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This paper considers a class of two-player dynamic games in which each player controls a
one-dimensional action variable, interpreted as a level of cooperation. The dynamics are due to an
irreversibility constraint: neither player can ever reduce his cooperation level. Payoffs are decreasing in
one’s own action, increasing in one’s opponent’s action. We characterize efficient symmetric equilibrium
action paths; actions rise gradually over time and converge, when payoffs are smooth, to a level strictly
below the one-shot efficient level, no matter how little discounting takes place. The analysis is extended
to incorporate sequential moves and asymmetric equilibria.

1. INTRODUCTION

We consider a model in which, in every period, there is a Prisoner’'s Dilemma structure: agents
have some mutual interest in cooperating, despite the fact that it is not in any agent’s individual
interest to cooperate. We suppose that this situation is repeated over time, and, crucially, subject
to irreversibility, in the sense that an agent can never reduce her level of cooperation, only
increase it or leave it unchanged. In this setting, irreversibility has two opposing effects. First,
it aids cooperation, through making deviations in the form of reduced cooperation impossible.
Second, it limits the ability of agents to punish a deviator. We consider the complex interplay of
these two forces.

The key role of irreversibility in affecting cooperation can be explained more precisely as
follows. In the above model, suppose that every player has a scalar action variable, which we
interpret as a level of cooperation. We say thaittial cooperationoccurs in some time period if
some player chooses a level of this action variable higher than the stage-game Nash equilibrium
level. Due to the Prisoner’'s Dilemma structure, the latter is the smallest feasible value of the
action variableFull cooperationoccurs when both players choose a level of this action variable
that maximizes the joint payoff of the playérdn general, partial or full cooperation in any
time-period can only be achieved if deviation by any agent can be punished by the other agents
in some way.

Without reversibility, the above model is just a version of a repeated Prisoner’s Dilemma,
and in that case, it is well-known that the most effective (credible) punishments take the form of
“sticks”, i.e. reductionsn cooperation back to the stage-game Nash equilibrium, temporarily or
permanently. With irreversibility, such punishments are no longer feasible. Instead, deviators can
only be credibly punished by withdrawal of “carrots”, that is, withdrawal of promisetasesn
cooperation in future. It follows immediately from this fact that irreversibility cagsadualism

1. Our model is symmetrid.e. players have identical per-period payoffs given a permutation of their actions, so
we assume that both players choose the same level of the action variable in full cooperation (see Section 2 for details).
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any (subgame-perfect) equilibrium sequence of actions cannot involve an immediate move to full
cooperation, since there can be no carrot to enforce such a move.

Our first contribution is to refine and extend this basic insight. First, we show that any
(subgame-perfect) symmetfiequilibrium sequence of actions involving partial cooperation
must have the level of cooperation always rising, that is, not attaining its limit value, which
in turn cannot exceed full cooperation. We focus on the symmetric equilibrium sequence that
is efficient within the set of all symmetric equilibria, and refer to it as ¢ffecient symmetric
equilibrium path A key question then is: to what value does this efficient symmetric equilibrium
path converge? It turns out that if payoffs are smooth (differentiable) functions of actions,
convergence will be to a levetrictly belowthe full cooperation levelno matter how patient
agents aré.For the case where payoffs are linear up to some joint cooperation level, and constant
or decreasing thereafter (the linear kinked case), the results are different—above some critical
discount factor, equilibrium cooperation can converge asymptotically to the fully efficient level.
Below this critical discount factor, no cooperatiatall is possible. So, even for discount factors
close to one, the efficient path in our model is quite different from that in the same model
without irreversibility: in the latter case, above some critical discount factor, the fully efficient
cooperation level can be attained exactly and immediately as an equilibrium outcome.

The reason for the asymptotic inefficiency in the smooth payoff case is that close to full
cooperation, returns from additional mutual cooperationsamnd-orderwhereas the benefits
to deviation (not increasing cooperation when the equilibrium path calls for it) refirgthorder.

The future gains from sticking to an increasing mutually cooperative path will be insufficient to
offset the temptation to deviate. It follows that it will be impossible to sustain equilibrium paths
that become too close to full cooperation.

In many economic applications, irreversibility arises more naturally when the level of
“cooperation” is a stock variable which may benefit both players, and it is (costly) incremental
investment in cooperation that is non-negative, implying the stock variable is irreversible.
Therefore, in Section 4, we present an “adjustment cost” model with these features, and show that
it can be reformulated so that it is a special case of our base model. We then apply the adjustment
cost model to study sequential public good contribution games (Admati and Perry (1991), Marx
and Matthews (1998)).

In Section 5 we relax the restriction to symmetric equilibrium paths. Moreover, the base
model also assumes that the (two) players move simultaneously. In Section 6 we show that if
players are constrained to move sequentially, the equilibrium payoffs in this game are a subset of
those in the simultaneous move game, but that as discounting goes to zero, the efficient symmetric
payoff in the symmetric move game can be arbitrarily closely approximated by equilibrium
payoffs in the sequential game, so that asymptotically, the order of moves has little effect on
achievable payoffs. Further extensions are analysed in Section 7, where we briefly discuss partial
reversibility (considered in detail in Lockwood and Thomas (1999)).

Turning to related literature, there is a small literature on games with the features we
consider here. The basic insight that irreversibility implies gradualism is not entirely new;
perhaps Schelling (1960, p. 45) was the first to make the point. Admati and Perry (1991) and
Marx and Matthews (1998) present equilibria of dynamic voluntary contribution games which
exhibit gradualism, although in the first paper, gradualism is partly due to the strict convexity
of the player’s cost functions. The “level” of cooperation in these models is the sum of an

2. Due to the symmetry of the model, we focus initially epmmetricequilibrium sequences, where in
equilibrium both players choose the same level of the cooperation variable at all dates.

3. Despite this result, inefficiency disappears in the limit as players become patient in the sense that the limit
value of the efficient symmetric equilibrium path, and player payoffs from this path, both converge to fully efficient levels
as discounting goes to zero.
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individual's past contributions, and this is irreversible. Gale (2000) has considered a quite general
class of sequential move games with irreversible actions which he calls “monotone games”.
For games with “positive spillovers”, which include the class of games considered here, he
characterizes long-run efficient outcomes when there is no discounting. In particular, his results
imply that in a sequential-move version of our model without discounting, first-best outcomes are
eventually attainablé Finally, Salant and Woroch (1992) study a game between a regulator and
a firm, where the former can set a price ceiling, and latter can make irreversible investments to a
(depreciating) capital stock. In their model, the efficient level of capital is never achieved, but is
approached asymptotically at a rate that depends on the discount factor. However, there are also
convex costs of adjustment of capital in their model. So, to the best of our knowledge, our paper
provides the firsgeneraltreatment of a class of gamedth discountingn which gradualism in
cooperation due to irreversibility arises naturally (see however Compte and Jehiel (1995) for a
related idea in a bargaining context).

Of the papers just mentioned, possibly the closest is Marx and Matthews (1998). The
relationship between the two papers is as follows. The two papers consider quite different
models, although there is some overlap. Marx and Matthews consider a wide class of voluntary
contribution games, where a number of players simultaneously make contributions to a public
project overT periods, and wher& may be finite or infinite. Each player gets a payoff that
is linear in the sum of cumulative contributions, plus possibly a “bonus” when the project is
completed. One case of their moddl (nfinite, two players, no bonus) can be reformulated
as an “adjustment cost” variant of our model with linear kinked payoffs, as argued in detail
in Section 4. In this version of their model, Marx and Matthews construct a subgame-perfect
equilibrium which is approximately efficient when discounting is negligiblehereas we are
able to characterise efficient subgame-perfect equilibriarfigfixed value of the discount factor.
Specifically, our results show that in their model, the equilibrium with completion which they
construct is in fact efficient foany discount factor above a critical value, and conversely when
the discount factor is below the critical value, there aoecontributions made in the efficient
equilibrium.

