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Sketches of Answers to Problem Sets

The answers below are brief and try to give you the basic idea of how to approach these
problems. You will gain a lot more from studying these answers if you spend some time
independently trying to work on the problems.

Problem Set 1

(1) (a) Imagine that companies have some different costs of installing fax machines (perhaps
because of different degrees of liquidity or access to credit) but that they all face a return
from installing the machines that depends positively on how many other companies are
installing. Then the graph that you draw will be upward-sloping. The more companies that
are expected to install the machines, the more will actually do so. [Important: note that the
intersections of this graph with the 450 line describes the equilibrium outcomes. Can you tell
which intersections might be stable and which unstable, in the sense discussed in class?]

(b) The information given tells us that the number of companies y who actually install (as a
function of the number of companies x who are expected to install) is given by the equation:

y = A+
x2

1000
,

provided that the upper bound of one million is not overstepped for either x or y (in this
case, simply replace the corresponding values from the equation by 1 million).

Now let us calculate equilibria. First note that if x equals 1 million, then y as given by
the equation will be way over 1 million, which simply means that everybody installing fax
machines is always an equilibrium.

The remaining equilibria (if any) can be calculated by setting y = x, because this is where
expected number and actual number coincide. Doing this, we get the equation

x = A+
x2

1000
,

(This is the same as looking at the intersection with the 450 line.)
The positive solutions are the other equilibria. Can you show that if A exceeds the value

250, there are no other equilibria? Use the graph, or your ability to solve quadratic equations.

(2) (a) If I am an evader, then I will be caught with probability 1/m where m is the total
number of evaders. E.g., if m = 3, then there are three evaders and the chance of my getting
caught is one out of three or 1/3. If I am not caught, then I pay nothing. But if I am caught,
then I pay a fine of F . Thus my expected payout is 1/m times F , or simply F/m. As a
potential evader, I will compare this loss with the sure payment of T (if I do not evade), and
take the course of action that creates smaller losses.
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(b) This situation is like a coordination game because if one person becomes an evader, she
makes it easier for other people to evade. This is because the probability of getting caught
comes down, so that the expected losses from evasion come down as well. In terms of part
(a), m goes up if an additional evader enters the scene, so that F/m comes down. Thus an
evader causes complementarities for other evaders.

(c) To see that “no evasion” is an equilibrium, suppose that nobody in the economy is evading.
You are a potential evader. If you pay your taxes you will pay T . If you evade, then m = 1
(which is just another way of saying that you will be caught for sure), so that your expected
loss is simply F . But F > T by assumption. It follows that if nobody else is evading, you
won’t evade either. The same mental calculation holds for everybody, so that “no evasion”
all around is an equilibrium.

What about everybody evading? Suppose that this is indeed happening, and you are
considering evasion. If you do evade, then m = N , so that your expected losses are F/N .
It follows that if F/n < T , you will jump on the bandwagon and evade as well. Thus
“widespread evasion” is also an equilibrium provided that the consition T > F/n holds.

(3) (a) Our formulation captures the following idea: a person’s productivity is positively
linked not only to his own skills, but also to that of his fellow workers. But more than that
is true: note that IH − IL = (1 + θ)(H − L), which means that the difference between the
incomes from low and high skills widens with more people acquiring high skills. It follows
that whenever a person chooses to acquire skills, he increases the return to skill acquisition
by everybody else. This is precisely the complementarity that underlies any coordination
problem.

(b) Assume that H − L < C < 2(H − L). First let us see if “no skill acquisition” can be an
equilibrium. To this end, suppose that no one in society is acquiring skills: then θ = 0. If
you are thinking of becoming high-skilled, then the gain in your income is IH − IL, which
is just H − L (because θ ' 0). If H − L < C (which is assumed —see above), then it is
not worthwhile for you to acquire skills. We have thus shown that if everybody believes that
everybody else will not acquire skills, then no one will acquire skills. These beliefs thus form
a self-fulfilling prophecy.

Now let us see if “universal skill acquisition” can be an equilibrium. Suppose that you
believe that everybody else will acquire skills: then θ = 1. Thus, if you are thinking of
becoming high-skilled, then the gain in your income is IH − IL, which is 2(H − L) (because
θ = 1). If 2(H − L) > C (which is assumed —see above), then it is worthwhile for you to
acquire skills. We have thus shown that if everybody believes that everybody else will acquire
skills, then everyone will acquire skills. These beliefs also form a self-fulfilling prophecy.

Finally, there is a third equilibrium in which just the right amount of people invest in
skill acquisition so that everybody is indifferent between acquiring or not acquiring skills.
This is given by a fraction of skilled people θ∗ such that (1 + θ∗)(H − L) = C. This is an
equilibrium because no one is doing anything suboptimal given his or her beliefs. But you
can intuitively see why this equilibrium must be “unstable”. If for some reason the fraction
of skilled people exceeds θ∗, even by a tiny amount, then it becomes strictly preferable for
everyone else to acquire skills, so that we rapidly move to the “universal skills” equilibrium.
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If on the other hand, θ falls below θ∗ (if only by a tiny amount), everyone will desist from
acquiring skills, so that we move towards the “no skills” equilibrium.

(c) and (d) If the returns to low-skilled occupations is now given by IL = (1+λθ)L, what this
means is that we are changing the “sensitivity” of low-skill income to the fraction of high-
skilled people. A higher λ means that low-skill income is more and more responsive to the
fraction of high-skilled people. Note that the difference between high and low skill incomes
thus becomes less responsive. To see this, observe that IH − IL = (1 + θ)H − (1 + λθ)L =
[H − L] + θ[H − λL]. Now see that if λ exceeds the value H/L, the difference between
the two incomes will actually fall as θ goes up. In this case there cannot be any multiple
equilibrium, for exactly the same reason as the traffic congestion example in the text cannot
exhibit multiple equilibria.

(e) In this case, note that the cost of acquiring skills becomes infinitely high as θ becomes
close to zero, while the cost declines to near zero as θ approaches one. Thus we see again that
there are three equilibria. In the first, there is no skill acquisition because everyone, expecting
that there is no skill acquisition, feels that the cost of acquiring high skills will be very high,
and so desist from doing so. At the same time, the expectation that everyone acquires skills
is also a self-fulfilling prophecy, because in this case the cost of education is very low. And
there is a third equilibrium where people are indifferent between the two options. Just as in
part (a), this equilibrium must be described by the condition that IH − IL = 1−θ∗

θ∗ (why?).

(4) Other examples of coordination problems. To show that a situation gives rise to a
coordination problem, what one needs to do is check if there are complementarities between
the various agents concerned. In the first case (part (a)) the agents in question are the
potential defaulting countries. The more defaulters there are, the harder it is to punish
any one of them simply because it is harder for the creditor to give up trade with several
countries. Thus each defaulter creates complementarities for other defaultors. [This may be
one reason why we observed a sudden wave of defaults and renegotiations during the debt
crisis of the 1980s, instead of sporadic isolated instances of default. See Chapter 17 of DE,
Section 17.4.2 for more on the debt crisis.]

