Lectures on Economic Inequality

Warwick, Summer 2017, Slides 5
Debraj Ray

- Overview: Convergence and Divergence
- Inequality and Divergence: Economic Factors
- Inequality and Divergence: Psychological Factors
- Inequality, Polarization and Conflict

Small and Large Groups in Conflict

- Tyranny of the majority (Tocqueville 1835, Mill 1959) "Society . . . practices a social tyranny more formidable than many kinds of political oppression
... [imposing] its own ideas and practices as rules of conduct on those who dissent from them ..." Mill 1859

III. Small and Large Groups in Conflict

democracy in america. The Logic of Collective Action

ALEXIS DE TOCQUEVILLE,
avocat a la cour royale de paris,
ETC., ETC.

- Tyranny of the majority (Tocqueville 1835, Mill 1959) "Society . . . practices a social tyranny more formidable than many kinds of political oppression ... [imposing] its own ideas and practices as rules of conduct on those who dissent from them ..." Mill 1859

Tyranny of the minority (Pareto 1927, Olson 1965): "[A] protectionist measure provides large benefits to a small number of people, and causes a very great number of consumers a slight loss. This circumstance makes it easier to put a protection measure into practice." Pareto 1927

Two Related Themes

I. The persistence of inefficient conflict

- Incomplete Information: Myerson-Satterthwaite (1983), Fearon (1995), Esteban and Ray (2001), Bester and Warneryd (2006), Sánchez-Pagés (2008).
- Limited Commitment: Fearon (1995), Slantchev (2003), Garfinkel and Skaperdas (2000), Jackson and Morelli (2007), Powell (2007), Leventoglu and Slantchev (2007).
II. Multiple threats to peace
- salience of different markers
- geography, religion, occupation, caste, class ...
- our specific focus: small versus large groups.
- We show how group size in conflict is related to the nature of conflict payoffs.
- We emniricallv test our nredictions.

Relationship to Last Lecture

■ In last lecture, I wrote down a model of conflict:

- assuming that the decision to participate in conflict has already been made
- In this lecture I study the participation decision explicitly
- But in a simpler setting.

A Model

- Set of individuals $[0,1]$.
- Contestable surplus v to be allocated
- Important later just how the surplus is generated.
- Status-quo allocation: $\mathbf{x}=\{x(i)\}$ on $[0,1]$;
- $\int x(i) d i=v$.
- Group (ethnicity, class, religion, location ...)
- Comes from some given collection of subsets of $[0,1]$
- Can initiate conflict against its complement (the defender or "State").

Conflict

- Initiator size m, defender size $\bar{m}(m+\bar{m}=1)$.
- per-capita prizes π and $\bar{\pi}$.
- Winner gets to allocate prize the way they want.
- $v, \pi, \bar{\pi}$
- Initiator spends r per capita, defender spends \bar{r} per capita.
- $\operatorname{Cost} c(r)=(1 / \alpha) r^{\alpha}, \alpha>1$.
- Win probability $p=m r / R$, where $R=m r+\overline{m r}$.

■ Net payoff per capita $\pi \frac{m r}{R}-c(r)$.

- First-order condition for initiator:

$$
\pi\left[\frac{m}{R}-\frac{m^{2} r}{R^{2}}\right]=c^{\prime}(r)=r^{\alpha-1}
$$

- Payoff

$$
\pi \frac{m r}{R}-c(r) .
$$

- First-order condition for initiator:

$$
\pi \frac{m}{R}\left[1-\frac{m r}{R}\right]=c^{\prime}(r)=r^{\alpha-1}
$$

- Payoff

$$
\pi \frac{m r}{R}-c(r)
$$

- First-order condition for initiator:

$$
\pi \frac{m}{R} \frac{\overline{m r}}{R}=c^{\prime}(r)=r^{\alpha-1}
$$

- Payoff

$$
\pi \frac{m r}{R}-c(r) .
$$

- First-order condition for initiator:

$$
\pi m \bar{m}=R^{2} \frac{r^{\alpha-1}}{\bar{r}}
$$

- Likewise, for the defender:

$$
\bar{\pi} m \bar{m}=R^{2} \frac{\bar{r}^{\alpha-1}}{r}
$$

- So relative per-capita contribution by initiator is

$$
\frac{r}{\bar{r}}=\left(\frac{\pi}{\bar{\pi}}\right)^{1 / \alpha} \equiv \gamma
$$

- Now obtain a closed form for payoff.
- Manipulate first-order condition

$$
\pi \frac{m}{R} \frac{\overline{m r}}{R}=c^{\prime}(r)=r^{\alpha-1}
$$

- Now obtain a closed form for payoff.
- Manipulate first-order condition

$$
\pi \frac{m r}{R} \frac{\overline{m r}}{R}=c^{\prime}(r)=r^{\alpha}
$$

- Now obtain a closed form for payoff.
- Manipulate first-order condition

$$
\pi p \bar{p}=r^{\alpha}
$$

- So expected payoff from conflict given by

$$
\pi p-(1 / \alpha) r^{\alpha}
$$

■ Now obtain a closed form for payoff.

- Manipulate first-order condition

$$
\pi p \bar{p}=r^{\alpha}
$$

- So expected payoff from conflict given by

$$
\pi p-(1 / \alpha) \pi p \bar{p}
$$

- Now obtain a closed form for payoff.
- Manipulate first-order condition

$$
\pi p \bar{p}=r^{\alpha}
$$

- So expected payoff from conflict given by

$$
\pi p-(1 / \alpha) \pi p(1-p)
$$

■ Now obtain a closed form for payoff.

- Manipulate first-order condition

$$
\pi p \bar{p}=r^{\alpha}
$$

- So expected payoff from conflict given by

$$
\begin{aligned}
& \pi p-(1 / \alpha) \pi p(1-p) \\
& =\pi\left[k p+(1-k) p^{2}\right]
\end{aligned}
$$

where $k \equiv(\alpha-1) / \alpha \in(0,1)$.

- And the win probability p is given by

$$
p=\frac{m r}{m r+(1-m) \bar{r}}
$$

■ Now obtain a closed form for payoff.

- Manipulate first-order condition

$$
\pi p \bar{p}=r^{\alpha}
$$

- So expected payoff from conflict given by

$$
\begin{aligned}
& \pi p-(1 / \alpha) \pi p(1-p) \\
& =\pi\left[k p+(1-k) p^{2}\right]
\end{aligned}
$$

where $k \equiv(\alpha-1) / \alpha \in(0,1)$.

- And the win probability p is given by

$$
p=\frac{m(r / \bar{r})}{m(r / \bar{r})+(1-m)}
$$

■ Now obtain a closed form for payoff.

- Manipulate first-order condition

$$
\pi p \bar{p}=r^{\alpha}
$$

- So expected payoff from conflict given by

$$
\begin{aligned}
& \pi p-(1 / \alpha) \pi p(1-p) \\
& =\pi\left[k p+(1-k) p^{2}\right]
\end{aligned}
$$

where $k \equiv(\alpha-1) / \alpha \in(0,1)$.

