Lectures on Economic Inequality

Warwick, Summer 2017, Supplement 2 to Slides 2

Debraj Ray

- Overview: Convergence and Divergence
- Inequality and Divergence: Information
- Inequality and Divergence: Psychological Factors
- Inequality, Polarization and Conflict
- Uneven Growth and Conflict

Postscript on Return-Seeking

- Recall our question:
- What explains the high rates of return to the rich?
- Two broad groups of answers:
- The rich have access to better information on rates of return
- The rich have physical access to better rates of return.

Investing in Investment

A theory of individual-specific r :

- Higher individual wealth \Rightarrow higher rate of return on it.
- More effort spent on gathering information.

■ Compare/contrast with "efficiency wage" models:

- Deliberate investment in information yields the higher rate unlike nutrition-effiency, but similar to dynamic incentives
- Payoff is multiplicative (on r) as opposed to additive other "efficiency-wage" models generate level effects

A Model of Investing in Investment

- Individuals with more financial wealth will spend more effort finding good rates of return on it.
- Simplest model of this:

$$
\sum_{t=0}^{\infty} \delta^{t} \frac{c_{t}^{1-\theta}-1}{1-\theta}
$$

where $\theta>0$, and

$$
c_{t}=\left(1+r_{t-1}\right) F_{t-1}+w\left(1-e_{t}\right)-F_{t},
$$

and

$$
r_{t}=\Psi\left(e_{t}\right)
$$

- F : financial wealth, w : wage rate, and e : informational effort.
- Ψ concave.
- Familiar Euler equation for choice of F_{t} :

$$
\left(\frac{c_{t+1}}{c_{t}}\right)^{\theta}=\delta r_{t}
$$

- Slightly less familiar Euler equation for choice of e_{t} :

$$
\left(\frac{c_{t+1}}{c_{t}}\right)^{\theta}=\delta \frac{F_{t}}{w} \Psi^{\prime}\left(e_{t}\right)
$$

Proposition. Individuals with a higher ratio of F to w earn a higher rate of return, and grow faster, even if the effect on their savings rate is ambiguous.

- Proof. Combine the two Euler equations and definition of r to see that

$$
r_{t}=\frac{F_{t}}{w} \Psi^{\prime}\left(e_{t}\right)=\Psi\left(e_{t}\right)
$$

for all t. Now prove the proposition by contradiction.

- Note: s and r reinforce each other when $\theta<1$.
- Or you can have your cake and eat it too. Consider

$$
c_{t}=r_{t-1} F_{t-1}+w-z_{t}-F_{t},
$$

where $r_{t}=\Phi\left(z_{t}\right)$ (e.g., paying an expert to do your research).

- Then Euler equation for z is given by

$$
\left(\frac{c_{t+1}}{c_{t}}\right)^{\theta}=\delta F_{t} \Phi^{\prime}\left(z_{t}\right)
$$

- Proposition. Those with higher F earn higher rates of return.
- PS: Contrast the two propositions.