You should be able to do part (b) on your own. By this time you should also be thinking
harder about the term “complementarities”. Even though complementarities are sometimes
associated with positive externalities for other people, this is not always the case, as part
(b) shows. In its most abstract form, the term simply means: if one individual carries out
an action, it tends to increase the propensity for others to carry out the same action. The
action could mean buying a new computer, not paying taxes, defaulting on debt, or selling a
stock in panic, as we have already learnt.

In part (c), think about what leads to a particular region turning into a full-fledged city.
To some extent it is a question of location, but there are positive externalities at work here
as well. If an area already has a conglomeration of businesses, it makes it easier for other
businesses to set up there as well, because of access to a variety of infrastructural services.
Likewise, individuals are more keen on moving to sucha place to work, because they know
that the amenities of life are more likely to be available. Thus setting up life in a city creates
positive externalities (up to a point at least: later there is pollution, congestion, and high
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cost-of-living to worry about), in the sense that it raises to return to others of setting-up in
the city as well.

Thus think about concentrations of high tech companies in Slicon Valley or along Route
128 in the Boston area. It is easier for a new company to locate here because it will be
easier to hire trained personnel, to have access to the latest in technological knowhow, to
take advantage of the ancillary activities that have grown up around these firms. This is
clearly a case of complementarities (and in this case the externalities are positive as well:
they are also beneficial to society).

(5) The same idea as in the tax problem.

(6) (a) The gain from being your own self is S. If you are an L-type or an R-type, however,
you will also feel a loss equal to α

1−α . Therefore the net gain from being your own type (L
or R) is

S − α

1− α
.

This is negative if α > S
1+S . Above this threshold value, everybosy will say that they are

type M .

(b) In this case, there are two possibilities. First, assume that α > S
1+S , the threshold derived

in part (a). Note that a fraction α (the true M -types) will always say that they are type M ,
because they have nothing to gain by stating any other position. But by part (a), the other
types will hide their identity, which raises the value of β (the announced M -types) above the
value of α. This process can only stop when everybody announces that they are type M .

On the other hand, if α < S
1+S , there is an equilibrium in which everybody announces

their true type, and so β = α. You can check that nobody will want to deviate from their
announcements. But at the same time, there is another “conformity” equilibrium in which
everybody announces that they are type M (and in which β takes on the value of one).

(c) If there are potential conformist urges attached to each of the views L, M , and R (and
not just M), then other equilibria appear. There may be conformist equilibria in which
everybody announces L, or in which everybody announces R (try and provide a simple
algebraic example of this).

(7) Discussed in class.

(8) Suppose that n people invest; then the return to investment is R(n), an increasing
function.

For no investment to be a unique equilibrium, it must be the case that if we look at the
set of all potential investors, which is (W − x)/W , then R evaluated here must yield a value
smaller than x:

R

(
W − x

W

)
< x.

Now suppose there is wealth equalization with average wealth W/2. the first condition
for there to be any equilibrium with positive investment is W/2 ≥ x.
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We must also have R(0) ≤ x ≤ R(1) for multiple equilibria. the second inequality will be
strengthened further below.

Finally, we need the full-investment equilibrium here to Pareto-dominate the no-investment
equilibrium without redistribution. This means that R(1)−x−W/2 > W , or R(1)−x > W/2.

Now satisfy yourself that these conditions are indeed potentially consistent with one
another. That is, make sure you can write down at least one example in which all the
conditions are simultaneously satisfied.

(9) (a) Define a correspondence by

Γ(b) ≡ arg max
a

f(a, b).

[Note: this is generally a correspondence and not just a function.] To show that the game
exhibits complementarities, we must show that if b′ > b, and a ∈ Γ(b) and a′ ∈ Gamma(b′),
then a′ ≥ a. Suppose this is false for some b and b′ with b′ > b, and for some a ∈ Γ(b) and
a′ ∈ Gamma(b′). Then a > a′. Now observe that

f(a′, b′) ≥ f(a, b′)

while
f(a, b) ≥ f(a′, b).

Adding the two and transposing terms, we see that

f(a, b)− f(a′, b) ≥ f(a, b′)− f(a′, b′)

In words, this means that f increases faster across a′ to a when the second argument is bm,
which is smaller than b′. This contradicts the assumption that fab > 0, which implies exactly
the opposite.

(b) Standard.

(c) Let (a∗, b∗) be an interior Nash equilibrium. Then by the first-order condition for best
responses, we know that

fa(a∗, b∗) = 0 and gb(a∗, b∗) = 0.

Now suppose that we are given that fb and ga are nonzero, as we are. Think of a tiny change
in a and b, mimc by da and db. Taking total derivatives around (a∗, b∗), we see that

df = fb(a∗, b∗)db

where we’ve already used the fact that fa(a∗, b∗0 = 0. Similarly,

dg = ga(a∗, b∗)da

Now, depending on the signs of fb and ga, we may choose da and db to be positive or negative
to assure ourselves that both payoffs go up.

(d)—(e). Easy. Try them yourself. Ask me if you cannot do them.
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(10a) The solution depends on the assumption that the share of capital is common across
the two countries (though it as well as relative TFPs may arbirtrarily vary). To see this,
suppose that in country 1, the production function is given by

Y = AKαL1−α,

while in country 2, it is given by
Y = BKβL1−β.

Then
r1 = αAkα−1

1 ,

where k1 is the capital per worker in country 1, and a similar formula holds for country 2,
so that

r1
r2

=
α

β

A

B

kα−1
1

kβ−1
2

.

Meanwhile if per-wprker output is denoted by yi, it is easy to see that

y1

y2
=
A

B

kα
1

kβ
2

.

Combining these two equations, we may conclude that

y1

y2
=
r1
r2

β

α

k1

k2
.

So knowing the ratios of the r’s and the k’s is sufficient to pin down the ratios of the y’s
provided that we assume that α = β.

(b) Simple computation.

Problem Set 2

[1] (a) Let δ(i) denote the discount factor of person i. Conditional on some trade occuring
today, i can deviate. If he does so, his return is

D +
δ(i)

1− δ(i)
(1− s)M,

because he is in the market from tomorrow on where the expected return at each date is just
(1− s)M .

If he does not do so, the return is

T +
δ(i)

1− δ(i)
sT,
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where the first term is T and not sT because all this is conditional on a trade occuring today.
The second expression must weakly exceed the first for there not to be a deviation; i.e.,

δ(i)
1− δ(i)

[sT − (1− s)M ] ≥ D − T.

Now we show that if j < i, then the same inequality must hold as well. Two steps are
involved. One is to note that δ

1−δ goes up when δ goes up; the second is to note that
[sT − (1 − s)M ] is positive (otherwise the above inequality would not hold to start with).
Combining, we see that the left-hand side goes up when δ goes up.

(b) The important part of this question is that I wanted you to recognize that there must be
a flat part to the mapping before it starts to climb. In fact, if you did this carefully the next
question would have dropped out as a bonus.

Let s be the expected number of people in the T -sector. We want to construct the map
f(s) which describes the measure of people who credibly want to be in that sector. Notice
first that

f(s) = for all s such that sT ≤ (1− s)M.

[This is the flat part.] for s beyond this threshold, f(s) is given by the condition that

δ(f(s))
1− δ(f(s))

[sT − (1− s)M ] = D − T.

It is easy to see that this uniquely determines f(s) for each s. To show that f is strictly
increasing in this range, raise s. Then [sT −(1−s)M ] must rise. To maintain equality above,

δ(f(s))
1−δ(f(s)) must fall. Because δ is decreasing in i, this means that f(s) must rise.

