EC9AA Term 3: Lectures on Economic Inequality

Debraj Ray, University of Warwick, Summer 2023

Supplement to Slides 2: A General Model of Occupational Choice

A General Model of Occupational Choice

- **■ Production with capital and occupations.**
- Population distribution on occupations n (endogenous).
- Physical capital k.
- Production function y = F(k, n), CRS and strictly quasiconcave.
- \blacksquare Training cost function $\mathbf x$ on occupations:
- incurred up front.
- parents pay directly, or bequeath and then children pay.

Prices

- Perfect competition.
- Return on capital fixed at rate r (international k-mobility).
- "Wage" vector $\mathbf{w} \equiv \{w(h)\}$ endogenously determined for each occupation h.
- Together with r, w supports profit-maximization.

Supporting Profit Maximization

- $lackbox{f F}(k,m n)$ is associated with a unit cost function $c({f w},r)$.
- Find it by minimizing unit cost of production for any (\mathbf{w}, r) .
- If that unit cost \neq output price:
- \mathbf{w},r) cannot support profit maximization at positive output.
- Otherwise, it does.
- Note: For any w, there is a unique scaling $\mu>0$ such that $(\mu {\bf w},r)$ supports profit maximization.

Households

- Continuum of households, each with one agent per generation.
- y=z+b+x(h) wealth consumption fin. bequests occ. choice
- Child wealth $y' = (1 + r)b + \mathbf{w}_{t+1}(h)$.
- \blacksquare Parent picks (b,h) to maximize utility.
- No debt! $b \ge 0$.
- Child grows up; back to the same cycle.

Preferences and Equilibrium

■ **Preferences**: mix of income-based and nonpaternalistic

$$U(z) + \delta[\theta V(y') + (1 - \theta)P(y')]$$

- **Equilibrium**: wages \mathbf{w}_t , value functions V_t , occupational distributions n_t s.t.:
- Each family i chooses $\{h_t(i), b_t(i)\}$ optimally
- Occupational choices $\{h_t(i)\}$ aggregate to $oldsymbol{n}_t$;
- Firms willingly demand $m{n}_t$ at prices (\mathbf{w}_t, r) .
- Note: physical capital willingly supplied to meet any demand.

Steady State

- A **steady state** is a stationary equilibrium with positive output and wages:
- $\mathbf{w}_t = \mathbf{w} \gg 0$, and
- $(k_t, oldsymbol{n}_t) = (k, oldsymbol{n})$ for all t, and $F(k, oldsymbol{n}) > 0$.

Rich Occupational Structure

- The richness assumption [R]:
- The set of all training costs is a compact interval [0,X].
- If \boldsymbol{n} is zero on any positive interval of training costs, then y=0.

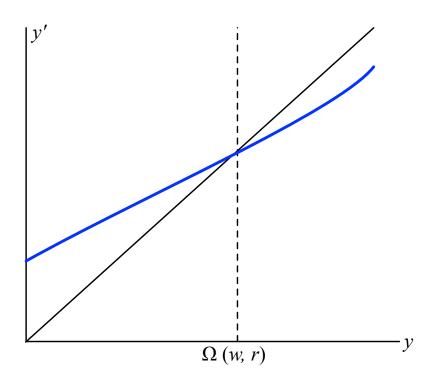
A Benchmark With No Occupational Choice

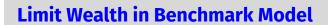
- Financial bequests (at rate r) + just one occupation (wage w).
- Parent with wealth y selects $b \ge 0$ to

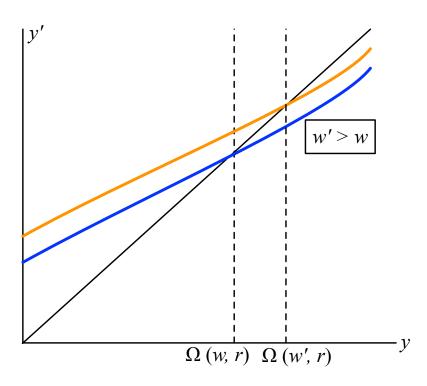
$$\max U(c) + \delta[\theta V(y') + (1 - \theta)P(y')].$$

- Child wealth $y' \equiv w + (1+r)b$, increases in y.
- $\qquad \qquad \textbf{Converges to } \textbf{limit wealth } \Omega(w,r) < \infty.$
- This needs $\theta < 1$.
- Could depend on initial y (as in non-concave Ramsey model); we exclude that.