- And the win probability p is given by

$$
p=\frac{m(r / \bar{r})}{m(r / \bar{r})+(1-m)}=\frac{m \gamma}{m \gamma+(1-m)}
$$

where $\gamma=(r / \bar{r})=(\pi / \bar{\pi})^{1 / \alpha}$.

Summary So Far

- Nash equilibrium of this game has three components:

1. Relative resource contribution:

$$
\gamma \equiv \frac{r}{\bar{r}}=\left(\frac{\pi}{\bar{\pi}}\right)^{1 / \alpha}
$$

2. Win probability for the group:

$$
p=\frac{m \gamma}{m \gamma+(1-m)}
$$

3. Expected per-capita payoff to group:

$$
\pi\left[k p+(1-k) p^{2}\right], \text { where } k \equiv \frac{\alpha-1}{\alpha} .
$$

Threats to Peace

- A peaceful allocation $\mathbf{x} \in V$ is blocked if for some initiator G

$$
\pi\left[k p+(1-k) p^{2}\right]>\int_{G} x(i)
$$

- A society is
- Prone to conflict if the "unbiased" status quo $x(i)=v$ is blocked.
- Actively conflictual if every peaceful allocation, unbiased or not, is blocked.

Private Prize (total value v so that $\pi=v / m$ and $\bar{\pi}=v / \bar{m}$)

- Nash equilibrium of this game has three components:

1. Relative resource contribution:

$$
\gamma \equiv \frac{r}{\bar{r}}=\left(\frac{\pi}{\bar{\pi}}\right)^{1 / \alpha}
$$

2. Win probability for the group:

$$
p=\frac{m \gamma}{m \gamma+(1-m)} .
$$

3. Expected per-capita payoff to group:

$$
\pi\left[k p+(1-k) p^{2}\right], \text { where } k \equiv \frac{\alpha-1}{\alpha} .
$$

Private Prize (total value v so that $\pi=v / m$ and $\bar{\pi}=v / \bar{m}$)

- Nash equilibrium of this game has three components:

1. Relative resource contribution:

$$
\gamma \equiv \frac{r}{\bar{r}}=\left(\frac{\pi}{\bar{\pi}}\right)^{1 / \alpha}=\left(\frac{v / m}{v / \bar{m}}\right)^{1 / \alpha}=\left(\frac{\bar{m}}{m}\right)^{1 / \alpha} .
$$

2. Win probability for the group:

$$
p=\frac{m \gamma}{m \gamma+(1-m)}
$$

3. Expected per-capita payoff to group:

$$
\pi\left[k p+(1-k) p^{2}\right], \text { where } k \equiv \frac{\alpha-1}{\alpha} .
$$

Private Prize (total value v so that $\pi=v / m$ and $\bar{\pi}=v / \bar{m}$)

- Nash equilibrium of this game has three components:

1. Relative resource contribution:

$$
\gamma \equiv \frac{r}{\bar{r}}=\left(\frac{\pi}{\bar{\pi}}\right)^{1 / \alpha}=\left(\frac{v / m}{v / \bar{m}}\right)^{1 / \alpha}=\left(\frac{\bar{m}}{m}\right)^{1 / \alpha} .
$$

2. Win probability for the group:

$$
p=\frac{m \gamma}{m \gamma+(1-m)}=\frac{m^{k}}{m^{k}+(1-m)^{k}}
$$

3. Expected per-capita payoff to group:

$$
\pi\left[k p+(1-k) p^{2}\right], \text { where } k \equiv \frac{\alpha-1}{\alpha} .
$$

Private Prize (total value v so that $\pi=v / m$ and $\bar{\pi}=v / \bar{m}$)

- Nash equilibrium of this game has three components:

1. Relative resource contribution:

$$
\gamma \equiv \frac{r}{\bar{r}}=\left(\frac{\pi}{\bar{\pi}}\right)^{1 / \alpha}=\left(\frac{v / m}{v / \bar{m}}\right)^{1 / \alpha}=\left(\frac{\bar{m}}{m}\right)^{1 / \alpha} .
$$

2. Win probability for the group:

$$
p=\frac{m \gamma}{m \gamma+(1-m)}=\frac{m^{k}}{m^{k}+(1-m)^{k}}
$$

3. Expected per-capita payoff to group:

$$
\frac{v}{m}\left[k p+(1-k) p^{2}\right], \text { where } k \equiv \frac{\alpha-1}{\alpha} .
$$

Unbiased peacetime per-capita payoff: v

Proposition 1. There is $m^{*} \in(0,1 / 2)$ such that a society with groups of size $m<m^{*}$ will be conflict-prone.

■ Need $\frac{v}{m}\left[k p+(1-k) p^{2}\right]>v$, where $p=\frac{m^{k}}{m^{k}+(1-m)^{k}}$.

Proposition 1. There is $m^{*} \in(0,1 / 2)$ such that a society with groups of size $m<m^{*}$ will be conflict-prone.

■ Need $k p+(1-k) p^{2}>m$, where $p=\frac{m^{k}}{m^{k}+(1-m)^{k}}$.

Proposition 1. There is $m^{*} \in(0,1 / 2)$ such that a society with groups of size $m<m^{*}$ will be conflict-prone.

■ Need $k p+(1-k) p^{2}>m$, where $p=\frac{m^{k}}{m^{k}+(1-m)^{k}}$.

Proposition 1. There is $m^{*} \in(0,1 / 2)$ such that a society with groups of size $m<m^{*}$ will be conflict-prone.

■ Need $k p+(1-k) p^{2}>m$, where $p=\frac{m^{k}}{m^{k}+(1-m)^{k}}$.

- Of course, there is some allocation that will appease the initiator:
- after all, conflict is inefficient.
- But that allocation will need to vary with the potential threat.
- If there are several potential initiators, this could be hard.
- Formalize this idea:
- Balanced collection is finite set \mathscr{C} of potential initiators:
- There are weights $\lambda(G) \in[0,1]$, one for each $G \in \mathscr{C}$, such that

$$
\sum_{G \in \mathscr{C}, i \in G} \lambda(G)=1 \text { for every } i \text { in society }
$$

What Does Balancedness Mean?

- Essentially, that there are no central subgroups of individuals.
- Example: \mathscr{C} only contains subgroups of society that contain $[0,1 / 2]$.
- Suppose there are "balancing weights" $\{\lambda(G)\}$.
- Then entire set of weights add to 1 :

$$
\sum_{G \in \mathscr{C}} \lambda(G)=1
$$

- Now pick any G^{\prime} with $\lambda\left(G^{\prime}\right)>0$. There is $j \notin G^{\prime}$. So we must have

$$
\sum_{G \in \mathscr{C}, j \in G} \lambda(G)<1
$$

which contradicts balancedness.

Proposition 2.