Verbally, the fact that s increases has two effects: it raises the expected value of trades
in the traditional sector and lowers it in the market sector. So now the traditional sector is
more attractive. This by itself is not sufficient, Now one has to argue that because of this
higher attraction, some slightly more impatient people can credibly stay in the traditional
sector.

(c) If the market shuts down entirely, then even the most impatient people are in the tradi-
tional sector. Notice that the no-deviation constraint now reduces to

δ

1− δ
T ≥ D − T.

But now we have a contradiction, because for δ small enough this constraint cannotbe sat-
isfied. Therefore the market cannot shut down entirely. At the same time, the tradtional
sector can shut down entirely. For then the expected return to being in the traditional sector
is 0, while in the market it is M > 0. There is no paradox here because by assumption,
contract-breaking is not possible in the market. This is the asymmetry which allows for one
corner solution but not the other.

(d) For the traditional sector to be partially active we need the existence of some s > 0 such
that

δ(s)
1− δ(s)

[sT − (1− s)M ] = D − T.
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Rearranging, this is equivalent to the condition that

δ(s) =
D − T

D − (1− s)(T +M)
.

One way to guarantee this is to have the discount factor going down very slowly as i goes up,
with all the drop coming near the end. For then, while s is close to 1, the right-hand side is
certainly less than one. But we can keep the left-hand side above 1 by having δ hover near
one until the very end of the distribution. Verbally, this says that the condition for having a
partially active traditional sector is implied by having lots of patient people and only a small
fraction of impatient people.

[2] In both the games under consideration, let A stand for the generic strategy that involves
play of L or U , and B for the generic strategy that involves play of R or D. In both cases
note that playing B is likely to be “better” under low values of the signal, so that is how we
will orient the calculations.

Suppose, then, that we imagine that a player will play B if the signal is some value X
or less. Let us calculate the recursion value ψ(X) such that under this assumption, someone
will play B if his signal is ψ(X) or less.

These examples have the same general structure. Suppose that the signal space is located
on some interval [`, h]. For signals very close to ` playing B is dominant. For signals very
close to h, playing A is dominant. So ψ(`) > ` and ψ(h) < h. Finally, we will show that ψ
is nondecreasing but has a slope strictly less than one. This yields a unique intersection x∗

(which depends on the extent of the noise ε). By exactly the same arguments as in Morris-
Shin, there is a unique equilibrium of the imperfect observation game: play B iff the signal
falls short of x∗. Finally, we describe x∗ as ε→ 0.

(a) In the first example, suppose that your opponent plays B if his signal isX or less. Suppose
you see a signal x, and play B. if the true state is θ, the chance that your opponent plays B
is just the chance that your opponent’s signal falls below the threshold X, given θ. This is
given by the expression

max{X − (θ − ε)
2ε

, 0},

and so your expected payoff (now taking expectations over θ conditional on your signal) is

1
2ε

∫ x+ε

x−ε
(b− θ) max{X − (θ − ε)

2ε
, 0}dθ. (1)

Likewise, if you play A, the chance that your opponent also plays A is

1−max{X − (θ − ε)
2ε

, 0},

and so your expected payoff conditional on x is

1
2ε

∫ x+ε

x−ε
(a+ θ)

[
1−max{X − (θ − ε)

2ε
, 0}
]
dθ. (2)
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[Above, I am integrating from x− ε to x+ ε. I should be worrying about the lower and upper
bounds on θ if I am too close to one edge of the signal space. But we can ignore this, because
we know the behavior of Ψ at the edges of the signal space without having to write down the
exact expressions.]

The equality of expressions (1) and (2) give you the threshold x for which you are indif-
ferent between A and B, under the presumption that a signal below X results in a play of
B for your opponent. In other words, ψ(X) is the solution (in x) to the equation

1
2ε

∫ x+ε

x−ε
(b− θ) max{X − (θ − ε)

2ε
, 0}dθ =

1
2ε

∫ x+ε

x−ε
(a+ θ)

[
1−max{X − (θ − ε)

2ε
, 0}
]
dθ. (3)

By inspecting (3) it should be obvious that Ψ(X) is nondecreasing in X. What is a little less
obvious is the assertion that for all X ′ > X,

ψ(X ′)− ψ(X) < X ′ −X. (4)

To prove (4), let X increase to X + ∆. We want to show that the required solution to (3) in
x increases by strictly less than ∆. Suppose this is false, then it must be that after raising
X to X + ∆, a rise from the previous solution x to x + ∆ still does not (weakly) bring the
LHS and RHS of (3) into new equality; i.e., we have

1
2ε

∫ x+∆+ε

x+∆−ε
(b−θ) max{X + ∆− (θ − ε)

2ε
, 0}dθ ≥ 1

2ε

∫ x+∆+ε

x+∆−ε
(a+θ)

[
1−max{X + ∆− (θ − ε)

2ε
, 0}
]
dθ.

Now make the change of variables θ′ ≡ θ − ∆. Then, after all the substitutions, we may
conclude that

1
2ε

∫ x+ε

x−ε
(b−θ′−∆) max{X − (θ′ − ε)

2ε
, 0}dθ′ ≥ 1

2ε

∫ x+ε

x−ε
(a+θ′+∆)

[
1−max{X − (θ′ − ε)

2ε
, 0}
]
dθ′,

but this contradicts (3), the original relationship between X and x. So the claim in (4) is
established. Now we have a unique equilibrium using exactly the same arguments as Morris
and Shin.

Call this unique threshold x∗. Then, using this fixed point in (3) and noting that the
“maxes” in that equation may now be dropped (why?), we have∫ x∗+ε

x∗−ε

(b− θ)[x∗ − (θ − ε)]
2ε

dθ =
∫ x∗+ε

x∗−ε
(a+ θ)

[
1− x∗ − (θ − ε)

2ε

]
dθ.

Now pass to the limit as ε→ 0 (use L’Hospital’s Rule). It is easy to see that at the limit,

x∗ = θ∗ =
b− a

2
.

[b] In the second example, make the same provisional assumption: your opponent plays B
if his signal is X or less. Suppose you see a signal x, and play B. if the true state is θ, the
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chance that your opponent plays B is just the chance that your opponent’s signal falls below
the threshold X, given θ. This is given by the expression

max{X − (θ − ε)
2ε

, 0},

just as in (a), and so your expected payoff (conditional on your signal) is

1
2ε

∫ x+ε

x−ε
4 max{X − (θ − ε)

2ε
, 0}dθ.

[Again, I am integrating from x − ε to x + ε because we can neglect the edges of the state
space (see discussion in part (a) above).]

On the other hand, if you play A, you’re guaranteed θ (whatever it may turn out to be),
so your expected payoff is just x, of course.

The equality of these two expressions give you the indifference threshold x. That is, ψ(X)
solves the equation (in x):

1
2ε

∫ x+ε

x−ε
4 max{X − (θ − ε)

2ε
, 0}dθ = x. (5)

Again, you can show that Ψ(X) is nondecreasing in X and has slope less than one; i.e., that
(4) holds for the ψ-function here as well. [Use the same sort of argument we did above; things
here are even simpler.]

