Development Economics

Slides 2

Debraj Ray

Warwick, Summer 2014

Development traps

- [1] Self-fulfilling failure of expectations.
- [2] History-dependence

Underdevelopment as a trap (diagram from Quah 1993)

Mobility matrix, 1982–2009

Cat 1: income < 1/4 world av; Cat 2: between 1/4 and 1/2 world av; Cat 3: between 1/2 world av and world av; Cat 4: between world av and twice world av; Cat 5: income > twice world av.

Obs	Cat	1	2	3	4	(5)
32	1	84	13	3	0	0
21	2	43	43	14	0	0
26	3	0	27	50	23	0
20	4	0	0	20	70	10
29	5	0	0	0	3	97

- The general problem: there is "too little" convergence.
- Of course we can keep conditioning; e.g.:
- one country is more corrupt than another,
- or less democratic,
- or is imbued with a horrible work ethic,
- or is prone to reproducing like rabbits,
- or is intrinsically predisposed not to save,
- but then what is the point of "conditional convergence"?
- Too little emphasis on the process
- endogenous variable \rightarrow economics \rightarrow endogenous variable

Example: The Endogeneity of s

Blue line: How s is affected by steady state income y^* .

Red line: How y^* is determined by s (as in Solow model).

Example: The Endogeneity of n

Blue line: How n is affected by steady state income y^* .

Red line: How y^* is determined by n (as in Solow model).

Development Traps I: Self-Fulfilling Prophecies

 Origins: Rosenstein-Rodan (1943), Myrdal (1944, 1957) and Albert Hirschman (1958).

Later: Murphy, Shleifer and Vishny (1991), Krugman (1991), Matsuyama (1991, 1996), Ciccone and Matsuyama (1996), Rodriguez (1996), Journal of Development Economics (1996)...

Can express as game with strategic complementarities.

Such games *may* exhibit Pareto-ordered multiple equilibria.

Complementarities

- Players 1, ..., n; action sets A_1, \ldots, A_n , each ordered.
- For each *i*, payoff function $\pi_i : X_i A_i \to \mathbb{R}$.
- Game exhibits complementarities if whenever $a_{-i} \ge a'_{-i}$, then

$$\arg\max_{a_i} \pi(a_i, a_{-i}) \ge \arg\max_{a_i} \pi(a_i, a'_{-i}).$$

- Special case: everyone has action set $A \subseteq \mathbb{R}$.
- m_i is average of all actions other than *i*'s.
- Payoff function given by $\pi_i(a,m)$.
- Then complementarities if

 $\pi_i(a,m) - \pi_i(a',m)$ is increasing in m

• whenever a > a' are two actions in the set A.

- Basic recipe: Look for monotone "equilibrium map".
- **Technology**. MacOS vs Android.
- Network externalities (Katz and Shapiro 1985, Arthur 1989)
- **Growth with Externalities** (Romer 1986).
- Economy-wide investment raises return to individual investment.
- Infrastructure (Murphy-Shleifer-Vishny 1989)
- Need to cover fixed and variable cost p(n) = v + (F/n).
- Finance (Acemoglu and Zilibotti [1997]).
- Thicker financial market \Rightarrow diversification \Rightarrow more investment \Rightarrow thicker market.

- Corruption. Economy with limited auditing capacity
- Only a fraction of "corrupt" people can be investigated.
- **Capital Deepening** (Ciccone and Matsuyama 1996).

•
$$X = \left[\int_0^n x(i)^{(\sigma-1)/\sigma} di\right]^{\sigma/(\sigma-1)}$$
, where $\sigma > 1$ and n is endogenous.

- Norms (Hardin 1997, Ray 1998, Munshi-Myaux 2003).
- Crop adoption, using contraceptives, joining the revolution...
- Currency Crises (Obstfeldt 1994, Morris and Shin 1998).
- Herding versus the fundamentals.
- Discrimination (Myrdal 1944, Arrow 1972, Tirole 1996).
- Groups discriminated against fail to "invest" \Rightarrow discrimination.

Two Economy-Wide Coordination Failures

Inter-Industry Links (Hirschman [1958])

Two Economy-Wide Coordination Failures, contd.

