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Economic Growth

�.�. Introduction

Of all the issues facing development economists, economic growth has to be one of
the most compelling. In Chapter �, we noted the variety of growth experiences across
countries. We’ve seen that percentage growth rates can look deceptively innocuous,
but we also learnt to appreciate its power. A percentage point added or subtracted can
make the di�erence between stagnation and prosperity over the period of a generation.
Small wonder, then, that the search for key variables in the growth process can be
tempting. For precisely this reason, the theory and empirics of economic growth (along
with the distribution of that growth) has �red the ambitions and hopes of academic
scholars and policy makers alike. I was certainly inspired by Robert Lucas’s Marshall
Lectures at the University of Cambridge (Lucas ����):

Rates of growth of real per-capita income are diverse, even over
sustained periods. Indian incomes will double every �� years;
Korean every ��. An Indian will, on average, be twice as well o� as
his grandfather; a Korean �� times.��

I do not see how one can look at �gures like these without seeing
them as representing possibilities. . .�e consequences for human
welfare involved in questions like these are simply staggering: Once
one starts to think about them, it is hard to think about anything
else.

Never mind the fact that India has grown at far faster rates since these words were
penned. �e sentiment still makes sense: Lucas captures, more keenly than any other
writer, the passion that drives the study of economic growth. We can sense the big
payo�, the possibility of change with extraordinarily bene�cial consequences, if one
only knew the exact combination of circumstances that drives economic growth.

If only one knew. . . , but to expect a single theory about an incredibly complicated
economic universe to deliver that knowledge would be unwise. Yet theories of

��As we have seen, this is no longer true of India and Korea post ����, but the general point, made at a
time when India was growing slowly, is still valid.
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economic growth do take us someway towards understanding the development process,
especially so if we supplement the theories with what we know empirically.

�.�. Modern Economic Growth: Basic Features

Economic growth, as the title of Simon Kuznets’ pioneering book on the subject
(Kuznets ����) suggests, is a relatively “modern” phenomenon. Today, we greet �%
annual rates of per-capita growth with approval but no great surprise. But throughout
most of human history, such growth— or indeed any growth at all —was the exception
rather than the rule. In fact, it isn’t an exaggeration to say thatmodern economic growth
was born a�er the Industrial Revolution in Britain.

Consider the growth rates of the world’s leaders over the past four centuries. During
the period ����–���� the Netherlands was the leading industrial nation; it experienced
an average annual growth in real GDP per worker hour of roughly �.�%. �e United
Kingdom, leader during the approximate period ����–��, experienced an annual
growth of �.�%. �at’s (much) faster than the Netherlands, true, but still tortoise-like
compared to today’s hares. And since then — with some small-country exceptions
— it’s been the United States, but from ���� to the present it has averaged around �%
a year, dropping to more sedate �.�% over ����–����. �at is certainly impressive,
but it still isn’t what we’ve seen lately: �rst from Japan and then from East Asia more
generally, and more recently South Asia.

A little calculation suggests that you don’t even have to look at history to establish
the modernity of economic growth. Simply run our trusty formula (from Chapter �,
footnote ��) on doubling times backwards. Let’s use what by today’s high standards is
a pretty moderate number: �% per year. A country growing at that rate will halve its
income every �� years or so, which means that running back ��� years, that country
would have to have an income around �/���th of what it has today! For the United
States, that would mean a princely annual income of around ���� per year in ����.
�at was most assuredly not the case. And furthermore, poorer countries extrapolated
backwards at this rate would simply vanish.

But of course, this sort of calculation isn’t merely theoretical. You can see the
acceleration, even among now-developed countries. Table �.� provides a historical
glimpse of the period ����–����, and shows how growth has transformed the world.
�is table displays per-capita realGDP (valued in ���� international dollars) for selected
OECD countries in the equally spaced years ����, ����, and ����. �e penultimate
column gives us the ratio of per-capita GDP in ����, at the peak just before the
Depression, to its counterpart in ����. �e last column does the same for the years
���� and ����. �e numbers are pretty stunning. On average, GDP per capita in ����
was � times the �gure for ����, but the corresponding ratio for the equally long period
period between ���� and ���� is by ���� is �.�! A nearly sixteen-fold increase in real
per-capita GDP in the space of ��� years cannot but transform societies completely.
�e developing world, a�er its own transformation, will be no exception.

Indeed, in the broader sweep of historical time, the development story has only
just begun. In the nineteenth and twentieth centuries, only a handful of countries,
mostly in Western Europe and North America, and represented by and large by the
entries in Table �.�, could manage the “takeo� into sustained growth,” to use a well-
known term coined by the economic historian W. W. Rostow. �roughout most of
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Country ���� ���� ���� ����/���� ����/����

Austria �,��� �,��� ��,��� �.� �.�
Belgium �,��� �,��� ��,��� �.� �.�
Canada �,��� �,��� ��,��� �.� �.�
Denmark �,��� �,��� ��,��� �.� �.�
Finland ��� �,��� ��,��� �.� �.�
France �,��� �,��� ��,��� �.� �.�
Germany �,��� �,��� ��,��� �.� �.�
Japan ��� �,��� ��,��� �.� ��.�
Netherlands �,��� �,��� ��,��� �.� �.�
Norway ��� �,��� ��,��� �.� �.�
Sweden �,��� �,��� ��,��� �.� �.�
Switzerland �,��� �,��� ��,��� �.� �.�
United Kingdom �,��� �,��� ��,��� �.� �.�
United States �,��� �,��� ��,��� �.� �.�

Simple Average �,��� �,��� ��,��� �.� �.�

Table �.�. Per capita GDP (���� international dollars) in selected OECD countries, ����–����.
Source: Maddison [����] and Bolt and Van Zanden [����].

what is commonly known as the�ird World, the growth experience only began well
into this century; for many of them, probably not until the post-World War II era,
when colonialism ended. Although detailed and reliable national income statistics for
most of these countries were not available until some decades ago, the economically
underdeveloped nature of these countries is amply revealed in historical accounts.
Table �.� records the per-capita incomes of several developing countries (and some
now-developed countries as well) relative to that of the United States, for the last two
decades of the twentieth century. I don’t plan to be around to update this table �� years
from now, but I would be very curious to know what it will look like.

�e Table makes it obvious that despite the very high growth rates experienced by
several developing countries, there is plenty of catching-up to do. Moreover, there
is a twist in the story that wasn’t present a century ago. �en, the now-developed
countries grew (not in perfect unison, of course) unshadowed by nations of far greater
economic strength. Today, the story is completely di�erent. �ere is not just a drive
to grow, but to grow at rates that far exceed historical experience. �e developed
world already exists. �eir access to resources is not only far higher than that of the
developing countries, but the power a�orded by this access is on display. �e urgency of
the situation is heightened by the extraordinary �ow of information in the world today.
People are ever more quickly aware of new products elsewhere and of changes and
disparities in standards of living the world over. Exponential growth at rates of �%may
well have signi�cant long-run e�ects, but they cannot match the parallel growth of
human aspirations, and the increased perception of global inequalities. Perhaps no one
country, or group of countries, can be blamed for the emergence of these inequalities,
but they do exist, and the need for sustained growth is all the more urgent as a result.
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Country ���� ���� ���� ���� Country ���� ���� ���� ����

Argentina ��.� ��.� ��.� ��.� India �.� �.� �.� �.�
Bangladesh �.� �.� �.� �.� Indonesia �.� �.� �.� �.�
Botswana �.� ��.� ��.� �.� Malaysia ��.� ��.� ��.� ��.�
Brazil ��.� ��.� ��.� ��.� Mexico ��.� ��.� ��.� ��.�
Chile ��.� ��.� ��.� ��.� Nigeria ��.� �.� �.� �.�
China �.� �.� �.� ��.� Pakistan �.� �.� �.� �.�
Cote d’Ivoire �.� �.� �.� �.� Rwanda �.� �.� �.� �.�
Egypt, Arab Rep. �.� �.� �.� �.� South Africa ��.� ��.� ��.� ��.�
Ethiopia �.� �.� �.� �.� Sri Lanka �.� �.� �.� �.�
Ghana �.� �.� �.� �.� �ailand �.� ��.� �.� ��.�

Table �.�. Per capita GDP in Selected Developing Countries Relative to that of the United States (%),
����-����-����-����. Source: �e World Bank: National Accounts Data.