Call this unique threshold x∗. Then, using this fixed point in (5) and once again noting
that the “maxes” may be dropped (why?), we have

1
ε

∫ x∗+ε

x∗−ε

x∗ − θ + ε

ε
dθ = x∗.

Now pass to the limit as ε→ 0. It is easy to see that

x∗ = θ∗ = 2.

Observe the contrast between parts (a) and (b). In (a), equilibrium selection generally tracks
the Pareto-dominant equilibrium. When a = b, the switch point is 0 (how could it be anything
else, by symmetry and uniqueness?), and now if a and b depart from each other, the switch
point moves in the “correct” direction. For example, when, if b > a, B will be played more
often, because the switch point is now positive.

In part (b), the switch point is θ = 2 (which is about its midpoint value, given the
support of θ). At this point, (4, 4) is still much better than (θ, θ) = (2, 2). Why does (4, 4)
have so little attractive power? It is because the play of A has “insurance” properties: if your
oppoent does not play A, you still get something (in this example, you get full insurance in
fact). But you get no insurance if you play B and your opponent does not. Thus the selection
device not only looks at payoffs “at the equilibrium”, it looks at payoffs “off the equilibrium”
as well to make the selection.
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[3] To describe this, calculate the threshold x∗ as ε → 0. The easiest way to do this is the
“sandwich” inequality:

[e− f(h(x∗, ε))][1− a(h(x∗, ε)] ≤ 1
2ε

∫ h(x∗,ε)

x∗−ε
[e− f(θ)]dθ ≤ [e− f(h(x∗, ε))][1− a(h(x∗, ε)],

which is obtained by noting that f(x∗ − ε) ≤ f(θ) ≤ f(h(x∗, ε)) for all θ ∈ [x∗ − ε, h(x∗, ε)].
Both sides of the sandwich go to the same limit, because x∗ and h(x∗, ε) — as well as the
realization of the state — all go to a common limit, call it θ∗. This limit solves the condition

[e− f(θ∗)][1− a(θ∗)] = t.

[4] In sector A, the return is 0. In sector B, the return is f(k, z), where k is aggregate capital
and z is a state variable. Assume that f is continuous and increasing in both k and z, and
that f(1, 0) < 0 while f(0, 1) > 0.

As in Morris-Shin, a noisy signal x of z is observed. This is distributed conditional on
z uniformly on the interval [z − ε, z + ε] with density 1/2ε. The realization of the signal is
independent (conditional on z of course) across all agents. Now suppose that everyone uses
the strategy: “put my one unit of capital into sector B if I get the signal x ≥ x̄, otherwise in
sector A.” Now we will calculate a “best reply” to this strategy.

Suppose I get a signal x. For each “truth” z consistent with that signal, how many people
will move to B? Well, if z − ε ≥ x̄, everyone will move. If z − ε ≤ x̄, no one will. In the
remaining (and central) case a measure of individuals given by

1
2ε

[z + ε− x̄] (6)

will obtain a signal above x̄, and so will move. Let ψ(z, x̄) be a function that takes on these
three values in each of these three cases. Then the value of f — conditional on the imagined
truth z — will be

f (ψ(z, x̄), z) .

So my expected value of moving is∫ x+ε

x−ε
f (ψ(z, x̄), z)

1
2ε
dz.

So my “best-reply” threshold signal — call it φ(x̄) — is given by the solution to∫ φ(x̄)+ε

φ(x̄)−ε
f (ψ(z, x̄), z)

1
2ε
dz = 0. (7)

When x̄ is tiny — say x̄ = 0 — then everyone will always move, but nevertheless, because
of the assumption that f(1, 0) < 0, I will still require a positive threshold to move. This
means that φ(0) > 0. By a similar argument, we may use the assumption that f(0, 1) > 0 to
conclude that φ(1) < 1. Finally, we must show that φ is nondecreasing but nevertheless has
a slope less than one.
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To see this, note that ψ(z, x̄) is nonincreasing in x̄ (indeed, strictly decreasing whenever
z − ε < x̄ < z + ε — inspect (6)). This means that the LHS of the equation (7) must decline
in x̄. To restore balance, φ(x̄) must rise. But it can’t rise by the amount that x̄ does (or by
more than that), for if it did, it is easy to see that the LHS of (7) would rise as a consequence.
[Note: this is precisely where the uniform noise assumption is being used.]

Therefore we have a unique fixed point x∗ such that φ(x∗) = x∗. This shows uniqueness
in exactly the same way as we did in class.

[5] Omitted.
[6] (a) If s > 1, then being in sector B guarantees you a payoff of at least

αs+ (1− α)s = s > 1,

which is strictly higher than being in Sector A. So being in B is dominant. Similar trivial
argument applies for the case in which s < −1.

(b) Suppose that an individual today believes that tomorrow , people will go to Sector B as
long as s > S, where S is some threshold. Then today, an individual will choose sector B as
long as

αs+ (1− α)[E(s′|s) + 2P (s′ > S|s)] > 1.

To understand this, first note that we are only writing down a sufficient condition (not a
necessary one). This is why I am pessimistic in the current period and assume that no one
else is going to B. This explains the αs for the first period. In the second period, I certainly
get the conditional expectation of s′ given s, plus if the state exceeds S tomorrow, I will have
a population of measure 2 coming in.

Now noting that E(s′|s) = s (there is no drift), we may rewrite the above as

s+ 2(1− α)P (s′ > S|s) > 1.

This defines a mapping g(S) from tomorrow’s anticipated threshold to a threshold today,
given by

g(S) + 2(1− α)P (s′ > S|g(S)) = 1.

The only consistent expectation is one which replicates itself: that is, g(S) = S. Calling this
s∗, we see that

s∗ + 2(1− α)
1
2

= 1,

or that s∗ = α. The other case is proved similarly.

[7] This is one of those “exploratory” questions in which I would like to see you construct a
model to the best of your ability. But the basic idea is very simple. Suppose that you are
thinking about supporting the potential equilibrium in which everybody is in sector A to
start with, but everybody moves to sector B when they have the chance to do so, and stay
there. This is an equilibrium which breaks free of history. Adserà-Ray provce that if there
are lags in the return adjustment in sector B, no such equilibrium can come about provided
that individuals can move whenever they like.
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The idea is that people will postpone their movement as long as Sector B is not currently
profitable. However, if individuals on average do not have that many chances to move, then
they might move now in the fear that they will not get another chance to reap the benefits
until far into the future. This suggests that the above equilibrium can be sustained if people
have fewer chances to move.

However, here is an intriguing counterargument. If people have few chances to move, the
rate of return in Sector B is going to climb very slowly anyway (because of the slowness of
aggregate movement out of Sector A). So there are two forces at work: at the individual level,
I may want to move because my next shot at moving is far away (in expected value), but
at the same the aggregate slowness of movement means that Sector B’s returns are climbing
very slowly. The latter means I might as well wait. Is it possible to construct an example in
which the second effect dominates the first.

Problem Set 3

[1] Discussed in class.