We see our model as being applicable to a variety of situations. For example, in an earlier
version of this paper (Lockwood and Thomas (1999)) we applied our “adjustment cost” model
to capacity reduction in a declining industry, under the assumption usually made in this literature
that capacity reductions are irreversible (Ghemawat and Nalebuff (1990)). While it may be
desirable to move immediately to reduce capacity in an industry to some level, this is not an
equilibrium because either firm would prefer to have the other reduce capacity while retaining
its own capacity. In other situations, increases in co-operation may not be irreversible, but
very costly to reverse, in which case our basic results about gradualism continue to hold (see
Section 7). Disarmament between two warring parties is one example—here cooperation would
be measured by the extent of disarmament, which may be very difficult to reverse, as complex
weapons, once destroyed, may be difficult to rebuild. A further application is to environmental
problems. Environmental cooperation may take the form of installation of costly abatement
technology. Once installed, this technology may be very expensive to replace with a “dirtier”
technology,e.g. conversion of automobiles to unleaded fuel would be expensive to reverse.

4. In fact, for the two-person case, Gale (2000) shows that any individually-rational point on the Pareto-frontier
can be eventually attained. Gale’s set-up is considerably more general than ours, and in particular, allows for the
possibility that a player’s payoff may be increasing in his or her own cooperation level (on completion of the project
in the public good model). The lack of this feature here allows us to obtain sharp results without the need to impose no
discounting.

5. Corollary 3(ii), Marx and Matthews (1998). Note that their results are statadfoR players also, and hold
even when only the sum of past contributions is observable.
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Consequently it will again be difficult to punish deviants by reversing the investment. Similarly,
destruction of capitalg.g.fishing boats) which leads to over-exploitation of a common property
resource will also fit into the general framework of the paper if it is difficult to reverse.

There are, of course, alternative explanations for gradualism. For example, GATT
negotiations on tariff reductions are notable for their gradualism, and a small theoretical literature
now rationalizes this in terms of self-enforceability (Staiger (1995), Devereux (1997), Furusawa
and Lai (1999)). The general ideés that initially, full liberalization cannot be self-enforcing,
as the benefits of deviating from free trade are too great to be dominated by any credible
punishment. But if there is partial liberalization, some structural economic change induced by
the initial liberalization reduces the benefits of deviation from further trade liberalization, and/or
raises the costs of punishment to the deviatBa, in this case, irreversibility is neither plausible
(tariff cuts can always be reversed) nor required to explain gradualism.

2. THE MODEL AND PRELIMINARY RESULTS

There are two playefs = 1, 2. In each period, = 1, 2, ... both players = 1, 2 simultaneously
choose an action variabtg € 9%, measuring’s level of cooperatiod. The per-period payoff

to player 1 ist(c1, c2) with that of player 2 beingr (¢, c1). So, payoffs of the two players are
identical following a permutation of the pair of actions. Also, we assumerthatcontinuous,
strictly decreasing ilc; and strictly increasing inp. The last two conditions ensure that the one-
shot game has a Prisoner’s Dilemma structure. Payoffs over the infinite horizon are discounted
by common discount factagy, 0 < § < 1. Finally, our crucial assumption is that the choice of
action is irreversible in every periode.

Git>Git_1, i=12, t=12..., (2.1)

wherec; ; is i’s action in periodt. Without loss of generality, we sef o = c20 = 0. These
irreversibility constraints imply that the game is dynamic, rather than repeated.

We now make the following further weak assumptionmarFirst, definew(c) := n(c, c),
and letc* be the smallest value afthat maximisesw, if it exists 19 In what follows, we refer to
c* as thefirst-best efficient level of cooperatioBur interest irc* follows from the fact that we
focus on symmetric equilibrium paths, as defined below.

Al. There exists a maximiser af(c), c*, such thatw(c) is strictly increasing in c for all
0<c<c*

A game historyat timet is defined in the usual way as sequence of action pairs

{C1Lr, cz,,}tr‘:ll, and is observable to both playerstatA pure strategyfor playeri = 1,2

6. The individual papers differ in their description of the structural change induced by partial liberalization.
Staiger (1995) endows workers in the import competing sector with specific skills, making them more productive there
than elsewhere in the economy. When they move out of this sector, they lose their skills with some probability. In
Devereux (1997), there is dynamic learning-by-doing in the export sector. In Furusawa and Lai (1999), there are linear
adjustment costs incurred when labor moves between sectors.

7. A formal treatment of a related idea in the negotiation context is in Compte and Jehiel (1995) who consider
the impact of outside options in a negotiation model where concessions by one party increase the payoff of the other in a
dispute resolution phase.

8. Our main results generalise straightforwardly to more than two players.

9. The action spaces can also be boundedg € [0, T]; see the end of Section 3.

10. In general, it is possible that the sum of players’ payoffs could be made higher #hah) 2y some
asymmetric pailcy, ¢3) with ¢; # c3, in which caseboth players would be better off with a 5050 randomization
over(cj, ¢3) and(c3, c;) than with(c*, c*). One assumption sufficient to rule this out is thée,, cp) := m(cy, ¢2) +
7 (Cp, ¢1) has a unigue global maximum ﬁlﬁ. From this assumption, and the fact thhdt1, c) is symmetric, it follows
that¢ is maximised where; = ¢ = c*.
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is defined as a sequence of mappings from game histories in periedd, 2, ... to values

of ¢t in N4, and where every paift t—1, G t) satisfies (2.1). Aroutcome patlof the game

is a sequence of actior{gy, C2t}{2, that is generated by a pair of pure strategies. We are
interested in characterizing pure-strategy subgame-perfect Nash equilibuicome paths.

For the moment, we restrict our attention sgmmetricequilibrium outcome paths where

Cit = Ct = ¢, t = 1,2,... and we denof® such paths byct}i2,. In view of the fact

that the underlying model is symmetric, this is a reasonable restriction. It is relaxed in Section 5.

We now derive necessary and sufficient conditions for some fixed symmetric outcome path
{ct}2, to be an equilibrium. Consider some deviatigrby playeri att. Itis clear from the fact
thatr is decreasing in its first argument that the following is a subgame-perfect equilibrium path
in the continuation game following the deviation: both players immediately and permanently stop
increasing their levels of cooperatidre. G ; = ¢, ¢j - = ¢ all ¢ > t. Itis also clear that this
path imposes the worst punishmentidhat j can inflict, given the irreversibility constraint (2.1).

The continuation payoff té from this punishment equilibrium is(c{, ¢;)/(1 — 8). As 7 is
decreasing in its first argument, it is clear thai Hnticipates this punishment equilibrium, the
optimal deviation foii at any date is to setc{ as low as possiblé.e. ¢ = ¢_1.

Consequently, for a non-decreasing sequefigl”; to be a (symmetric) equilibrium
outcome path it is necessary and sufficient that the optimal deviation is never profitable at any
t>1,i.e.{c};2, satisfies:

7 (Ct—1, Ct)
1-§
allt > 1, where the L.H.S. is the punishment payoff, and the R.H.S. is the payoff from the non-

decreasing equilibrium path. LEsg be the set of non-decreasing patbg;° , that satisfy (2.2).
We now noté?2 two basic properties of sequence<Jge.