�.�. The Beginnings of a Theory

�.�.�. Savings and Investment. In its simplest terms, economic growth is the result
of abstention from current consumption. An economy produces goods and services.
�e act of production generates income, which in turn is used to buy these goods and
services. Exactly which goods are produced depends on individual preferences and the
distribution of income.

Classify all goods and services into two groups. We may think of the �rst group
as consumption items, which are produced for the direct purpose of satisfying human
preferences. �e mangos you eat, the tshirts you wear, or a movie you might watch
all come under this category. �e second group of commodities consists of capital
items, which we may think of as commodities that are produced for the purpose of
producing other commodities. An industrial robot, a conveyor belt, or a screwdriver
might come under the second category.�� Typically, households buy consumer goods,
whereas �rms buy capital goods to expand their production or to replace worn-out
machinery.

�at immediately raises a question: if all income is paid out to households, and if
households spend their income on consumption goods, where does the money for
capital goods come from? �e answer to this question is simple, although in many
ways deceptively so: households save. By abstaining from consumption, households
make available a pool of funds (via deposits, stock purchases, or reinvested dividends)
that �rms use to buy capital goods. �is latter purchase is the act of investment.
Buying power is channeled from savers to investors through banks, individual loans,
governments, and stock markets. How these transfers are actually carried out is a story
in itself. Later chapters will tell some of this story.

Figure �.� is a circuit diagram with income �owing “out” of �rms as they produce
and income �owing back “into” �rms as they sell. Savings is shown as a leakage

���ere is an intrinsic ambiguity regarding this classi�cation. Although a mango or an industrial
robot may be easily classi�ed into its respective categories, the same is not true of, say, a computer. �e
correct distinction is between goods that have current consumption value and those that produce future
consumption, and many goods embody a little of each.
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from the system: the demand for consumption goods alone falls short of the in-
come that created this demand. Investors �ll this gap by stepping in with their
demand for capital goods. By entering or expanding a business, or by replacing
worn-out capital, investment adds to the stock of capital, and so an economy grows.

Firms

Households

Outflow

Inflow

Wages, Profits, Rents

Outflow

Inflow

Consumption Expenditure

Investment

Savings

Figure �.�. Production, consumption, savings, and invest-
ment.

In macroeconomic equilibrium,
investment demand just coun-
terbalances the savings leakage.
�us, savings equals investment
and forms a tentative starting
point of the theory of economic
growth, in which capital is cen-
tral (I say “tentative" because
I’ve ignored international capi-
tal �ows, but that’s all right for
starters). Figure �.� justi�es the
centrality of capital. It shows an
impressively tight connection
between the value of physical
capital per worker in a country, and its per-capita GDP. �is isn’t at all to say that
other factors — e.g., natural resources, education, R&D or government policies — are
unimportant. �ey matter both directly for output and less directly by permitting
capital accumulation. But a model that puts physical capital on center-stage cannot be
far o� the track.

�.�.�. Inputs, Outputs and the Production Function. Begin with production,
that central activity converting inputs to outputs. �is is helpfully summarized by a
production function. It is a simple mathematical description of how various inputs
(such as capital, land, labor, and raw materials) are combined to produce outputs.
An easy example is one in which just two inputs — capital and labor — combine to
produce a single output. Symbolically, we write

Y = F(K , L)
where K stands for capital, L for labor, Y for output, and F(K , L) is mathematical
notation for some function that converts input pairs (K , L) to output Y . A classic
instance is the Cobb-Douglas production function, in which we write

Y = AKaLb , (�.�)

for some positive constants A, a and b. �e parameter A measures the extent of
technological pro�ciency. �e larger it is, the higher is output for any �xed combination
of K and L, so we will call it total factor productivity, or TFP for short. �e parameters
a and b capture the relative importance of each input, as well as whether (and how
much) themarginal returns to each input diminish. If a lies between � and �, then there
are diminishing returns to capital: each additional input of capital increases output,
but by a progressively smaller amount. (�e same is true of labor, if b lies between �
and �.) “Diminishing returns to each input" is a compelling presumption: if more and
more of a particular input is added, without changing the amounts of any other input,
its marginal contribution to output would likely come down.
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Figure �.�. Log capital per-capita and log income per-capita, ����. Source: World Bank
Wealth Accounts database andWorld Development Indicators

In contrast, if all inputs—or “scale" for short—are increased in the same proportion,
it seems reasonable that output should also climb in that proportion. �e argument
that’s usually trotted out in favor of this is “replicability": if you’ve doubled every input,
then you’ve created a perfect twin: how can output not double? �at typically kicks
o� a discussion with some interesting philosophical twists, but we will bypass such
matters for now.�� �is phenomenon in which output changes in the same proportion
as all inputs is called constant returns to scale. It is very easy to verify that in the
Cobb-Douglas case described by equation (�.�), “constant returns to scale" is captured
by the additional restriction that a + b = �. But there are other possibilities. If output
increases less-than-proportionately when all inputs are scaled up, we have diminishing
returns to scale (with a + b < � in the Cobb-Douglas special case) or if the increase
is more-than-proportionate, we have increasing returns to scale (a + b > �). Neither
possibility should be summarily dismissed. But the assumption of constant returns to
scale, coupled with diminishing returns to each input, is a good starting point.

When there are constant returns to scale, we can typically express all productive
activity in per-capita terms; that is, by dividing by the amount of labor being used in
production. �e Appendix to this chapter shows you how to do this quite generally for
production functions, but the Cobb-Douglas case is particularly easy. With a + b = �
under constant returns to scale, change b to � − a in (�.�) to get

Y = AKaL�−a , (�.�)
and now divide by L to see that

y = Aka (�.�)
where the lower case letters y and k stand for the per-capita magnitudes Y�L and K�L
respectively. As before, a, typically a number between � and �, is an inverse measure of

��For instance, canwe really double all inputs? What about, say, that elusive input called entrepreneurship:
are we doubling that too? If not, output might less than double. On the other hand, if bricks-and-mortar
build a production facility and we double the amount of bricks, the volume of the facility will typically more
than double, the former being proportional to surface area and the latter rising at (surface area)��� .
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diminishing returns to capital. �e lower the value of a, the greater the “curvature" of
the production function and the greater the extent of diminishing returns to capital.

In passing, notice that if we take logarithms on both sides of (�.�), we get

ln y = lnA+ a ln k,
which shows that (under Cobb-Douglas) the relationship between ln k and ln y is
a�ne. Figure �.� provides signi�cant empirical support for this relationship.

Output-capital ratio �=y/k 
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f(k)
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Figure �.�. �e production function in per-
capita form.

Figure �.� depicts a production func-
tion in per-capita form f (k), with dimin-
ishing returns to per-capita capital. As k
increases, so does y = f (k), but in a pro-
gressively muted way. �us the marginal
product of capital, and the output-capital
ratio Γ ≡ y�k, will fall as k climbs, driven
by a relative shortage of labor. Just how
quickly it falls will depend on the extent
of diminishing returns to capital.

�e concept of a production function
already allows to si� and sort some pre-
liminary thoughts about underdevelop-
ment. For instance, staring at equation
(�.�), one might wonder where develop-
ing countries might come up relatively
short. In TFP, maybe? Perhaps it is fundamentally in technical knowledge that
development lies. Perhaps patent restrictions and other limitations on the �ow of
knowledge across countries are fundamentally responsible for underdevelopment.
(�ough such arguments must contend with the willingness and ability of human
beings to take apart new products and simply learn how to rebuild them.)

