Lectures on Economic Inequality

Warwick, Summer 2016, Slides 3

Debraj Ray

- Overview: Convergence and Divergence
- Inequality and Divergence: Economic Factors, Postscript
- Inequality and Divergence: Psychological Factors
- Inequality, Polarization and Conflict
- Uneven Growth and Conflict

Psychological Traps

So far, we studied economic constraints on equitable growth:

- Nonconvexities: Azariadis-Drazen 1990, Dasgupta-Ray 1986
- Imperfect credit markets: Banerjee-Newman 1993, Galor-Zeira 1993
- To be contrasted with psychological constraints:
- Hirschman’s tunnel
- The capacity to aspire: Appadurai 2004, Ray 1998, 2006
- Stress and cognitive function: Mani-Mullainathan-Shafir-Zhao 2013
- Self-control Banerjee-Mullainathan 2010, Bernheim-Ray-Yeltekin 1999, 2015
- Information and poverty Madajewicz et al 2007 on groundwater contamination, Dupas

2011 on older sexual partners in Kenya.

Aspirations

"[UPA rule] is a period during which growth accelerated...[but] growth can also unleash powerful aspirations as well as frustrations, and political parties who can tap into these emotions reap the benefits." Ghatak-Ghosh-Kotwal, "Growth in the time of UPA: Myths and Reality," Economic and Political Weekly, April 19, 2014.
"[The] system that delivers these [educational] outcomes is sustained by aspiration: the faith that if we try hard enough we could join the elite ...From infancy to employment, this is a life-denying, love-denying mindset, informed ... by an ambition that is both desperate and pointless." The Guardian, June 9, 2015.

Aspirations and Society

- Two-way interaction:
- Aspirations \rightarrow inspiration or frustration \rightarrow investment (and investment shapes growth and distribution)
- Society \rightarrow aspirations
(aspirations are shaped by the lives of others around us)

The Setting

- Society: single-parent single-child strings (dynasties)
- Lifetime income or wealth $y ; y=c+k$.
- $\quad f(k)=z=$ wealth of child. Process continues forever.
- Preferences:

$$
u(c)+w_{0}(z)+w_{1}(e)
$$

- where $e=\max \{z-a, 0\}$
- and a is an aspiration.
- w_{0} intrinsic utility; w_{1} aspirational utility.
- Increasing, smooth, strictly concave.

■ Remark 1. Alternatives for w_{1}.

- Remark 1. Alternatives for w_{1}.

■ Remark 1. Alternatives for w_{1}.

- Remark 2. Extends to aspiration vectors.

■ Remark 3.

- Higher aspirations always bad for happiness in the short-run:

The Formation of Aspirations

$$
a=\Psi(y, F)
$$

where F is current distribution of lifetime incomes.

- Define F^{λ} by $F^{\lambda}(\lambda y)=F(y)$ for all y.
- Assumptions:
- [regular] $\Psi(y, F)$ is continuous in (y, F), nondecreasing in y.
- [range-bound $] \min F \leq \Psi(y, F) \leq \max F$.
- [scale-free] $\lambda \Psi(y, F)=\Psi\left(\lambda y, F^{\lambda}\right)$ for $\lambda>0$.
- [socially sensitive] $\Psi\left(y, F^{\lambda}\right)>\Psi(y, F)$ for $\lambda>1$.
- Regularity used throughout. Others when mentioned.

Aspirations in the Growth Model

- Start with F_{t}.
- Then $a_{t}=\Psi\left(y, F_{t}\right)$ for every $y \in \operatorname{Supp} F_{t}$.
- At income y, choose $z \in[0, f(y)]$ to max

$$
u(y-k(z))+w_{0}(z)+w_{1}\left(\max \left\{z-a_{t}, 0\right\}\right)
$$

where $k(z) \equiv f^{-1}(z)$.
■ From F_{0}, recursively generates equilibrium sequence $\left\{F_{t}\right\}$:

- Proposition 0. An equilibrium (trivially) exists.

