EC9AA Term 3: Lectures on Economic Inequality

Debraj Ray, University of Warwick, Summer 2024

- Supplement 2 to Slides 1: Differential Savings Rates

Supplement 2: Differential Savings Rates

- Do the rich save more than the poor? (lifetime vs current income)
- Estimates from Survey of Consumer Finances (SCF):

	6-Yr Income Average	Instrumented By Vehicle Consumption
Quintile 1	1.4	2.8
Quintile 2	9.0	14.0
Quintile 3	11.1	13.4
Quintile 4	17.3	17.3
Quintile 5	23.6	28.6
Top 5\%	37.2	50.5
Top 1\%	51.2	35.6

$$
r=\frac{[x(t) / x(0)]^{1 / t}(1+g)-1}{s}
$$

- Some quick calculations for top 10% in the US:
- $x_{0}=1 / 3$ in 1970, rises to $x_{t}=47 / 100$ in 2000.

$$
r=\frac{[x(t) / x(0)]^{1 / t}(1+g)-1}{s}
$$

- Some quick calculations for top 10% in the US:
- $x_{0}=1 / 3$ in 1970, rises to $x_{t}=47 / 100$ in 2000.

Figure I.1. Income inequality in the United States, 1910-2010

$$
r=\frac{[x(t) / x(0)]^{1 / t}(1+g)-1}{s}
$$

- Some quick calculations for top 10% in the US:
- $x_{0}=1 / 3$ in 1970, rises to $x_{t}=47 / 100$ in 2000.
- Estimate for $g: 2 \%$ per year.

Estimate from Dynan et al for $s: 35 \%$ (optimistic).
Can back out for r : $r=9.7 \%$.

$$
r=\frac{[x(t) / x(0)]^{1 / t}(1+g)-1}{s}
$$

- Some quick calculations for top 10% in the US:
- $x_{0}=1 / 3$ in 1970, rises to $x_{t}=47 / 100$ in 2000.
- Estimate for $g: 2 \%$ per year.
- Estimate from Dynan et al for $s: 35 \%$ (optimistic).
- Can back out for $r: r=9.7 \%$.
- Inflation-adjusted rate of return on US stocks over 20th century: 6.5\%
- Much lower in the 1970 s and 2000s, higher in the 1980 and 1990 .

$$
r=\frac{[x(t) / x(0)]^{1 / t}(1+g)-1}{s}
$$

- Similar calculations for top 1% in the US:
- $x_{0}=8 / 100$ in 1980, rises to $x_{t}=18 / 100$ in 2005.
- Estimate for $g: 2 \%$ per year.
- Estimate from Dynan et al for $s: 51 \%$.
- Can back out for r : $r=10.5 \%$.

$$
r=\frac{[x(t) / x(0)]^{1 / t}(1+g)-1}{s}
$$

- Try the top 0.1\% for the United States:
- $x_{0}=2.2 / 100$ in 1980, rises to $x_{t}=8 / 100$ in 2007.
- Estimate for $g: 2 \%$ per year.
- If these guys also save at 0.5 , then $r=14.4 \%$!
- If they save $3 / 4$ of their income, then $r=9.6 \%$.

$$
r=\frac{[x(t) / x(0)]^{1 / t}(1+g)-1}{s}
$$

- Slightly better job for Europe, but not much. Top 10\%:
- $x_{0}=29 / 100$ in 1980, rises to $x_{t}=35 / 100$ in 2010.
- Estimate for $g: 2 \%$ per year.

Estimate from Dynan et al for $s: 35 \%$.
Can back out for r : $r=7.5 \%$.

$$
r=\frac{[x(t) / x(0)]^{1 / t}(1+g)-1}{s}
$$

- Slightly better job for Europe, but not much. Top 10\%:
- $x_{0}=29 / 100$ in 1980, rises to $x_{t}=35 / 100$ in 2010.
- Estimate for $g: 2 \%$ per year.
- Estimate from Dynan et al for $s: 35 \%$.
- Can back out for $r: r=7.5 \%$.
- High relative to r in Europe.
" UK the highest at 5.3% over 20th century, others appreciably lower.

$$
r=\frac{[x(t) / x(0)]^{1 / t}(1+g)-1}{s}
$$

- Finally, top 1% for the UK:
- $x_{0}=6 / 100$ in 1980, rises to $x_{t}=15 / 100$ in 2005.
- Estimate for $g: 2 \%$ per year.
- Estimate from Dynan et al for $s: 51 \%$.
- Can back out for r : $r=11.4 \%$.

■ Summary

- Differential savings rates explain some of the inequality, but far from all of it.