< 7(Ct, C) + 8 (Ctq1, Ct41) + - - s (2.2)

Lemma 2.1. If {ct};2, is an equilibrium path, then (i)ic< c*, for all t > 1, and (i) if
¢t > Ci_1 for some t> 0, then for allt > 0, there exists a > t such that ¢ > ¢ (i.e. the
sequence never attains its limit).

Next, say that the patft;};°, € Csgis anefficientsymmetric equilibrium path if there does
not exist another sequen¢g}>°; € Csg such thaty 2, 8" tr(c, ) > Y2, 6" n (@, T).
We refer to such a path simply as efficient pathin what follows* Define€y, := limi_ o Gt
(which exists by Lemma 2.1). We now have:

Lemma2.2. An efficient path (G}, exists, and any efficient path satisfies
inequalities .2) with equality, i.e. for all t> 1,
7(C-1,C) SN PN
ﬁ =76, G) + 67 (C41, Ciar) + ... (2.3)
Lemma 2.2 does not rule out the possibility of multiple efficient paths. The next lemma
shows that any efficient path is the upper envelope of all equilibrium paths, and hence that the
efficient path is unique, as there can be only one upper envelope.

11. Inthe sequel, it is understood that “equilibrium” refers to subgame-perfect Nash equilibrium.

12. This is a slight abuse of notation in the interests of brevity, as in fact a symmetric outcome{pgttx }ﬁl.
13. All Lemmas in this section are proved in the Appendix.

14. We use the term “first-best” to refer to unconstrained efficient paths (not constrained tG4e)in
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Lemma 2.3. The efficient path{C;};°, is unique and is the upper envelope of all
equilibrium paths, i.e. there does not exisficg}°; € Csg with ¢ > G, for some t.

We are now able to show, using Lemmas 2.1 and 2.2, that the efficient path must satisfy
a simple second-order difference equation. Say that a difference equatiphas abounded
solutionif (given the initial conditions)|c;| < b, all t, for someb € 9.

Lemma 2.4. Any path{ct}{°,; with ¢c; > Ois non-decreasing and solve.9) if and only
if it is a bounded solution to the difference equation

1
(G, Cty1) = E[W(thla Ct) — m(Ct, C)] + 7 (Ct, C), t>1 (2.4)
with initial conditionsCy = 0, T; = ¢;.

Now, since the efficient path is non-decreasing and solves (2.3), it must, by the above lemma,
solve the difference equation (2.4) with initial conditiaias= 0 andc; yet to be determined. Let
the sequencéct (c1; 6)};°, be a solution to the difference equation (2.4) with some fixed initial
conditioncy, and consider the set of initial conditiong such that{c;(c1; §)}{2, converges to a
finite limit, i.e. Cy(8) := {c1]lim{_ o Ct(C1; 8) < +oo}. Then we have our final result of this
section:

Lemma2.5. If, for any a > 0, {ci(ci: §)}f2, is a convergent sequence, then it is
also an equilibrium path. Moreover, the efficient path is the sequéadé:; 6)}°;, where
€1 = maxczlcy € Ca1(8)).

3. MAIN RESULTS

The first main result consolidates and extends the preliminary results to get a characterisation of
the efficient path:

Proposition 3.1. A unique efficient patf;};°, exists, and on this path, either there is
no cooperation at ali¢; = 0,t = 0, 1,...), or the level of cooperation must strictly increase
in every period(€+1 > G, all t > 0). In either case, the efficient path solves the difference
equation(2.4) with initial conditionsCy = 0, T1 = €1 = maxXci|c1 € C1(8)}.

Proof. The first part of the Proposition is from Lemma 2.3, and the third is from
Lemma 2.5. To prove the second part, note that if there is ever any cooperation, there is a date
at whichc, > ¢;_1 = 0. Then, by an induction argument as in the sufficiency part of the proof
of Lemma 2.4¢; > ¢_1, allt > . Now suppose that > 1: then the path could not be efficient,
as clearly the patlcg}°, with ¢f = ci41, all t, is an equilibrium path, and gives each player a
higher present-value payoff, as it brings each payoff forward one perigd.

This characterization of the efficient path allows the efficient path to be approximately
computed in particular examples. For exampler (i, cj) = —ci2/2 +¢cj, andé = 08,
then Figure 1 shows the solution to the difference equation (2.4) for different start \@alues
The highest value consistent with convergencejis= 0-4, in which casec; — 0-8. (This
is formally confirmed in Corollary 3.4 below, which implies for this case that the limit of the
efficient sequencé,, = § = 0-8; for this case* = 1.)

However, it is obviously of interest to havegeneralcharacterization of the limit of the
efficient sequenc&,, and we now turn to this issue. Wheneveis differentiable at(c, c),
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FIGURE 1
Simulation of difference equation

¢ € (0, c*), define the function

)/(C) = M > 0’
m2(C, C)

wherem; denotes the derivative af with respect to itsth argument. Note that(c) is the ratio
of the cost—m1, to the benefitry, of a small increase in cooperation bgthplayers, starting at
c. Moreover, defing/ (0) := lim¢ o y(C) andy (¢*) := limcqcx y (C) Wwhenever these limits exist.
In many special cases, the cost-benefit ratio may be increasmd/fiare generally, ifr is twice
continuously differentiable, then from Al, we must hav&(c*) < O; if this inequality is strict
then® y/(c*) > 0 and soy is increasing on an intervat’, c*] for somec’ < c*. We cannot
assert, however, that is everywhere increasing df, c*] on the basis of assumptions made so
far.

Our main result characterisif@, can now be stated.

Proposition 3.2. Assume that Ais satisfied. (i) Iz is continuously differentiablé at
the limit of the efficient symmetric patfl,, thentC,, satisfiesy (C,) = §. (ii) Moreover, if &
is continuously differentiable on some interv@l ) with y(0) < §, thenC,, > 0, and if 7 is
continuously differentiable on some intergaf — ¢, ¢*) with y (c*) > 6, thenCy, < Cc*.

We now have an immediate corollary, which gives quite weak sufficient conditions for
cooperation on the efficient path to be uniformly bounded below the first-best level.

Corollary 3.3. If r is continuously differentiable on some interyet —e, c*+¢), e > 0,
thent,, < c*. So, the efficient path is uniformly bounded below the first-best efficient level of
cooperation; i.et; < €y < c* for all t.

15. Note thaw” = w11+ 2712+ 729, andy’(c) = ;—21 [m11 + 712 + ¥ (w22 + m12)]. SO, the result follows from
w”(c*) < 0 andy(c*) = 1.

16. By being differentiable at is meant thatr(cy, cp) is differentiable att; = ¢ = ¢ and byn being
continuously differentiable on some interval, ¢”') is meant thatr (¢, ) is continuously differentiable focy, ¢, €
(c,c.
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This follows from part (i) of the Proposition, noting thatc*) = 1 > § in this case.

