĉ∞ > 0. (a) Assume, first, thatγ (̂c∞) > δ; a contradiction will be established. Suppose
thatct−2 < ct−1 < ct , and thatπ is continuously differentiable on some open interval enclosing
[ct−2, ct ]. By the Mean Value Theorem,π(ct−1, ct ) − π(ct−1, ct−1) = π2(ct−1, θt )1ct , for
someθt ∈ (ct−1, ct ), andπ(ct−2, ct−1) − π(ct−1, ct−1) = −π1(θt−1, ct−1)1ct−1, for some
θt−1 ∈ (ct−2, ct−1), where1ct := ct − ct−1. So, substituting in (2.4) and rearranging, we get

1ct = −
π1(θt−1, ct−1)

δπ2(ct−1, θt )
1ct−1 ≡ a(ct−2, ct−1, ct )1ct−1. (3.1)

The limit of a(ct−2, ct−1, ct ) asct−2, ct−1, ct → ĉ∞, with ct−2 < ct−1 < ct exists, byπ (·,·)
being continuously differentiable, and equals−π1(̂c∞, ĉ∞)/δπ2(̂c∞, ĉ∞) = γ (̂c∞)/δ > 1.
Consequently, there must exist aT such that

a(̂ct−2, ĉt−1, ĉt ) > 1, t > T . (3.2)

Also, as the equilibrium path is strictly increasing,1ĉT > 0. But then from (3.1) and (3.2), the
increments1ct are increasing whent > T and sôct cannot converge, contrary to hypothesis.
(b) Next assume thatγ (̂c∞) < δ. We shall again establish a contradiction. By the continuous
differentiability ofπ , find a neighbourhood around̂c∞, (̂c∞ − ε, ĉ∞ + ε), and ak < 1, such that

−π1(c, c
′)/(δπ2(c

′′, c′′′)) < k for c, c′, c′′, c′′′
∈ (̂c∞ − ε, ĉ∞ + ε). (3.3)

Defineψ := (1 − k)ε/2, and considerT such that̂cT−2 > ĉ∞ − ψ (this must exist by virtue
of ĉ∞ being the limit of{̂ct }). Now, sincêcT−2 < ĉT−1 < ĉT < ĉ∞, then byct (c1; δ) being
continuous inc1, we can find̃c1 > ĉ1 such that, defining̃ct := ct (̃c1; δ) all t , c̃T−2, c̃T−1 and
c̃T ∈ (̂c∞ − ψ, ĉ∞). Consequently 0< 1c̃T ≡ c̃T − c̃T−1 < ψ .

We will show that this new sequence still converges. We first claim that, fort > T , if
c̃t−1 < ĉ∞ + ε/2 and1c̃t−1 < ψ , then1c̃t ≤ k1c̃t−1. Rearranging (2.4):

π(̃ct−1, c̃t )− π(̃ct−1, c̃t−1) = [π(̃ct−2, c̃t−1)− π(̃ct−1, c̃t−1)]/δ. (3.4)

We haveπ(̃ct−1, c̃t ) − π(̃ct−1, c̃t−1) ≥ π21c̃t provided c̃t < ĉ∞ + ε, where π2 :=

infc,c′∈(̂c∞−ε,̂c∞+ε) π2(c, c′), and 0< [π(̃ct−2, c̃t−1)− π(̃ct−1, c̃t−1)]/δ ≤ −π11c̃t−1/δ, where
π1 := infc,c′∈(̂c∞−ε,̂c∞+ε) π1(c, c′) (recall thatπ1 < 0). Also k1c̃t−1 < kψ = k(1 − k)ε/2 <
ε/2 by 0 < k < 1, and sõct−1 + k1c̃t−1 < ĉ∞ + ε. Thus as̃ct varies betweeñct−1 and
c̃t−1 + k1c̃t−1, the L.H.S. of (3.4) varies between 0 and at leastπ2k1c̃t−1 while by (3.3)π2 ≥

−π1/(kδ), soπ2k1c̃t−1 ≥ −π11c̃t−1/δ, and thusπ2k1c̃t−1 is an upper bound on the R.H.S.
of (3.4). So, givenct−1, ct−2, there must be a solution to (3.4) forc̃t ∈ (̃ct−1, c̃t−1 + k1c̃t−1),
which implies1c̃t ≤ k1c̃t−1. Since the solution to (3.4) is clearly unique, this establishes the
claim.

Next we show that{̃ct } converges to a limit no greater thanĉ∞+ε/2. Suppose to the contrary
there existsτ > T such that̃cτ > ĉ∞ + ε/2, with c̃τ−1 ≤ ĉ∞ + ε/2. By the fact that̃cT < ĉ∞,
1c̃T < ψ , and that1c̃t ≤ k1c̃t−1 for T < t ≤ τ , we havẽcτ ≤ c̃T + k(1− kτ−T )ψ/(1− k) =

c̃T + k(1 − kτ−T )ε/2< ĉ∞ + ε/2, which is a contradiction.
So, since{̃ct }

∞

t=1 is a convergent path it is also an equilibrium path (Lemma 2.5(i)). Also,
by construction,̃c1 > ĉ1, which contradicts the envelope property of the efficient equilibrium
(Lemma 2.3). So,γ (̂c∞) < δ is also impossible.

