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Markets and Personal Inequality

Two views:

Equalization: Inequality an ongoing battle between convergence and “luck.”

Solow 1956, Brock-Mirman 1972, Becker-Tomes 1979, 1986, Loury 1981. . .

Disequalization: Markets intrinsically create and maintain inequality.

Ray 1990, Banerjee-Newman 1993, Galor-Zeira 1993, Ljungqvist 1993, Freeman 1996,

Mookherjee-Ray 2000, 2010. . .



Standard Accumulation Equations

Intertemporal allocation

yt = ct + kt,

income consumption investment/bequest

Production function:

yt+1 = f(kt) or f(kt, αt).

Not surprising that this literature looks like growth theory.

Lots of “mini growth models”, one per household.

But f can have various interpretations.
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Interpreting f

Standard production function as in growth theory

Competitive economy: f(k) = w + (1 + r)k.

Returns to skills or occupations: for example,

f(k) = wu for k < x̄

= ws for k > x̄.

May be exogenous to individual, but endogenous to the economy

So interpret f as envelope of intergenerational investments:

Financial bequests

Occupational choice
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Parental Preferences and Limited Mobility

Parental utility U(c) +W (y′), where:

U increasing and strictly concave, and W (y′) increasing in progeny income y′.

W (y′) = δ[θV (y′) + (1− θ)P (y′)]

Future utility Bellman value Exogenous value

“Reduced-form” maximization problem:

maxU(c) + EαW (f(k, α)).

Theorem 1
Let h describe all optimal choices of k for each y.

Then if y > y′, k ∈ h(y), and k′ ∈ h(y′), it must be that k ≥ k′.
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Proof of Theorem ??

Pick y > y′, k ∈ h(y), and k′ ∈ h(y′). Suppose k′ > k.

k beats k′ under y, so:

U(y − k) + EαW (f(k, α)) ≥ U(y − k′) + EαW (f(k′, α)).

k′ beats k under y′, so:

U(y′ − k′) + EαW (f(k′, α)) ≥ U(y′ − k) + EαW (f(k, α)).

Adding, rearranging:

U(y − k)− U(y − k′) ≥ U(y′ − k)− U(y′ − k′),

which contradicts the strict concavity of U .
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Illustration

For y > y′ and k′ > k,

U(y − k)− U(y − k′) ≥ U(y′ − k)− U(y′ − k′),

contradicts this picture:

c

U (c)

y - ky - k′y′ - k′ y′ - k



Remarks:

h is “almost” a function.

h can only jump up, not down.

Same assertion is not true of optimal c.

Note how curvature of U is important, that of W is unimportant.

Crucial for models in which f is endogenous with uncontrolled curvature.



Standard Assumption

f is exogenous, and concave:

Investments/Occupations
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“Human capital”

“Financial capital”

Generates convergence to unique steady state in the absence of uncertainty.
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Convergence With Concavity: Intuition

Look at Bellman case with no uncertainty:

V (y) ≡ max
k

[U(y − k) + δV (f(k))] . (1)

First order condition at yt:

U ′(ct) = δV ′(yt+1)f
′(kt). (2)

But (??) + Envelope Theorem ⇒ V ′(yt+1) = u′(ct+1), so:

U ′(ct) = δU ′(ct+1)f
′(kt). (3)

Theorem ?? + (??) imply convergence to unique k∗, where δf ′(k∗) = 1.



Convergence With Concavity: Intuition

Look at Bellman case with no uncertainty:

V (y) ≡ max
k

[U(y − k) + δV (f(k))] . (1)

First order condition at yt:

U ′(ct) = δV ′(yt+1)f
′(kt). (2)

But (??) + Envelope Theorem ⇒ V ′(yt+1) = u′(ct+1), so:

U ′(ct) = δU ′(ct+1)f
′(kt). (3)

Theorem ?? + (??) imply convergence to unique k∗, where δf ′(k∗) = 1.



Convergence With Concavity: Intuition

Look at Bellman case with no uncertainty:

V (y) ≡ max
k

[U(y − k) + δV (f(k))] . (1)

First order condition at yt:

U ′(ct) = δV ′(yt+1)f
′(kt). (2)

But (??) + Envelope Theorem ⇒ V ′(yt+1) = u′(ct+1), so:

U ′(ct) = δU ′(ct+1)f
′(kt). (3)

Theorem ?? + (??) imply convergence to unique k∗, where δf ′(k∗) = 1.



And Without Concavity?