Proof of Propositior8.2 (i) By the assumption that is continuously differentiable at
€0, Coo > 0. (a) Assume, first, that(€,) > §; a contradiction will be established. Suppose
thatci—2 < ¢—1 < ¢, and thatr is continuously differentiable on some open interval enclosing
[ci—2, ct]. By the Mean Value Theoremx(ci—1, Ct) — m(Ci—1, Ct—1) = m2(Ci—1, 6t)Ac, for
somed; € (Ci_1,C), andx(C_2, Ct—1) — w(Ct—1, Ct—1) = —m1(6t_1, Ct_1)ACi_1, for some
6r_1 € (Ct—2, Ct—1), WhereAc; := ¢; — ¢t—1. S0, substituting in (2.4) and rearranging, we get

m1(6i—1, Ct—1)

ACt = —
8m2(Ci—1, 6)

ACt_1 = a(Ct—2, Gt—1, Ct) ACt_1. (3.1)
The limit of a(c;_2, G—1, Ct) asC;_2, Ct_1, Ct — Coo, With Ct_2 < C_1 < C; exists, byn(-,-)
being continuously differentiable, and equalsr1 (€, €o0)/872(Cx0, Coo) = Y (Co0)/8 > 1.
Consequently, there must exisTasuch that

a-2G-1.0)>1  t>T. (3.2)

Also, as the equilibrium path is strictly increasingCr > 0. But then from (3.1) and (3.2), the
incrementsAc; are increasing when> T and sc¢; cannot converge, contrary to hypothesis.

(b) Next assume that(C.,) < 8. We shall again establish a contradiction. By the continuous
differentiability of 7, find a neighbourhood arouf@,, (Cx — &, Tx + ¢), and &k < 1, such that

—m(c, ¢)/(ma(c”, ")) <k forc,c,c’,¢” € (Co — &, Coo + 8). (3.3)

Definey := (1 — k)e/2, and considell such thatt_, > T, — ¥ (this must exist by virtue
of T, being the limit of{C;}). Now, sinceCt_» < Cr_1 < €1 < Cw, then byc(cy; §) being
continuous incy, we can find€; > €; such that, definin@; := ¢ (¢1; 8) all t, €r_», ¢r_1 and
Cr € (€ — V¥, Cx). Consequently < ACr =Cr —Cr_1 < .

We will show that this new sequence still converges. We first claim thatt fer T, if
Ci_1 < Co + £/2 andAT;_1 < ¥, thenAG; < kAT;_;1. Rearranging (2.4):

7(C-1,C) — 7(C—1,C—1) = [7(C—2, Ct—1) — 7 (Ct—1. CG—1)1/3. (3.4)

We havern (Ci-1,G) — 7(C—1,C-1) > n,AC provided€ < Cx + &, wherem, =

infe ce@o—e,8o+s) T2(C, €), and O< [7(Ct—2, Ct—1) — 7 (Ct—1,Ct—1)]/8 < —m,AT_1/8, where

74 = infe ee@,—e.cute) T1(C, €) (recall thatry < 0). AlsokAG—1 < kyr = k(1 —Kk)e/2 <
£/2by 0 < k < 1, and soc;_1 + kAG_1 < € + &. Thus ast; varies betweerT;_1 and
Ci—1 + kAGi_1, the L.H.S. of (3.4 varies between 0 and at leastk AC;_1 while by (3.3)x, >
—11/(K8), SOm,KAT—1 > —mAC—1/68, and thusz ,KAT;_1 is an upper bound on the R.H.S.
of (3.4). So, givert;_1, ¢;_2, there must be a solution to (3.4) far € (¢;_1, C—1 + KAT;_1),
which impliesAT; < kAT;—1. Since the solution to (3.4) is clearly unique, this establishes the
claim.

Next we show tha{C; } converges to a limit no greater thég +</2. Suppose to the contrary
there existe > T such that; > € + ¢/2, withC;_1 < T + /2. By the fact thatt < €y,

ATT < ¥, and thataG; < KAG_1for T <t < 7, we havel; <& +k(1—k* Ty /(1—k) =
€ + k(1 — k' T)e/2 < C + /2, which is a contradiction.

So, since(Ct {2, is a convergent path it is also an equilibrium path (Lemma 2.5(i)). Also,
by constructiong; > €1, which contradicts the envelope property of the efficient equilibrium
(Lemma 2.3). Soy (Cx) < § is also impossible.

(c) From parts (a) and (b), it follows immediately that,,) = §, as was to be proved.

(i) If ¥(0) < 8, then suppose to the contrary tltagt = 0. By the assumption that(0) exists
and is less tha#, y(c) < kd, wherek < 1, on some interval0, ¢). Next, choose, by continuity,
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¢} > 0 such thaty, ca(cy; 8) andcz(cy; 8) € (0, (1 — K)e/2). Then repeating the argument of
part (i)(b) above, sincécz < (1 —K)e/2, Coo(C;8) < (1 —K)e/2+ /2 < &, and we have
constructed a higher equilibrium path, which is again a contradiction. FingHgcif) > §, then
the argument of (i)(a) above appliesitatis mutandiso show tha€,, = c* is impossible. ||

Our main result was deliberately stated making minimal assumptions and therefore .
We now consider two special cases for which we can get a sharper characteriz&arrobne
of these cases, we can also solve explicitly for the efficient path.

The differentiable monotonic caser is everywhere continuously differentiable apct)
is strictly increasing on0, c*).

In this case, we can defif@s) to be the unigue solution to the equatip(€) = §, unless
y(0) > &, in which case we defing8) = 0. Clearly€(s) < c* with lims_, 1 €(8) = c*, andc(§)
can easily be computed in special cases. It follows now from Proposition 3.2 that:

Corollary 3.4. In the differentiable monotonic casg, = T(8).

Proof. In this casey(c*) = 1, so by Proposition 3.2(ii$.c < c*. If y(0) < 3§, then
by Proposition 3.2(ii)€x > 0, and thus the result follows immediately from the definition of
€(8) and Proposition 3.2(i). If{#(0) > &, then asy is increasing,y(c) > § on (0, c*), and
moreover,y is continuously differentiable at at € (0, c*). S0,Cx ¢ (0O, c*): otherwise,
by Proposition 3.2(i)y (€x) = §, contradicting the assumed propertiesyofConsequently,
Co=0. |

Note that the differentiable monotonic case also satisfies the assumptions of Corollary 3.3,
so for all§ < 1, the efficient path is uniformly bounded below the first-best efficient level of
cooperationj.e. ¢ < €(8) < c* for all t. The key feature of the differentiable monotonic case
is that we have an operational formula . For example, it (ci, cj) = ¢j — 0-5(c;)?, then
c*=1,C =€) =34.

The linear kinked case.

_ | mci+moc if c; + ¢z < 2c7,
T | mic1 + m2(2¢* — ) if ¢ + ¢ > 2¢F,

wherer; < 0, mo > 0 are constanté with 71 + 72 > 0.

Note that in the linear kinked case, Assumption A1 above on the shapé&pfs automatically
satisfied:w(c) is linear and increasing io until ¢ reaches the efficient level, and after that,
higher cooperation yields negative benefit. In this case, we have the following striking result.

Corollary 3.5. Assume the linear kinked case. If there is sufficiently little discounting
(8 > —m1/m), thenty, = c*, i.e. first-best efficient cooperation can be asymptotically obtained.
In this case, the efficient path can be solved for explicitifias: (1 — a')c*, a := —m1/8mo.
Otherwise (i.e. i < —m1/m2), thenCy = 0, SO Nno cooperation can ever be obtain€d £ 0,
all t).