(c) From parts (a) and (b), it follows immediately thatγ (̂c∞) = δ, as was to be proved.
(ii) If γ (0) < δ, then suppose to the contrary thatĉ∞ = 0. By the assumption thatγ (0) exists
and is less thanδ, γ (c) < kδ, wherek < 1, on some interval(0, ε). Next, choose, by continuity,
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c′

1 > 0 such thatc′

1, c2(c′

1; δ) andc3(c′

1; δ) ∈ (0, (1 − k)ε/2). Then repeating the argument of
part (i)(b) above, since1c3 < (1 − k)ε/2, c∞(c′

1; δ) < (1 − k)ε/2 + ε/2 < ε, and we have
constructed a higher equilibrium path, which is again a contradiction. Finally ifγ (c∗) > δ, then
the argument of (i)(a) above appliesmutatis mutandisto show that̂c∞ = c∗ is impossible. ‖

Our main result was deliberately stated making minimal assumptions onπ , and thereforeγ .
We now consider two special cases for which we can get a sharper characterization ofĉ∞. In one
of these cases, we can also solve explicitly for the efficient path.

The differentiable monotonic case.π is everywhere continuously differentiable andγ (c)
is strictly increasing on(0, c∗).

In this case, we can definêc(δ) to be the unique solution to the equationγ (̂c) = δ, unless
γ (0) > δ, in which case we definêc(δ) = 0. Clearlŷc(δ) < c∗ with limδ→1 ĉ(δ) = c∗, and̂c(δ)
can easily be computed in special cases. It follows now from Proposition 3.2 that:

Corollary 3.4. In the differentiable monotonic case,ĉ∞ = ĉ(δ).

Proof. In this case,γ (c∗) = 1, so by Proposition 3.2(ii),̂c∞ < c∗. If γ (0) < δ, then
by Proposition 3.2(ii),̂c∞ > 0, and thus the result follows immediately from the definition of
ĉ(δ) and Proposition 3.2(i). Ifγ (0) ≥ δ, then asγ is increasing,γ (c) > δ on (0, c∗), and
moreover,γ is continuously differentiable at allc ∈ (0, c∗). So, ĉ∞ /∈ (0, c∗): otherwise,
by Proposition 3.2(i),γ (̂c∞) = δ, contradicting the assumed properties ofγ . Consequently,
ĉ∞ = 0. ‖

Note that the differentiable monotonic case also satisfies the assumptions of Corollary 3.3,
so for all δ < 1, the efficient path is uniformly bounded below the first-best efficient level of
cooperation;i.e. ĉt < ĉ(δ) < c∗ for all t . The key feature of the differentiable monotonic case
is that we have an operational formula forĉ∞. For example, ifπ(ci , c j ) = c j − 0·5(ci )

2, then
c∗

= 1, ĉ∞ = ĉ(δ) = δ.

The linear kinked case.

π =

{
π1c1 + π2c2 if c1 + c2 ≤ 2c∗,
π1c1 + π2(2c∗

− c1) if c1 + c2 > 2c∗,

whereπ1 < 0, π2 > 0 are constants17 with π1 + π2 > 0.

Note that in the linear kinked case, Assumption A1 above on the shape ofw(c) is automatically
satisfied:w(c) is linear and increasing inc until c reaches the efficient levelc∗, and after that,
higher cooperation yields negative benefit. In this case, we have the following striking result.

Corollary 3.5. Assume the linear kinked case. If there is sufficiently little discounting
(δ > −π1/π2), then̂c∞ = c∗, i.e. first-best efficient cooperation can be asymptotically obtained.
In this case, the efficient path can be solved for explicitly asĉt = (1 − at )c∗, a := −π1/δπ2.
Otherwise (i.e. ifδ ≤ −π1/π2), thenĉ∞ = 0, so no cooperation can ever be obtained (ĉt = 0,
all t).

17. An interpretation is that payoffs depend positively on(c1 + c2) up to 2c∗ with a coefficient ofπ2, but there
is a marginal utility cost of(π2 − π1) to increasing one’s ownci . Forc1 + c2 > 2c∗, there is no more benefit from joint
contributions, only the cost remains, so that joint payoffs are declining in(c1 + c2). Forc1 + c2 > 2c∗, all that is needed
for the results is that joint payoffs are nonincreasing in(c1 + c2) and also own payoffs are declining in ownci .
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Proof. Assume first−π1/π2 < δ. Here, by definition,γ (c) = −π1/π2, c ≤ c∗. So, if
ĉ∞ < c∗, thenπ is differentiable at̂c∞ but γ (̂c∞) < δ, contradicting Proposition 3.2(i). Since
ĉ∞ ≤ c∗ by Lemma 2.1, it follows that̂c∞ = c∗. In this case, we can solve explicitly for
the initial condition that gives the efficient path. Rearranging (2.4) for the kinked linear case,
we get:1ct = a1ct−1, where1ct = ct − ct−1. So ct =

∑t
τ=1 aτ−1c1 which converges to

c∞ =
1

1−ac1 = (1 +
π1
δπ2
)−1c1 if and only if a < 1. So,̂c1 = (1 +

π1
δπ2
)c∗, and consequently,

ĉt = (1 − at )c∗.
For the case−π1/π2 > δ, a symmetric argument implies that ifc1 > 0,ct → ∞ ast → ∞,

contradicting the assumption thatct < c∗, all t . So, we must havec1 = 0, implying ĉ∞ = 0. ‖

Note that in both the differentiable monotonic and kinked linear cases, we have shown that
asδ → 1, the limiting level of cooperation on the efficient equilibrium path,ĉ∞, tends to the
first-best efficient level,c∗. It turns out that this fact implies that payoffs also converge to their
efficient levels asδ → 1; i.e. there is no limiting inefficiency in this model.

Corollary 3.6. In either the differentiable or linear kinked cases, asδ → 1, the
normalized discounted payoff from the efficient path,5̂ = (1−δ)

∑
∞

t=1 δ
t−1π(̂ct , ĉt ), converges

to the first-best payoffπ(c∗, c∗).