�ere are other interpretations of TFP. For instance, it might embody the extent
of skills and education possessed by the working population, so that a given amount
of capital and raw labor goes a longer way in developed countries. But properly
viewed, these di�erences should not be thrown into the A-term. Rather, we should
recognize that the production functions described in equations such as (�.�) are two-
input caricatures of reality. More realistically, we could write

Y = F(K , labor of di�erent qualities)
and recognize that developing countries have lower endowments of some types of
labor. �at’s conceptually di�erent from saying that they are incapable of producing
the same output even with all relevant labor and nonlabor inputs at hand. One quick
example using the Cobb-Douglas formulation is to write

Y = AKa(eL)b (�.�)

where e is schooling per person. �at mathematically links up with “lower A" (think
of combining the compound term Aeb into a new A term) but it’s conceptually very
di�erent, pointing the �nger to education and not some productivity di�erence that
applies even a�er schooling di�erences are accounted for.
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Yet another interpretation of “di�erent A" is that resources or inputs are somehow
misallocated to a greater degree in developing countries.�� For instance, entrepreneurs
in a poor country might not have enough access to capital or credit markets to raise
the input outlays for a hew technology. Or the older technology may be in the hands
of older, elite groups with political power, who block access to new technologies that
could spell their own ruin. Or local communities might oppose new technologies for
fear that these will let “foreign interests" into the country.

We will have much to say about these and related issues later in the book. But
our quest for explanations starts with the simplest of them: maybe it’s just low K
(relative to L)? A developing country surely has less per-capita capital — physical and
human compared to its developed-country counterpart. Might this, and this alone,
not explain persistent, ongoing di�erences in per-capita income across countries?
Methodologically, it’s a good idea to start small, ask the simplest questions, and expand
our inquiry to newer pastures only when that is called for.

So we begin with a theory that emphasizes the systematic accumulation of capital.

�.�.�. TheGrowth Equation. A little algebra at this stage will make our lives simpler.
Divide time into periods t = �, �, �, �, . . . , tagging our economic variables with the
date: Y(t) for output, I(t) for investment, and so on. Investment augments the capital
stock a�er accounting for depreciation, so in symbols:

K(t + �) = (� − δ)K(t) + I(t),
where δ is the rate of depreciation. Now recall the famous macroeconomic balance
condition, that investment equals savings. It follows that I(t) = sY(t), where s is the
rate of savings and Y(t) is aggregate output, and using this above, we see that

K(t + �) = (� − δ)K(t) + sY(t), (�.�)

which tells us how the capital stock must change over time. We’re going to convert all
this into per-capita terms by dividing by the total population, which we assume (only
for expositional simplicity) to be equal to the active labor force L(t). If we assume that
population grows at a constant rate n, so that L(t + �) = (� + n)L(t), (�.�) changes to

(� + n)k(t + �) = (� − δ)k(t) + sy(t), (�.�)

where k and y represent per-capita magnitudes K�L and Y�L respectively. Finally,
divide through by (� + n)k(t) to get

k(t + �)
k(t) =

(� − δ) + sΓ(k(t))
� + n , (�.�)

where we’ve de�ned Γ(k) = y�k = f (k)�k to be the output-capital ratio in production.
�is is our basic growth equation. �e numerator on its right-hand side measures
the rate at which one unit of capital (per-capita) at date t is transformed into capital
at date t + �. �at one unit decays a bit, and we are le� with � − δ. In the process, it
also produces output Γ(k) = f (k)�k, and s of that is saved, so that adds sΓ(k). �e
total is (� − δ) + sΓ(k). Meanwhile, the denominator records the drag on per-capita
capital caused by population growth: “one unit" of population today becomes � + n
units tomorrow. �e ratio of these two forces determines whether per-capita capital

��See, for instance, Banerjee and Du�o (����) and Hsieh and Klenow (����).
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grows or shrinks; i.e., whether k(t + �)�k(t) on the le�-hand side of (�.�) exceeds � or
falls below it.

Take the growth equation for a spin: start with the per-capita capital stock at any
date t, k(t). �at produces per-capita output y(t) via the production function f (k(t))
from Section �.�.�, and implies an output-capital ratio Γ(k(t)) = f (k(t))�k(t). Now
(�.�) tells you what k(t + �)must be, and the story repeats, ad in�nitum. It’s simple.

�.�. The SolowModel

A much-venerated theory of growth, due to Robert Solow (����), uses equation
(�.�) for its dynamics. In Figure �.�, we place k on the horizontal axis, and the
numerator and denominator of the right-hand side of (�.�) on the vertical axis. �e

 k

(1-�) + s �(k)

1+n

 k* k(95) k(96)  kʹ(96) kʹ(95)

Figure �.�. Growth dynamics in the Solow
model.

numerator falls in k, because the output-
capital ratio Γ(k) declines as k increases;
see the discussion around Figure �.�. �e
denominator, � + n is independent of k
and is recorded as a �at line. �us the
line representing the numerator initially
lies above this �at line (for low k), and
then falls below (for high k).��

Armed with this diagram, we can
make some strong predictions about
growth. At the le� of Figure �.� is a low
initial level of the per-capita capital stock,
labeled k(��), in deference to the year I
began writing this book. Because k(��)
is low, the corresponding output-capital
ratio Γ(k(��)) is high and so — using
equation (�.�) — we have k(��) > k(��)
(capital accumulation outstrips population growth). �is process continues through
further iterations, and it can be seen that k(t) heads towards k∗, which is a distin-
guished capital stock where the curved and straight lines meet.

Likewise, you may trace the argument for a high initial capital stock, depicted by
the initial value k′(��) above k∗. Now Γ(k) is low enough so that the curved line
falls below the �at line, which implies that k′(��) < k′(��). So there is erosion of the
per-capita stock as time passes, with convergence occurring over time to the same
per-capita stock, k∗. In this zone, capital accumulation is eroded by population growth.

�.�.�. The Steady State. We can therefore think of k∗ as a steady-state level of the
per capita capital stock, to which k starting from any initial level converges. Starting
at k(��), capital grows faster than labor (so k(t)), but diminishing returns to capital
lowers the ratio Γ(k(t)). �at slows the growth of capital into line with that of labor,
attenuating the climb in k. In the long run, the capital-labor ratio settles at the steady
state k∗. �e same process happens in reverse if the economy starts above k∗.

��If you’ve been following the argument closely, you will see that this last statement is exactly true if we
make the additional assumption that the marginal product of capital is very high when there is very little
capital and diminishes to zero as the per-capita capital stock becomes very high.
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Now, if the per-capita capital stock settles, then so must per-capita income! Indeed,
we could have conducted this analysis starting fromper-capita income instead of capital,
because y and k are related one-for-one via the production function. �at is, starting
from y(��) = f (k(��)), income growth is positive but decelerates as y → y∗ = f (k∗),
while the reverse process occurs from y′(��) = f (k′(��)). In particular, there is no
long-run growth of per-capita output, and total output grows precisely at the rate of
growth of the population. In algebraic terms, we can put k(t) = k(t + �) = k∗ in
equation (�.�). Moving terms around a bit, we obtain

y∗
k∗ = Γ(k∗) =

n + δ
s

. (�.�)

A unique solution k∗ to (�.�) exists, because Γ(k) decreases from very high to very
low as we vary k.�� For instance, when the production function is Cobb-Douglas, so
that y = Aka , the steady state condition (�.��) becomes

Ak∗a
k∗ =

n + δ
s

,

and a�er a little boring algebra, we see that

k∗ = � sA
n + δ �

��(�−a)
and y∗ = A��(�−a) � s

n + δ �
a�(�−a)

(�.�)

�is is a simple and rewarding equation, because you can “see" the steady state explicitly.
But at this point you must be scratching your head in some confusion. Or if you’re
not, you should be. What manner of growth model is a growth model that predicts no
per-capita growth in the long run? �at’s a fair question, and we must address it now.