[2] Suppose the required minimum collateral size is Wm. We are going to find a formula for
Wm. If you repay the loan, you pay up 20,000 plus interest of 10%, which is a total of 22,000.
If you do not repay, you lose the collateral (plus interest), you are fined 5000, and you lose
20% of business profits. If you put up W as collateral, the first of these is W (1+r) = (1.1)W .
And business profits are 30, 000−10w, where w is the wage rate. So if you do not repay, your
total losses are (1.1)W + 5, 000 + (0.2)(30, 000 − w). You will repay, therefore, if this last
expression is at least as great as 22,000 . This means that the minimum necessary collateral
Wm is given by the formula

Wm =
17, 000− (0.2)(30, 000− w)

1.1

Now you can calculate what happens to Wm for different values of the wage rate w. The
minimum required collateral increases with the wage rate, because business profits are lower
and therefore less valuable to the creditor in the event of nonrepayment. Thus a larger
collateral is asked for to start with.

(ii) Just use the above formula to calculate Wm if the wage rate is at 500. Now let us go on
to the second part. Let N be the total population, and let p be the fraction of people who
cannot put up this kind of collateral. Then p × N people get into the labor market. The
remainder become entrepreneurs: each of them demand 10 workers, so the total demand is
10 × (1 − p) × N . If the total supply exceeds the total demand, then some people will be
unable to get employment, whether as laborers or as entrepreneurs (in terms of our model
in class, they would have to go into subsistence). The requirement for this is the condition

pN ≥ 10(1− p)N,

which means that the value of p should exceed 10/11. Translate this fraction into percentage
terms to find the critical value x.
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(iii) and (iv): Similar to what we do below in [3].

[3] (i) There is an initial distribution of wealth which we shall denote by G(W ). If for any
person, W ≥ I, then he can contemplate getting into business, in which case his labor demand
is

L(w) ≡ arg max
L

f(L)− wL,

while his profit is
π(w) ≡ max

L
{f(L)− wL} − I.

A person with sufficient upfront wealth will decide to become an entrepreneur if π(w) > w,
a worker if π(w) < w, and will be indifferent if π(w) = w. Persons with insufficient upfront
wealth must be workers.

Using this information we are ready to describe the market-clearing wage at any date
(you can also use diagrams to supplement what follows). Define w̄ by π(w̄) ≡ w̄. Clearly, the
market-clearing wage can never strictly exceed w̄, otherwise the demand for workers must
drop to 0.

To describe the equilibrium, then, consider two scenarios:
Case 1. w < w̄. In this case, the demand for workers is given by

[1−G(I)]L(w),

while the supply is just G(I), so the equilibrium wage rate is given by

[1−G(I)]L(w) = G(I). (8)

This construction is perfectly valid as long as the resulting wage rate stays short of w̄. If (8)
does not permit such a solution, then set w = w̄ and move to Case 2.
Case 2. w = w̄. Now potential entrepreneurs are indifferent between being workers and
entrepreneurs, so we look for any fraction of entrepreneurs λ that satisfies the condition

λ ≤ [1−G(I)] (9)

and solves
λL(w̄) = 1− λ. (10)

It is easy to see that either there is a solution to (8), or there is a solution to the twin
conditions (9) and (10). In brief, there is a unique market clearing wage in [0, w̄] for every
wealth distribution G.

Given the wealth distribution Gt at time t, we may then write w(Gt) to be the market-
clearing wage. Therefore the total resources to an entrepreneur with starting wealth Wt

are
Wt + π(w(Gt)),

with the result that
Wt+1 = s(1 + r){Wt + π(w(Gt))}, (11)
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where s is the rate of savings and r is the rate of interest. Similarly, a worker at date t follows
the difference equation

Wt+1 = s(1 + r){Wt + w(Gt)}. (12)

You can easily use these equations to generate multiple steady states, some with perfect
equality and others without. If you also put in uncertainty into the wealth accumulation
process you can easily get steady states such that the supports overlap. The reason there
is no contradiction here (unlike in question [1]) is that the two steady states follow different
laws of motion at the individual level, because the equilibrium wage rate is different across
the steady states.

[4a] In a steady state, a standard single-crossing argument shows that no dynasty will switch
skills, assuming that there are no financial bequests. (Why? Make sure you understand this.)

Therefore, if λ is a steady state, we may define the lifetime utility of a skilled and unskilled
dynasty to be

u (ws(λ)− x)
1− δ

and
u (wu(λ))

1− δ

respectively. Because no skilled individual wishes to switch skills, it follows that

u (ws(λ)− x) +
δu (ws(λ)− x)

1− δ
≥ u (ws(λ)) +

δu (wu(λ))
1− δ

,

while
u (wu(λ)) +

δu (wu(λ))
1− δ

≥ u (wu(λ)− x) +
δu (ws(λ)− x)

1− δ
,

Combining these last two inequalities, we get the desired result. It is very easy to see that
there is a continuum of steady states, following exactly the arguments used in class.

[b] To see that all steady states involve persistent inequality in payoffs, not just wages, simply
note that the left hand term in the desired set of inequalities is strictly positive, and therefore
so too must be the middle term.

[c] If a measure λ acquire skills, it is easy to see that net output (which is also per-capita net
output) is given by

f(λ, 1− λ)− xλ.

Differentiate once with respect to λ to get the expression

f1(λ, 1− λ)− f2(λ, 1− λ)− x

and then twice to get the expression

f11 − f22 − 2f12

which is negative by concavity of f . It follows that net output per capita is inverted-U shaped
in λ, rising to a maximum at the value λ̂ given by

f1(λ̂, 1− λ̂)− f2(λ̂, 1− λ̂) = ws(λ̂)− wu(λ̂) = x.
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But we just proved in part (b) that in every steady state value of λ, ws(λ) − x > wu(λ),
so this means that every such value lies to the left of λ̂. We have therefore proved that net
output per-capita is rising over the set of steady states.

[5] (i) A steady state is Pareto-efficient if there is no way to have a feasible allocation starting
from the same initial allocation as the steady state, which makes all generations just as better
off as they were before, and some strictly better off.

The italicized phrase is important. It is true that net consumption is rising in λ over
the set of steady states. That appears to suggest that each higher λ Pareto-dominates each
lower λ. How do we square this with part (ii)? Answer: easy; appearances are deceptive. It
is true that net consumption rises, but we are also changing initial conditions when making
these comparisons! Pareto checks do not permit us to do this.

(ii) Suppose that a steady state has the property that w(2)−w(1) > x/δ (here 2 is obviously
the skilled occupation).

We create a path that Pareto-dominates the steady state. Suppose that at date 0, a
fraction λ is skilled (this is the fraction that will persist, of course, in steady state). What
we do is create a path in which at date 1 a slightly larger measure, λ+ ε is skilled. To create
these extra skills we sacrifice some consumption at date 0 — xε — which is divided equally
among all households, so the consumption loss of each household is also xε. In period 2 we
go back to the old proportion λ and stay there forever. This means that there is some extra
consumption in period 1 (because there are more skilled people) — give this consumption
equally to all. How much is the extra? It is

f(1− λ− ε, λ+ ε)− f(1− λ, λ) ' [f2(1− λ, λ)− f1(1− λ, λ)]
= [w(2)− w(1)]ε.

[This is an approximation but can easily be made precise at the cost of obscuring the intuition,
so we will keep it as it is.]