- Demand Complementarities (Rosenstein-Rodan [1943])
- Industrial expansion raises income, generates demand for *other* industries.
- Complementarity across producers of non-inferior goods.
- The parable of the shoe factory.
- These models lay a (limited) foundation for policy debates
- Balanced versus unbalanced growth
- Rosenstein-Rodan (1943, 1961), Nurkse (1952, 1953), Hirschman (1958), Streeten (1956, 1963)
- At the heart of this view: pecuniary externalities.

Murphy-Shleifer-Vishny formalization of RR 1943

- A model of demand-side externalities.
- Continuum of sectors, $i \in [0,1]$.
- Identical individuals with labor endowment L and utility function

$$\int_0^1 \ln x(i) dq.$$

- Note: if income is y, then y spent on every good q.
- Normalize wage to 1; then $y = \pi + L$ (profits + labor income).
- Each sector has two technologies, cottage, and industrialized.
- Cottage: $x = \ell$, no setup cost.
- Industrialized: $x = \alpha \ell$, $\alpha > 1$; setup cost F(i) for sector i.

- Competitive cottage and unit demand elasticity imply p = 1.
- So profit from industrialization in sector i is given by

$$py - \frac{y}{\alpha} - F(i) = \frac{\alpha - 1}{\alpha}y - F(i) \equiv ay - F(i)$$

- \Rightarrow Note: Larger y is conducive to industrialization.
- Arrange sectors in increasing order of F(i).
- End-point conditions: F(0) = 0, $F(1) = \infty$.
- WLOG sectors in [0, n] industrialize.
- If n sectors invest, at aggregate income y(n), zero-profit at n:

ay(n) - F(n) = 0.

If n sectors invest, at aggregate income y(n), zero-profit at n:

$$ay(n) - F(n) = 0.$$

• and national income y(n) is given by

$$y(n) = \int_0^n \pi(i)di + L = \int_0^n [ay(n) - F(i)]di + L = any(n) - nA(n) + L,$$

• where A(n) is average of all the fixed costs on [0,n]. So:

$$y(n) = \frac{L - nA(n)}{1 - an}.$$

Use this information in zero-profit condition:

[1 - an]F(n) + anA(n) = aL.

- Derivative of LHS is [1 an]F'(n) > 0, so unique solution.
- Complementarities but no multiplicity! Why?

Externality generated via payoffs alone.

- Firm's payoff positive, so is the externality, firm invests.
- It does not internalize the externality but does not need to.
- Likewise for the case in which profits are negative.
- Lesson: Rosenstein-Rodan intuition needs careful examination.
- The source of the complementarity must be something other than private profit alone.
- What's the difference between:
- Profits tax with proceeds redistributed?
- Output tax with proceeds redistributed?

The Wage Externality

- Assume: wage premium in industrial sector: w = 1 + v.
- F(i) = F for all *i* (easy to generalize).
- Profit from industrializing in any sector (when demand is y) is

$$\pi = y - \frac{1+v}{\alpha}y - F(1+v).$$

No-industrialization equilibrium: y(0) = L. Works if

$$L\left(1-\frac{1+v}{\alpha}\right) - F(1+v) \le 0.$$

Industrialization equilibrium: $y(1) = \alpha(L - F)$. Works if

$$L\left(1-\frac{1+v}{\alpha}\right) - F \ge 0.$$

Compare. Multiplicity possible!

Implications

- Complementarities may result in multiple equilibria.
- When they do, the equilibria are typically Pareto-ranked.
- Two fundamentally identical societies can behave differently.
- Complementarities change the way we think about policy.
- Temporary versus permanent interventions.
- amnesties, minimum wage legislation, temporary fines, family planning programs, affirmative action program ...

Warning: Implementing equilibrium-tipping policies may be a delicate task.

Questions of Transition

- Problem: these theories are way too nondeterministic.
- Why does "yesterday's state" affect "today's state"?
- Why is QWERTY stickier than fashion?
- Why does a transition follow a logistic path?

Canonical Multiple Equilibrium Model

- Two regions or sectors, A and B.
- Total endowment of \overline{K} split between the regions:

•
$$K_A$$
 in A , $K_B = \overline{K} - K_A$ in A .