�.�.�. Technical Progress. �e conclusion of the basic Solow model — zero growth
per-capita in the long run — is counterfactual, but not counterintuitive. With
unchanging technology, the in�uence of �xed factors must ultimately make itself
felt, and growth would vanish in the long term. In the model, labor is that �xed factor,
and in the absence of technical progress, growth per-capitamust slow to a crawl. �at’s
uncomfortable, but not unreasonable. �is no-growth scenario disappears if there
is continuing technical progress; that is, if TFP rises over time as new knowledge
is gained. As long as the optimism of this shi� outweighs the impending doom of
diminishing returns, per-capita growth can be sustained inde�nitely.

One simple way to incorporate technical progress into the theory is to think about
new knowledge as contributing to the e�ciency, or economic productivity, of labor.
Let’s make a distinction between the working population L(t) and the amount of labor
in “e�ciency units”; call it E(t). �is distinction is necessary now because in the
extension we’re about to consider, the productivity of the working population will be
constantly increasing. We will write E(t) = e(t)L(t), where e(t) is the productivity
of an individual at time t.�� Not only does population grow over time (at the rate of n,
just as before), but we now suppose that e�ciency per person grows too, say at the rate
of π. �us e(t + �) = (� + π)e(t). We will refer to π as the rate of technical progress.

���e careful reader will observe that we’re assuming diminishing returns plus suitable end-point
conditions on the marginal product of capital.

��With a Cobb-Douglas production function, the same speci�cation of technical progress could have
several interpretations. See the “second point of interpretation" following equation (�.��) below.
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Figure �.�. �e Solow model with technical
change. Spot the di�erences from Figure �.�.

Notice that E(t + �) = e(t + �)L(t +
�) = (� + n)(� + π)e(t)L(t) = (� + n)(� +
π)E(t). But because n and π are small
numbers such as �.�� or �.��, it is a simple
and pretty accurate approximation to write(�+n)(�+π) � �+n+π. We can therefore
say that e�ective labor grows at the rate
n + π, which is close enough for all our
calculations.��

One more step completes our extended
model. Recall how we passed from (�.�) to
(�.�) a�er dividing through by the work-
ing population to obtain per-capita magni-
tudes. We divide here instead by the e�ec-
tive population e(t)L(t) to arrive at what
looks like per-capita capital and income,
but these are expressed per e�ciency unit of labor. Let’s call them k̂ and ŷ to distinguish
them from the earlier per-capita values k and y. Now observe that all our calculations
between equations (�.�) to (�.�) hold for this case, except that we replace k and y by
k̂ and ŷ wherever we see them, and population growth n by the growth of e�ective
labor, which is n + π. For instance, Figure �.� repeats, in spirit, the analysis done for
equation (�.�) in Figure �.�. Exactly the same logic applies, and once again, we have
convergence to a steady-state, relative to e�ective labor, denoted by k̂∗.

�e formulae describing the steady state are also exact parallels of (�.�) and (�.�),
and for completeness we write them here again. First we have:

ŷ∗
k̂∗ = Γ(k̂∗) �

n + π + δ
s

, (�.��)

where the notation “�" reminds you of the slight approximation to arrive at n+π. With
Cobb-Douglas production, we follow exactly the same steps to obtain equation (�.�)
from (�.�). �e production function is

Y = AKa(eL)b , or ŷ = Ak̂a , (�.��)
once we’ve divided through by e�ective labor. Combining (�.��) with (�.��), we see that

k̂∗ � � sA
n + π + δ �

��(�−a)
and ŷ∗ � A��(�−a) � s

n + π + δ �
a�(�−a)

. (�.��)

�ere really is no mathematical di�erence. �e novelty lies in the interpretation. We
make two points. First, even though capital and output per e�ciency unit converge to
a steady state, these continue to increase per person at the rate of technical progress.

�is is the way it looks in the Cobb-Douglas case. Open up the formula for e�ective
income in (�.��) to see that in steady state, per-capita income has the trajectory:

y∗(t) � ŷ∗(� + π)t � A��(�−a) � s
n + δ + π�

a�(�−a) (� + π)t . (�.��)

�e second point of interpretation has to do with π, which is the growth rate of labor
productivity. �at might look restrictive: are there not other kinds of technical progress

���at is, multiply out (� + n)(� + π) to get � + n + π + nπ and safely ignore the tiny term nπ.
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that improve the productivity of capital or of all inputs together? �e answer is that in
many situations these are allmathematically the same. �e Cobb-Douglas function,
with Y(t) = AK(t)a[e(t)L(t)]�−a , can be equivalently written as

Y(t) = A(t)K(t)aL(t)�−a ,
where A(t) = Ae(t)�−a can now be viewed as TFP. If e is growing at rate π, A(t) is
growing at rate z, where � + z = (� + π)�−a . So, chameleon-like, technical progress in
e�ective labor can also be viewed as technical progress that raises the e�ectivity of all
inputs, or indeed also the e�ectivity of physical capital. It’s just a matter of rede�ning
variables, though we emphasize that the interpretation can be very di�erent.

Figure �.� depicts the trajectory (�.��) in logarithmic terms, so that an exponential
growth of income appears linear. (Mentally take logarithms in (�.��) to verify that

Slope = 1 + � 

t

log y*(t)

 y*(t)

Actual path of y(t)

Actual path of y(t)

Figure �.�. Convergence to steady state.

log y∗(t) has a constant slope in time of
� + π.) All of the analysis that describes
convergence to the steady state in e�ective
labor units can now be re-described as the
convergence of per-capita income trajecto-
ries to the linear steady state trajectory.
We will be returning to this important
prediction of convergence in Chapter �.

In summary, think of two broad sources
of growth: one is via the continued buildup
of plant, machinery, and other inputs that
bring increased productive power,�� and
the other is through more advanced meth-
ods of production (technical progress).
�e Solowmodel claims that in the absence
of the second source, the first is not enough
for sustained per-capita growth. Viewed this way, the Solow model points to studying
the economics of technological progress, arguing that it is there that one must look for
the ultimate sources of growth. �is is not to say that such a claim is necessarily true,
but it is certainly provocative and not obviously wrong.

�.�.�. Steady State Parameters. �e di�erent parameters of the Solow model —
the savings rate, population growth rate, or the rate of depreciation — do not a�ect
the long-run growth rate of per-capita income, which continues unperturbed at the
exogenous rate of technical progress. But they do a�ect the long-run level of per-capita
income. In our logarithmic trajectories depicted in Figure �.�, these “level e�ects"
appear as parallel shi�s of the steady state trajectory. See the dotted parallel lines in
Figure �.�. You can algebraically see the shi�s by taking logarithms in equation (�.��).
Parameters such as s and n will only create additive shi�s in the logarithmic version of
the formula, which are the counterparts of these graphical parallel shi�s.

�is analysis is quite general and does not rely on the speci�c form of the technology.
To underline that, return to the more general formula that describes the e�ective steady

���is is not to deny that these two sources are o�en intimately linked: technical progress may be
embodied in the new accumulation of capital inputs.
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state in equation (�.��). An increase in the savings rate raises the right-hand side of
the equation, so the le�-hand side must also increase to restore equality. �is means

t

log y*(t)

An increase in s

An increase in n or � 

Figure �.�. s, n and δ have level e�ects.

that the new steady-state output-capital
ratio — the value ŷ∗�k̂∗—must be lower.
With diminishing returns, that can only
happen if the new steady-state level of ŷ∗
is higher. So an increase in the savings
rate raises the long-run level of per-capita
income in e�ective labor units. �is is
tantamount to an upward parallel shi� in
the steady state trajectory. By the same
logic, we can check that an increase in
the population growth rate or the rate of
depreciation will raise y∗�k∗ and so lower
long-run per-capita income.��

All these exercises are completely intu-
itive, except for one, which has to do with
a change in the rate of technical progress
π. �is is the only parameter which has both a level e�ect and a “growth rate" e�ect.
A�er all, we have already seen that the long run growth rate of the economy occurs at
the rate π, so its change must of necessity twist the steady state trajectory and not just
shi� it. Figure �.� illustrates this change.

t

log y*(t)
An increase in �

Actual paths of y(t)

y(0)

Figure �.�. A change in π has growth e�ects.