Proof. Rewrite the equilibrium condition (2.2) as

π(ct−1, ct ) ≤ (1 − δ)
∑∞

τ=t
δτ−tπ(cτ , cτ ), t ≥ 1. (3.5)

Now, if {ct }
∞

t=1 is an equilibrium sequence atδ, then{ct }
∞

t=1 is also an equilibrium at anyδ′ > δ

since, asπ(ct , ct ) is a non-decreasing sequence, the R.H.S. of (3.5) is non-decreasing inδ, and
the L.H.S. is constant.

Takeĉ(δ) as already defined for the differentiable case, and in the linear kinked case, define
ĉ(δ) as:

ĉ(δ) =

{
c∗ if δ > −π1/π2,
0 otherwise.

So, for any ε > 0, find a δ such thatπ(̂c(δ), ĉ(δ)) > π(c∗, c∗) − ε (where in the
differentiable case, we use the continuity ofπ (·,·), and, as already remarked, limδ→1 ĉ(δ) =

c∗). From Corollaries 3.4 and 3.5, atδ, ĉt → ĉ(δ), so holding {̂ct }
∞

t=1 fixed, limδ→1(1 −

δ)
∑

∞

t=1 δ
t−1π(̂ct , ĉt ) → π(̂c(δ), ĉ(δ)), and hence there exists aδ

′

> δ such that forδ satisfying
δ

′

< δ < 1, (1−δ)
∑

∞

t=1 δ
t−1π(̂ct , ĉt ) > π(c∗, c∗)−ε. Since{̂ct }

∞

t=1 is an equilibrium sequence
for suchδ, the efficient path at suchδ must also give a payoff greater thanπ(c∗, c∗)− ε. As ε is
arbitrary, this completes the proof.‖

An alternative way of viewing this result is to note that if we shrink the period length,
holding payoffs per unit of time constant, then inefficiency disappears as period length goes
to zero.18 Note also that the proof establishes an interesting comparative statics result: when
δ increases, every component of the path{̂ct }

∞

t=1 weakly increases for the simple reason that
the original path remains an equilibrium path for higherδ; the upper envelope property of the
efficient sequence (Lemma 2.3) then implies the result.

18. If π is discontinuous but otherwise satisfies our assumptions then asymptotic efficiency can fail. Consider an
example in which playeri benefits only fromj ’s c j , with an upwards jump in payoff at completion (c j = c∗), and suffers
continuous (increasing) costs fromci . To be specific, suppose thatπ(c1, c2) = −0·5c1 + φ(c2), whereφ(c2) = c2 for
c2 < 1, φ(c2) = 2 for c2 ≥ 1. Lemma 2.1 still applies, soci,t < 1 ≡ c∗, all t , and the payoff jump is never realised no
matter how patient the players. Asδ → 1, average payoffs converge to 0·5, whereas first-best payoffs are 1·5.
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Finally, note that if the action space is bounded, so thatci ∈ [0, c], then all the analysis
of this section is unchanged as long asc > c∗. If in fact c ≤ c∗, so thatc now effectively
replacesc∗, then in view of Lemma 2.1 (i), which holdsmutatis mutandis, Proposition 3.2 can
still be applied. For example, provided thatπ is differentiable with bounded first derivatives, and
w has slope bounded above zero on(0, c), γ (c) is bounded below 1 and there will thus be, as in
the linear kinked case, a critical discount factor above whichc will be the limit of the efficient
symmetric equilibrium path.

4. A MODEL WITH ADJUSTMENT COSTS

The model studied above is very stylized. In many economic applications, irreversibility
arises more naturally when there is a stock variable which benefits both players, and a flow
or incremental variable which is costly to increase, and is nonnegative. This non-negativity
constraint implies that the value of the stock variable can never fall,i.e. the stock variable is
irreversible. Here, we present a model with these features, and show that it can be reformulated
so that it is a special case of our base model.

Playeri ′s payoff at timet is

u(ci,t , c j,t )− α(ci,t − ci,t−1), (4.1)

with u increasing in both arguments, and withα > 0 being the cost of adjustment. Here,ci,t is to
be interpreted asi ′s cumulative investmentin, or the stock level of, the cooperative activity. We
assume that the investment flow is nonnegative, which implies that the stock level of cooperation
is irreversible,i.e. ci,t ≥ ci,t−1, i = 1,2.

We now proceed as follows. The present value payoff fori in this model is

5i = u(ci,1, c j,1)− α(ci,1 − ci,0)+ δ[u(ci,2, c j,2)− α(ci,2 − ci,1)] + . . .

=

∑∞

t=1
δt−1

[u(ci,t , c j,t )− α(1 − δ)ci,t ] + αci,0.

As initial levels of cooperationc1,0, c2,0 are fixed, we can think of this model as a special case
of the model of the previous section (i.e.without adjustment costs) where per-period payoffs are

π(c, c′) = u(c, c′)− α(1 − δ)c. (4.2)

Of course, we require thatπ defined in (4.2) satisfies the conditions imposed in Section 2, and
also satisfies the relevant conditions of either the differentiable or linear kinked case. If this is the
case, then Corollaries 3.4 and 3.5 apply directly.

We now study an important economic application using this extension of our basic model,
dynamic voluntary contribution games. This is not the only topic that can be studied in this
way, it is chosen because it has already been studied quite intensively (Admati and Perry (1991),
Fershtman and Nitzan (1991), Marx and Matthews (1998)), but nevertheless we are able to extend
existing results: this, we believe, illustrates the power and flexibility of our approach.