17. An interpretation is that payoffs depend positively(on+ cp) up to * with a coefficient ofry, but there
is a marginal utility cost ofr, — 71) to increasing one’s owg . Forcy + ¢ > 2c*, there is no more benefit from joint
contributions, only the cost remains, so that joint payoffs are decliniggyif- cp). Forcy 4+ ¢, > 2¢*, all that is needed
for the results is that joint payoffs are nonincreasingcin+ cp) and also own payoffs are declining in own
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Proof. Assume first—m1/72 < 8. Here, by definitiony (¢c) = —m1/m2, ¢ < c*. So, if
Cx < c*, thenr is differentiable aty, buty (€x) < 8, contradicting Proposition 3.2(i). Since
€ < Cc* by Lemma 2.1, it follows tha€,, = c*. In this case, we can solve explicitly for
the initial condition that gives the efficient path. Rearranging (2.4) for the kinked linear case,
we get:Ac; = aAci_1, whereAc; = ¢ — Ci—1. SOC; = Ztrzl a’lc; which converges to
Coo = 75501 = (14 5”712)—%1 if and only ifa < 1. So,&1 = (1 + §%)c*, and consequently,
G = (1—abHc~.

For the case-r1 /72 > 8, a symmetric argument implies thatif > 0,¢; — oo ast — oo,
contradicting the assumption that< c*, all t. So, we must have; = 0, implying€, = 0. ||

Note that in both the differentiable monotonic and kinked linear cases, we have shown that
ass — 1, the limiting level of cooperation on the efficient equilibrium path,, tends to the
first-best efficient levelg*. It turns out that this fact implies that payoffs also converge to their
efficient levels asg — 1;i.e.there is no limiting inefficiency in this model.

Corollary 3.6. In either the differentiable or linear kinked cases, &s— 1, the
normalized discounted payoff from the efficient path= (1—8) Y 2, 817 (6, ), converges
to the first-best payoff (c*, c*).

Proof. Rewrite the equilibrium condition (2.2) as
7@, = @A-8)Y 5 TrCn e,  t=1 (35)
=t

Now, if {ct}{2; is an equilibrium sequence &tthen{c;};°; is also an equilibrium at an§/ > §
since, asr (¢, ¢;) is a non-decreasing sequence, the R.H.S. of (3.5) is non-decreasingrd
the L.H.S. is constant.
Take€(s) as already defined for the differentiable case, and in the linear kinked case, define

T() as:

~y | CFif 8 > —mq /7o,

€)= {O otherwise.
So, for anye > 0, find ad such thatz(€(3),€6)) > n(c*, c*) — ¢ (where in the
differentiable case, we use the continuityof-,-), and, as already remarked, §m; €(§) =
c*). From Corollaries 3.4 and 3.5, & & — €(6), SO holding {C;}{2, fixed, lims_1(1 —
8) Y0, 8 n (&, &) — 7 (€(8),(8)), and hence there existsa> § such that fos satisfying
§ <8<1,(1-9) )] SU1In (@, G) > m(c*, c*)—e. Since(Gi )2, is an equilibrium sequence
for suchs, the efficient path at suchmust also give a payoff greater thaiic*, c*) — ¢. Ase is
arbitrary, this completes the proof. ||

An alternative way of viewing this result is to note that if we shrink the period length,
holding payoffs per unit of time constant, then inefficiency disappears as period length goes
to zerol® Note also that the proof establishes an interesting comparative statics result: when
8 increases, every component of the p&tfi®; weakly increases for the simple reason that
the original path remains an equilibrium path for higiethe upper envelope property of the
efficient sequence (Lemma 2.3) then implies the result.

18. If = is discontinuous but otherwise satisfies our assumptions then asymptotic efficiency can fail. Consider an
example in which playerbenefits only fromj’s c;, with an upwards jump in payoff at completiory (= c*), and suffers
continuous (increasing) costs frazn To be specific, suppose thatc;, c) = —0-5¢1 + ¢ (Cp), whereg (cp) = ¢, for
C2 < 1,¢4(cp) = 2forcy > 1. Lemma 2.1 still applies, sgt < 1 = c*, allt, and the payoff jump is never realised no
matter how patient the players. As— 1, average payoffs converge tbPwhereas first-best payoffs aré1
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Finally, note that if the action space is bounded, so that [0, ], then all the analysis
of this section is unchanged as long@s- c*. If in fact T < c*, so thatC now effectively
replace<c*, then in view of Lemma 2.1 (i), which holdautatis mutandisProposition 3.2 can
still be applied. For example, provided thats differentiable with bounded first derivatives, and
w has slope bounded above zero(0nc), y (c) is bounded below 1 and there will thus be, as in
the linear kinked case, a critical discount factor above wigighll be the limit of the efficient
symmetric equilibrium path.

4. AMODEL WITH ADJUSTMENT COSTS

The model studied above is very stylized. In many economic applications, irreversibility
arises more naturally when there is a stock variable which benefits both players, and a flow
or incremental variable which is costly to increase, and is nonnegative. This non-negativity
constraint implies that the value of the stock variable can neverifallthe stock variable is
irreversible. Here, we present a model with these features, and show that it can be reformulated
so that it is a special case of our base model.

Playeri’s payoff at timet is

u(Git, Cj,t) — (Gt — Cit—1), (4.1)

with u increasing in both arguments, and with> 0 being the cost of adjustment. Hecgs is to
be interpreted ass cumulative investmeirt, or the stock level of, the cooperative activity. We
assume that the investment flow is nonnegative, which implies that the stock level of cooperation
isirreversiblej.e. Gt > G t—1,i =1, 2.

We now proceed as follows. The present value payoff farthis model is

ITi = u(Gi,1, Cj,1) — a(Ci,1 — Ci,0) +8[U(Ci 2, Cj2) —a(C2—C )] +...
o
=2 3G o) — = )i +adio.

As initial levels of cooperatiom o, C2, ¢ are fixed, we can think of this model as a special case
of the model of the previous sectiong without adjustment costs) where per-period payoffs are

7(c,c¢) =u(c, ) —a(l—é)c. 4.2)

Of course, we require that defined in (4.2) satisfies the conditions imposed in Section 2, and
also satisfies the relevant conditions of either the differentiable or linear kinked case. If this is the
case, then Corollaries 3.4 and 3.5 apply directly.

We now study an important economic application using this extension of our basic model,
dynamic voluntary contribution games. This is not the only topic that can be studied in this
way, it is chosen because it has already been studied quite intensively (Admati and Perry (1991),
Fershtman and Nitzan (1991), Marx and Matthews (1998)), but nevertheless we are able to extend
existing results: this, we believe, illustrates the power and flexibility of our approach.