- Suppose there is a balanced collection \mathscr{C} of initiators, each with $m<m^{*}$.
- Then society is actively conflictual.
- Proof. Suppose there is indeed a peaceful allocation \mathbf{x}.
- For every initiator $G \in \mathscr{C}$ of size m_{G},

$$
\begin{aligned}
& \int_{i \in G} x(i) \geq v\left[k p\left(m_{G}\right)+(1-k) p\left(m_{G}\right)^{2}\right]>v m_{G} \\
& \text { [appeasement] } \quad\left[\mathbf{m}<\mathbf{m}^{*}\right]
\end{aligned}
$$

- So

$$
\int_{i \in N} x(i)=\sum_{G \in \mathscr{C}} \lambda(G) \int_{i \in G} x(i)>\sum_{G \in \mathscr{C}} \lambda(G) m_{G} v=v
$$

(changing order of summation and integrals). Contradiction.

Corollary.

- Suppose society can be partitioned into markers of size $m<m^{*}$.
- Then society is actively conflictual.
- Even stronger results possible.
- E.g. quadratic costs: then $m^{*}=1 / 4$.
- If $m=10 \%$, actively conflictual with six such pairwise disjoint groups.
- Yet not balanced.

Public Goods

- Unit budget; can only be used to produce public goods 1-1.
- Several public goods, one (or one mix) for each group; e.g.:
- support of religion
- provision of public health care or education
- different weights on tariffs vs liberalization

■ Per-capita payoff from G-good: Ψ if $i \in G, 0$ otherwise.

- This is stark but not needed.

Monetizable Public Goods

- Peacetime. Pick any maximal group of size m_{1}; only produce that good.
- Make side-payments to everyone else.
- Overall worth v equals Ψm_{1}, fully TU.
- Conflict. If an initiator G of size m wins:
- uses budget to produce only the G-good.
- payoff per-capita $\pi=\Psi$.

■ If defender wins:

- produces for its largest group, say of size m^{\prime}.
- payoff per-capita $\bar{\pi}=\mu \Psi$, where $\mu=m^{\prime} /(1-m)$.

Proposition 3.

- Assume that the prize is public.
- Let $m_{1} \geq m_{2}$ be largest and second largest group sizes in society.
- Then society is conflict-prone if and only if

$$
m_{1}>\frac{1-\mu_{1}^{-1 / \alpha} k}{\left(\mu_{1}^{-1 / \alpha}-1\right)^{2}}
$$

where $\mu_{1}=m_{2} /\left(1-m_{1}\right)$.

- In this case, the largest group prefers conflict to unbiased allocation.
- Condition more likely to hold when $\mu_{1}=m_{2} /\left(1-m_{1}\right)$ is small.
- One large group with a relatively fragmented opposition.
- E.g., if there are two groups, condition never holds.

Conflict-Proneness

- Largest group $\left(m_{1}\right)$ vs share of second group in remainder $\left(m_{2} /\left(1-m_{1}\right)\right)$

Arbitrary Peacetime Allocations and Active Conflict

- Illustration.
- Society is partitioned into $M \geq 2$ groups. each of equal size.
- Claim. There is a unique \hat{M}, such that

$$
(M-1)^{1-k}-2>(M-1)^{k}-k M
$$

iff $M \geq \hat{M}$. Note: $\hat{M} \geq 3$.

Proposition 4.

- Suppose that $M \geq \hat{M}$. Then a society partitioned into potential initiators of equal size is actively conflictual.
- Proof: simply verify the conflict-proneness condition for $M \geq \hat{M}$:

$$
\frac{1}{M}>\frac{1-(M-1)^{1 / \alpha} k}{\left[(M-1)^{1 / \alpha}-1\right]^{2}}
$$

Non-Transferability and Public Prizes

- Public goods are not like oil revenues.
- Think of ethnic or religious representation, or the sharing of political power.
- May be impossible to conceive of "compensating" financial transfers.
- No sidepayments. Allocate the budget to different goods.

Limited Transferability

- Two groups of size m_{1} and $1-m_{1}$.
- Say $\sigma \in(0,1)$ of the budget freely allocated using financial transfers.
- Remainder can only be "transferred" by reallocating the budget.
- Unbiased peacetime payoff per person is given by

$$
\Psi\left[\sigma m_{1}+(1-\sigma) \frac{1}{2}\right]
$$

where m_{1}, as before, is the size of the larger group.

- If only budget transferability, payoff drops to $\Psi / 2$ (as opposed to Ψm_{1} with financial transfers).

Proposition 5.

- Public prize, limited transferability (σ), two groups.
- Then there is $m^{*}(\sigma) \in(0.5,1)$ such that society is conflict-prone if and only if $m_{1} \geq m^{*}(\boldsymbol{\sigma})$.

■ Note. $m^{*}(\sigma) \rightarrow 1$ as $\sigma \rightarrow 1$.

- Examples:
- Two groups, quadratic cost, $\sigma=0, m_{1}>61.8 \%$.
- Three groups, $\sigma=0, \alpha=1.2, m_{1}>39.7 \%$.
- The intuition that larger groups matter continues to hold.

Empirics

Groups and Conflict

■ Geo-referenced ethnic groups (GREG); Weidman, Rod and Cederman 2010.
digitized version of Atlas Narodov Mira 1964.

- 145 countries, homelands of 929 ethnic groups as in ANM 1964

Split by country: 1475 group-country units.

- Our study runs from 1960-2006, but homelands are fixed as in ANM 1964.

■ Group-level conflict data from Cederman, Buhaug and Rod 2009.

- Subset of UCDP/PRIO Armed Conflict Dataset.
- Incidence: armed conflict against State with 25+ battle deaths.
- Onset: if armed conflict against State with 25+ deaths starts that year

Prizes:

■ Private prize. Based on oil availability in ethnic homeland:

- $\ln \left(\right.$ ethnic homeland area covered by oil $\left.{ }^{\prime} 000 \mathrm{~km}^{2}\right) \times$ international oil price.
- Merges GREG with geo-ref'd PETRODATA; Lujala, Rod and Thieme 2007.
- Robustness: land, minerals.

■ Public prize. Autocracy index from Polity IV: "derived from codings of the competitiveness of political participation, the regulation of participation, the openness and competitiveness of executive recruitment, and constraints on the chief executive."

- Use pre-sample information exclusively.
- Robustness:
- Other measures of publicness: exclusion, religious freedoms, EMR (2012)
- Everything not private (as defined above) is public: more on this later.
- Country and time fixed effects throughout
- Population and population density
- Existence of diamond mines
- Mountainous terrain
- Group's distance to country capital
- Number of years since last group-level onset
- Lagged conflict incidence
- GDP per capita
- Whether the ethnic group is represented in power
- Whether the ethnic group is partitioned across countries

Specification

■ Baseline: $\operatorname{INCIDENCE~}_{c, g, t}=\beta_{1} \operatorname{SIZE}_{c, g}+\beta_{2} \operatorname{SIZE}_{c, g} \times \mathrm{OIL}_{c, g, t}+\beta_{3} \mathrm{OIL}_{c, g, t}$

$$
+\beta_{4} \mathrm{SIZE}_{c, g} \times \mathrm{AUTOC}_{c}+X_{c, g, t}^{\prime} \alpha+Y_{c, t}^{\prime} \delta+Z_{c}^{\prime} \gamma+W_{t}^{\prime} \eta+\varepsilon_{c, g, t},
$$

- for countries $c=1, \ldots, C$, groups $g=1, \ldots, G_{c}$, and dates $t=1, \ldots, T$.
- Prediction: (narrow view of public goods): $\beta_{2}<0, \beta_{3}>0$.
- ("anything not private is public"): $\beta_{2}<0$, and $\beta_{1}>0$ when we impose $\beta_{4}=0$.
- linear probability model

Interpreting interactions in other models nontrivial; Ai and Norton 2003. statistical conclusions still valid for nonlinear models. robust standard errors clustered at the group level.