A dynamic voluntary contribution game is one where players can simultaneously or
sequentially make contributions towards the cost of a public project over a number of time
periods. Marx and Matthews (1998) is the paper in this literature that is closest to our work. In
their paper contributions are made simultaneously and benefits from the project are proportional
to the amount contributed (up to a maximum, at which point the project is completed). We will
show that a special case of their model can be written as an adjustment cost game as above, and
that Corollary 3.5 above can be applied to extend some of their results. They consider a model in
which N individuals simultaneously make nonnegative private contributions, in each of a finite
or infinite number of periods, to a public project. We assume thatN = 2, and letci,t be the
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cumulative contribution of a numeraire private good byi towards the public project. Individuals
obtain att a flow of utility u = (1 − δ)v(c1,t + c2,t ) from the aggregate cumulative contribution
c1,t + c2,t , wherev(·) is piecewise linear:

v(c1, c2) =

{
λ(c1 + c2) if c1 + c2 < 2c∗

= C∗,
λC∗

+ b if c1 + c2 ≥ C∗,

where we follow as closely as possible the notation of Marx and Matthews. Thus agents get
benefitλ from each unit of cumulative contribution, and an additional benefitb ≥ 0 when the
project is “completed”,i.e.when the sum of cumulative contributions reachesC∗. Also, the cost
to i of an incrementci,t − ci,t−1 in his own cumulative contribution is simplyci,t − ci,t−1. It is
assumed that 0·5< λ < 1, so that it is socially efficient to complete the project (immediately, in
fact), but not privately efficient to contribute anything. We consider the case whereb = 0 and the
time horizon is infinite (theb = 0 case unravels otherwise, in the sense that in the final period it
is optimal to contribute nothing, which implies the same is true of the penultimate period, and so
on).

Then, from (4.2), per period payoffs in the equivalent dynamic game are

π(c1, c2) = (1 − δ)v(c1, c2)− (1 − δ)c1

=

{
(1 − δ)[(λ− 1)c1 + λc2] if c1 + c2 < 2c∗

= C∗,
(1 − δ)λC∗

− (1 − δ)c1 if c1 + c2 ≥ C∗.

This payoff function is clearly of the kinked linear type, whereπ1 = (1 − δ)(λ − 1) < 0,
π2 = (1 − δ)λ > 0. So Corollary 3.5 applies directly to this version of the Marx–Matthews
model. In particular, the critical value ofδ in Corollary 3.5 isδ̂ = −π1/π2 = (1 − λ)/λ. Two
results then follow directly from our Corollary 3.5 and its proof:

1. If δ > δ̂, there is a class of equilibria, indexed by the initial conditionc1, where
each player’s cumulative contributionct converges to some value less than or equal
to c∗, with the limit value increasing inc1. Along the equilibrium path, incremental
contributions fall at rate(1−λ)

δλ
. Theefficientsymmetric equilibrium has initial contribution

c1 = c∗(1 −
(1−λ)
δλ

), and each player’s cumulative contributionct converges toc∗.
2. If δ ≤ δ̂, then no contributions are made in any equilibrium.

Result 1 sharpens Proposition 3 and Corollary 3(ii) of Marx and Matthews, who show that for
δ > δ̂, there is an equilibrium withct → c∗, and that forδ ' 1, this equilibrium is approximately
efficient. In the special case ofn = 2 andb = 0, we not only confirm their results, but also show
that the equilibrium they constructis the efficient equilibrium foranyδ > δ̂. Also, Result 2 is a
complete converse result to their Proposition 3.

5. ASYMMETRIC COOPERATION

In the simultaneous move game, we only considered symmetric paths,i.e.wherec1,t = c2,t = ct .
One question is whether the agents could both achieve higher (expected) equilibrium payoffs by
playing asymmetrically. More generally, we are interested in the shape of the equilibrium payoff
possibility frontier. Let{c1,t , c2,t }

∞

t=1 be an arbitrary (possibly asymmetric) path. Then, by a
similar argument to that given in Section 2, such a path is an equilibrium path if and only if

π(c1,t−1, c2,t )

(1 − δ)
≤

∑∞

τ=t
δτ−tπ(c1,τ , c2,τ ), t = 1,2, . . . , (5.1)

π(c2,t−1, c1,t )

(1 − δ)
≤

∑∞

τ=t
δτ−tπ(c2,τ , c1,τ ), t = 1,2, . . . . (5.2)
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So, now we need apair of sequences of incentive constraints to hold. Now letCE be the set of
equilibrium paths satisfying (5.1), (5.2), and5E in <

2 be the corresponding set of normalized19

present discounted payoff pairs generated by paths inCE. Let an equilibrium path inCE that
maximises the sum of present-value payoffs∑∞

t=1
δt−1

[π(c1,t , c2,t )+ π(c2,t , c1,t )],

be denoted{ĉ1,t , ĉ2,t }
∞

t=1: at least one such path exists by the arguments of the proof of
Lemma 2.2. We refer to this as anefficient equilibrium path. In view of our previous restriction
to symmetric equilibrium paths, a major question of interest is whether (one of) the efficient
equilibrium path(s) is symmetric.

Proposition 5.1. In the linear kinked case,5E is convex and symmetric about the45◦

line. Moreover, one of the efficient equilibrium paths is symmetric, i.e.ĉ1,t = ĉ2,t , all t .