Benchmark: No Aspirations

- Choose $z \in[0, f(y)]$ to \max

$$
u(y-k(z))+w_{0}(z)
$$

- Assumption:

- [positive solution] $z \geq y$ for all y small enough.

From Aspirations and Wealth To Investment

- At most one "local" solution on either side of a.

Lower solution z_{0} as in benchmark:

$$
-\left[u^{\prime}\left(y-k\left(z_{0}\right)\right) / f^{\prime}\left(k\left(z_{0}\right)\right)\right]+w_{0}^{\prime}\left(z_{0}\right)=0
$$

where $k(z) \equiv f^{-1}(z)$.
Upper solution z_{1} :

$$
-\left[u^{\prime}\left(y-k\left(z_{1}\right)\right) / f^{\prime}\left(k\left(z_{1}\right)\right)\right]+w_{0}^{\prime}\left(z_{1}\right)+w_{1}^{\prime}\left(z_{1}-a\right)=0 .
$$

- Compare, and pick the one with the higher payoff.

An aspiration a is satisfied if optimum is no less than a.
It is frustrated if optimum strictly smaller than a.

- When is an aspiration satisfied, and when is it frustrated?
- useful partial equilibrium exercise, aspirations "exogenous."
- rise of television, advertising or the internet
- change in the income distribution
- Proposition 1. Fix current wealth.
- There is a unique threshold value of aspirations below which aspirations are satisfied, and above which they are frustrated.
- As long as aspirations are satisfied, chosen wealth grows with aspirations. Once aspirations are frustrated, chosen wealth becomes insensitive to aspirations.

- Note the discontinuous jump-down.

On Frustration

Recall that aspirational growth always lowers direct utility:

- If aspirations are frustrated, no inspirational role either:
- "The French found their position all the more intolerable as it became better." de Tocqueville, 1856
- Lowered aspirations of low income students reduces school dropout Kearney-Levine, 2014, for the US; Goux-Gurgand-Maurin, 2014, for France

A Variant: Aspirations-Wealth Ratios (More partial equilibrium)

- Introducing the canonical linear model:
- Linear production: $f(k)=\rho k$.
- Constant-elasticity utility:

$$
u(c)=c^{1-\sigma}, w_{0}(z)=\delta z^{1-\sigma}, \text { and } w_{1}(e)=\delta \pi e^{1-\sigma}
$$

Investment choice: Given (y, a), pick z to maximize

$$
\left(y-\frac{z}{\rho}\right)^{1-\sigma}+\delta\left[z^{1-\sigma}+\pi(\max \{z-a, 0\})^{1-\sigma}\right] .
$$

A Variant: Aspirations-Wealth Ratios (More partial equilibrium)

- Introducing the canonical linear model:
- Linear production: $f(k)=\rho k$.
- Constant-elasticity utility:

$$
u(c)=c^{1-\sigma}, w_{0}(z)=\delta z^{1-\sigma}, \text { and } w_{1}(e)=\delta \pi e^{1-\sigma}
$$

Investment choice: Given a / y, pick z / y to maximize

$$
\left(1-\frac{z / y}{\rho}\right)^{1-\sigma}+\delta\left[(z / y)^{1-\sigma}+\pi\left(\max \left\{\frac{z}{y}-\frac{a}{y}, 0\right\}\right)^{1-\sigma}\right]
$$

(dividing through by y)

Investment choice:

- Aspirations ratio: $r \equiv a / y$. Choose growth $g \equiv z / y$ to max

$$
\left(1-\frac{g}{\rho}\right)^{1-\sigma}+\delta\left[g^{1-\sigma}+\pi(\max \{g-r, 0\})^{1-\sigma}\right] .
$$

- Failed aspiration; solution \underline{g} independent of r :

$$
\left(1-\frac{g}{\rho}\right)^{-\sigma}=\delta \rho \underline{g}^{-\sigma}
$$