	Group Size and Conflict Incidence							
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
SIZE	$\begin{gathered} -0.002 \\ (0.307) \end{gathered}$	$\begin{array}{r} 0.003 \\ (0.101) \end{array}$	$\begin{array}{r} 0.007 * * * \\ (0.001) \end{array}$	$\begin{array}{r} 0.007 * * * \\ (0.001) \end{array}$	-0.003 (0.116)	$\begin{array}{r} -0.005^{*} * \\ (0.014) \end{array}$	$\begin{array}{r} -0.002 \\ (0.328) \end{array}$	$\begin{array}{r} 0.003 \\ (0.156) \end{array}$
OIL	$\begin{gathered} 0.448 * * \\ (0.040) \end{gathered}$	$\begin{array}{r} 0.684 * * * \\ (0.009) \end{array}$	$\begin{array}{r} 0.830 * * * \\ (0.002) \end{array}$	$\begin{array}{r} 0.795 * * * \\ (0.008) \end{array}$		$0.446^{* *}$ (0.040)	$\begin{array}{r} 0.606 * * \\ (0.012) \end{array}$	$\begin{gathered} 0.762 * * \\ (0.010) \end{gathered}$
SIZE \times OIL	(0.040)	-1.363***	-1.528***	-1.521***		(0.040)	(0.012)	-1.390***
		(0.000)	(0.000)	(0.000)				(0.000)
SIZE \times AUTOC					$\begin{array}{r} 0.008 * * \\ (0.012) \end{array}$	$\begin{gathered} 0.008^{* *} \\ (0.011) \end{gathered}$	$\begin{array}{r} 0.009 * * * \\ (0.006) \end{array}$	$\begin{array}{r} 0.009 * * \\ (0.015) \end{array}$
GIP			$\begin{array}{r} -0.003 * * \\ (0.033) \end{array}$	$\begin{gathered} -0.003 * \\ (0.057) \end{gathered}$			$\begin{array}{r} -0.003 * * \\ (0.040) \end{array}$	$\begin{gathered} -0.003^{*} \\ (0.057) \end{gathered}$
GROUPAREA			$\begin{array}{r} 0.000 \\ (0.369) \end{array}$	$\begin{array}{r} 0.000 \\ (0.214) \end{array}$			$\begin{gathered} -0.000 \\ (0.543) \end{gathered}$	$\begin{array}{r} 0.000 \\ (0.219) \end{array}$
SOILCONST			$\begin{aligned} & -0.001 * \\ & (0.097) \end{aligned}$	$\begin{array}{r} -0.000 \\ (0.518) \end{array}$			$\begin{array}{r} -0.000 \\ (0.152) \end{array}$	$\begin{gathered} -0.000 \\ (0.472) \end{gathered}$
DISTCAP			$\begin{array}{r} 0.001 * * * \\ (0.000) \end{array}$	$\begin{array}{r} 0.002 * * * \\ (0.000) \end{array}$			$\begin{array}{r} 0.001 * * * \\ (0.000) \end{array}$	$\begin{array}{r} 0.002 * * * \\ (0.000) \end{array}$
MOUNT			$\begin{aligned} & 0.002 * \\ & (0.080) \end{aligned}$	$\begin{array}{r} 0.002 \\ (0.111) \end{array}$			$\begin{array}{r} 0.002 \\ (0.109) \end{array}$	$\begin{array}{r} 0.002 \\ (0.130) \end{array}$
PARTITIONED			$\begin{gathered} -0.001 \\ (0.553) \end{gathered}$	$\begin{array}{r} -0.001 \\ (0.288) \end{array}$			$\begin{gathered} -0.001 \\ (0.487) \end{gathered}$	$\begin{array}{r} -0.001 \\ (0.243) \end{array}$
GDP				$\begin{array}{r} 0.001 \\ (0.140) \end{array}$				$\begin{array}{r} 0.003 * * * \\ (0.006) \end{array}$
POP				$\begin{array}{r} 0.001 \\ (0.556) \end{array}$				$\begin{array}{r} 0.001 \\ (0.710) \end{array}$
LAG	$\begin{array}{r} 0.895 * * * \\ (0.000) \end{array}$	$\begin{array}{r} 0.895 * * * \\ (0.000) \end{array}$	$\begin{array}{r} 0.894 * * * \\ (0.000) \end{array}$	$\begin{array}{r} 0.893 * * * \\ (0.000) \end{array}$	$\begin{array}{r} 0.899 * * * \\ (0.000) \end{array}$	$\begin{array}{r} 0.899 * * * \\ (0.000) \end{array}$	$\begin{array}{r} 0.898 * * * \\ (0.000) \end{array}$	$\begin{array}{r} 0.898 * * * \\ (0.000) \end{array}$
c	$\begin{aligned} & -0.002 \\ & (0.207) \end{aligned}$	$\begin{array}{r} -0.005 * * * \\ (0.006) \end{array}$	$\begin{array}{r} -0.009 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -0.034 \\ (0.411) \end{array}$	$\begin{array}{r} 0.011 * * * \\ (0.000) \end{array}$	$\begin{array}{r} 0.013 * * * \\ (0.000) \end{array}$	$\begin{array}{r} 0.010 * * * \\ (0.001) \end{array}$	$\begin{aligned} & -0.041 \\ & (0.319) \end{aligned}$
R^{2}	0.844	0.844	0.844	0.846	0.849	0.849	0.849	0.851
Obs	64839	64839	64839	57559	62650	62650	62650	55383