So to summarize: relative to the original steady state, this path displays a consumption
shortfall of xε in period 0, a consumption excess of (approximately) [w(2)−w(1)]ε in period
1, and no difference thereafter. Notice that agents after period 1 are unaffected, while all
agents at period 1 are strictly better off. It therefore only remains to check agents at period
0. The utility loss for any such agent i at date 0 is

u(c(i))− u(c(i)− xε) ' u′(c(i))xε,

while the utility gain is

δ[u(c(i) + [w(2)− w(1)]ε)− u(c(i))] ' δu′(c(i))[w(2)− w(1)]ε.

Now use the condition w(2) − w(1) > x/δ to show that the gain outweighs the loss, and
thereby complete the proof.

Proving that the opposite of the condition in (i) does imply Pareto-efficiency is not trivial
(try it if you like). For a general treatment see Mookherjee and Ray (2002). But let us
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assume that this is the dividing line between Pareto-efficiency and inefficiency. The question
asks us to show (under this assumption) that there is a continuum of both types of states in
the two-occupation model.

Remembering that λ stands for the proportion of skilled labor, define λ∗ by the condition
w̄(λ)− w(λ) = x/δ. By our discussion above, a steady state proportion λ is Pareto-efficient
if and only if λ ≥ λ∗. So it only remains to show that λ∗ belongs to the interior of the set
of steady states. This is done by verifying that the “double-inequality” condition is satisfied
with strict inequality when λ = λ∗.

Here’s the verification: exploit the strict concavity of u to see that u (w̄(λ∗))−u (w̄(λ∗)− x)
< u′ (w̄(λ∗)− x)x = u′ (w̄(λ∗)− x) δ

1−δ [w̄(λ∗)− x−w(λ∗)] < δ
1−δ [u (w̄(λ∗)− x)− u (w(λ∗))]

< u′ (w(λ∗)) δ
1−δ [w̄(λ∗)− x− w(λ∗)] = u′ (w(λ∗))x < u (w(λ))− u (w(λ)− x).

[6] This is a different approach to the same thing we did in class. We make more assumptions
here, such as the smoothness of the x and w functions, but the analysis is still of independent
interest.

(i) At a steady state, an individual starting at h must choose h. By unimprovability, this
means that the following expression has to be maximized:

u
(
w(h)− x(h′)

)
+

δ

1− δ
u
(
w(h′)− x(h′)

)
and the solution has to be h′ = h.

(ii) For necessity, simply write down the first-order conditions. Sufficiency involves the fol-
lowing interesting theorem: if you have a differentiable real-valued function f defined on an
interval of the real line with the property f”(z) < 0 whenever f ′(z) = 0, then f ′(z) = 0
is sufficient for checking a global maximum. Now go ahead and check that this condition
precisely holds in the exercise above.

(iii): done in class. (iv): easy. (v)–(vii): see my notes.

[7] (i) Say the production function is f(λ), where λ = (λ1, λ2, λ3). Read off wages as marginal
products: define

wi(λ) ≡ fi(λ)

for each i. Now if we define x1 = 0, x2 = x, and x3 = z, we can write the steady state
condition as follows: λ is a steady state if and only if for all occupations i and j,

u(wi(bla)− xj)− u(wi(bla)− xi) ≤
δ

1− δ
[u(wj(bla)− xj)− u(wi(bla)− xi)] . (13)

(ii) Pick any w1, and define w2 = w1 + x
δ and w3 = w1 + z

δ . [The reason for doing this
will become clear in a minute.] Now, we move w1 up and down, notice that w2 and w3

move up and down as well. Observe that there is one and only one value such that the
above relationships hold and the wage vector (w1, w2, w3) supports profit-maximization for
f at some λ. For as w1 → 0, positive profits are certainly possible, and as w1 → ∞, so
do the other wages so all positive production gives strictly negative profits. So there must
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be something in between — call it (w∗1, w
∗
2, w

∗
3) — which gives exactly zero profits so that a

profit-max is well-defined. Call the accompanying λ that goes with it, λ∗.
Notice that this wage function has the property that the claimed inequality in this part

actually does not hold. However, by exactly the same logic used in part (ii) of the previous
question, this wage function and the accompanying λ∗ constitute a strict steady state — all
the inequalities in (13) hold strictly. This means that you can jiggle λ∗ in any “direction”
you want, move the accompanying wages as defined by wi(λ), and for small movements (13)
must continue to hold. In particular, we can perturb λ∗ to some λ so that it satisfies all the
steady state conditions and the desired inequality

w2 − w1

x
6= w3 − w2

z − x
(14)

does hold.

(iii) We can do the same exercise as in the previous question, but this time it’s easier. Take
a steady state in which (14) does hold. Let us suppose, for concreteness, that

w2 − w1

x
<
w3 − w2

z − x
. (15)

Create a Pareto-improvement as follows. At date 0, withdraw a budget of ε from training
type 2 workers and put it into the training of type 3 workers. There is no change in date
0 consumption. At date 1, divide any changed output equally. Do not disturb the program
from date 2 onwards. To show this is an improvement, all we need to do is show that output
in period 1 has increased. This is done using the same approximation techniques discussed
earlier.

In date 1, increase λ1 to λ1 + ε, and λ3 to λ3 + η. Reduce λ2 to λ2 − ε − η. Do this as
follows. the extra money released by the ε-transfer is εx; equalize this to the extra money
used up by the η-transfer, which is η(z − x). That is, make sure that

εx = η(z − x). (16)

Now compute the output difference when ε and η are small. This is

f(λ1 + ε, λ2 − η − ε, λ3 + η)− f(λ1, λ2, λ3) ' f1(λ)ε− f2(λ)[η + ε] + f3(λ)η
= w1ε− w2[η + ε] + w3η

= (w3 − w2)η − (w2 − w1)ε.

Using (15) and (16), it is easy to see that this expression is positive, and we are done.

[8] Here is a quick answer to this question. Suppose, for example, that we haven’t checked
whether an incumbent of occupation i wants to slide up, say, to occupation j, where j is
more than one notch away. Say j is more expensive. Now look at a holder of occupation
j − 1, which is also strictly more expensive than i. We have checked the condition for this
holder vis-a-vis j, and he does not want to migrate to j by assumption. So for monotonicity
not to be violated, j − 1 must want to migrate at least two notches further up. Now we are
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back to the same scenario, but with j − 1 > i as our starting point instead of i. This cannot
go on forever, because there are only a finite number of occupations.

[9] (a) There is a typo in this part. I meant to say: show that you cannot have two distinct
consumption levels ci and cj such that λ(ci) and λ(cj) are both strictly positive.

Answer. Suppose not, so that two different ci and cj are indeed assigned with λ(ci) and
λ(cj) both positive. It must be that λ(ci) and λ(cj) are both strictly We have assumed that
λ(c) is locally strictly concave whenever λ(c) > 0. Now we have a contradiction. Transfer
from the smaller value of c to the bigger value. Output will go up and so will aggregate
utility.

(b) So we can reformulate as follows. There will be m “productive” members are n − m
“unproductive” members, with consumptions a and b. The idea is that λ(a) > 0 but λ(b) = 0.
[But the latter are still given something because they enter into social welfare.] So the idea
is to choose (m,a, b) to maximize

mu(a) + (n−m)u(b)

subject to
f(mλ(a)) ≥ ma+ (n−m)b.