A dynamic voluntary contribution game is one where players can simultaneously or
sequentially make contributions towards the cost of a public project over a number of time
periods. Marx and Matthews (1998) is the paper in this literature that is closest to our work. In
their paper contributions are made simultaneously and benefits from the project are proportional
to the amount contributed (up to a maximum, at which point the project is completed). We will
show that a special case of their model can be written as an adjustment cost game as above, and
that Corollary 3.5 above can be applied to extend some of their results. They consider a model in
which N individuals simultaneously make nonnegative private contributions, in each of a finite
or infinite number of periods, to a public project. We assume Mhat 2, and letc; ; be the
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cumulative contribution of a numeraire private goodi ligwards the public project. Individuals
obtain att a flow of utility u = (1 — §)v(c1t + C2.t) from the aggregate cumulative contribution
C1t + C2.t, Whereu(-) is piecewise linear:

r(cr+c) ifcp+cp < 2¢* = C¥,
AC*+D if ¢ + cp > C*,

where we follow as closely as possible the notation of Marx and Matthews. Thus agents get
benefith from each unit of cumulative contribution, and an additional beiefit 0 when the
project is “completed”i.e. when the sum of cumulative contributions reac@&sAlso, the cost
toi of an increment; + — ¢ t—1 in his own cumulative contribution is simpty — ¢ t—1. Itis
assumed that-B < 1 < 1, so that it is socially efficient to complete the project (immediately, in
fact), but not privately efficient to contribute anything. We consider the case Wwher@ and the
time horizon is infinite (thd = 0 case unravels otherwise, in the sense that in the final period it
is optimal to contribute nothing, which implies the same is true of the penultimate period, and so
on).
Then, from (4.2), per period payoffs in the equivalent dynamic game are
m(C1,C2) = (1 —d)v(Cy, c2) — (1 - )1

@A =8I(h —Deg+rco] if g+ < 2¢F = C¥,

- { 1-8AC*—(1—-8)c1 ifcg+cp>C-
This payoff function is clearly of the kinked linear type, where = (1 — 8§)(A — 1) < 0,
mp = (1 — 82 > 0. So Corollary 3.5 applies directly to this version of the Marx—Matthews

model. In particular, the critical value éfin Corollary 3.5 isS = —m /7 = (L — A)/A. Two
results then follow directly from our Corollary 3.5 and its proof:

v(C1, C2) = {

1.If § > &, there is a class of equilibria, indexed by the initial condition where
each player's cumulative contributiog converges to some value less than or equal
to c*, with the limit value increasing irc;. Along the equilibrium path, incremental
contributions fall at raté%. Theefficientsymmetric equilibrium has initial contribution

cp=c*(1- (15‘—)\“), and each player’s cumulative contributignconverges ta*.

2. If § < 8, then no contributions are made in any equilibrium.

Result 1 sharpens Proposition 3 and Corollary 3(ii) of Marx and Matthews, who show that for
8 > 8, there is an equilibrium witls, — c*, and that fos ~ 1, this equilibrium is approximately
efficient. In the special case nf= 2 andb = 0, we not only confirm their results, but also show
that the equilibrium they construist the efficient equilibrium foanys > 5. Also, Result 2 is a
complete converse result to their Proposition 3.

5. ASYMMETRIC COOPERATION

In the simultaneous move game, we only considered symmetric patigherecs = Cot = Ct.

One question is whether the agents could both achieve higher (expected) equilibrium payoffs by
playing asymmetrically. More generally, we are interested in the shape of the equilibrium payoff
possibility frontier. Let{cyt, c2t};°, be an arbitrary (possibly asymmetric) path. Then, by a
similar argument to that given in Section 2, such a path is an equilibrium path if and only if

C1t-1,C _
kD DI (CRUBIE ST (5.1)
7 (C2,t—1,C1,t) 0 ¢ _
—(1_ 5 < E e 8" 'm(Cr, C1r), t=12,.... (5.2)



LOCKWOOD & THOMAS GRADUALISM AND IRREVERSIBILITY 351

So, now we need pair of sequences of incentive constraints to hold. NowOgtbe the set of
equilibrium paths satisfying (5.1), (5.2), afitk in % be the corresponding set of normalizéd
present discounted payoff pairs generated by pattginLet an equilibrium path irCg that
maximises the sum of present-value payoffs

o0 ot-1
PP E{CTR R TR

be denoted{Cyt, C2t}2,: at least one such path exists by the arguments of the proof of
Lemma 2.2. We refer to this as afficient equilibrium pathin view of our previous restriction

to symmetric equilibrium paths, a major question of interest is whether (one of) the efficient
equilibrium path(s) is symmetric.

Proposition 5.1. In the linear kinked casd]g is convex and symmetric about thg°
line. Moreover, one of the efficient equilibrium paths is symmetric¢i.e= €1, all t.

Proof. Adapting Lemma 2.1, any sequence@g must haveci: + c2r < 2c*, all t.
Given this, the constraints (5.1), (5.2) are linear. Consequenty, f c;  }72, andfcy i, 3 }72;
satisfy them, a convex combination of the two must also satisfy them a@d $®a convex set.
ConsequentlylTg is also convex, by linearity of payoffs. The symmetry claims follow straight
forwardly. |

In fact, in the kinked linear case, we can say mBabout the shape diig ass varies. As
far as symmetric equilibria are concerned, we know from Corollary A54if§ = —m1/72, NO
cooperation is possible, 98g (§) = {0, 0}. The non-trivial case is whei®e > §, in which case
equilibria with positive levels of cooperation exist. Moreover, about thelie the efficient
frontier of ITg(8) turns out to be linear (with slope1) as in the segment AB in Figure 2.
(The linear part of the frontier consists of payoffs from sequences which satisfy the incentive
constraints with equality.) A8 — 1, the linear section extends to, but never attains, to the
axes (with origin corresponding to the no cooperation payo{f3 0)), and the entire frontier
converges to the first-best efficient frontier.

6. SEQUENTIAL MOVES

So far, we have assumed that players can move simultaneously. However, it may be that players
can only move sequentiallg.g. Admati and Perry (1991), Gale (2000). In certain public good
contribution games, the assumption made can affect the conclusions substantially. In the Admati—
Perry model, where players move sequentially, a no-contribution result holds when no player
individually would want to complete the project, even though it might be jointly optimal to do
so, but this result may disappear if the players can move simultaneously (see Marx and Matthews
(1998) for a full discussion of this issue). By contrast, we shall find that in our model, equilibria

in the two cases are closely related; indeed, the efficient symmetric equilibrium of the symmetric
move game can “approximately” be implemented in the sequential move game.

Suppose w.l.0.g. that player 1 can move at even periods and player 2 at odd periods. Let the
set of all non-decreasing paths that satisfy this restrictio€¥# To be an equilibrium in the
sequential game, any patby ¢, C2,t};2, must satisfy the following incentive constraints. When
player 1 moves at = 2,4, ... he prefers to raise his level of cooperation froim_» to cy

19. Thatis, multiplied by - 3.
20. For proof of these claims, see Lockwood and Thomas (1999).
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First-best frontier
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FIGURE 2
Asymmetric equilibria
only if

m(C1t—2, Cot—
7 (-2 Cot-1) < m(Cyt, Cot—1) +0m(Cet, Cot41) + ..., t=246,.... (6.1)

1-35
Similarly, when player 2 moves at= 3,5.. ., he prefers to raise his level of cooperation from
Cot—2 tocpt only if

7 (Cot—2,C1t-1)
1-6
When player 2 moves at period 1, (6.2) is modified by the fact that 2 can reertd, rather
thanc_4, but otherwise the incentive constraint is the sainee,

(0, 0)
1-56

Let the set of paths i£5¢9that satisfy (6.1), (6.2) and (6.3) l@;eqc csed

However, note that a path i8%¢9is also inCZ " if and only if it is an (asymmetric, in
general) equilibrium path in the simultaneous move game studied earlier. This is because in the
simultaneous move game, the incentive constraints in the periods where agents do not have to
move areautomaticallysatisfied, as no agent likes to choose a highethan necessary (from
7 decreasing in its first argument). So, recalling the definitio@gffrom the previous section,
we have shown thaE2" = Cg N C%€4 Also, definelly *similarly to ITg as the set of pairs
of equilibrium normalised present-value payoffs in the sequential gamé:sEﬂ“sg Cg, then
HSEeq C Ig; that is, players caalwaysdo at least as well with a simultaneous move structure as
with a sequential one.