- Satisfied aspiration; solution $g(r)$ depends on r :

$$
\left(1-\frac{g(r)}{\rho}\right)^{-\sigma}=\delta \rho\left[g(r)^{-\sigma}+\pi(g(r)-r)^{-\sigma}\right]
$$

- Proposition 2.
- There is a unique ratio r^{*} such that for $r \equiv a / y>r^{*}$, wealth grows at rate \underline{g}, and for all $r \equiv a / y<r^{*}$, wealth grows at rate $g(r)$.
- $g(r) \uparrow$ in r, but larger and bounded away from g in r.
- Under social sensitivity, can link y to a / y :
- Proposition 3.
- With social sensitivity, the aspirations ratio $r(y, F) \equiv \Psi(y, F) / y$ is strictly decreasing in y for each F.
- Combining Propositions 2 and 3:

General Equilibrium:

The Joint Evolution of Aspirations and Incomes

- Recall our recursive equilibrium notion:
- Wealth distribution F_{t} at date $t ; a_{t}=\Psi\left(y, F_{t}\right), y \in \operatorname{Supp} F_{t}$.
- Each person with wealth y chooses continuation z.
- z is tomorrow's wealth, and F_{t+1} is new distribution.
- From F_{0}, recursively generate F_{t} and $a_{t}=\Psi\left(y, F_{t}\right)$ for all y and t.
- Questions:
- Persistent or growing inequality, or convergence?
- Connections between initial distribution and subsequent growth.

Steady States

- Distribution F^{*} concentrated on strictly positive incomes:
- $\left\{F^{*}, F^{*}, F^{*}, \ldots\right\}$ equilibrium from F^{*}.
- Natural setting: incomes in compact support, as in Solow model.
- Proposition 4.
- There is no steady state with perfect equality.
- Proof.
- Perfect equality implies concentration of y and a at same point.
- Contradiction: everyone wants to move away from $y=a$.
- Related to symmetry-breaking.

Clustering in Steady State

- Recall benchmark model without aspirations: maximize

$$
u(y-k(z))+w_{0}(z)
$$

- Interior steady states, each characterized by

$$
d(y) \equiv-\frac{u^{\prime}(y-k(y))}{f^{\prime}(k(y))}+w_{0}^{\prime}(y)=0
$$

■ Assumption for unique steady state in benchmark model:
[D] $d(y)$ is decreasing in y.

- Proposition 5.
- Assume D, range-bound, scale-free and socially sensitive aspirations.
- Then steady states must all be bimodal.

Constructing a Bimodal Steady State

- Two-point distribution F^{*}. $\left(y_{\ell}, y_{h}, p\right)$:
- $y_{\ell}<y_{h}$, and p is population weight on y_{ℓ}.
- Aspirations satisfy

$$
a_{i}=\Psi\left(y_{i}, F^{*}\right)
$$

for $i=\ell, h . \quad$ By range-boundedness, a_{ℓ} is a failed aspiration, so

$$
d\left(y_{\ell}\right)=0,
$$

- And a_{h} is a satisfied aspiration, so

$$
d\left(y_{h}\right)+w_{1}^{\prime}\left(y_{h}-a_{h}\right)=0 .
$$

■ One degree of freedom left, but we need to use some of it.

Remarks on Clustering

■ Of course, convergence to degenerate poles is an artifact (akin to single steadystate income in Solow model.)

- With stochastic shocks (e.g., Brock-Mirman 1972): smoothly dispersed but multimodal distribution.

Constant-elasticity utility: $\sigma=0.8, \delta=0.8$ and $\pi=1 ; f(k, \theta)=\theta(A / \beta) k^{\beta}$, where $\beta=0.8, A=4$ and θ lognormal with mean 1. $a=$ average of own y and mean y.