Notice how the twist actually reduces
the level of the steady state path at some
points: the dotted line intersects the old
steady state path from below. And indeed,
the algebra corroborates this. �e easiest
way to see this is to note that n, π and
δ all enter as the sum n + π + δ into the
steady state in e�ective units of labor; in-
spect equation (�.��). �at means that an
increase in the rate of technical progress
π has the same implication as, say, an
increase in the population growth rate n,
which is that it reduces the steady state
measured in e�ective units of labor. But of
course, the resulting trajectory is steeper,
and the two combine in an uncomfortably
ambiguous way, as shown by the pair of straight lines in Figure �.�. �at discomfort
vanishes when you look at the resulting trajectories from the moment the change takes
place. At that moment, the country has just one per-capita income value, shown by
the value y(�)marked at time � in the Figure. �e two transitional paths to the two

��Make sure you are comfortable with the simple economics behind all the algebra. For instance, a
higher rate of depreciation means that more of national savings must go into the replacement of worn-out
capital. �is means that, all other things being equal, the economy accumulates a smaller net amount of
per-capita capital, and this lowers the steady-state. You should similarly “verbally" run through the e�ects of
changes in the savings rate and the population growth rate.
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steady states, shown by the thin curves, will not cross. �e one for the higher value of
π will always lie above its lower-π counterpart. In the end, there is no ambiguity at all.

�.�. Exogenous and Endogenous Growth

�e Solow model is one of exogenous growth. Its steady state growth rate is
insensitive to behavioral parameters, and is fully pinned down by the (assumed
exogenous) rate of technical progress. In this section, we explore two variants which can
be thought of as displaying endogenous growth, with equilibrium growth rates driven
by behavioral parameters, such as the savings rate, the rate of population change,
or deliberately chosen rates of educational investment. To my mind, the essential
distinction lies in the word “behavioral". Human behavior could a�ect growth in the
variants that we now consider, as opposed to growth in the Solow model, which is
fully determined by some exogenously assumed rate of technical progress. �is change
of focus is important, both conceptually and from the viewpoint of theoretical and
empirical analysis. Economic growth does not drop on us as manna from the gods.

�.�.�. TheHarrod-DomarModel. �is variant on the fundamental growth equation
highlights the the accumulation of physical capital. Recall the growth equation:

k(t + �)
k(t) =

(� − δ) + sΓ(k(t))
� + n . (�.��)

�is turns into the Solow model under the additional assumption of diminishing
returns to capital in production, so that Γ(k) decreases in k over a full range of values.
�at assumption forces the economy to settle at the distinguished level k∗ given by

Γ(k∗) = n + δ
s

, or k∗ = � sA
n + δ �

��(�−a)
. (�.��)

in the Cobb-Douglas special case. �ere is something about the latter equation to
I’d like to draw your attention. Look at the “diminishing returns parameter" a and
remember that the smaller it is, the more it is that returns to capital diminish, while
at the other end, as a becomes close to �, the production function becomes almost
linear and exhibits constant returns to the capital input alone. As we bring a up close
to �, the steady state level of capital becomes ever larger (if sA > n + δ) or ever smaller
(if sA < n + δ) and at a equal to �, when the production function is exactly linear in
capital, there is no steady state: the economy either grows to in�nity or shrinks to zero!

�is is not some algebraic sleight of hand; on the contrary, it makes intuitive sense.
When a = �, the output-capital ratio is fully insensitive to the value of k, and the current
scale of the economy becomes irrelevant: whatever rate it can grow at k, it can replicate
that at �k, �k, or a million times k. With constant returns to the capital input, the
economy can grow or decline at exactly the same rate, irrespective of capital scale.

�e growth equation (�.��) can handle this without a problem, provided we don’t go
down the garden path looking for steady states where there are none to be found. With
a = �, the output-capital ratio is a constant; in fact, it is exactly A in the Cobb-Douglas
production function: y = Ak. Using this in (�.��) and subtracting � from both sides of
it, we have

Rate of growth = k(t + �) − k(t)
k(t) = sA− (n + δ)

� + n . (�.��)
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�is is an in�uential relationship, known as the Harrod-Domar equation. named a�er
Roy Harrod and Evsey Domar, who wrote some of the earliest papers on the subject
in ���� and ����, respectively. �e le�-hand side is just the rate of growth of the
per-capita capital stock, and by the linearity of the production function it is also the
rate of growth of per-capita income. Time appears here on the le�-hand side of (�.��),
but it doesn’t in the rest of the equation, which shows that the rate of growth is constant
and unchanging. For an easy-to-remember version of (�.��), let g stand for the rate
of growth, multiply through by � + n, and note that both g and n are small numbers
(analogous to our approach to deriving (�.��)), and their product gn is therefore extra
small relative to these numbers. �at gives us the approximation

g � sA− n − δ, (�.��)
which can be used in place of (�.��) without serious loss of accuracy. Observe how
(�.��) endogenizes the growth rate, making it an function of behavioral parameters such
as the savings rate or the population growth rate. In contrast, these parameters have
no e�ect at all on long-run growth in the Solow model. �ere is no contradiction here,
though the di�erence is striking. In the Solowmodel with constant returns to scale, the
parameter a always lies strictly between � and �, so labor plays an indispensable role in
production, therefore constraining per-capita output growth. In the Harrod-Domar
variant, a = �, and growth is thereby liberated from the “shackles" of a labor input.

Growth Engineering

It isn’t hard to see why the Harrod-Domar growth equation (�.��) was so in�uential. It
has the air of a recipe. �omas Piketty, in his book Capital (����), calls it the “second
fundamental law of capitalism."�e equation �rmly links the growth rate of the economy
to certain parameters, such as the savings rate, the output-capital ratio and the growth
rate of population. And capitalism apart, central planning in countries such as India and
the erstwhile Soviet Union was deeply in�uenced by the Harrod–Domar equation.

�e Harrod-Domar model served as the conceptual underpinning for large, regulated
investments in heavy industry. As we have seen, capital-accumulation fully drives
economic growth in the Harrod-Domar setting, with no constraint imposed by labor.
�e reliance on machinery, and the implied liberation from the everyday drudgery of
human work, lies just below the surface. It is a socialist dream— or a market nightmare,
now summoned up by the looming dystopia of automation and labor displacement.

�e �rst controlled experiment in “growth engineering” undertaken in the world was
in the former Soviet Union, a�er the Bolshevik Revolution in ����. �e years immediately
following the Revolutionwere spent in a bitter struggle—between the Bolsheviks and their
various enemies, particularly the White Army of the previous Czarist regime—over the
control of territory and productive assets such as land, factories, and machinery. �rough
the decade of the ����s, the Bolsheviks gradually extended their control over most of the
Soviet Union (consisting of Russia, Ukraine, and other smaller states). �e time had come
to use this newly acquired control to achieve the economic goals of the revolutionary
Bolsheviks, the foremost among these goals being a fast pace of industrialization.a

Under the State Economic Planning Commission (Gosplan), a series of dra� plans
was drawn up. �ese culminated in the �rst Soviet Five Year Plan (a predecessor to many
more), which covered the period from ���� to ����. At the level of objectives, the plan
placed a strong emphasis on industrial growth. �e resulting need to step up the rate
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of investment was re�ected in the plan target of increasing it from the existing level of
��.�% of national income in ����–�� to ��.�% by ����–��. (Dobb [����, p. ���]).

How did it go? �e Table below shows some of the plan targets and actual achieve-
ments, and what emerges is quite impressive. Within a space of �ve years, real national
income nearly doubled, although it stayed slightly below the plan target. Progress on the
industrial front was spectacular: gross industrial production increased almost �.� times.
�is was mainly due to rapid expansion in the machine producing sector (where growth
was far in excess of even planned targets). �is can be explained in part by the enormous
emphasis on heavy industry in order to expand from a meager industrial base.

����–�� (actual) ����–�� (plan) ���� (actual)

National income ��.� ��.� ��.�
Gross industrial production ��.� ��.� ��.�
(a) Producers’ goods �.� ��.� ��.�
(b) Consumers’ goods ��.� ��.� ��.�

Gross agricultural production ��.� ��.� ��.�

Table �.�. Targets and achievements of the �rst Soviet Five-Year Plan (����–�� to ����–��).
All entries in ���million ����–�� rubles. Source: Dobb (����).