Limit Wealth in Benchmark Model



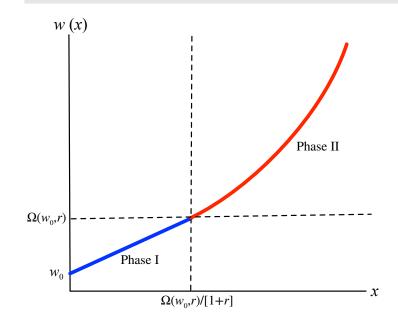




Back to Occupational Choice

Theorem 1

Every steady state w is fully described by a **two-phase property**:



In Phase I w is linear in x: there is $w_0 > 0$ such that

$$w(x) = w_0 + (1+r)x$$
 for all $x \le \frac{\Omega(w_0, r)}{1+r}$

- All families in Phase I have the **same overall wealth** $\Omega(w_0,r)$.
- In Phase II, w follows the differential equation

$$w'(x) = \frac{U'(w(x) - x)}{\delta[\theta U'(w(x) - x) + (1 - \theta)P'(w(x))]}$$

- with endpoint to patch with I: $w(x) = w_0 + (1+r)x$ as $x \downarrow \frac{\Omega(w_0,r)}{1+r}$.
- Families located in Phase II have different wealths and lifetime consumptions.

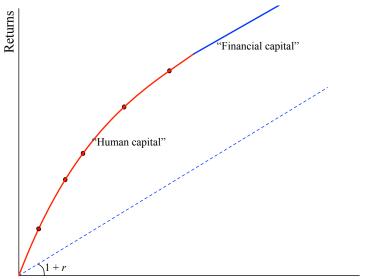
■ Closer look at Phase II

$$w'(x) = \frac{U'(w(x) - x)}{\delta[\theta U'(w(x) - x) + (1 - \theta)P'(w(x))]}$$

- Shape comes from Euler equation:
- depends fundamentally on preferences
- lacktriangledown technology only serves to pin down baseline w_0 (remember remark on scaling)

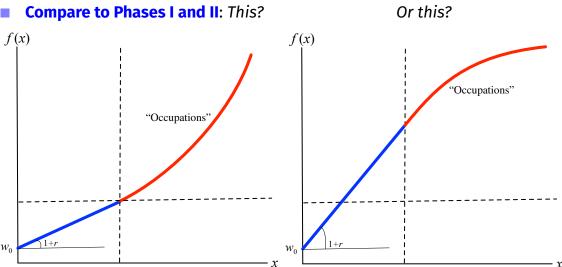
A Testable Implication

Recall standard model. By assumption:



Investments/Occupations

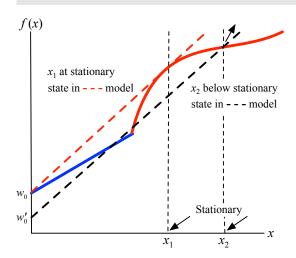
A Testable Implication



A Testable Implication

Theorem 2

The average return $\frac{w(x)-w_0}{x}$ to occupational investment is flat in Phase I and strictly increasing in Phase II.



Contradiction to unique limit wealth in benchmark, increasing in w.

Unique Steady State with Rich Occupational Structure

We end with a fundamental difference from two-occupation case:

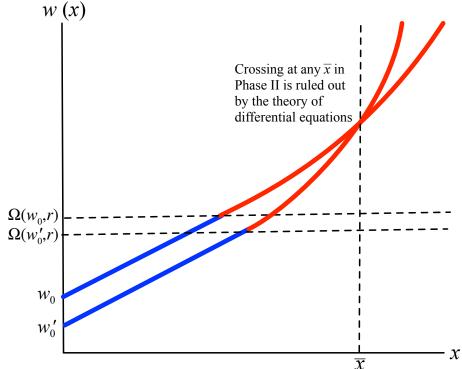
Theorem 3

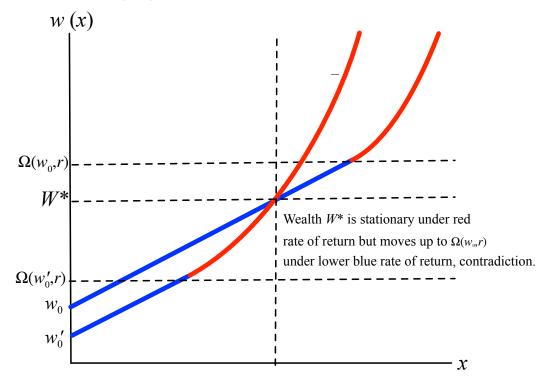
There is at most one steady state.

Proof idea:

- No two members of the two-phase family (indexed only by w_0) can cross.
- Then only one w_0 can support profit maximization with positive output.

(For all wages must co-move with intercept wage w_0 .)





Three Remarks

- I. Alienable and Inalienable Capital
- In Phase I, there is perfect equality of overall wealth.
- (All families in Phase I must have wealth equal to $\Omega(w,r)$.)
- Families at different occupations in Phase II cannot have the same wealth.
- Thus, "most" inequality in this model comes from nonalienable capital.
- This focus will change when we consider automation in the next set of models and the decline in functional labor share.

Three Remarks

- II. When is Phase II nonempty?
- When there is a large occupation span relative to bequest motive:
- Discounting.
- Poverty, via TFP differences.
- Growth in TFP, lowers effective bequest motive
- World return on capital.
- Globalization: new occupations.

Three Remarks

- **III. Two Notions of History-Dependence**
- At the macro-level, history-dependence depends on occupational richness.
- A lot of history-dependence at the individual level.
- The distribution as a whole is pinned down, but not who occupies which slot.