- Multimodality in the literature:
- [US] Pittau-Zelli 2004, Sala-i-Martin 2006, Zhu 2005
- [world] convergence clubs

Durlauf-Johnson 1995, Quah 1993, 1996, Durlauf-Quah, 1999

- Quah uses the term "twin peaks."
- Bimodality also a feature of polarized distributions

Esteban-Ray 1994, Wolfson 1994.

Aspirations, Inequality and Endogenous Growth

- Return to canonical linear model:
- constant-elasticity utility, linear production.
- Recall aspirations ratio $r=a / y$.
- And recall Proposition 3: there is r^{*} such that:
- if $r>r^{*}$, grow at \underline{g}
- if $r \leq r^{*}$, grow at $g(r)$ (convention at " $=$ ")

Ultimate Equality | Perpetually Widening Inequality

- Proposition 6. Assume aspirations are range-bound, scale-free and socially sensitive. Let F_{0} be initial distribution of with compact support. Then there are just two possibilities:
I. Convergence to Perfect Equality. There is $g^{*}>1$ such that $y_{t} / g^{* t}$ converges to a single point independent of $y_{0} \in \operatorname{Supp} F_{0}$; or
II. Persistent Divergence. F_{t} "separates" into two components defined by threshold $y^{*} \in \operatorname{int}$ Range F_{0} :
- If $y<y^{*}$, income grows forever after at \underline{g}.
- If $y>y^{*}$, income has asymptotic growth $\bar{g}>\underline{g}$, with $\bar{g}-1>0$, and y_{t} / \bar{g}^{t} has the same limit independent of y_{0}, as long as y_{0} exceeds y^{*}.
- $\underline{g}<\bar{g} \leq g^{*}$: equality exhibits faster growth.
- In Case II, relative inequality never settles, it perpetually widens.

Discussion of Equality-Inequality Proposition

Significantly narrows the ways in which a distribution can evolve.

- I. Everyone has satisfied aspirations at date 0 .
- Requires high equality in the initial distribution.
- II. Some - but not all — have satisfied aspirations at date 0 .
- Inequality never stops increasing, even in relative terms.
- Cf. Piketty-Saez 2003, Atkinson-Piketty-Saez 2011, Piketty 2014
- Note: result crucially hinges on social sensitivity
- Proposition 4: $y_{1}<y_{2} \Rightarrow r\left(y_{2}\right)<r\left(y_{1}\right)$.

Social Sensitivity and the Equality-Inequality Proposition

- Take aspirations to be conditional mean above income.

- Equivalently, at least along a range in the cross-section, aspirations might rise faster than incomes.

Can social sensitivity be dropped free of charge?
■ Weaker assumption:

- [upper sensitivity] If incomes above y all rise and there are no crossings from below, aspirations at y must rise.

■ Central observation. Consider continuous time limit. Once frustrated, this state is permanent.

- Proof. A frustrated individual has lowest growth rate + scale-free aspirations.
- Implication. The fraction of frustrated people is monotone in time; converges.
- Among the frustrated, all grow at the same factor \underline{g}.
- The satisfied have $g>\underline{g}$, thereby generating ever-widening inequality.
- Minimum incomes among the satisfied grow fastest, maximal incomes slowest.
- In continuous time, convergence among the satisfied.

Summary

■ We build a theory of aspirations formation.

- Emphasizes the social foundations of individual aspirations
- Relates those aspirations to investment and growth.
- Such behavior can be aggregated, thus closing the model.
- Central feature: aspirations can incentivize and frustrate.
- Aspirations above incomes can encourage high investment.
- But aspirations that are too high will discourage investment.
- Rising aspirations have instrumental value - but up to a point.
- Steady state distributions must exhibit inequality.
- With socially sensitive aspirations, steady states are bipolar.
- The canonical linear model permits sustained growth.
- Either convergence to equality, or perennially widening inequality.
- The model is tractable and may be useful in other contexts.