Note that the production of consumer goods fell way below plan targets. An equally
spectacular failure shows up in the agricultural sector, in which actual production in ����
was barely two-thirds of the plan target and only slightly more than the ����–�� level.
�e Bolsheviks’ control over agriculture was never as complete as that over industry, and
continuing strife with farmers and large landowners from the Czarist era took its toll on
crop production. But the implicit reliance on industrialization as the key to growth was
also a basic factor in this failure, and explains the need for severe agrarian collectivization;
Chapter �� will have more.

Post-Independence India took its economic cue from the Soviets. Like the Soviets,
Indian policy makers believed that heavy industry was the leading sector to encourage:
its growth would pull up the remainder of the economy. Indeed, until the early ����s,
the Indian government deployed powerful instruments (such as the Industrial Licensing
Policy) that controlled the allocation of investment to even those sectors largely in private
hands. �e acquisition of such powers by the Indian government from the birth of the
Republic (in ����) showed an unwillingness to rely purely on the market mechanism.

�e Planning Commission of India was established on ��March ����, and the First
Indian Five Year Plan covered the period ����–�� to ����–��. As in the Harrod–Domar
theory and in Soviet planning, there was a large emphasis on raising overall rates of
investment. �e second Five Year Plan (����–�� to ����–��) went a step further. One of
the main architects of the plan was Professor P. C. Mahalanobis, an eminent statistician
and advisor to then Prime Minister Nehru. �e so-called Mahalanobis model, which
served as the foundation of the Second Plan, bore a close resemblance to a framework
enunciated by the Soviet economist Feldman in ����, on which Soviet planning in the
����s was largely based. Both models argued that to achieve rapid growth, careful
attention was to be given not only to the size of investment, but also to its composition. In
particular, these models stressed the need to make substantial investments in the capital
goods sector so as to expand the industrial base. �is emphasis on heavy industry in
India’s second Five Year Plan is illustrated by the fact that ��.�% of planned investment
was in the investment goods sector, compared to only ��.�% in consumer goods and
��.�% in agriculture (Hanson ����, p.���).
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During the plan period, we note that national income grew by �% per annum on
average. Given the almost stagnant nature of the Indian economy in the preceding half
century or even more, this was pretty dramatic. K.N. Raj (����) observed that “the
percentage increase in national income in the last thirteen years has been higher than
the percentage increase realized in India over the entire preceding half a century.”b

Industry, given the greater share of investment it received, did much better than
the nationwide average. Overall industrial production grew at an average rate of �%
per annum over the period of the �rst two plans. For the second plan period alone,
the general index of industrial production grew by roughly ��% between ����–�� and
����–��, and that of machine production soared to ���% of its starting level in the meager
space of �ve years (Hanson ����, p.���). However, there were some serious shortfalls in
the infrastructural sector: power production missed its target of �.�million kilowatts by
�.�million, and underinvestment in railways gave rise to bottlenecks and strain toward
the end of the period (Hanson ����).

In conclusion, although the �rst two Five Year Plans set India on a path of aggregative
growth unprecedented in her history, the abysmally poor living conditions for themajority
to begin with, coupled with increasing population pressure, hardly le� any room for
complacence at the beginning of the�ird Plan period.

aOn the eve of the Revolution, Russia lagged behind the industrialized European nations,
despite a rich endowment of natural resources. Based on the per-capita use of essential industrial
inputs, namely, raw cotton, pig iron, railway services, coal, and steam power, Russia ranked last
among nine major European nations in ����, behind even Spain and Italy; see Nove (����).

bHowever, population growth during the period exceeded expectations and, more alarmingly,
showed a rising trend, mainly due to a fall in the death rate caused by improvements in medical care.
Consequently, per-capita national income grew by only �.�% per year, which, though still creditable,
is considerably less cheerful.

But what is a to begin with, and how do we get a handle on its quantitative
magnitude? �ere’s an interesting way to approach this question. In competitive
markets, we know that factors of production are paid their marginal products. A single
line of calculus will tell you that the marginal product of capital is given by

∂Y
∂K
= aAKa−�(eL)�−a = a Y

K
,

so that under constant returns to scale, the share of capital income in total income is
∂Y
∂K
⋅ K
Y
= a!

�e point is that we do have estimates of the share of capital in national income, and
we can apply those to get a sense of a. �ey vary, of course, as all estimates do. An
approximate range for the United States is between a quarter (Parente and Prescott,
����) and two-��hs (Lucas, ����). But that places us very far indeed from the Harrod-
Domar extreme with a = �. Or does it? �at is where the simple Solow model, with its
two factors of production, could be misleading. Our next variant illustrates this point.

�.�.�. Human Capital. So far we have considered “labor" to be a single input of
production, augmented, perhaps, by exogenous technical progress. But labor can also
be deliberately accumulated to some degree, along with physical capital. Education,
training, experience, learning by doing: these are all ways to augment one’s natural
endowment, transforming it into new labor with new skills, New labor has the ability
to operate ever-more sophisticated machinery. It can generate new ideas and methods
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for economic activity. It can take on demanding managerial roles. A good name for
these “animate" forms of capital is human capital. But our extension will also serve as
a rough model of endogenous technical progress, where the productivity term in the
Solow model is in�uenced by deliberate human action. All told, this variant will do a
better job of reconciling observed income di�erences across countries.

�e basic idea is simple.�� Add to the Solow model by permitting individuals to
“save” in two distinct forms: a fraction sk of income acquires rights to physical capital
K, and a fraction sh is invested in education, or human capital H.�� We therefore have:

K(t + �) − (� − δk)K(t) = skY(t) and H(t + �) − (� − δh)H(t) = shY(t), (�.��)

where δk and δh are depreciation rates for K and H respectively. �e production
function is given by

Y = AKa(eL)bHc , (�.��)
where a + b + c = �, L is the stock of unskilled labor, growing exogenously at the
rate of n, and e is exogenous productivity, growing at π. �e interpretation we adopt
here, due to Mankiw, Romer and Weil (����), is that L and H are unskilled and skilled
labor inputs, performing di�erent tasks, and that L is not reduced by higher H. One
interpretation is that everyone always supplies an unchanging endowment of unskilled
labor, and those who are educated separately supply those skills over and above their
unskilled component. �e Appendix to this Chapter considers other interpretations.

Dividing through by eL in these equations and proceeding exactly as we did in our
�rst rendition of the Solow model to obtain (�.�), we can transform (�.��) into:

(� + n + π)k̂(t + �) � (� − δk)k̂(t) + sk ŷ(t) (�.��)

(� + n + π)ĥ(t + �) � (� − δh)ĥ(t) + sh ŷ(t), (�.��)

where k̂ = K�eL, ĥ = H�eL, and ŷ = Y�eL. Likewise, equation (�.��) becomes

ŷ = Ak̂a ĥc . (�.��)

�is should all be familiar. It’s only that we’re dealing with two accumulable inputs (k̂
and ĥ) instead of just one (k̂) as in the basic Solow model. One consequence is that it
isn’t possible to graphically track— in a simple two dimensional diagram such as Figure
�.�—the joint evolution of k̂ and ĥ towards their respective steady states. But that aside,
the parallel with the basic Solow model is as expected and not surprising: there are
steady state values k̂∗ and ĥ∗ (and therefore ŷ∗) to which the entire system gravitates
in the long run. To solve for these, all we need to do is substitute k̂(t) = k̂(t + �) = k̂∗
and ĥ(t) = ĥ(t + �) = ĥ∗ in equations (�.��) and (�.��) to see that

k̂∗ � sk ŷ∗
n + π + δk and ĥ∗ � sh ŷ∗

n + π + δh , where ŷ∗ = Ak̂∗a ĥ∗b . (�.��)

Now we combine the information in (�.��). Substitute the values of k̂∗ and ĥ∗ from
the �rst two equations in (�.��) into the third. Gather the common ŷ∗-terms to get

ŷ∗ � A��(�−a−c) � sk
n + π + δk �

a�(�−a−c) � sh
n + π + δh �

c�(�−a−c)
. (�.��)

��For contributions to this literature, see, for example, Uzawa (����), Lucas (����), Barro (����), Mankiw,
Romer and Weil (����) and Bernanke and Gürkaynak (����), among many others.