	Group Size and Conflict Incidence							
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
SIZE	-0.002	0.003	$0.007 * * *$	$0.007 * * *$	-0.003	$-0.005 * *$	-0.002	0.003
	(0.307)	(0.101)	(0.001)	(0.001)	(0.116)	(0.014)	(0.328)	(0.156)
OIL	0.448**	0.684***	0.830***	$0.795 * * *$		0.446**	0.606**	0.762**
	(0.040)	(0.009)	(0.002)	(0.008)		(0.040)	(0.012)	(0.010)
SIZE \times OIL		-1.363***	-1.528***	-1.521***				-1.390***
		(0.000)	(0.000)	(0.000)				(0.000)
SIZE \times AUTOC					0.008**	0.008**	0.009***	0.009**
					(0.012)	(0.011)	(0.006)	(0.015)
GIP			-0.003**	-0.003*			-0.003**	-0.003*
			(0.033)	(0.057)			(0.040)	(0.057)
GROUPAREA			0.000	0.000			-0.000	0.000
			(0.369)	(0.214)			(0.543)	(0.219)
SOILCONST			-0.001*	-0.000			-0.000	-0.000
			(0.097)	(0.518)			(0.152)	(0.472)
DISTCAP			0.001***	$0.002 * * *$			0.001***	0.002***
			(0.000)	(0.000)			(0.000)	(0.000)
MOUNT			0.002*	0.002			0.002	0.002
			(0.080)	(0.111)			(0.109)	(0.130)
PARTITIONED			-0.001	-0.001			-0.001	-0.001
			(0.553)	(0.288)			(0.487)	(0.243)
GDP				0.001				0.003 ***
				(0.140)				(0.006)
POP				0.001				0.001
				(0.556)				(0.710)
LAG	0.895***	0.895***	0.894***	0.893***	0.899***	0.899***	0.898***	0.898***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
c	-0.002	-0.005***	$-0.009^{* * *}$	-0.034	0.011***	0.013***	0.010***	-0.041
	(0.207)	(0.006)	(0.000)	(0.411)	(0.000)	(0.000)	(0.001)	(0.319)
R^{2}	0.844	0.844	0.844	0.846	0.849	0.849	0.849	0.851
Obs	64839	64839	64839	57559	62650	62650	62650	55383

	Group Size and Conflict Incidence							
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
SIZE	-0.002	0.003	0.007***	0.007***	-0.003	-0.005**	-0.002	0.003
	(0.307)	(0.101)	(0.001)	(0.001)	(0.116)	(0.014)	(0.328)	(0.156)
OIL	0.448**	0.684***	0.830***	0.795***		0.446**	0.606**	0.762**
	(0.040)	(0.009)	(0.002)	(0.008)		(0.040)	(0.012)	(0.010)
SIZE \times OIL		$-1.363^{* * *}$	-1.528***	-1.521***				-1.390***
		(0.000)	(0.000)	(0.000)				(0.000)
SIZE \times AUTOC					0.008**	0.008**	0.009***	0.009**
					(0.012)	(0.011)	(0.006)	(0.015)
GIP			-0.003**	-0.003*			-0.003**	-0.003*
			(0.033)	(0.057)			(0.040)	(0.057)
GROUPAREA			0.000	0.000			-0.000	0.000
			(0.369)	(0.214)			(0.543)	(0.219)
SOILCONST							-0.000	-0.000
			(0.097)	(0.518)			(0.152)	(0.472)
DISTCAP			0.001***	0.002***			$0.001 * * *$	$0.002 * * *$
			(0.000)	(0.000)			(0.000)	(0.000)
MOUNT			0.002*	0.002			0.002	0.002
			(0.080)	(0.111)			(0.109)	(0.130)
PARTITIONED			-0.001	-0.001			-0.001	-0.001
			(0.553)	(0.288)			(0.487)	(0.243)
GDP				0.001				0.003***
				(0.140)				(0.006)
POP				0.001				0.001
				(0.556)				(0.710)
LAG								
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
c	-0.002	$-0.005^{* * *}$	$-0.009 * * *$	-0.034	0.011***	0.013***	0.010***	-0.041
	(0.207)	(0.006)	(0.000)	(0.411)	(0.000)	(0.000)	(0.001)	(0.319)
R^{2}	0.844	0.844	0.844	0.846	0.849	0.849	0.849	0.851
Obs	64839	64839	64839	57559	62650	62650	62650	55383

Magnitudes

- Set autoc low, and OIL high:
- Group size $\uparrow 1$ SD \Rightarrow incidence \downarrow by 4.2% (onset $\downarrow 23.2 \%$)
- Set AUTOC high, and OIL low:
- Group size $\uparrow 1 \mathrm{SD} \Rightarrow$ incidence \uparrow by 9.5% (onset $\uparrow 69.8 \%$)

Variations

- Alternative measures of conflict
- Other proxies for the private prize
- Other proxies for the public prize
- Group- (rather than country-) fixed effects
- Alternative estimation strategies (logit)
- Coalitions across ethnic groups
- Clustering of errors at the country and at the country-group level
- Robustness to dropping different regions of the world
- Potential confounding role of ethnic fractionalization and polarization.