Without concavity: again, look at Bellman case with no uncertainty:

V (y) ≡ max
k

[U(y − k) + δV (f(k))] . (4)

First order condition still works (necessary, after all):

U ′(ct) = δV ′(yt+1)f
′(kt). (5)

Envelope theorem still works, so:

U ′(ct) = δU ′(ct+1)f
′(kt). (6)

So again convergence to k∗, where δf ′(k∗) = 1, but now k∗ is not unique.
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Comparison

k

f (k)

k*
k

f (k)

k1* k2*

f ′(k∗) = 1 δf ′(k∗1) = δf ′(k∗2) = 1



Stochastic Shocks

What happens to these models with stochastic shocks?

Something weird, at least conceptually.



Theorem 2
Brock-Mirman 1976, Becker-Tomes 1979, Loury 1981, extended to drop concavity

Assume a mixing condition, such as f(0, 1) > 0 (poor genius) and

f(k, 0) < k for all k > 0 (rich fool).

Then there exists a unique measure on incomes µ∗ such that µt converges to

µ∗ as t → ∞ from every µ0.

t = 0

t = 1

t = 2

y0

k0

= 0 = 1

y1

k1

= 0 = 1

I
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Core assumption: a “mixing zone”:

yt
450

yt+1

yI yII

Mixing
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Three major drawbacks of this model:

I. The reliance on stochastic shocks.

Participation in national lottery ⇒ mixing.

Ergodicity could be a misleading concept.

II. Disjoint supports.

No mixing condition ⇒ multiple steady states:

But must have disjoint supports, which is weird.

III. The reliance on efficiency units.

No way to endogenize the returns to different occupations.

Whether f concave at the household level should depend on markets.
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Inequality and Markets

Return to the interpretation of f as occupational choice.

Dropping efficiency units creates movements in relative prices:

f isn’t “just technology” anymore.

An Extended Example with just two occupations

Two occupations, skilled S and unskilled U . Training cost X .

Population allocation (n, 1− n).

Output: f(n, 1− n)

Skilled wage: ws(n) ≡ f1(n, 1− n)

Unskilled wage: wu(n) ≡ f2(n, 1− n)
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Skilled and Unskilled Wages
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n

Wage
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Households

Continuum of households, each with one agent per generation.

Starting wealth y; y = c+ k, where k ∈ {0, X}.

Child wealth y′ = w, where w = ws or wu.

Parent maxes U(c) + δV (y′) (Bellman equation)

No debt!

Child grows up; back to the same cycle.
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Equilibrium

A sequence {nt, wt
s, w

t
u} such that

wt
s = ws(n

t) and wt
u = wu(n

t) for every t.

n0 given and the other nts agree with utility maximization.

Steady states:

A constant fraction n are skilled

Wages are constant at ws = F1(n, 1− n) and wu = F2(n, 1− n)

All parents keep replicating their skill status in their children.

Replication of skills follows from Theorem ??.
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Steady States in Occupational Choice

Conditions for n to be a steady state:

[Skilled parent] V (ws) =
u(ws −X)

1− δ
≥ u(ws) +

δ

1− δ
u(wu)

[Unskilled parent] V (wu) =
u(wu)

1− δ
≥ u(wu −X) +

δ

1− δ
u(ws −X)
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Theorem 3
Every n with ws = F1(n, 1− n) and wu = F2(n, 1− n) such that

u(wu)− u(wu −X)︸ ︷︷ ︸
Unskilled Cost

≥ δ

1− δ
[u(ws −X)− u(wu)]︸ ︷︷ ︸

Future Benefit

≥ u(ws)− u(ws −X)︸ ︷︷ ︸
Skilled Cost

must be a steady state.
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u(wu)− u(wu −X)︸ ︷︷ ︸
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≥ δ

1− δ
[u(ws −X)− u(wu)]︸ ︷︷ ︸

Future Benefit
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n1

Unskilled Cost

Skilled Cost

Future Benefit

n2n3n4n5n6
n

Costs and Benefits (Utils)



Features of the Two-Occupation Model

Two-occupation model useful for number of insights:

1. Steady states exist:

The first one (from right to left) is at n3.

2. Multiple steady states must exist.

See diagram for multiple instances of red line sandwiched between blue line3.

3. No convergence; persistent inequality in utilities.

Symmetry-breaking argument.
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Features of the Two-Occupation Model

4. Dynamics and history-dependence.

Theorem 4
(i) From any initial n that is a steady state, the system remains there: nt = n for

all t.