- Each person has one unit of endowment:
- Deliberately chooses sector A or B.
- Capital in A has fixed rate of return, say 0.
- In B, r = f(K), continuous, increasing, and $f(0) < 0 < f(\bar{K})$.

- Alternative initial conditions: $K_B = x$, $K_B = y$.
- Most of our examples fit this canonical model well.

History Versus Expectations

- Myopic adjustment: history matters completely
- **Farsighted** adjustment: history doesn't matter at all.
- Can one allow for expectations, but retain the weight of history?

Analysis of the Canonical Model

- Capital free to move but there is a switching cost:
- From B to A: $\hat{c}_A(K_A)$.
- From A to B and $\hat{c}_B(K_B)$.
- Congestion in sector j if \hat{c}_j is increasing.
- Path of prices $\gamma \equiv \{r(t), c_A(t), c_B(t)\}_{t=0}^{\infty}$ given for the individual.
- Discount rate ρ .
- Value function $V(\gamma, i, t)$.
- Switch sectors at time t if $V(\gamma, i, t) < V(\gamma, j, t) c_j(t)$.

Equilibrium price path: γ generated by optimal decisions of agents in response to γ .

Generating γ .

- Fix a path of capital allocation $\{K_A(t), K_B(t)\}_{t=0}^{\infty}$.
- Assume that at date 0, r(0) is precisely $f(K_B(0))$.
- Thereafter: increasing function g, with g(0) = 0, such that

$$\dot{r}(t) = g(f(K_B(t)) - r(t)).$$

- That is, r(t) "chases" the "appropriate" rate at every date.
- The steeper is g, the faster the adjustment.
- Finally, $c_A(t) = \hat{c}_A(K_A(t))$ and $c_B(t) = \hat{c}_B(K(t))$ for all t.
- This is how $\{K_A(t), K_B(t)\}$ generates $\gamma(t) = \{r(t), c_A(t), c_B(t)\}.$

If g is "infinitely steep," then multiplicity of equilibrium paths.

In contrast, an equilibrium is exclusively history dependent there is migration only to the sector that is initially profitable.

Theorem. Assume $f(K(0)) \neq 0$. Barring congestion, every equilibrium must be exclusively history dependent.

Outline of proof. Assume (wlog) f(K(0)) < 0.

- Claim. $K(t) \leq K(s)$ for all (s,t) with $t \geq s$.
- Suppose not, then there are t and s with t > s, such that:
- a. K(t) > K(s).
- b. $r(\tau) < 0$ for all $\tau \in [s,t]$.
- c. Some agent moves to sector B at date s.
- That agent should postpone her move, unless congestion.

Implications of the lagged externalities model:

Independent of the magnitude of discounting

 Independent of how quickly returns adjust, as long as not instantaneous.

- Why congestion matters.
- Back to question: why is QWERTY different from fashion?
- Economic mavericks: those who don't mind making losses.

Global Games and Equilibrium Transition

- Carlsson and Van Damme (1993), Morris and Shin (1998)
- Coordination game indexed by a state variable.
- Sometimes multiple equilibrium, and sometimes not.
- State variable observed publicly but with a bit of individual noise.
- Example: Pegged exchange rate e (overvalued)
- Fundamentals: $f(\theta)$, with $e > f(\theta)$.
- θ is the state (interest rate, oil price).
- Arrange so that $f(\theta)$ increasing. High θ is good state.

- **Speculators** (of total measure 1).
- Each can sell one unit of the currency; transactions cost t.
- If peg holds, payoff is -t.
- If peg abandoned, payoff is $e f(\theta) t$.
- Government has only one decision: abandon or retain peg.
- Abandons if attacks exceed $a(\theta) < 1$, increasing function.

End-points.

- There is $\underline{\theta}$ such that $a(\theta) = 0$ for $\theta \in [0, \underline{\theta}]$.
- Then $a(\theta)$ rises but always stays less than one by assumption.
- There is $\bar{\theta}$ s.t. $e f(\bar{\theta}) t = 0$ (no one wants to sell at $\theta > \bar{\theta}$).

$$\bullet \quad \underline{\theta} < \overline{\theta}.$$

Benchmark: assume that θ perfectly observed.