	Group Size and Conflict Onset							
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
SIZE	$\begin{array}{r} -0.001 \\ (0.333) \end{array}$	$\begin{gathered} 0.003 * * \\ (0.025) \end{gathered}$	$\begin{array}{r} 0.005 * * * \\ (0.001) \end{array}$	$\begin{array}{r} 0.005 * * * \\ (0.001) \end{array}$	$\begin{array}{r} -0.000 \\ (0.853) \end{array}$	$\begin{array}{r} -0.001 \\ (0.668) \end{array}$	$\begin{gathered} \hline-0.001 \\ (0.668) \end{gathered}$	$\begin{aligned} & 0.003 * \\ & (0.053) \end{aligned}$
OIL	$\begin{array}{r} 0.652 * * * \\ (0.002) \end{array}$	$\begin{array}{r} 0.870 * * * \\ (0.001) \end{array}$	$\begin{array}{r} 0.966 * * * \\ (0.000) \end{array}$	$\begin{array}{r} 0.937 * * * \\ (0.001) \end{array}$		$\begin{array}{r} 0.791 * * * \\ (0.002) \end{array}$	$\begin{array}{r} 0.791 * * * \\ (0.002) \end{array}$	$\begin{array}{r} 0.957 * * * \\ (0.001) \end{array}$
SIZE \times OIL		$\begin{array}{r} -1.221 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -1.171 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -1.149 * * * \\ (0.000) \end{array}$				$\begin{array}{r} -1.079 * * * \\ (0.000) \end{array}$
SIZE \times AUTOC					$\begin{aligned} & 0.005^{*} \\ & (0.052) \end{aligned}$	$\begin{gathered} 0.006 * * \\ (0.043) \end{gathered}$	$\begin{gathered} 0.006 * * \\ (0.043) \end{gathered}$	$\begin{aligned} & 0.005^{*} \\ & (0.069) \end{aligned}$
GIP			$\begin{gathered} -0.002 * \\ (0.076) \end{gathered}$	$\begin{gathered} -0.002 * \\ (0.078) \end{gathered}$		$\begin{array}{r} -0.002 \\ (0.100) \end{array}$	$\begin{gathered} -0.002 \\ (0.100) \end{gathered}$	$\begin{gathered} -0.002 * \\ (0.092) \end{gathered}$
GROUPAREA			$\begin{array}{r} -0.000 \\ (0.376) \end{array}$	$\begin{gathered} -0.000 \\ (0.659) \end{gathered}$		$\begin{gathered} -0.000^{*} \\ (0.074) \end{gathered}$	$\begin{gathered} -0.000^{*} \\ (0.074) \end{gathered}$	$\begin{gathered} -0.000 \\ (0.613) \end{gathered}$
SOILCONST			$\begin{aligned} & -0.000 \\ & (0.102) \end{aligned}$	$\begin{aligned} & -0.000 \\ & (0.479) \end{aligned}$		$\begin{aligned} & -0.000 \\ & (0.603) \end{aligned}$	$\begin{array}{r} -0.000 \\ (0.603) \end{array}$	$\begin{array}{r} -0.000 \\ (0.466) \end{array}$
DISTCAP			$\begin{array}{r} 0.001 * * * \\ (0.001) \end{array}$	$\begin{array}{r} 0.001 * * * \\ (0.003) \end{array}$		$\begin{array}{r} 0.001 * * * \\ (0.005) \end{array}$	$\begin{array}{r} 0.001 * * * \\ (0.005) \end{array}$	$\begin{array}{r} 0.001 * * * \\ (0.004) \end{array}$
MOUNT			$\begin{gathered} 0.002^{* *} \\ (0.017) \end{gathered}$	$\begin{array}{r} 0.002 * * \\ (0.048) \end{array}$		$\begin{aligned} & 0.002^{*} \\ & (0.063) \end{aligned}$	$\begin{aligned} & 0.002 * \\ & (0.063) \end{aligned}$	$\begin{aligned} & 0.002 * \\ & (0.055) \end{aligned}$
PARTITIONED			$\begin{array}{r} -0.000 \\ (0.716) \end{array}$	$\begin{array}{r} -0.001 \\ (0.407) \end{array}$		$\begin{array}{r} -0.001 \\ (0.340) \end{array}$	$\begin{array}{r} -0.001 \\ (0.340) \end{array}$	$\begin{gathered} -0.001 \\ (0.328) \end{gathered}$
GDP				$\begin{array}{r} 0.001 \\ (0.301) \end{array}$		$\begin{gathered} 0.002 * * \\ (0.041) \end{gathered}$	$\begin{array}{r} 0.002 * * \\ (0.041) \end{array}$	$\begin{array}{r} 0.002 * * \\ (0.045) \end{array}$
POP				$\begin{array}{r} 0.002 \\ (0.263) \end{array}$		$\begin{array}{r} 0.002 \\ (0.206) \end{array}$	$\begin{array}{r} 0.002 \\ (0.206) \end{array}$	$\begin{array}{r} 0.002 \\ (0.237) \end{array}$
PEACEYRS	$\begin{array}{r} -0.001 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -0.001 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -0.001 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -0.001 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -0.001 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -0.001 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -0.001^{* * *} \\ (0.000) \end{array}$	$\begin{array}{r} -0.001 * * * \\ (0.000) \end{array}$
c	$\begin{array}{r} 0.070 * * * \\ (0.000) \end{array}$	$\begin{array}{r} 0.067 * * * \\ (0.000) \end{array}$	$\begin{array}{r} 0.012 * * * \\ (0.001) \end{array}$	$\begin{array}{r} 0.009 \\ (0.795) \end{array}$	$\begin{array}{r} 0.039 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -0.016 \\ (0.520) \end{array}$	$\begin{array}{r} -0.016 \\ (0.520) \end{array}$	$\begin{array}{r} -0.012 \\ (0.618) \end{array}$
R^{2}	0.030	0.031	0.031	0.033	0.032	0.034	0.034	0.034
			Grou	Size an	Conflict	nset		
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
SIZE	-0.001	0.003**	0.005***	0.005***	-0.000	-0.001	-0.001	0.003*
	(0.333)	(0.025)	(0.001)	(0.001)	(0.853)	(0.668)	(0.668)	(0.053)
OIL	$\begin{array}{r} 0.652 * * * \\ (0.002) \end{array}$	$\begin{array}{r} 0.870^{* * *} \\ (0.001) \end{array}$	$\begin{array}{r} 0.966 * * * \\ (0.000) \end{array}$	$\begin{array}{r} 0.937 * * * \\ (0.001) \end{array}$		$\begin{array}{r} 0.791 * * * \\ (0.002) \end{array}$	$\begin{array}{r} 0.791 * * * \\ (0.002) \end{array}$	$\begin{array}{r} 0.957 * * * \\ (0.001) \end{array}$
SIZE \times OIL		-1.221***	-1.171***	-1.149***				-1.079***
		(0.000)	(0.000)	(0.000)				(0.000)
SIZE \times AUTOC					0.005*	0.006**	0.006**	0.005*
GIP			$\begin{gathered} -0.002 * \\ (0.076) \end{gathered}$	$\begin{gathered} -0.002 * \\ (0.078) \end{gathered}$	(0.052)	$\begin{gathered} \hline(0.043) \\ -0.002 \\ (0.100) \end{gathered}$	$\begin{gathered} \hline(0.043) \\ -0.002 \\ (0.100) \end{gathered}$	$\begin{gathered} (0.069) \\ -0.002^{*} \\ (0.092) \end{gathered}$
GROUPAREA			$\begin{array}{r} -0.000 \\ (0.376) \end{array}$	$\begin{array}{r} -0.000 \\ (0.659) \end{array}$		$\begin{gathered} -0.000^{*} \\ (0.074) \end{gathered}$	$\begin{gathered} -0.000^{*} \\ (0.074) \end{gathered}$	$\begin{array}{r} -0.000 \\ (0.613) \end{array}$
SOILCONST			$\begin{array}{r} -0.000 \\ (0.102) \end{array}$	$\begin{array}{r} -0.000 \\ (0.479) \end{array}$		$\begin{aligned} & -0.000 \\ & (0.603) \end{aligned}$	$\begin{gathered} -0.000 \\ (0.603) \end{gathered}$	$\begin{array}{r} -0.000 \\ (0.466) \end{array}$
DISTCAP			$\begin{array}{r} 0.001 * * * \\ (0.001) \end{array}$	$\begin{array}{r} 0.001 * * * \\ (0.003) \end{array}$		$\begin{array}{r} 0.001 * * * \\ (0.005) \end{array}$	$\begin{array}{r} 0.001 * * * \\ (0.005) \end{array}$	$\begin{array}{r} 0.001^{* * *} \\ (0.004) \end{array}$
MOUNT			$\begin{array}{r} 0.002 * * \\ (0.017) \end{array}$	$\begin{gathered} 0.002 * * \\ (0.048) \end{gathered}$		$\begin{aligned} & 0.002 * \\ & (0.063) \end{aligned}$	$\begin{aligned} & 0.002^{*} \\ & (0.063) \end{aligned}$	$\begin{aligned} & 0.002 * \\ & (0.055) \end{aligned}$
PARTITIONED			$\begin{array}{r} -0.000 \\ (0.716) \end{array}$	$\begin{gathered} -0.001 \\ (0.407) \end{gathered}$		$\begin{array}{r} -0.001 \\ (0.340) \end{array}$	$\begin{array}{r} -0.001 \\ (0.340) \end{array}$	$\begin{array}{r} -0.001 \\ (0.328) \end{array}$
GDP				$\begin{array}{r} 0.001 \\ (0.301) \end{array}$		$\begin{gathered} 0.002 * * \\ (0.041) \end{gathered}$	$\begin{gathered} 0.002 * * \\ (0.041) \end{gathered}$	$\begin{gathered} 0.002 * * \\ (0.045) \end{gathered}$
POP				$\begin{array}{r} 0.002 \\ (0.263) \end{array}$		$\begin{array}{r} 0.002 \\ (0.206) \end{array}$	$\begin{array}{r} 0.002 \\ (0.206) \end{array}$	$\begin{array}{r} 0.002 \\ (0.237) \end{array}$
PEACEYRS	$\begin{array}{r} -0.001 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -0.001 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -0.001 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -0.001 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -0.001 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -0.001 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -0.001 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -0.001^{* * *} \\ (0.000) \end{array}$
c	$\begin{array}{r} 0.070 * * * \\ (0.000) \end{array}$	$\begin{array}{r} 0.067^{* * *} \\ (0.000) \end{array}$	$\begin{array}{r} 0.012 * * * \\ (0.001) \end{array}$	$\begin{array}{r} 0.009 \\ (0.795) \end{array}$	$\begin{array}{r} 0.039 * * * \\ (0.000) \end{array}$	$\begin{gathered} -0.016 \\ (0.520) \end{gathered}$	$\begin{array}{r} -0.016 \\ (0.520) \end{array}$	$\begin{array}{r} -0.012 \\ (0.618) \end{array}$
R^{2}	0.030-	0.031	0.031	0.033	0.032	0.034	0.034	0.034