(ii) From any initial n that is not a steady state, but with some steady state

n′ > n, nt converges monotonically up to the smallest steady state exceeding n.

(iii) (ii) From any initial n that is larger than any steady state, nt converges

down in one period to some steady state.



Dynamics

λ1λ4λ6 λ2λ3λ5

b(λ)

κs(λ)

κu(λ)



Features of the Two-Occupation Model

5. Every steady state is inefficient.

Efficient allocation maximizes F (n, 1− n)− nX :

n
n*= n2

nX

F(n, 1-n) 

n3All steady states
left of n3

F1(n
∗, 1− n∗)− F2(n

∗, 1− n∗) = X , ⇒ w∗
s −X = w∗

u ⇒ n∗ = n2. But every

steady state is to the left of n3 (see steady state diagram).



Features of the Two-Occupation Model

6. Can easily embed other models here, such as entrepreneurship.

Reinterpret s as entrepreneur, u as worker.

X is setup cost for industrialization.

F (s, u) = sf
(
u
s

)

Then:

F2(s, u) = f ′ (u
s

)
= w, and

F1(s, u) = f
(
u
s

)
− u

s f
′ (u

s

)
= f

(
u
s

)
− u

sw = profit.
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Features of the Two-Occupation Model

7. Policy questions, such as conditionality in educational subsidies

Recall social’s planner’s n∗ had higher net output than any steady state:

So there could be a role for educational subsidies.

Assume all subsidies funded by taxing ws at rate τ .

Unconditional: give equally to currently unskilled parents:

Tt =
ntτ

1− nt
ws(nt).

Conditional: give to all parents conditional on educating children.

Zt =
ntτ

nt+1
ws(nt).

(can contemplate other obvious variants with similar results)
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Features of the Two-Occupation Model

Theorem 5
With unconditional subsidies, every left-edge steady state declines, lowering

the proportion of skilled labor and increasing pre-tax inequality, which undoes

some or all of the initial subsidy.

With conditional subsidies, every left-edge steady state goes up, increasing

the proportion of skilled labor. In steady state, no direct transfer occurs from

skilled to unskilled, yet unskilled incomes go up and skilled incomes fall.

Conditional subsidies therefore generate superior macroeconomic

performance (per capita skill ratio, output and consumption).



Other Applications

Trade theory in which autarkic inequality determines comparative advantage.

Country-level specialization when national infrastructure is goods-specific.

Fertility patterns in models of occupational choice.



A General Model with Financial Bequests and Occupational Choice

Why study a general model?

Financial and human bequests

We only allowed for human bequests in two-occupation model

Rich occupational structure

“Curvature” of household production function is fully endogenous.

New insights

Are there multiple steady states as in the two-occupation model?
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A Remark on Multiple Occupations

Occupations 1, . . . , n, setup costs x1 < · · · < xn.

Steady state conditions:

u(wi − xi) + δ[θV (wi) + (1− θ)P (wi)] ≥ u(wi − xj) + δ[θV (wj) + (1− θ)P (wj)]

Take limits as occupations become a continuum . . .

u′(w(x)− x) = δ[θV ′(w(x)) + (1− θ)P ′(w(x))]w′(x)

= δ[θu′(w(x)− x) + (1− θ)P ′(w(x))]w′(x).

Obtain a differential equation for the wage function:

w′(x) =
u′(w(x)− x)

δ[θu′(w(x)− x) + (1− θ)P ′(w(x))]
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A Remark on Multiple Occupations

A differential equation for the wage function:

w′(x) =
u′(w(x)− x)

δ[θu′(w(x)− x) + (1− θ)P ′(w(x))]

Fully defined by preferences, except for w(0), the unskilled wage.

That is pinned down by technology.

A unique solution, and typically not concave.

Endogenous inequality, but no multiplicity of steady states.

Macro- versus micro-history-dependence.
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Luck versus Markets: Philosophy of Inequality

Equalization: Inequality an ongoing battle between convergence and “luck”

Disequalization: Markets intrinsically create and maintain inequality

We’ve explored here the second approach, which:

(i) relies on symmetry-breaking to generate inequality in non-alienable activities.

(ii) is fundamentally interactive across agents (inequality is not the ergodic

distribution of some isolated stochastic process).

(iii) generates new predictions for the curvature of the rate of return (and does

not assume that curvature via efficiency units and an aggregate production

function)

(iv) exhibits history-dependence at the level of individual dynasties, but less so

at the macro level

It remains to be seen if this is the right view of the world.
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