- Case 1. $\theta \leq \underline{\theta}$. Abandon. Everyone sells; currency crisis.
- Case 2. $\theta \geq \overline{\theta}$. No speculator attacks; peg holds.
- **Case 3.** $\underline{\theta} < \theta < \overline{\theta}$. Multiple equilibria.
- One equilibrium: no one attacks, peg holds.
- One equilibrium: everyone attacks, peg abandoned.

Prototype of the second-generation financial crises model, in which expectations — over and above fundamentals — play an important role (see Obstfeld (1994, 1996)).

Now we drop common knowledge of realizations of θ .

How to model higher-order beliefs

- Say θ uniform on [0,1] (with $0 < \underline{\theta} < \overline{\theta} < 1$).
- Each individual sees x uniform on $[\theta \epsilon, \theta + \epsilon]$.
- This additional noise is iid across agents.

Theorem. There is a unique value of the signal x such that an agent attacks the currency if $x < x^*$ and does not attack if $x > x^*$.

 Extraordinary result: a tiny amount of noise refines the equilibrium map considerably.

As $\epsilon \to 0$, we're practically at common knowledge limit, yet no multiplicity zone.

An "infection argument" central to the proof.

- Proof of the theorem.
- Suppose that someone receives a signal $x \le x_0 \equiv \underline{\theta} \epsilon$.
- \Rightarrow true state *cannot* exceed $\underline{\theta}$. Therefore sell.
- Now x slightly bigger than x_0 . Higher-order infection starts.

- Suppose everyone sells if $x \leq x^*$. Find best response $\Psi(x^*, \epsilon)$.
- For any θ , government will yield if

$$\frac{1}{2\epsilon}[x^* - (\theta - \epsilon)] \ge a(\theta), \text{ or } \theta \le h(x^*, \epsilon).$$

So if signal is x and our person attacks, expected payoff is

$$\frac{1}{2\epsilon} \int_{x-\epsilon}^{h(x^*,\epsilon)} [e - f(\theta)] d\theta - t.$$

- $\Psi(x^*, \epsilon)$ defined by value of x such that above expression is 0. • Claim. $\Psi(x^*, \epsilon)$ is nondecreasing in x^* , but slope < 1: • $\Psi(x_2^*, \epsilon) - \Psi(x_1^*, \epsilon) < x_2^* - x_1^*$ when $x_2^* > x_1^*$.
- **Proof.** Ψ nondecreasing is obvious. Now pick $x_2^* > x_1^*$.
- Then two things happen: first:

$$h(x_2^*, \epsilon) - x_2^* < h(x_1^*, \epsilon) - x_1^*,$$

so that the support over integral above narrows.

In addition, the stuff inside the integral is also smaller when we move from x_1^* to x_2^* , because $f(\theta)$ is increasing. Claim proved.

Summary. There is a unique equilibrium in the "perturbed" game, in which a speculative attack is carried out by an individual if and only if $x \le x^*(\epsilon)$, where $x^*(\epsilon)$ is the unique intersection of Ψ with the 45 degree line.

Take $\epsilon \to 0$ and calculate limit x^* :

$$\begin{split} [e - f(h(x^*, \epsilon))][1 - a(h(x^*, \epsilon)] &\leq \frac{1}{2\epsilon} \int_{x^* - \epsilon}^{h(x^*, \epsilon)} [e - f(\theta)] d\theta \\ &\leq [e - f(x^* - \epsilon))][1 - a(h(x^*, \epsilon)] \end{split}$$

 $\quad \text{noting that } f(x^*-\epsilon) \leq f(\theta) \leq f(h(x^*,\epsilon)) \text{ for all } \theta \in [x^*-\epsilon,h(x^*,\epsilon)].$

• x^* and $h(x^*, \epsilon)$ go to a common limit, call it θ^* . This solves:

$$[e - f(\theta^*)][1 - a(\theta^*)] = t.$$

- Note: Careful when reading Morris-Shin; error in Theorem 2.
- See Heinemann (AER 2000).

Equilibrium Transition? Fertility Decline in Bangladesh

- Munshi and Myaux (JDE 2006)
- 1983–1993: Total fertility rate goes from 4.5 to 2.9.
- This is a huge drop.
- Norms governing fertility use and contraception.
- Contraception went from 40% in 1983 to 63% in 1993.