Variations in the Private Prize

Oil Alternatives and Land Abundance

	[1]	[2]	[3]	[4]	[5]	[6]
SIZE	$\begin{array}{r} * * * 0.006 \\ (0.004) \end{array}$	$\begin{array}{r} 0.002 \\ (0.338) \end{array}$	$\begin{array}{r} * * * 0.005 \\ (0.009) \end{array}$	$\begin{array}{r} 0.001 \\ (0.647) \end{array}$	$\begin{gathered} * * * 0.018 \\ (0.003) \end{gathered}$	$\begin{gathered} * * * 0.015 \\ (0.005) \end{gathered}$
OIL(AREA)	$\begin{gathered} * * 0.002 \\ (0.012) \end{gathered}$	$\begin{gathered} * * 0.002 \\ (0.019) \end{gathered}$				
SIZE \times OIL (AREA)	$\begin{array}{r} * * *-0.003 \\ (0.001) \end{array}$	$\begin{array}{r} * * *-0.003 \\ (0.003) \end{array}$				
OIL(SHARE)			$\begin{aligned} & * 0.010 \\ & (0.078) \end{aligned}$	$\begin{aligned} & * 0.010 \\ & (0.087) \end{aligned}$		
SIZE \times OIL (SHARE)			$\begin{array}{r} * *-0.021 \\ (0.019) \end{array}$	$\begin{aligned} & *-0.016 \\ & (0.057) \end{aligned}$		
AREA(SHARE)					$\begin{array}{r} * * 0.021 \\ (0.032) \end{array}$	$\begin{gathered} * * 0.021 \\ (0.043) \end{gathered}$
SIZE \times AREA (SHARE)					$\begin{array}{r} * * *-0.042 \\ (0.000) \end{array}$	$\begin{array}{r} * * *-0.040 \\ (0.000) \end{array}$
SIZE \times AUTOC		$\begin{array}{r} * * 0.009 \\ (0.018) \end{array}$		$\begin{gathered} * * 0.010 \\ (0.011) \end{gathered}$		$\begin{aligned} & * 0.007 \\ & (0.063) \end{aligned}$
CONTROLS, LAG	Y	Y	Y	Y	Y	Y
R^{2}	0.846	0.851	0.846	0.851	0.846	0.851
Obs	57559	55383	57559	55383	56756	54580

Variations in the Private Prize

	Oil Alternatives and Land Abundance					
	[1]	[2]	[3]	[4]	[5]	[6]
SIZE	***0.006	0.002	***0.005	0.001	***0.018	***0.015
	(0.004)	(0.338)	(0.009)	(0.647)	(0.003)	(0.005)
Oil(area)	**0.002	**0.002				
	(0.012)	(0.019)				
SIZE \times OIL(AREA)	***-0.003	***-0.003				
OIL(SHARE)	(0.001)	(0.003)				
			*0.010	*0.010		
			(0.078)	(0.087)		
SIZE \times OIL(SHARE)			**-0.021	*-0.016		
AREA(SHARE)			(0.019)	(0.057)		
					**0.021	**0.021
					(0.032)	(0.043)
SIZE \times AREA (SHARE)					***-0.042	***-0.040
					(0.000)	(0.000)
SIZE \times AUTOC		**0.009		**0.010		*0.007
		(0.018)		(0.011)		(0.063)
CONTROLS, LAG	Y	Y	Y	Y	Y	Y
R^{2}	0.846	0.851	0.846	0.851	0.846	0.851
Obs	57559	55383	57559	55383	56756	54580

More Variations in the Private Prize

	Minerals							
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
SIZE	$\begin{gathered} * * 0.007 \\ (0.020) \end{gathered}$	$\begin{array}{r} 0.003 \\ (0.349) \end{array}$	$\begin{gathered} * * 0.008 \\ (0.015) \end{gathered}$	$\begin{array}{r} 0.004 \\ (0.269) \end{array}$	$\begin{gathered} \hline * * 0.007 \\ (0.022) \end{gathered}$	$\begin{array}{r} 0.003 \\ (0.378) \end{array}$	$\begin{gathered} * * 0.008 \\ (0.016) \end{gathered}$	$\begin{array}{r} 0.004 \\ (0.290) \end{array}$
mines	$\begin{array}{r} 0.000 \\ (0.830) \end{array}$	$\begin{array}{r} 0.000 \\ (0.881) \end{array}$						
SIZE \times MINES	$\begin{array}{r} -0.002 * * \\ (0.021) \end{array}$	$\begin{array}{r} -0.001^{* *} \\ (0.049) \end{array}$						
MINES+OIL			$\begin{array}{r} 0.000 \\ (0.592) \end{array}$	$\begin{array}{r} 0.000 \\ (0.635) \end{array}$				
SIZE \times MINES + OIL			$\begin{array}{r} -0.002 * * \\ (0.012) \end{array}$	$\begin{array}{r} -0.002 * * \\ (0.029) \end{array}$				
MINES(UNWEIGH.)					$\begin{array}{r} 0.000 \\ (0.862) \end{array}$	$\begin{array}{r} 0.000 \\ (0.909) \end{array}$		
SIZE \times MINES(UNWEIGH.)					$\begin{array}{r} -0.001 * * \\ (0.023) \end{array}$	$\begin{gathered} -0.001^{*} \\ (0.056) \end{gathered}$		
MINES+OIL(UNWEIGH.)							$\begin{array}{r} 0.000 \\ (0.625) \end{array}$	$\begin{array}{r} 0.000 \\ (0.666) \end{array}$
SIZE \times MINES+OIL(UNWEIGH.)							$\begin{array}{r} -0.002 * * \\ (0.013) \end{array}$	$\begin{array}{r} -0.001^{* *} \\ (0.033) \end{array}$
SIZE \times AUTOC		$\begin{gathered} 0.009 * * \\ (0.029) \end{gathered}$		$\begin{gathered} 0.008 * * \\ (0.037) \end{gathered}$		$\begin{gathered} 0.009 * * \\ (0.030) \end{gathered}$		$\begin{array}{r} 0.008 * * \\ (0.038) \end{array}$
R^{2}	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836
Obs	35265	34887	35265	34887	35265	34887	35265	34887