���ink of shY(t) as the quantity of physical resources spent on education and training.
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Don’t be intimidated by this equation just because it is long. You’ve already derived its
sibling in the basic Solow model with one accumulable input. �at’s equation (�.��),
which describes the steady state, and we reproduce part of it here for comparison:

ŷ∗ � A��(�−a) � s
n + π + δ �

a�(�−a)
. (�.��)

To make the comparison stark, set sk = sh = s and δk = δh = δ in (�.��) to obtain

ŷ∗ � A��(�−a−c) � s
n + π + δ �

a+c�(�−a−c)
, (�.��)

and now it is easy to compare the two scenarios: equation (�.��) is just equation (�.��)
with a replaced by a+c. �e presence of an additional accumulable input is tantamount
tomaking steady state output evenmore sensitive to the savings and population growth
rates, a theme to which we return to later. Intuitively, an increase in the savings rate,
say sk , not only increases the accumulation of physical capital, it has a knock-on e�ect
on the savings of human capital as well, creating an echo that ampli�es the increase in
output. Of course, the argument need not stop at just two accumulable inputs. �e
greater the joint share of accumulable relative to non-accumulable inputs, the sharper
the response of output to an higher savings in any one of them.

In the extreme case, if all inputs are accumulable, the system e�ectively behaves like
Harrod-Domar, generating endogenous growth. �at is, if a + c = � in our model, then
starting from any initial con�guration, all outcome variables will ultimately grow at a
common steady state growth rate, irrespective of any exogenous technical progress. To
�gure out what that growth rate is, let r denote the ratio of human to physical capital in
the long run. So as not drive each other crazy with lots of notation, we will presume that
depreciation rates of physical and human capital, and the rates of exogenous technical
progress and population growth, are all zero (but the same methods apply anyway).
Divide both sides of equation (�.��) by k̂(t) to note that

k̂(t + �) − k̂(t)
k̂(t) = skr�−a ,

which gives us the growth rate of physical capital. Likewise, divide both sides of
equation (�.��) by ĥ(t) to see that

ĥ(t + �) − ĥ(t)
ĥ(t) = shr−a ,

which gives us the growth rate of human capital. Because these two growth rates are the
same in the long run (so that the ratio of human to physical capital also stays constant),
we must have skr�−a = shr−a , or simply

r = sh�sk . (�.��)

�is equation makes perfect sense. �e larger is the ratio of saving in human capital
relative to that of physical capital, the larger is the long-run ratio of the former to the
latter. We can now use this value of r to compute the long-run growth rate. Use any of
the preceding growth-rate equations to do this, because all variables must grow at the
same rate in the long run. For instance, the growth-rate equation for k tells us that

k̂(t + �) − k̂(t)
k̂(t) = skr�−a = sak s�−ah ,
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so that the long-run growth rate of all the variables, including per capita income, is
given by the expression sak s

�−a
h .

�ese arguments parallel our derivation of the Harrod-Domar equation (�.��), and
in case you’re interested, I’ve kept all the details — including the proof that r converges
— in the Appendix. So we’ve arrived at a new model of endogenous growth, one that
does not rely on physical capital being the only input in production. In this model,
both physical and human capital are accumulated together, eroding the diminishing
returns to any one of the two inputs as long as there is constant returns to scale in both
inputs combined. Of course, one might question the absence of any other �xed input,
such as raw unskilled labor. In that case, we are back to something like the three-input
model in equation (�.��), where one input (L) cannot be deliberately accumulated. We
would be back to the Solow model at a qualitative level; see equation (�.��).

�at said, this theory shows that it is perfectly possible for there to be diminishing
returns to physical capital and yet for there to be sustained, endogenous growth. �e
lesson we learn is that physical capital is not a privileged input simply by accident. It is
special because it can be accumulated. To the extent that there are other inputs that can
be accumulated as well, such as human capital in this extension, it is the presence of
diminishing returns to that entire complex of accumulable inputs that will determine
whether growth is endogenous or exogenous. If, as in this model, there is constant
returns to that complex of inputs (two of them here), endogenous growth is possible,
In the Harrod-Domar model, that “complex" is just a single input — physical capital.

In the next chapter, we will see how this extended model can throw light on the
question of convergence or divergence of cross-country incomes. But for now, wemake
just two closing observations. �e �rst is a reminder that other extensions are possible
that will also lead to endogenous growth. A leading example of such an extension is
directed technical progress, progress that occurs because of the deliberate diversion
of resources to scienti�c activity. At a very high level, we can think of three inputs in
production — capital, labor and “technical know-how" — or four if you like, if you
want to additionally retain the division between physical and human capital. In such
a model, the behavioral sources of growth would be threefold: the accumulation of
physical capital, the accumulation of human capital, and the deliberate accumulation of
technical knowledge. If there is constant or even increasing returns in this complex of
accumulable inputs, economic growthwill be endogenous, just as in theHarrod-Domar
model or in the extension with human capital that we’ve just studied.

�.�. Summary

�is chapter began our study of economic growth, de�ned as annual rates of change
in income or capital (total or per-capita). We observed that growth rates of �% or more
per-capita are a relatively modern phenomenon, systematically attained �rst by the
United States, and only in the ��th century. Developing economies are way behind in
per-capita income relative to their developed counterparts, and faster growth rates are
consequently high on their priority list.

Our study of growth theory began with the basic notion of macroeconomic balance.
Savings equals investment: abstention from current consumption paves the way for
increases in capital equipment. And more capital creates more output. �us two
parameters are immediately relevant: the savings rate, which tells us how much an



Chapter � ��

economy abstains from consumption, and the production function, which tells us how
the resulting increase in capital translates into output. �is allows us to derive the
fundamental growth equation (�.�).

�e Solow model builds on this equation. It emphasizes diminishing returns to
capital and labor, and in particular diminishing returns in per-capita output as a
function of the capital-labor ratio. If capital grows faster than the labor force, then each
unit of capital has less labor to work with, so that average output per unit of capital
falls. �at implies that savings — which are proportional to output — fall relative to
the capital stock, which slows down the rate of growth of capital. (Exactly the opposite
happens if capital is growing too slowly relative to labor.) �is mechanism ensures
that in the long run, capital and working population grow exactly at the same rate, and
per-capita growth ultimately vanishes. Capital and labor maintain a constant long-run
balance at the steady-state capital stock (per-capita).

From this perspective, growth dies out because there is no technical progress. We
introduced this next, thinking of such progress as ongoing growth in knowledge that
continually increases the productivity of labor. It then became important to distinguish
between the working population and e�ective labor, which is the working population
multiplied by (the changing level of) productivity. �us e�ective labor grows as the
sum of population growth and technical progress. With this amendment, the Solow
arguments apply exactly as before, with all per-capita magnitudes re-expressed per
unit of e�ective labor. �is means, for instance, that while the long-run capital stock
relative to e�ective labor settles down to a steady-state ratio, the capital stock per person
keeps growing and it does so at the rate of technical progress. Likewise, per-capita
income keeps increasing in the long run precisely at the rate of technical progress. In
this sense, the Solow model is one of exogenous growth, as long as we view the rate of
technical progress as some non-behavioral parameter.

Finally, we introduced two variants on the Solow framework. We noted that if
production is entirely dependent on physical capital, then sustained output growth
can be maintained at all per-capita income levels. Now behavioral parameters such
as savings rates and population growth rates can be seen to a�ect not just the levels
of output but also the rate of per-capita income growth. �e resulting model, due to
Harrod and Domar, can therefore be thought of as a prototypical model of endogenous
growth, in the sense that human behavior can directly and persistently a�ect the long
run rate of growth.

