EC9AA Term 3: Lectures on Economic Inequality

Debraj Ray, University of Warwick, Summer 2024

Supplement to Slides 2: A General Model of Occupational Choice

A General Model of Occupational Choice

Production with capital and occupations.

- Population distribution on occupations n (endogenous).
- Physical capital k.
- Production function y = F(k, n), CRS and strictly quasiconcave.

Training cost function x on occupations:

- incurred up front.
- parents pay directly, or bequeath and then children pay.

Perfect competition.

- Return on capital fixed at rate *r* (international *k*-mobility).
- "Wage" vector $\mathbf{w} \equiv \{w(h)\}$ endogenously determined for each occupation h.
- **T**ogether with *r*, **w supports profit-maximization**.

- F(k, n) is associated with a **unit cost function** $c(\mathbf{w}, r)$.
- Find it by minimizing unit cost of production for any (\mathbf{w}, r) .
- If that unit cost \neq output price:
- $\mathbf{w},r)$ cannot support profit maximization at positive output.
- Otherwise, it does.
- Note: For any w, there is a unique scaling $\mu > 0$ such that $(\mu w, r)$ supports profit maximization.

н.

Continuum of households, each with one agent per generation.

y = z + b + x(h)consumption fin. bequests occ. choice wealth

- Child wealth $y' = (1+r)b + \mathbf{w}_{t+1}(h)$. ÷.
- Parent picks (b, h) to maximize utility.
- No debt! b > 0. ÷
- Child grows up; back to the same cycle. .

Preferences and Equilibrium

Preferences: mix of income-based and nonpaternalistic

 $U(z) + \delta[\theta V(y') + (1 - \theta)P(y')]$

Equilibrium: wages w_t, value functions V_t, occupational distributions n_t s.t.:

- Each family *i* chooses $\{h_t(i), b_t(i)\}$ optimally
- Occupational choices $\{h_t(i)\}$ aggregate to n_t ;
- Firms willingly demand n_t at prices (\mathbf{w}_t, r) .
- **Note**: physical capital willingly supplied to meet any demand.

A **steady state** is a stationary equilibrium with positive output and wages:

• $\mathbf{w}_t = \mathbf{w} \gg 0$, and

•
$$(k_t, n_t) = (k, n)$$
 for all t , and $F(k, n) > 0$.

The richness assumption [R]:

- The set of all training costs is a compact interval [0, X].
- If \boldsymbol{n} is zero on any positive interval of training costs, then y = 0.

A Benchmark With No Occupational Choice

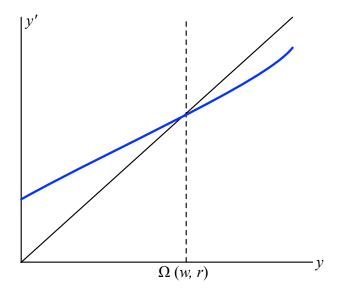
Financial bequests (at rate r) + just one occupation (wage w).

Parent with wealth y selects $b \ge 0$ to

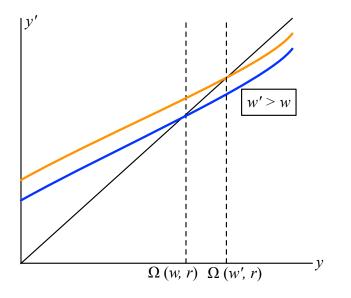
$$\max U(c) + \delta[\theta V(y') + (1-\theta)P(y')].$$

- Child wealth $y' \equiv w + (1+r)b$, increases in y.
- Converges to limit wealth $\Omega(w, r) < \infty$.
- This needs $\theta < 1$.
- Could depend on initial y (as in non-concave Ramsey model); we exclude that.