< m(Cat, C1t—1) + 87w (Cot, CLt4+1) + - -, t=357,.... (6.2)

<m(C21,0)+dm(C21,C12) +.... (6.3)
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To say more than this, we shall go to the linear kinked caseslLée the normalised
present value payoff from the efficient symmetric path in the simultaneous move%dye.
Proposition 5.1, we know thatr, 7) is the equal utility point on the Pareto-frontier for that
game. Finally, note that all equilibrium payoff sets depend.ofFhen:

Proposition 6.1. Assume the linear kinked case. Thérfée is convex. For any fixed
e > 0, there is a3 (e) < 1, and a point(i; 715 ) € Mg 'such that™*> # — &, i = 1, 2for
8 =46(e).

Proof. The proof thatlTy " is convex follows the proof of Proposition 5.1 exactly. Next,
recall that{C; }° , is the (unique) symmetric efficient path in the simultaneous move game. Define
theasymmetrigath{Cyt, C2t};2, in C3*Yas follows:

El,tZEl,t+1=aa t=0’27476a"';
Gt =Ctn1 =G, t=1305,....

This is simply the path where an agent whose turn it is to movechbose<;. We show that
{Ct, S, € Co 4 Define as before\@ := €& — €1, and recallAG, = aAG_1 on the
efficient path. For the player who movestat 2, and writingA for A€;_1, the constraints (6.1)
and (6.2), evaluated on the pdff ¢, C2t}7°,, can be written as:

m1C—2 + m2(Ci—2 + A)

1—3 <miC-2+A+aA)+mC_2+ A)

+ 8(1(C—2 + A + aA) + m2(C—2 + A + aA + a°A))
+ 82(m (G2 + A+ -+ a3A)
+ @2+ A+aA+a%A) +..., (6.4)

or rearranging,

A _ (1+amA+d- 8%a2 + sa + sa)moA

1-68 — (1-98)(1—682a?) ’
which holds with equality ag = —m1/(872). Thus {Cyt, C2t}{2, satisfies the equilibrium

conditions (with equality) in the sequential game from= 2 onwards. Att = 1 the equi-
librium condition would hold with equality if player 2's inheritedd was —C1/a as opposed
to zero since it is higher, the condition will be slack ¢as < 0). So, we have established
that {€L¢, ©24)°, € Cg .+ Payoffs from the path€i, &) are #°° = (1 — §){[7jC1] +
8[miC + mjCil + 82[miCo + miCl+ -} i, j =1,2,i # j.Also, the payoffs from the efficient
symmetric path in the simultaneous move gamerate (1—68){[71C1 +m2C1]+8[m1Co+m2Co] +

82[7163 + 7263] + - - -}. Consequently, we get
= 7;50= (1 — 8) {721 + 871(C — C1) + 8272(Cz — ) + 8°m1 (€2 — C3) + ..}

= (1 —8)C1{mpC1 + Sm1aCy + 82 ﬂza C1+34 ﬂ1a361 .

=(1-8Cim(l+ 8%+ s%* +...) + sari(1+ §%a% + 5%* + .. )]

1= Cym2
—_— sa 1- T (/o2
l 82 2 [7-[2 + 7-[1] < ( d) — (7T1/772)2

So,a; < c*forall§,# —(1-8)0 < 7, for some constartt > 0. Consequently, for any >
0,7—¢ < frfeqfor all§ > §(e) = 1—¢/0, asrequired. A similar argument appliesifee 2. ||

21. Thatisf = (1—8) Y02, 8 In (&, &).



354 REVIEW OF ECONOMIC STUDIES

Consequently there is no limiting inefficiency due to the sequential structure as far
symmetric payoffs are concerned. We can also $Adhat one point on the efficiency frontier of
payoffs in the simultaneous move game is attained in the sequential game.

7. FURTHER EXTENSIONS AND CONCLUSIONS

In an earlier version of this paper (Lockwood and Thomas (1839)e also extended the base
model to allow for a small amount of reversibility of actions, so that any player can reduce his
or her cooperation level by some (small) fixed percentage. This has two countervailing effects.
The first is to makeleviation more profitabtethe deviator at can lower his cooperation level
below last period’s, rather than just keeping it constant. The second effect is tqomaikbment

more severethe worst possible perfect equilibrium punishment is for the punisher to reduce
his cooperation over time, rather than just not increase it. We are able to show that for a small
amount of reversibility the second effect dominates, and in the linear kinked case it dominates
for any degree of reversibility. In our model, then, reversibility is desirable in that it allows more
cooperative equilibria to be sustain&d.

This paper has studied a simple dynamic game where the level of cooperation chosen by
each player in any period is irreversible. We have shown that irreversibility cguségalism
any (subgame-perfect) sequence of actions involving partial cooperation cannot involve an
immediate move to full cooperation, and we have refined and extended this basic insight in
various ways. First, we showed that if payoffs are differentiable in actions, then (for a fixed
discount factor) the level of cooperation asymptotes to a limit strictly below full cooperation,
and this limit value is easily characterized. For the case where payoffs are linear up to some
joint cooperation level, and decreasing thereafter, the results are different—above some critical
discount factor equilibrium cooperation can converge asymptotically to the fully efficient level,
but below this critical discount factor, no cooperation is possible. The basic model is then
extended in several directions.

However, throughout, we have continued to assume that the underlying model is symmetric.
This is somewhat restrictive; in many situations where irreversibility arises naturally, for example
in Coasian bargaining without enforceable contracts but where actions are irreversible, payoffs
will be asymmetric. Another limitation of the model is that players only have a scalar action
variable; in many applications, players have several action variables, as in, for example, capacity
reduction games, where firms control both capacity and output. Extending the model in these
directions is a project for the future.

APPENDIX

Proof of Lemm&.1 (i) Suppose to the contrary that > c* for somet > 0, with ¢i_1 < c¢*. From the
assumptions om (-,-), m(Ci_1, Ct) > m(c*, c*), and sincer(c;, c;) < m(c*, c*) all T by definition ofc*, it is clear
that (2.2) is violated, a contradiction.

(i) If this is not the case, then on some equilibrium path,> c;_1 for somet > 0, and there exists a
T >twithc, < Cfort < T,andc, = Cforall r > T. Then, player 1, by deviating &, would receive
7(CT_1,©)/(1—8) > n(€,€)/(1—8), wherer (T, €)/(1— §) is 1’s equilibrium continuation payoff &, and where the
inequality follows fromm decreasing in its first argument. Thus a deviation is profitable, contradicting the equilibrium
assumption. ||

22. This is proved in Lockwood and Thomas (1999); the common point is one end of the linear section of the
frontier of [Tg (8), discussed in Section 5, and depicted in Figure 2 as point A.

23. Available online ahttp://www.warwick.ac.uk/fac/soc/Economics/research/twerps.htm

24. For any positive degree of reversibility, if players are sufficiently patient¢hean be attained immediately.
On the other hand, atfied discount factor, introducing a small amount of reversibility will not undo the gradualism
result.
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Proof of Lemma&.2  (a) To prove existence, consider the product space of sequérices [0, c*]°° endowed
with the product topology, and let = {ct}fil denote a typical element. Now lat be the supremum of the set of
present value payoffs generated by sequerces Cgg. By definition, there must be a sequer{c@}ﬁil with the
property that eaclt” € Cgg, and moreover, lif o Zfilat—ln(ct”, o) = 7. By Lemma 2.1(i),Csg € C¥,
and C* is sequentially compact in the sense that any sequence has a convergent subseggelaragson (1974),
Theorem 11.6 and 14.6). L&k} | be a convergent subsequence@f}o° , with limit ¢> e C*. By ¢k e Cgg,
n(c?fl, )/ —8) < Y0, 87 tr(ck, cf¥) for all t > 1, and consequently by the continuity of the discounted
payoff sum,n(c{’fl, c®)/(1-8) < 322, 8Tt (coo, c2°) forallt > 1. Moreoverc® is non-decreasing. From these
two facts, we have™ e Csg. Finally, by the continuity of the discounted payoff supm;°; Btfln(ctoo, c®) = 7. So,
the supremum can be achieved by an equilibrium path; consequetitipust be an efficient equilibrium path.