Proof. Adapting Lemma 2.1, any sequence inCE must havec1,t + c2,t < 2c∗, all t .
Given this, the constraints (5.1), (5.2) are linear. Consequently, if{c′

1,t , c
′

2,t }
∞

t=1 and{c′′

1,t , c
′′

2,t }
∞

t=1
satisfy them, a convex combination of the two must also satisfy them and soCE is a convex set.
Consequently,5E is also convex, by linearity of payoffs. The symmetry claims follow straight
forwardly. ‖

In fact, in the kinked linear case, we can say more20 about the shape of5E asδ varies. As
far as symmetric equilibria are concerned, we know from Corollary 3.5 ifδ ≤ δ̂ = −π1/π2, no
cooperation is possible, so5E(δ) = {0,0}. The non-trivial case is whereδ > δ̂, in which case
equilibria with positive levels of cooperation exist. Moreover, about the 45◦ line the efficient
frontier of 5E(δ) turns out to be linear (with slope−1) as in the segment AB in Figure 2.
(The linear part of the frontier consists of payoffs from sequences which satisfy the incentive
constraints with equality.) Asδ → 1, the linear section extends to, but never attains, to the
axes (with origin corresponding to the no cooperation payoffsπ(0,0)), and the entire frontier
converges to the first-best efficient frontier.

6. SEQUENTIAL MOVES

So far, we have assumed that players can move simultaneously. However, it may be that players
can only move sequentially,e.g.Admati and Perry (1991), Gale (2000). In certain public good
contribution games, the assumption made can affect the conclusions substantially. In the Admati–
Perry model, where players move sequentially, a no-contribution result holds when no player
individually would want to complete the project, even though it might be jointly optimal to do
so, but this result may disappear if the players can move simultaneously (see Marx and Matthews
(1998) for a full discussion of this issue). By contrast, we shall find that in our model, equilibria
in the two cases are closely related; indeed, the efficient symmetric equilibrium of the symmetric
move game can “approximately” be implemented in the sequential move game.

Suppose w.l.o.g. that player 1 can move at even periods and player 2 at odd periods. Let the
set of all non-decreasing paths that satisfy this restriction beCseq. To be an equilibrium in the
sequential game, any path{c1,t , c2,t }

∞

t=1 must satisfy the following incentive constraints. When
player 1 moves att = 2,4, . . . he prefers to raise his level of cooperation fromc1,t−2 to c1,t

19. That is, multiplied by 1− δ.
20. For proof of these claims, see Lockwood and Thomas (1999).
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First-best frontier

A

B

FIGURE 2

Asymmetric equilibria

only if

π(c1,t−2, c2,t−1)

1 − δ
≤ π(c1,t , c2,t−1)+ δπ(c1,t , c2,t+1)+ . . . , t = 2,4,6, . . . . (6.1)

Similarly, when player 2 moves att = 3,5 . . ., he prefers to raise his level of cooperation from
c2,t−2 to c2,t only if

π(c2,t−2, c1,t−1)

1 − δ
≤ π(c2,t , c1,t−1)+ δπ(c2,t , c1,t+1)+ . . . , t = 3,5,7, . . . . (6.2)

When player 2 moves at period 1, (6.2) is modified by the fact that 2 can revert toc0 = 0, rather
thanc−1, but otherwise the incentive constraint is the same,i.e.

π(0,0)

1 − δ
≤ π(c2,1,0)+ δπ(c2,1, c1,2)+ . . . . (6.3)

Let the set of paths inCseq that satisfy (6.1), (6.2) and (6.3) beCseq
E ⊂ Cseq.

However, note that a path inCseq is also inCseq
E if and only if it is an (asymmetric, in

general) equilibrium path in the simultaneous move game studied earlier. This is because in the
simultaneous move game, the incentive constraints in the periods where agents do not have to
move areautomaticallysatisfied, as no agent likes to choose a higherci,t than necessary (from
π decreasing in its first argument). So, recalling the definition ofCE from the previous section,
we have shown thatCseq

E = CE ∩ Cseq. Also, define5seq
E similarly to5E as the set of pairs

of equilibrium normalised present-value payoffs in the sequential game. AsCseq
E ⊆ CE, then

5
seq
E ⊆ 5E; that is, players canalwaysdo at least as well with a simultaneous move structure as

with a sequential one.
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To say more than this, we shall go to the linear kinked case. Letπ̂ be the normalised
present value payoff from the efficient symmetric path in the simultaneous move game.21 By
Proposition 5.1, we know that(π̂, π̂) is the equal utility point on the Pareto-frontier for that
game. Finally, note that all equilibrium payoff sets depend onδ. Then:

Proposition 6.1. Assume the linear kinked case. Then,5
seq
E is convex. For any fixed

ε > 0, there is aδ(ε) < 1, and a point(π̂seq
1 , π̂

seq
2 ) ∈ 5

seq
E such thatπ̂seq

i > π̂ − ε, i = 1,2 for
δ ≥ δ(ε).

Proof. The proof that5seq
E is convex follows the proof of Proposition 5.1 exactly. Next,

recall that{̂ct }
∞

t=1 is the (unique) symmetric efficient path in the simultaneous move game. Define
theasymmetricpath{̃c1,t , c̃2,t }

∞

t=1 in Cseqas follows:

c̃1,t = c̃1,t+1 = ĉt , t = 0,2,4,6, . . . ;

c̃2,t = c̃2,t+1 = ĉt , t = 1,3,5, . . . .