Limit Wealth in Benchmark Model



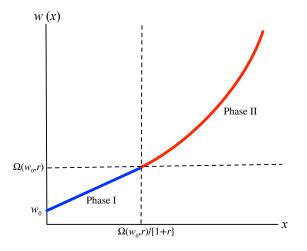
Limit Wealth in Benchmark Model



Back to Occupational Choice

Theorem 1

Every steady state w is fully described by a two-phase property:



In Phase I w is linear in x: there is $w_0 > 0$ such that

$$w(x) = w_0 + (1+r)x$$
 for all $x \le \frac{\Omega(w_0, r)}{1+r}$

- All families in Phase I have the same overall wealth $\Omega(w_0, r)$.
- In Phase II, w follows the differential equation

$$w'(x) = \frac{U'(w(x) - x)}{\delta[\theta U'(w(x) - x) + (1 - \theta)P'(w(x))]}$$

with endpoint to patch with I: $w(x) = w_0 + (1+r)x$ as $x \downarrow \frac{\Omega(w_0,r)}{1+r}$.

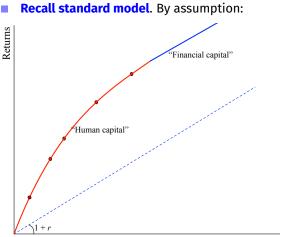
Families located in Phase II have different wealths and lifetime consumptions.

Closer look at Phase II

$$w'(x) = \frac{U'(w(x) - x)}{\delta[\theta U'(w(x) - x) + (1 - \theta)P'(w(x))]}$$

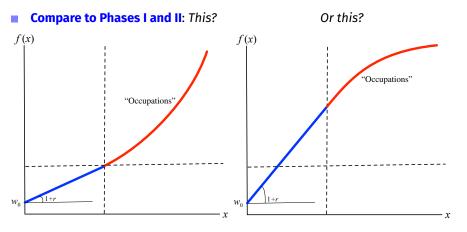
- Shape comes from Euler equation:
- depends fundamentally on preferences
- technology only serves to pin down baseline w₀ (remember remark on scaling)

A Testable Implication



Investments/Occupations

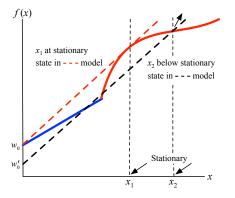
A Testable Implication



A Testable Implication

Theorem 2

The average return $\frac{w(x)-w_0}{x}$ to occupational investment is flat in Phase I and strictly increasing in Phase II.



Contradiction to unique limit wealth in benchmark, increasing in w.

Unique Steady State with Rich Occupational Structure

We end with a fundamental difference from two-occupation case:

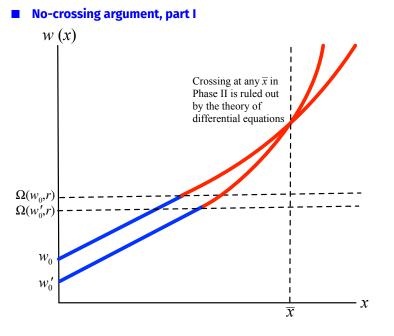
Theorem 3

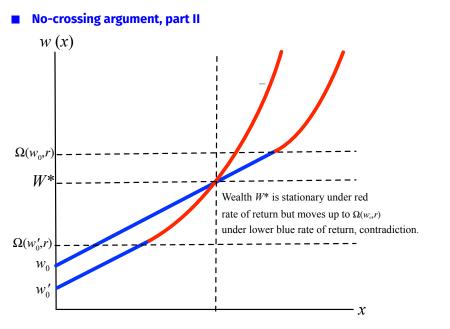
There is at most one steady state.

Proof idea:

- No two members of the two-phase family (indexed only by w_0) can cross.
- Then only one w_0 can support profit maximization with positive output.

(For all wages must co-move with intercept wage w_0 .)





I. Alienable and Inalienable Capital

- In Phase I, there is **perfect equality** of overall wealth.
- (All families in Phase I must have wealth equal to $\Omega(w, r)$.)
- Families at different occupations in Phase II cannot have the same wealth.
- Thus, "most" inequality in this model comes from nonalienable capital.
- This focus will change when we consider automation in the next set of models and the decline in functional labor share.

Three Remarks

- II. When is Phase II nonempty?
- When there is a large occupation span relative to bequest motive:
- Discounting.
- Poverty, via TFP differences.
- Growth in TFP, lowers effective bequest motive
- World return on capital.
- Globalization: new occupations.

III. Two Notions of History-Dependence

- At the macro-level, history-dependence depends on occupational richness.
- A lot of history-dependence at the individual level.
- The distribution as a whole is pinned down, but not who occupies which slot.