Suppose the production function f is such that zero consumption is the only equal-division
solution; that is, for all c ≥ nĉ,

f(nλ(c)) < nc

Then there cannot be a positive-consumption equal-division solution. Yet, at the same time,
it is possible that

f(λ(ĉ)) > ĉ.

With large n and strictly concave f , this situation is easy to construct. Then an equal-division
solution cannot be optimal. Moreover, this also answers part (c).

Problem Set 4

[1] and [2] Trivial as long as you’ve studied the basic concepts. For instance, in the very
first question, the net return to the government is $0.5b because $20b has to be paid as
debt service. This is a return of 5% which is below the threshold, so the investment will
not be undertaken. This forms the basis for an argument to forgive some of the debt, which
will result in a Pareto-improvement. Similar arguments apply to all the parts in these two
questions.

[3] Suppose that p is strictly increasing and that there is a unique first-best choice of effort
e∗. Then it must be the case that

p(e∗)Q− e∗ > p(ê)Q− ê,
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where ê is the equilibrium solution. At the same time,

p(ê)[Q−R]− [1− p(ê)]w − ê ≥ p(e∗)[Q−R]− [1− p(e∗)]w − e∗.

Adding these two inequalities and canceling all common terms, we see that

(R− w)[p(e∗)− p(ê)] > 0.

Because R > w and p is increasing, it follows that e∗ > ê.

[4] (a) Obviously, p(θ)θ is the expected return of the project θ.

(b) If a borrower puts down collateral C < B, and faces a rate of interest r, then his expected
return from project θ is given by

p(θ)[θ −B(1 + r)]− [1− p(θ)]C = p(θ)[θ + {C −B(1 + r)}]− C.

Therefore the borrower chooses θ to maximize

p(θ)[θ +K],

where K ≡ C − B(1 + r). Because p(θ)[θ + K] is single-peaked by assumption, there is a
well-defined unique solution to θ for every K. We show that θ is declining in K. This is our
standard revealed preference argument — I leave it to you to fill in the details. Once we have
this, unpack K to deduce that θ is strictly increasing in r and strictly decreasing in C.

(c) Notice that when K = 0 the choice of θ maximizes expected returns. It follows that for
every C < B the project choice is too risky relative to expected return maximization, and
just as in the Stiglitz-Weiss model, the risk worsens and the expected payoff declines further
as the rate of interest is increased.

Look at the optimal choice of an individual who has zero collateral, when he faces the
interest rate r̄; i.e., consider the value θ(0, r̄). If

p(θ(0, r̄))θ(0, r̄) < B(1 + r̄),

it follows that this person cannot be profitable to a bank for any rate of interest, because as
we’ve just seen,

p(θ)θ < p(θ(0, r̄))θ(0, r̄)

for values of r that exceed r̄.

(d) Consider a borrower with collateral C, and suppose he is made a loan in equilibrium.
Then we know that at the equilibrium rate of interest r,

p(θ(C, r))θ(C, r) = B(1 + r̄).

Now increase C. By part (b) and the first observations in part (c), the LHS of the above
equation must go up. Because the loan market is competitive, the LHS must be made to
decline to its former value by a change of r. Using part (b) again, this is only possible if r
declines.
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[5] If the borrower borrows B, needs to repay R (< w1), and puts up an amount C as
collateral, his net two-period utility is

W ≡ u(w0 +B +A) + δ[pu(w1 −R+A) + (1− p)u(A− C)],

while the lender’s utility is

Π ≡ −B + δ[pR+ (1− p)βC].

(a) The favorable effect of increasing C should be obvious: the lender is protected against a
default to a greater extent. But there is a negative effect as well. Look at the state in which
the borrower receives no income and consequently defaults. In that state a higher value of
C will create even lower consumption (A−C), which leads ex ante to a greater variability of
consumption. Since the borrower is risk-averse, this leads to a potential loss of social surplus
because it is increasing the uninsurable risk in the system. [Well, not exactly uninsurable.
We could have assumed that the lender allows the borrower some extra funding in this state.
But this is mathematicaly identical in this model to a reduction of collateral.]

If you think this second effect is weird, imagine taking a loan contract in which there is
some chance that in some state you will lose everything (A−C ' 0). For you to participate
willingly in such a contract you will have to be compensated for this risk in all the other
states. Indeed, the compensation may be so high that the lender may not be willing to lend at
those terms. This effect is especially pronounced when β < 1. This diminishes the favorable
effect of increased collateral while keeping the unfavorable effect as powerful as before.

To see this more formally, work out the “competitive solution” to the problem above:
maximize W subject to Π = 0, for some given C. Set up the Lagrangean

L ≡ u(w0 +B +A) + δ[pu(w1 −R+A) + (1− p)u(A− C)] + λ (δ[pR+ (1− p)βC]−B) ,

and differentiate with respect to B to get

u′(w0 +B +A)− λ = 0, (17)

and then with respect to R to get

δpu′(w1 −R+A) + λδp = 0. (18)

Now combine (17) and (18) to see that

w0 +B +A = w1 −R+A; (19)

that is, we have complete consumption smoothing over date 0 and the “success state” in
date 1, but the “failure” low-consumption state is delinked (basically by assumption, since
we assume that the collateral C is a parameter which is unequivocally seized at this state).

The zero-profit condition tells us that B = pR + (1 − p)βC. Using this in (19), we can
solve out for R as

R =
w1 − w0

1 + p
− 1− p

1 + p
βC,
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and therefore for the (common) consumption at date 0 and at the success phase — as

w0 +B +A = w1 −R+A = A+
1

1 + p
[pw1 + w0 + (1− p)βC] ≡ σ.

This means that expected utility is given by

W ≡ (1 + δp)u
(
A+

pw1 + w0 + (1− p)βC
1 + p

)
+ δpu(A− C).

Now we can take derivatives of borrower utility with respect to C. We see that

dW

dC
=

(1 + δp)(1− p)β
1 + p

u′(σ)− δpu′(A− C),

where σ is the common consumption calculated above. Notice that the smaller is the value
of β or the ratio u′(σ)/u′(A−C), the greater is the likelihood that the calculated derivative
is negative, in line with our informal reasoning.

(b) Now introduce the debt overhang as we did in class. You should be able to do the exercise
in a parallel way. The third effect is, of course, the moral hazard effect.

[6] Parts (a) and (b) are directly out of class and there is nothing to add. To do part (c) here
is the basic idea which you can easily formalize. First, recall how we calculated a second-
best package by fixing the lender’s return at z and then calculating the maximum borrower’s
payoff. Here there were two possibilities: the loan is either first-best or incentive-constrained.
Consider any z for which the latter situation applies. Then if we denote by S(z) the total
surplus generated at that z (the sum of the two discount-normalized payoffs), we know that

S(z) is strictly decreasing in z.