This is simply the path where an agent whose turn it is to move att chooseŝct . We show that
{̃c1,t , c̃2,t }

∞

t=1 ∈ Cseq
E . Define as before1ĉt := ĉt − ĉt−1, and recall1ĉt = a1ĉt−1 on the

efficient path. For the player who moves att ≥ 2, and writing1 for 1ĉt−1, the constraints (6.1)
and (6.2), evaluated on the path{̃c1,t , c̃2,t }

∞

t=1, can be written as:

π1̂ct−2 + π2(̂ct−2 +1)

1 − δ
≤ π1(̂ct−2 +1+ a1)+ π2(̂ct−2 +1)

+ δ(π1(̂ct−2 +1+ a1)+ π2(̂ct−2 +1+ a1+ a21))

+ δ2(π1(̂ct−2 +1+ · · · + a31)

+ π2(̂ct−2 +1+ a1+ a21))+ . . . , (6.4)

or rearranging,

π21

1 − δ
≤
(1 + a)π11+ (1 − δ2a2

+ δa + δa2)π21

(1 − δ)(1 − δ2a2)
,

which holds with equality asa = −π1/(δπ2). Thus {̃c1,t , c̃2,t }
∞

t=1 satisfies the equilibrium
conditions (with equality) in the sequential game fromt = 2 onwards. Att = 1 the equi-
librium condition would hold with equality if player 2’s inheritedc was −ĉ1/a as opposed
to zero since it is higher, the condition will be slack (asπ1 < 0). So, we have established
that {̃c1,t , c̃2,t }

∞

t=1 ∈ Cseq
E . Payoffs from the path{̃c1,t , c̃2,t } are π̂seq

i = (1 − δ){[π j ĉ1] +

δ[πi ĉ2 + π j ĉ1] + δ2
[πi ĉ2 + π j ĉ3] + · · ·}, i, j = 1,2, i 6= j . Also, the payoffs from the efficient

symmetric path in the simultaneous move game areπ̂ = (1−δ){[π1̂c1+π2̂c1]+δ[π1̂c2+π2̂c2]+

δ2
[π1̂c3 + π2̂c3] + · · ·}. Consequently, we get

π̂ − π̂
seq
1 = (1 − δ){π2̂c1 + δπ1(̂c2 − ĉ1)+ δ2π2(̂c3 − ĉ2)+ δ3π1(̂c4 − ĉ3)+ . . .}

= (1 − δ)̂c1{π2̂c1 + δπ1âc1 + δ2π2a2̂c1 + δ3π1a3̂c1 . . .}

= (1 − δ)̂c1[π2(1 + δ2a2
+ δ4a4

+ . . .)+ δaπ1(1 + δ2a2
+ δ4a4

+ . . .)]

=
(1 − δ)̂c1

1 − δ2a2 [π2 + δaπ1] < (1 − δ)
ĉ1π2

1 − (π1/π2)2
.

So, aŝc1 < c∗ for all δ, π̂−(1−δ)θ < π̂
seq
1 , for some constantθ > 0. Consequently, for anyε >

0, π̂−ε < π̂
seq
1 for all δ ≥ δ(ε) = 1−ε/θ , as required. A similar argument applies fori = 2. ‖

21. That is,π̂ = (1 − δ)
∑

∞
t=1 δ

t−1π(ĉt , ĉt ).
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Consequently there is no limiting inefficiency due to the sequential structure as far
symmetric payoffs are concerned. We can also show22 that one point on the efficiency frontier of
payoffs in the simultaneous move game is attained in the sequential game.

7. FURTHER EXTENSIONS AND CONCLUSIONS

In an earlier version of this paper (Lockwood and Thomas (1999))23, we also extended the base
model to allow for a small amount of reversibility of actions, so that any player can reduce his
or her cooperation level by some (small) fixed percentage. This has two countervailing effects.
The first is to makedeviation more profitable; the deviator att can lower his cooperation level
below last period’s, rather than just keeping it constant. The second effect is to makepunishment
more severe; the worst possible perfect equilibrium punishment is for the punisher to reduce
his cooperation over time, rather than just not increase it. We are able to show that for a small
amount of reversibility the second effect dominates, and in the linear kinked case it dominates
for any degree of reversibility. In our model, then, reversibility is desirable in that it allows more
cooperative equilibria to be sustained.24

This paper has studied a simple dynamic game where the level of cooperation chosen by
each player in any period is irreversible. We have shown that irreversibility causesgradualism:
any (subgame-perfect) sequence of actions involving partial cooperation cannot involve an
immediate move to full cooperation, and we have refined and extended this basic insight in
various ways. First, we showed that if payoffs are differentiable in actions, then (for a fixed
discount factor) the level of cooperation asymptotes to a limit strictly below full cooperation,
and this limit value is easily characterized. For the case where payoffs are linear up to some
joint cooperation level, and decreasing thereafter, the results are different—above some critical
discount factor equilibrium cooperation can converge asymptotically to the fully efficient level,
but below this critical discount factor, no cooperation is possible. The basic model is then
extended in several directions.

However, throughout, we have continued to assume that the underlying model is symmetric.
This is somewhat restrictive; in many situations where irreversibility arises naturally, for example
in Coasian bargaining without enforceable contracts but where actions are irreversible, payoffs
will be asymmetric. Another limitation of the model is that players only have a scalar action
variable; in many applications, players have several action variables, as in, for example, capacity
reduction games, where firms control both capacity and output. Extending the model in these
directions is a project for the future.

APPENDIX

Proof of Lemma2.1. (i) Suppose to the contrary thatct ≥ c∗ for somet > 0, with ct−1 < c∗. From the
assumptions onπ (·,·), π(ct−1, ct ) > π(c∗, c∗), and sinceπ(cτ , cτ ) ≤ π(c∗, c∗) all τ by definition ofc∗, it is clear
that (2.2) is violated, a contradiction.

