Debraj Ray, University of Warwick, Summer 2020

Supplement to Slides 1
Recall our question:

What explains the high rates of return to the rich?

Two broad groups of answers:

- The rich have access to better information on rates of return
- The rich have physical access to better rates of return.
A theory of individual-specific r:

- Higher individual wealth \Rightarrow higher rate of return on it.
- More effort spent on gathering information.

Compare/contrast with “efficiency wage” models:

- Deliberate investment in information yields the higher rate
 unlike nutrition-efficiency, but similar to dynamic incentives
- Payoff is multiplicative (on r) as opposed to additive
 other “efficiency-wage” models generate level effects
A Model of Investing in Investment

- Individuals with more financial wealth will spend more effort finding good rates of return on it.

- Simplest model of this:

 \[
 \sum_{t=0}^{\infty} \delta^t \frac{c_t^{1-\theta} - 1}{1-\theta},
 \]

 where \(\theta > 0 \), and

 \[
 c_t = (1 + r_{t-1})F_{t-1} + w(1 - e_t) - F_t,
 \]

 and

 \[
 r_t = \Psi(e_t)
 \]

- \(F \): financial wealth, \(w \): wage rate, and \(e \): informational effort.

- \(\Psi \) concave.
A Model of Investing in Investment

- Familiar Euler equation for choice of F_t:
 \[
 \left(\frac{c_{t+1}}{c_t} \right)^\theta = \delta r_t
 \]

- Slightly less familiar Euler equation for choice of e_t:
 \[
 \left(\frac{c_{t+1}}{c_t} \right)^\theta = \delta \frac{F_t}{w} \Psi'(e_t).
 \]

- Proposition. Individuals with a higher ratio of F to w earn a higher rate of return, and grow faster, even if the effect on their savings rate is ambiguous.

 - Proof. Combine the two Euler equations and definition of r to see that
 \[
 r_t = \frac{F_t}{w} \Psi'(e_t) = \Psi(e_t)
 \]
 for all t. Now prove the proposition by contradiction.

- Note: s and r reinforce each other when $\theta < 1$.

Familiar Euler equation for choice of F_t:
\[
\left(\frac{c_{t+1}}{c_t} \right)^\theta = \delta r_t
\]

Slightly less familiar Euler equation for choice of e_t:
\[
\left(\frac{c_{t+1}}{c_t} \right)^\theta = \delta \frac{F_t}{w} \Psi'(e_t).
\]

Proposition. Individuals with a higher ratio of F to w earn a higher rate of return, and grow faster, even if the effect on their savings rate is ambiguous.

Proof. Combine the two Euler equations and definition of r to see that
\[
r_t = \frac{F_t}{w} \Psi'(e_t) = \Psi(e_t)
\]
for all t. Now prove the proposition by contradiction.

Note: s and r reinforce each other when $\theta < 1$.

A Model of Investing in Investment

- Or you can have your cake and eat it too. Consider

\[c_t = r_{t-1}F_{t-1} + w - z_t - F_t, \]

where \(r_t = \Phi(z_t) \) (e.g., paying an expert to do your research).

- Then Euler equation for \(z \) is given by

\[\left(\frac{c_{t+1}}{c_t} \right)^\theta = \delta F_t \Phi'(z_t), \]

- **Proposition.** Those with higher \(F \) earn higher rates of return.

- PS: Contrast the two propositions.