(b) We refer to (2.2) holding dtas thet-constraint To show that all thé-constraints hold with equality, suppose
to the contrary that for somte 7 (G;—1, €)/(1 — 8) < Y22, 8T (€, T;). Lett > t be the first integer greater than
or equal tot such thaeither€; < €, or that ther + 1-constraint holds with equality. There must exist sueh Bor
suppose not: the@s = T for all s > t, in which case thé+ 1-constraint holds with equality, a contradiction. Moreover,
note that as exists, ther-constraint always holds with a strict inequality. Thus, there are two possibilities at

1.€; =€, 41, and ther + 1-constraint holds with equality. In this case, we establish a contradiction. Note that

7C1.C) 7@ Gy oo s—1-1_a &
(1-26) = (1-19) _ZSZ,+13 7(Cs, Cs),

YF ST >
S=1

where the first inequality follows from the-constraint holding with inequality and the second inequality follows
from€,_1 < € = €41. Noting that the first term on the left is(C;. C;) + 8 Y32, , 1 857~ 17(Cs, Gs), we have
1€, G) > 1= Y211 857717 (@, Ts), which is impossible given that(€;, ;) < 7 (s, ) foralls > 7 + 1,
due toCs being a non-decreasing sequence bounded abowé. by

2.C; < €;41. In this case, we also establish a contradiction. Consider a small incre@séait; + ¢, holding
Cs, s # t fixed. As ther-constraint holds with strict inequality, by continuity, this increase does not violate-the
constraint fore sufficiently small. Moreover, (i) thé-constraintst < t, are relaxed by an increase @, holding
€;_1,C;_2, ..., T fixed since the only effect of an increasetinis to increase the R.H.S. of these constraints; (i) the
7+1-constraint is relaxed by an increas€inholding€; .1, €, 12, . . . fixed, asr is decreasing in its first argument; (iii)
all t-constraints witlt > ¢ + 1 are unaffected. So, the pdff, ..., €;_1,C +¢,C; 41 ...} isalsoan equilibrium path
which, moreover, yields each player a higher payoff tf@jf° ;, contradicting the assumed efficiency(ef}°,. |l

Proof of Lemm&.3. It suffices to prove the upper envelope property, as there cannot be more than one such
envelope. Suppose to the contrary there exis(st’}fil in Csg with ¢{ > T for somet. Define for allt > 0,
& = max¢, c{}. It is clear from Assumption Al and Lemma 2.1 (i) thaté, &) > =(G,T), all t, with at least
one strict inequality, so thd€t }{’il gives both agents a higher present-value payoff (ﬁﬁ}lﬁil. So, if we can show that
{Ct}{24 is an equilibrium path, this will contradict the assumed efficiencicaf , and the result is then proved.

Say the sequencd8t}i°,, {c{}7°, havea crossing point at if ¢, _; < T;_1, ¢; > € with at least one strict
inequality, orc, _; > ©€;_1, ¢; < € with at least one strict inequality. Also, defirge = 22, 8T tr(ce, cr), SO

that§ > S, 3/ by the definition of¢, for all t. There are then two possibilities at any timefor the sequences
{Ge2y- (etdfey
(i) No crossing point at. Then, either&;_1, ;) = (€;_1.C;) or (6;_1,Cr) = (¢';_1. 7). Without loss of
generality, assume the former. P(’Ss}fil is an equilibrium path, we have(€; _1,€;)/(1-68) < S, s0 that€, _1,¢;) =
(€;_1.€)and§; > S together implyr (&;_1, €)/(1 — 8) < &, i.e.ther-constraint is satisfied fai }f’il.
(ii) A crossing point atr. Assume w.l.0.g. that

C,_1<C_1, C; =C. (A1)

RN

Then asfc{){2, is an equilibrium sequence(c,_;,c;)/(1 —8) < ;. Also, S, > S and from (A.1),& = c..
Consequentlyn(c/ril, &)/(1—¢8) < §. Finally, again from (A.l);c/rf1 < €;_1 = €;_1. Using this fact, plust
decreasing in its first argument, we ham&; _1, ¢;) < n(c/r_l, €r), sowe concluder (€; _1,¢;)/(1—9) < S, i.e.the
t-constraint holds fOfCt}fil-

So in either case (i) or (ii), alt-constraints hold for the sequen¢&}{°,, so it is an equilibrium path, as
required. ||

Proof of Lemma&.4.  NecessityEquation (2.3) can be written(c_1,¢t)/(1 — 8) = S41,t > 1, where we
again write§ := m(ct, Ct) + 87w (C4+1, Ct+1) + - ... Advancing by one period, we get(ct, Gty+1) = S41. Also,
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S = n(ct, ¢&t) + 8S 41 by definition. So, combining these equations, we get

w(C—1,C) dm(Ct, C41)
1—s =m(ct,c) + 1—s
Rearrangement of (A.2) gives the difference equation (2.4). Moreover, mﬁgl is non-decreasing, it satisfies the
irreversibility conditions (2.1), and since (2.3) implies (2{2}};° ; is an equilibrium sequence and thus by Lemma 2.1,

{ct};’il must converge toy, < ¢*, and so must be a bounded solution to (2.4).
SufficiencyAs just shown above, (2.4) is equivalent to (A.2). By successive substitution using (A.2), we get

. t>1 (A.2)

7(Ct—1, Ct) n

8" (Ctn—1,
1 —a(C, ) 4+ 877 Ctin-1, Ct4n)

o (A.3)

“Lr(Cin—1. G- +
Now, as{ct}fil converges by assumption, we must havenlim 8" (¢;4n—_1. Ct+n)/(1 — 8) = 0. So, taking the limit
in (A.3), we recover (2.3). Finally, i€;_1 < ct, the term in square braces in (2.4) is nonnegative; @sdecreasing in
its first argument. So, we have(ct, ¢;11) > 7(ct, ¢t), implying ¢i+1 > ¢, asx is increasing in its second argument.
So, by induction, the solution to (2.4) is non-decreasing gofer cg. ||

Proof of Lemm&.5. (i) Lemma 2.4 implies thafct (cq; 8)}{'21 is non-decreasing and solves (2.3), which in turn
implies that it is an equilibrium path. (i) From Lemma 2.2 and Lemma 2.4, the efficient path exists, solves (2.4) with
initial conditionsco = 0, ¢; > 0 and must also converge. Consequerflijl°; = {ct(C1; 8)}f2, for somety € C1(8).

Now suppose that there exists anottige C1(8) with c/l > C1. Inthis case{ct (c/l; 8121 is an equilibrium (by part (i),

and by constructioml(c/l; 8) > c1(Cy; §) which contradicts Lemma 2.3. Sey > c/1| all c/l € Cq(8). Finally, as an
efficient path existsC (§) must contain its supremum, §g in the Lemma is well-defined. ||
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