(ii) If this is not the case, then on some equilibrium path,ct > ct−1 for some t > 0, and there exists a
T ≥ t with cτ < c̃ for τ < T , and cτ = c̃ for all τ ≥ T . Then, player 1, by deviating atT , would receive
π(cT−1, c̃)/(1− δ) > π(̃c, c̃)/(1− δ), whereπ(̃c, c̃)/(1− δ) is 1’s equilibrium continuation payoff atT , and where the
inequality follows fromπ decreasing in its first argument. Thus a deviation is profitable, contradicting the equilibrium
assumption. ‖

22. This is proved in Lockwood and Thomas (1999); the common point is one end of the linear section of the
frontier of5E(δ), discussed in Section 5, and depicted in Figure 2 as point A.

23. Available online athttp://www.warwick.ac.uk/fac/soc/Economics/research/twerps.htm
24. For any positive degree of reversibility, if players are sufficiently patient thenc∗ can be attained immediately.

On the other hand, at afixeddiscount factor, introducing a small amount of reversibility will not undo the gradualism
result.
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Proof of Lemma2.2. (a) To prove existence, consider the product space of sequencesC∗
:= [0, c∗

]
∞ endowed

with the product topology, and letc = {ct }
∞
t=1 denote a typical element. Now letπ be the supremum of the set of

present value payoffs generated by sequencesc ∈ CSE. By definition, there must be a sequence{cn
}
∞
n=1 with the

property that eachcn
∈ CSE, and moreover, limn→∞

∑
∞
t=1 δ

t−1π(cn
t , c

n
t ) = π . By Lemma 2.1(i),CSE ⊆ C∗,

and C∗ is sequentially compact in the sense that any sequence has a convergent subsequence (e.g. Jameson (1974),
Theorem 11.6 and 14.6). Let{cnk }

∞
k=1 be a convergent subsequence of{cn

}
∞
n=1 with limit c∞

∈ C∗. By cnk ∈ CSE,

π(c
nk
t−1, c

nk
t )/(1 − δ) ≤

∑
∞
τ=t δ

τ−tπ(c
nk
τ , c

nk
τ ) for all t ≥ 1, and consequently by the continuity of the discounted

payoff sum,π(c∞
t−1, c

∞
t )/(1 − δ) ≤

∑
∞
τ=t δ

τ−tπ(c∞
τ , c

∞
τ ) for all t ≥ 1. Moreover,c∞ is non-decreasing. From these

two facts, we havec∞
∈ CSE. Finally, by the continuity of the discounted payoff sum,

∑
∞
t=1 δ

t−1π(c∞
t , c∞

t ) = π . So,
the supremum can be achieved by an equilibrium path; consequently,c∞ must be an efficient equilibrium path.

(b) We refer to (2.2) holding att as thet-constraint. To show that all thet-constraints hold with equality, suppose
to the contrary that for somet , π(̂ct−1, ĉt )/(1 − δ) <

∑
∞
τ=t δ

τ−tπ(̂cτ , ĉτ ). Let τ ≥ t be the first integer greater than
or equal tot such thateither ĉτ < ĉτ+1 or that theτ + 1-constraint holds with equality. There must exist such aτ . For
suppose not: then̂cs = ĉt for all s> t , in which case thet + 1-constraint holds with equality, a contradiction. Moreover,
note that asτ exists, theτ -constraint always holds with a strict inequality. Thus, there are two possibilities atτ .

1. ĉτ = ĉτ+1, and theτ + 1-constraint holds with equality. In this case, we establish a contradiction. Note that∑∞

s=τ
δs−τπ(̂cs, ĉs) >

π(̂cτ−1, ĉτ )

(1 − δ)
≥
π(̂cτ , ĉτ+1)

(1 − δ)
=

∑∞

s=τ+1
δs−τ−1π(̂cs, ĉs),

where the first inequality follows from theτ -constraint holding with inequality and the second inequality follows
from ĉτ−1 ≤ ĉτ = ĉτ+1. Noting that the first term on the left isπ(̂cτ , ĉτ ) + δ

∑
∞
s=τ+1 δ

s−τ−1π(̂cs, ĉs), we have

π(̂cτ , ĉτ ) > (1 − δ)
∑

∞
s=τ+1 δ

s−τ−1π(̂cs, ĉs), which is impossible given thatπ(̂cτ , ĉτ ) ≤ π(̂cs, ĉs) for all s ≥ τ + 1,
due tôcs being a non-decreasing sequence bounded above byc∗.

2. ĉτ < ĉτ+1. In this case, we also establish a contradiction. Consider a small increase inĉτ to ĉτ + ε, holding
ĉs, s 6= τ fixed. As theτ -constraint holds with strict inequality, by continuity, this increase does not violate theτ -
constraint forε sufficiently small. Moreover, (i) thet-constraints,t < τ , are relaxed by an increase in̂cτ , holding
ĉτ−1, ĉτ−2, . . . , ĉ1 fixed since the only effect of an increase inĉτ is to increase the R.H.S. of these constraints; (ii) the
τ+1-constraint is relaxed by an increase inĉτ , holdingĉτ+1, ĉτ+2, . . . fixed, asπ is decreasing in its first argument; (iii)
all t-constraints witht > τ + 1 are unaffected. So, the path{̂c1, . . . , ĉτ−1, ĉτ + ε, ĉτ+1 . . .} is alsoan equilibrium path
which, moreover, yields each player a higher payoff than{̂ct }

∞
t=1, contradicting the assumed efficiency of{̂ct }

∞
t=1. ‖

Proof of Lemma2.3. It suffices to prove the upper envelope property, as there cannot be more than one such
envelope. Suppose to the contrary there exists a{c′

t }
∞
t=1 in CSE with c′

t > ĉt for somet . Define for all t ≥ 0,
c̃t = max{̂ct , c′

t }. It is clear from Assumption A1 and Lemma 2.1 (i) thatπ(c̃t , c̃t ) ≥ π(̂ct , ĉt ), all t , with at least
one strict inequality, so that{c̃t }

∞
t=1 gives both agents a higher present-value payoff than{̂ct }

∞
t=1. So, if we can show that

{c̃t }
∞
t=1 is an equilibrium path, this will contradict the assumed efficiency of{̂ct }

∞
t=1 and the result is then proved.