More Variations in the Private Prize

	Minerals							
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
SIZE	**0.007	0.003	**0.008	0.004	**0.007	0.003	**0.008	0.004
	(0.020)	(0.349)	(0.015)	(0.269)	(0.022)	(0.378)	(0.016)	(0.290)
mines	0.000	0.000						
	(0.830)	(0.881)						
SIZE \times MINES	-0.002**	-0.001**						
MINES+OIL	(0.021)	(0.049)						
			$\begin{array}{r} 0.000 \\ (0.592) \end{array}$	$\begin{array}{r} 0.000 \\ (0.635) \end{array}$				
SIZE \times MINES + OIL			-0.002**	-0.002**				
			(0.012)	(0.029)				
MINES(UNWEIGH.)					0.000	0.000		
					(0.862)	(0.909)		
SIZE \times MINES(UNWEIGH.)					-0.001**	-0.001*		
					(0.023)	(0.056)		
MINES+OIL(UNWEIGH.)							0.000	0.000
							(0.625)	(0.666)
SIZE \times MINES+OIL(UNWEIGH.)							-0.002**	-0.001**
							(0.013)	(0.033)
SIZE \times AUTOC		0.009**		0.008**		0.009**		0.008**
		(0.029)		(0.037)		(0.030)		(0.038)
R^{2}	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836
Obs	35265	34887	35265	34887	35265	34887	35265	34887

Variations in the Public Prize

	Exclusion, EMR Measure, Religious Freedoms						
	[1]	[2]	[3]	[4]	[5]	[6]	[7]
SIZE	$\begin{array}{r} -0.000 \\ (0.985) \end{array}$	$\begin{array}{r} 0.007 * * * \\ (0.001) \end{array}$	$\begin{array}{r} 0.003 \\ (0.337) \end{array}$	$\begin{array}{r} 0.004 \\ (0.166) \end{array}$	$\begin{array}{r} 0.001 \\ (0.815) \end{array}$	$\begin{gathered} \hline * * 0.005 \\ (0.010) \end{gathered}$	$\begin{array}{r} -0.001 \\ (0.882) \end{array}$
OIL	$\begin{array}{r} * * 0.695 \\ (0.039) \end{array}$	$\begin{array}{r} 0.795^{*} * * \\ (0.008) \end{array}$	$\begin{gathered} * * 0.760 \\ (0.011) \end{gathered}$	$\begin{array}{r} * * * 0.777 \\ (0.010) \end{array}$	$\begin{gathered} * * 0.719 \\ (0.032) \end{gathered}$	$\begin{array}{r} * * * 0.790 \\ (0.008) \end{array}$	$\begin{array}{r} * * 1.162 \\ (0.025) \end{array}$
SIZE \times OIL	$\begin{array}{r} -1.217 * * \\ (0.012) \end{array}$	$\begin{array}{r} -1.521 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -1.371^{* * *} \\ (0.001) \end{array}$	$\begin{array}{r} -1.555 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -1.143 * * \\ (0.016) \end{array}$	$\begin{array}{r} -1.369 * * * \\ (0.000) \end{array}$	$\begin{array}{r} -2.138 * * * \\ (0.002) \end{array}$
SIZE \times AUTOC(1960-80)	$\begin{gathered} 0.008^{* *} \\ (0.039) \end{gathered}$						
EXCLUDED		$\begin{aligned} & 0.003 * \\ & (0.057) \end{aligned}$	$\begin{array}{r} 0.002 \\ (0.354) \end{array}$				
SIZE \times EXCLUDED			$\begin{aligned} & 0.008^{*} \\ & (0.067) \end{aligned}$				
EXCLUDED (1945-60)				$\begin{array}{r} 0.002 \\ (0.363) \end{array}$			
SIZE \times EXCLUDED $(1945-60)$				$\begin{array}{r} 0.005 \\ (0.148) \end{array}$			
EXCLUDED(1960-80)					$\begin{array}{r} 0.002 \\ (0.465) \end{array}$		
SIZE $\times \operatorname{EXCLUDED}(1960-80)$					$\begin{gathered} 0.012 * * \\ (0.015) \end{gathered}$		
SIZE \times PUB (EMR)						$\begin{array}{r} 0.009 * * * \\ (0.002) \end{array}$	
RELIGFREEDOM						$\begin{array}{r} * * * 0.043 \\ (0.007) \end{array}$	
SIZE \times RELIGFREEDOM							$\begin{aligned} & 0.021^{*} \\ & (0.086) \end{aligned}$
R^{2}	0.836	0.846	0.846	0.846	0.836	0.846	0.763
Obs	34887	57559	57559	57559	34965	57559	22166

Variations in the Public Prize

	Exclusion, EMR Measure, Religious Freedoms						
	[1]	[2]	[3]	[4]	[5]	[6]	[7]
SIZE	-0.000	0.007 ***	0.003	0.004	0.001	**0.005	-0.001
	(0.985)	(0.001)	(0.337)	(0.166)	(0.815)	(0.010)	(0.882)
OIL	**0.695	0.795***	**0.760	***0.777	**0.719	***0.790	**1.162
	(0.039)	(0.008)	(0.011)	(0.010)	(0.032)	(0.008)	(0.025)
SIZE \times OIL	-1.217**	-1.521***	-1.371***	-1.555***	-1.143**	-1.369***	-2.138***
	(0.012)	(0.000)	(0.001)	(0.000)	(0.016)	(0.000)	(0.002)
SIZE \times AUTOC(1960-80)	0.008**						
	(0.039)						
EXCLUDED		0.003*	0.002				
		(0.057)	(0.354)				
SIZE \times EXCLUDED			0.008*				
			(0.067)				
EXCLUDED(1945-60)				0.002			
				(0.363)			
SIZE \times EXCLUDED(1945-60)				0.005			
				(0.148)			
EXCLUDED(1960-80)					0.002		
					(0.465)		
SIZE \times EXCLUDED (1960-80)					0.012**		
					(0.015)		
SIZE \times PUB(EMR)						0.009***	
						(0.002)	
RELIGFREEDOM						***0.043	
						(0.007)	
SIZE \times RELIGFREEDOM							0.021*
							(0.086)
R^{2}	0.836	0.846	0.846	0.846	0.836	0.846	0.763
Obs	34887	57559	57559	57559	34965	57559	22166

Other Material in the Paper

■ More variations:

- Group fixed effects
- Nonlinear specifications
- Alliances in Conflict

Summary

- Small groups initiate when the prize is private.
- Large groups initiate when the prize is public.
- Society may be actively conflictual, depending on the variety of threats.
- The data significantly support the predictions of the theory.

Two Remarks on Salience

- Dynamics.
- Institutional sluggishness versus speed of marker formation.
- Multiple Identities.
- Sen's argument.
- Ideologies and cultures versus resource-grabbing.