"This paper provides a norm-based explanation for two features of the fertility transition that have been observed in many different settings: the slow response to external interventions and the wide variation in the response to the same intervention."

Bangladesh

Period	Birth rate	Death rate
1881-91	-	41.3
1891-01	-	44.4
1901-11	53.8	45.6
1911-21	52.9	47.3
1921-31	50.4	41.7
1931-41	52.7	37.8
1941-51	49.4	40.7
1951-61	51.3	29.7
1961-74	48.3	19.4
1976	45.4	19.7
1980	43.8	13.6
1986	38.9	11.9
1989	36.7	10.7
1994	27.8	8.6
2000	27.2	7.4
2010	20.8	6.1

Taken from Cleland and Streathfield, BBS, World Bank

- Maternal Child Health Family Planning (MCH-FP) project
- Launched in 1978, 70 villages in Matlab thana, Comilla district.
- Intensive family planning program
- Community Health Worker (CHW) visited each family once every 2 weeks since start of the project in 1978.
- Contraceptives are provided to them free of cost.
- Use goes from from 40% in 1983 to 63% in 1993
- TFR from 4.5 to 2.9 children over that period.

Table 1: Percent distribution of couples using
each contraceptive method, Matlab 1998

Method	n	Percent of total
A. Users		
Pill	2,396	19.4
Intra-Uterine Device	171	1.6
Injectibles	4,015	32.6
Condom	605	4.9
Tubal ligation	634	5.1
Vasectomy	16	0.1
Others	287	2.4
B. Non-users	4,186	33.9
All	12,342	100

Khan-Bairagi (1998)

Fig. 1. Contraceptive prevalence over time.

 Strong initial hostility to MCH-FP, especially from religious leaders.

 Especially hostile reaction against community health workers (violating *purdah*)

Also, pressure against contraceptive use (linked to perceived promiscuity)

Women in village limited in their mobility:

 Schuler et al. (1997) survey of 1300 married women under 50, 1992.

Ever been to market, a medical facility, the movies, and outside the village.

One point for accompanied visit, 2 points for solo visit.

Mean score 2.1 (out of a maximum of 8).

Sample: all married women 15–49 in MCH-FP area, 1983–93.

Table 2								
Descriptive statistics								
	Full sample	Hindus	Muslims	Illiterate	Literate			
	(1)	(2)	(3)	(4)	(5)			
Panel A: Individual ch	aracteristics							
Age	29.44 (8.01)	29.91 (8.00)	29.34 (8.01)	30.49 (8.18)	27.75 (7.44)			
Number of children	2.41 (1.99)	2.18 (1.79)	2.45 (2.03)	2.57 (2.05)	2.14 (1.86)			
Education	2.12 (3.12)	1.48 (2.68)	2.26 (3.19)	0.00-	5.53 (2.55)			
Husband's education	3.21 (4.00)	3.07 (3.81)	3.24 (4.04)	1.53 (2.62)	5.91 (4.34)			
Panel B: Occupation o	f household head	(%)						
Farming	34.48	23.45	36.88	30.32	41.16			
Fishing	5.80	26.18	1.37	8.07	2.15			
Business	6.75	8.37	6.40	6.30	7.47			
Housework	10.46	6.81	11.26	10.00	11.21			
Other	42.51	35.20	44.10	45.31	38.01			
Total	100.00	100.00	100.00	100.00	100.00			
Panel C: Asset owners	hip							
Land (hectares)	1.00 (2.55)	0.72 (1.39)	1.06 (2.74)	0.82 (2.41)	1.29 (2.74)			
Cows	1.06 (1.57)	0.81 (1.42)	1.11 (1.59)	0.91 (1.46)	1.28 (1.70)			
Boats	0.55 (0.61)	0.63 (0.76)	0.54 (0.57)	0.55 (0.61)	0.56 (0.60)			
No. of Observations	21,570	3847	17,723	13,288	8282			
Panel D: Contraceptive	e prevalence							
Probability of using contraceptives	0.55 (0.50)	0.59 (0.49)	0.54 (0.50)	0.53 (0.50)	0.57 (0.50)			
No. of Observations	144,186	26,414	117,772	91,727	52,459			

Means (standard deviations) in panel A, panel C and panel D.