Say the sequences{̂ct }
∞
t=1, {c′

t }
∞
t=1 havea crossing point atτ if c′

τ−1 ≤ ĉτ−1, c′
τ ≥ ĉτ with at least one strict

inequality, orc′
τ−1 ≥ ĉτ−1, c′

τ ≤ ĉτ with at least one strict inequality. Also, defineSt =
∑

∞
τ=t δ

τ−tπ(cτ , cτ ), so

that S̃t ≥ Ŝt , S
′

t by the definition ofc̃t , for all t . There are then two possibilities at any timeτ for the sequences
{̂ct }

∞
t=1, {c

′
t }

∞
t=1.

(i) No crossing point atτ . Then, either(c̃τ−1, c̃τ ) = (̂cτ−1, ĉτ ) or (c̃τ−1, c̃τ ) = (c′
τ−1, c

′
τ ). Without loss of

generality, assume the former. As{̂ct }
∞
t=1 is an equilibrium path, we haveπ(̂cτ−1, ĉτ )/(1−δ) ≤ Ŝτ , so that(c̃τ−1, c̃τ ) =

(̂cτ−1, ĉτ ) andS̃τ ≥ Ŝτ together implyπ(c̃τ−1, c̃τ )/(1 − δ) ≤ S̃τ , i.e. theτ -constraint is satisfied for{c̃t }
∞
t=1.

(ii) A crossing point atτ . Assume w.l.o.g. that

c′
τ−1 ≤ ĉτ−1, c′

τ ≥ ĉτ . (A.1)

Then as{c′
t }

∞
t=1 is an equilibrium sequence,π(c′

τ−1, c
′
τ )/(1 − δ) ≤ S′

τ . Also, S̃τ ≥ S′
τ and from (A.1),c̃τ = c′

τ .

Consequently,π(c′
τ−1, c̃τ )/(1 − δ) ≤ S̃τ . Finally, again from (A.1),c′

τ−1 ≤ ĉτ−1 = c̃τ−1. Using this fact, plusπ

decreasing in its first argument, we haveπ(c̃τ−1, c̃τ ) ≤ π(c′
τ−1, c̃τ ), so we concludeπ(c̃τ−1, c̃τ )/(1− δ) ≤ S̃τ , i.e. the

τ -constraint holds for{c̃t }
∞
t=1.

So in either case (i) or (ii), allτ -constraints hold for the sequence{c̃t }
∞
t=1, so it is an equilibrium path, as

required. ‖

Proof of Lemma2.4. Necessity.Equation (2.3) can be writtenπ(ct−1, ct )/(1 − δ) = St+1, t ≥ 1, where we
again writeSt := π(ct , ct ) + δπ(ct+1, ct+1) + . . . . Advancing by one period, we getπ(ct , ct+1) = St+1. Also,
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St = π(ct , ct )+ δSt+1 by definition. So, combining these equations, we get

π(ct−1, ct )

1 − δ
= π(ct , ct )+

δπ(ct , ct+1)

1 − δ
, t ≥ 1. (A.2)

Rearrangement of (A.2) gives the difference equation (2.4). Moreover, since{ct }
∞
t=1 is non-decreasing, it satisfies the

irreversibility conditions (2.1), and since (2.3) implies (2.2),{ct }
∞
t=1 is an equilibrium sequence and thus by Lemma 2.1,

{ct }
∞
t=1 must converge toc∞ ≤ c∗, and so must be a bounded solution to (2.4).

Sufficiency.As just shown above, (2.4) is equivalent to (A.2). By successive substitution using (A.2), we get

π(ct−1, ct )

1 − δ
= π(ct , ct )+ · · · + δn−1π(ct+n−1, ct+n−1)+

δnπ(ct+n−1, ct+n)

1 − δ
. (A.3)

Now, as{ct }
∞
t=1 converges by assumption, we must have limn→∞ δnπ(ct+n−1, ct+n)/(1− δ) = 0. So, taking the limit

in (A.3), we recover (2.3). Finally, ifct−1 ≤ ct , the term in square braces in (2.4) is nonnegative, asπ is decreasing in
its first argument. So, we haveπ(ct , ct+1) ≥ π(ct , ct ), implying ct+1 ≥ ct , asπ is increasing in its second argument.
So, by induction, the solution to (2.4) is non-decreasing givenc1 ≥ c0. ‖

Proof of Lemma2.5. (i) Lemma 2.4 implies that{ct (c1; δ)}∞t=1 is non-decreasing and solves (2.3), which in turn
implies that it is an equilibrium path. (ii) From Lemma 2.2 and Lemma 2.4, the efficient path exists, solves (2.4) with
initial conditionsc0 = 0, c1 ≥ 0 and must also converge. Consequently,{̂ct }

∞
t=1 = {ct (̂c1; δ)}∞t=1 for somêc1 ∈ C1(δ).

Now suppose that there exists anotherc′
1 ∈ C1(δ)with c

′

1 > ĉ1. In this case, {ct (c
′

1; δ)}∞t=1 is an equilibrium (by part (i)),

and by construction,c1(c
′

1; δ) > c1(̂c1; δ) which contradicts Lemma 2.3. So,c1 > c
′

1, all c′
1 ∈ C1(δ). Finally, as an

efficient path exists,C1(δ) must contain its supremum, soĉ1 in the Lemma is well-defined. ‖
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