Our second extension included human capital along with physical capital, and we
studied a model in which both inputs could be freely accumulated. �is, too, could
give rise to a model of endogenous growth provided that there is constant returns to
the joint pair of physical and human capital inputs. �ere are two important takeaways
from this second extension. �e �rst is that the responsiveness of per-capita steady
state income to various parameters increases as the share of accumulable factors in
production increases. Physical capital is one of those factors, but education or human
capital can be another. �is is a topic to which we shall return in Chapter �.

In particular, endogenous growth is not limited to a setting inwhich there is constant
returns to the physical capital input alone, as in the Harrod-Domar model. It could
occur whenever there is constant (or even increasing) returns to the entire complex of
accumulable inputs. In the particular variant we studied, that complex was physical
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and human capital, but it could also include other factors, such as technical knowledge
if deliberately accumulated — think of knowledge as an input like any other. If all
those inputs are not su�cient to generate constant or increasing returns together, then
we are back to the Solow model (or some close relative of it), where all growth must
perforce be exogenous.

�.�. Appendix

Returns to Scate for General Production Functions. Recall that for two inputs,
say capital and labor, a production function can be written as

Y = F(K , L).
Suppose that we scale all inputs by some common factor λ > �. (Note that this implies
an increase in all inputs if λ > � and a decrease in all inputs if λ < �.) We say that there
is constant returns to scale if

F(λK , λL) = λF(K , L) for every λ > �. (�.��)

�e le� hand side of this equality is the new output F(λK , λL) produced when each
input is scaled by λ. �e right hand side is the old output, which is just F(K , L), scaled
by λ. �e de�nition states that the new output equals the old output scaled by λ.

�e de�nitions of increasing and decreasing returns to scale are written in similar
fashion but we must be careful about the direction of scaling. We say that there is
increasing returns to scale if

F(λK , λL) > λF(K , L) for every λ > �,
which means that the new output climbs bymore than λ when inputs are each scaled
upward by λ > �. Likewise, there is decreasing returns to scale if

F(λK , λL) < λF(K , L) for every λ > �,
which means that the new output climbs by less than λ when inputs are each scaled
upward by λ > �. In the special case of a Cobb-Douglas production function, we have

Y = AKaLb ,

for constants (A, a, b) � �. You should verify that constant returns to scale imply
a + b = �, increasing returns to scale imply a + b > �, and decreasing returns to scale
imply a + b < �.
Per-Capita Version of the Production Function. Production functions with
constant returns to scale have a nice property. �ey allow us to relate per-capita
input to per-capita output. To see this, choose λ = ��L in equation (�.��). �en

F(K , L)
L

= F �K
L
, �� .

But Y = F(K , L), so we can conclude that

Y
L
= F �K

L
, �� , or y = F(k, �), (�.��)
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where as in the main text, y = Y�L and k = K�L. Now we can simply rewrite F(k, �)
in more compact form as f (k) for some function f . �en equation (�.��) turns into

y = f (k), (�.��)

which is the relationship are looking for. In the main text, f (k) corresponds to the
function Aka ; see equation (�.�).

A warning to those who are seeing this for the �rst time: equation (�.��) is deceptive
in its simplicity. It represents production relationships between per-capita levels only;
that is, between per-capita capital k and per-capita output y. You cannot express y as a
function of k alone when returns to scale are not constant. �e scale of operations will
matter. As an exercise, try going through the same process with the Cobb-Douglas
production function, both when returns to scale are constant (a + b = �) and when
they are not (a + b ≠ �), and appreciate why your steps must fail in the latter case.

Assume there is constant returns to scale,�e following facts about f (k) can be
proved, and you should try and establish these.
[�] If F(K , L) is increasing in each of its arguments, then f (k) is increasing in k.
[�] If F(K , L) exhibits diminishing returns to each of its inputs, then f (k) exhibits
diminishing returns in k. Hint: a little calculus goes a long way; recall that f (k) =
F(k, �) and di�erentiate twice.

Point [�] is worth noting carefully. It says that if there are diminishing returns
to both factors in the production function, then the per-capita production function
displays diminishing returns in per-capita capital used in production. In the main text,
we used constant returns to scale to arrive at the per-capita description of a production
function, and then used diminishing returns to each input separately to assert that
per-capita output exhibits diminishing returns with respect to per-capita capital. �is
particular shape lay at the heart of the predictions of the Solow model.

More on the Endogenous Growth Model with Human Capital. Recall the
extended production function with three inputs, reproduced here:

Y = AKa(eL)bHc . (�.��)

Written this way without any further interpretation of (or restriction on) H, it should
be clear that H and c have no real separatemeaning: mathematically, we could always
create a new way of measuringH, say, by raising it to any power we please, and c would
have to adjust accordingly.�� �e “units" of H (and therefore c) only has meaning once
we describe how it changes or how it’s acquired. In the main text, we took the view
that H is human capital, but viewed in this way H could just as easily be a model of
endogenous TFP. For instance, �rst shut down exogenous technical progress by setting
e = � in (�.��), and then de�ne a new variable

z = Hc�b , so that as a consequence, Y = AKa(zL)b ,
which means that z plays exactly the same role as e, but in addition it is endogenously
accumulated. (�e savings generated by sh change the level of d.) So, variants of our
setup, while similar in their algebra, add convenient �exibility to our interpretations.

��For instance, measure productivity as D ≡ √H. In that case we would replace Hc in (�.��) by the
equally kosher formulation D�c .
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In the main text we focused on the case a + c < �, and then described the steady
state (k̂∗ , ĥ∗ , ŷ∗). We also discussed how the system changed into an endogenous
growth model once every input is accumulable, which in the constant returns to scale
setting implies a + c = �. In this Appendix we show how to calculate the endogenous
rate of growth in this case, and also provide a convenient formula for the long run
ratio of human to physical capital.

De�ne r to be the ratio H�K, which of course is just the same as ĥ�k̂. Because a + c
is equal to �, in what follows we will simply replace c by �− a. �e production function
(�.��) in its per-capita form can be rewritten to see that

ŷ
k̂
= r�−a and ŷ

ĥ
= r−a , (�.��)

In the main text, we assumed that depreciation rates of physical and human capital,
as well as the rates of technical progress and population growth, are all zero (but our
method of analysis doesn’t depend on any of these assumptions). �en, combining
(�.��) and (�.��), we see that

(� + n) k̂(t + �)
k̂(t) = sk

ŷ(t)
k̂(t) + � = skr(t)�−a + �, (�.��)

and likewise combining (�.��) and (�.��),

(� + n) ĥ(t + �)
ĥ(t) = sh

ŷ(t)
ĥ(t) + � = shr(t)−a + �. (�.��)

Equations (�.��) and (�.��) together yield
r(t + �)
r(t) =

shr(t)−a + �
skr(t)�−a + � ,

and manipulating this a bit gives us the two equivalent forms

r(t + �) = sh
sk

� + [r(t)a�sh]
� + [r(t)a−��sk] = r(t)

[sh�r(t)] + r(t)a−�
sk + r(t)a−� . (�.��)

Now we can use (�.��) to establish the following two Observations:
[�] If at any date t, we have r(t) > sh�sk , then it must be that r(t) > r(t + �) > sh�s + k.
[�] If at any date t, we have r(t) < sh�sk , then it must be that r(t) < r(t + �) < sh�sk .

�ese two Observations, coupled with the statement (see main text) that once r(t)
equals sh�sk it will stay right there, constitute the proof of convergence.

We will prove Observation �. (�e proof of Observation � is analogous.) Imagine
that at some date t, we have r(t) > sh�sk . �en it is easy to see that

� + [r(t)a�sh]
� + [r(t)a−��sk] > �,

and combining this with the �rst equality in (�.��), we see that r(t + �) > sh�sk .
Likewise, it is easy to see that

[sh�(r(t)] + r(t)a−�
sk + r(t)a−� < �,

and combining this observation with the second equality in (�.��), we conclude that
r(t) > r(t + �). �is proves Observation �, and our proof of convergence is complete.