The individual is the unit of observation in panels A–C. The individual-year is the unit of observation in panel D. All statistics in this table are computed over the full 1983–93 sample period.

A Conceptual Problem

Linear probability model (also tried logit):

$$y_{it} = A + \gamma y_{i,t-1} + \beta x_{t-1}^{v(i)} + \eta Z_{it} + C_t^{v(i)} + \epsilon_{ivt}$$

• y_i is 0-1 for contraceptive use by couple *i*, *t* is time, *x* is aggregate village-level use, v(i) is the village of person *i*, *Z* a vector of individual characteristics (such as age) including individual and time fixed effects in some specifications.

- C_t^v is unobserved omitted variable for village v at date t.
- At the heart of identification problem (Manski critique)
- β can pick up the effects of unobserved C_t^v ...
- E.g., economic growth
- Village-level success of the MCH-FP program.

- \Box C_t^v can be decomposed into three parts.
- First component only depends on the village: C_1^v .
- Second component only depends on time: C_{t2} .
- Third varies in a village-specific way over time.
- Components 1 and 2 dealt with by village and time fixed effects.
- The last one screws everything up: identification problem.

Main Idea in Munshi-Myaux Paper

- Inter-religion communication low.
- So include own-group and cross-group use separately.
- If own-effect strong, then pushes back the Manski critique:

 For critique to work, there has to be an omitted variable which is village-, time- and group-specific.

$$y_{it} = A + \gamma_m y_{i,t-1} + \beta_{mm} x_{t-1}^{v(i),m} + \beta_{mh} x_{t-1}^{v(i),h} + \eta_m Z_{it} + C_t^{v(i),m} + \epsilon_{ivt}$$

- where i is m-household, and m and h labels self-explanatory.
- Can get spurious effects only if $C_t^{v(i),m}$ and $C_t^{v(i),h}$ orthogonal.

Table 3 Partitioning the village by religion

	Dependent variable: contraception							
	All villages		More than 5% Hindus/Muslims		More than 15% Hindus/Muslims		Annual data	
	Muslims (1)	$\frac{\text{Hindus}}{(2)}$	$\frac{\text{Muslims}}{(3)}$	$\frac{\text{Hindus}}{(4)}$	Muslims (5)	Hindus (6)	Muslims (7)	$\frac{\text{Hindus}}{(8)}$
Lagged contraceptive	0.217	0.161	0.193	0.169	0.207	0.168	0.312	0.246
prevalence (own group)	(0.013)	(0.014)	(0.016)	(0.017)	(0.018)	(0.020)	(0.023)	(0.023)
Lagged contraceptive	0.008	0.009	0.007	0.024	- 0.001	0.019	0.009	0.006
prevalence (other group)	(0.006)	(0.007)	(0.011)	(0.016)	(0.013)	(0.024)	(0.011)	(0.012)
Lagged contraception	0.698	0.712	0.704	0.710	0.706	0.717	0.498	0.517
	(0.003)	(0.005)	(0.004)	(0.005)	(0.004)	(0.006)	(0.005)	(0.008)
R^2	0.513	0.559	0.520	0.558	0.521	0.565	0.281	0.338
Number of observations	139,875	43,101	79,927	29,771	49,730	20,756	70,787	21,419
Box–Pearson Q statistic	0.000	0.003	0.001	0.002	0.002	0.006	0.003	0.008

Standard errors in parentheses.

Standard errors are robust to heteroskedasticity and correlated residuals within each village-period.

- All data 6-monthly except last two columns
- See paper for other robustness checks: no fisherman, *bari*-level effects

Alternative Explanations

- Program effects:
- Cross-sectional variation: individual fixed effects.
- Secular changes: time effects.
- But village-specific time effects pose a problem. The CHW varies from village to village, after all.
- That is where the own-religion cross-religion trick plays a role.
- Economic growth
- Religion and occupation largely uncorrelated except for fishermen.
- Learning about a new technology
- Possible, with injectibles. But authors argue against it.