[This should be apparent from class discussion, but if it isn’t, make sure you understand it.]
Now we’re going to show how to Pareto-improve this stationary package by using a

nonstationary sequence while still maintaining all the enforcement constraints. Begin by
writing down the enforcement constraint for any sequence of packages {Lt, Rt}:

(1− δ)F (Lt) + δv ≤ (1− δ)
∞∑
s=t

δs−t[F (Ls)−Rs]

for all t, or equivalently,

(1− δ)Rt + δv ≤ (1− δ)
∞∑

s=t+1

δs−t[F (Ls)−Rs] (20)

for all t. Let’s evaluate this constraint in a couple of different situations. First, study it for
the second-best stationary package (L,R) that yields the lender z. Let’s call the return to
the borrower B(z). [Notice that S(z) = B(z) + z.] Then (20) reduces to

(1− δ)R+ δv ≤ δB(z). (21)
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Now consider the nonstationary sequence in which for some small ε > 0, the borrower receives
the package (L,R+ ε) at date 0, and this is followed forever after by the stationary package
that yields the lender z′ ≡ z− (1−δ)ε/δ. By construction, the lender is absolutely indifferent
between the original stationary package and this new “two-pronged” substitute.

What about the borrower? Well, z is down to z′ so the surplus S(z′) > S(z). Because
B(z) + z = S(z), this means that B(z′) is strictly greater than (1 − δ)ε/δ. It follows from
(21) that

(1− δ)(R+ ε) + δv ≤ δB(z′),

so that this two-pronged sequence satisfies all the constraints. To complete the proof, notice
that the borrower is strictly better off, because

(1− δ)[F (L)− (R+ ε)] + δB(z′) > (1− δ)[F (L)−R] + (1− δ)ε+ δ[B(z) + (1− δ)ε/δ]
= (1− δ)[F (L)−R] + δB(z) = B(z).

[7] (a) Suppose that a borrower is revealed to be “normal”, with a discount factor δ ∈ (0, 1).
Then we are back to the earlier model. With the lender having all the power, the optimal
loan will solve

δF ′(L̂) = 1 + r,

and repayment R̂ will be chosen so that

δF (L̂)− R̂ = δv.

Now look at the earlier stage where a borrower is only known to be normal with probability
p. With probability 1− p he has a discount factor of 0. So if a package (L,R) is offered, the
enforcement constraint is simply

(1− δ)R+ δv ≤ δ[F (L̂)− R̂], (22)

(simply borrowed from (21) above), and we will also have to respect the participation con-
straint

(1− δ)[F (L)−R] + δ[F (L̂)− R̂] ≥ v. (23)

The reason why the probability p does not enter above is that bad borrowers will default
anyway, so we only have to respect the constraint for the normal borrowers.

Note that the lender’s return (in the first phase) is given by

pR− (1 + r)L, (24)

and because of his monopoly power, this is what he seeks to maximize, given the constraints
(22) and (23).

If you draw the two constraints on a diagram, you will see that there are two possible
solutions. If p is not too small, both (22) and (23) will hold with equality (or the latter
will be slack but the loan will be zero). Because (22) also happens to be identical to the
enforcement constraint in the full-information phase, this means that R = R̂ in the testing
phase as well. But the testing L must be lower, because either it is zero or (23) is met with
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equality and we know that in the stationary solution the participation constraint is always
strictly slack.

If p is small enough, then (22) will become slack but some combination of R and L will
be chosen so that (23) continues to hold with equality. [Intuitively, if the probability of
repayment is very low, there is more to be gained from protecting the loan size than by
asking for a lot of repayment. Now even R falls short of the full-information counterpart and
of course the loan size continues to be smaller.

(b) If borrowers had not just two possible discount factors but a whole array of them, one
would expect to see several testing phases, each with progressively increasing loan size. This
turns ouyt to be a very hard problem to solve analytically by the way.

[8] (i) With a “large” number of people, total societal output is just p, and this should
therefore by individual consumption as well, under the optimal scheme. So the optimal
scheme involves a transfer t = 1− p when an output of 1 is produced. This means that the
total transfer is p(1 − p), which is divided among the 1 − p have-nots, giving everybody a
consumption of precisely p. This is the (symmetric) optimum scheme.

(ii) In an infinitely repeated context with discount factor δ, the normalized payoff from
participation is therefore just u(p), the normalized payoff from perennial self-insurance is
pu(1)+ (1− p)u(0), while the one-shot payoff from a deviation is (1− δ)u(1). So the enforce-
ment constraint is

(1− δ)u(1) + δ[pu(1) + (1− p)u(0)] ≤ u(p),

which is the same as
δ ≥ u(1)− u(p)

u(1)− [pu(1) + (1− p)u(0)]
. (25)

Note: for δ close enough to unity (25) is always satisfied.

(iii) Now suppose that (25) fails. We describe an approach to the optimal stationary second-
best scheme. Let t be the common transfer made by all haves (not necessarily as large as in
the optimal scheme). Then consumption when output is good is just 1− t, and when output
is bad it is pt/(1− p). So the enforcement constraint now reads:

(1− δ)u(1) + δ[pu(1) + (1− p)u(0)] ≤ (1− δ)u(1− t) + δ{pu(1− t) + (1− p)u
(

pt

1− p

)
}.

It is easy to check that the RHS of this expression is (a) strictly concave in t, and (b) coincides
with the LHS when t = 0. Therefore the only way in which the RHS can exceed the PHS for
some t > 0 is if (and only if) the derivative of the RHS in t is strictly positive, evaluated at
t = 0. Writing out this condition yields the requirement that

−(1− δ)u′(1) + δp[u′(0)− u′(1)] > 0,

or

δ >
u′(1)

(1− p)u′(1) + pu′(0)
(26)
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You should be able to directly check that (26) is a strictly weaker condition than (25), as it
should be.

[9] (i) as in 8(i).

(ii) Let t be a scheme as in question (7). Then expected utility is

pu(H − t) + (1− p)u
(
L+

pt

1− p

)
− E

if effort is applied by everybody, and is simply

qu(H − t) + (1− q)u
(
L+

pt

1− p

)
if one player (of measure zero) deviates. This yields the incentive constraint

(p− q)
[
u(H − t)− u

(
L+

pt

1− p

)]
≥ E

From this it is clear that perfect insurance is no longer incentive-compatible (the LHS of the
above constraint would be zero).

[10] This question is completely parallel to the stationary credit market model with enforce-
ment constraints studied in class. So I omit the answer but do work it out as it will give you
separate insights into this sort of model. For a more general treatment of both models (and
using nonstationary constracts), see Ray, Econometrica 70, 547–582 (2002).

[11] (i) The laborer’s lifetime utility — starting from a slack season — is

u(w∗) + δu(w∗) + δ2u(w∗) + δ3u(w∗) + . . . =
u(w∗)
1− δ2

+ δ
u(w∗)
1− δ2

.

But of course, this evaulation is different if you begin from the peak season (this will be
crucial in what follows):

u(w∗) + δu(w∗) + δ2u(w∗) + δ3u(w∗) + . . . =
u(w∗)
1− δ2

+ δ
u(w∗)
1− δ2

.

(ii) Now suppose that a landlord-employer with a linear payoff function offers the laborer a
contract (x∗, x∗), which is a vector of slack and peak payments. Presumably, the objective
is to help the laborer smooth consumption (while still turning a profit for the landlord), so
it makes sense to look at the case in which x∗ > w∗ and x∗ < w∗. Now, if the offer is made
in the slack, there is a participation constraint to be met there, which is that

u(x∗)
1− δ2

+ δ
u(x∗)
1− δ2

≥ u(w∗)
1− δ2

+ δ
u(w∗)
1− δ2

. (27)

But this is only one half of the story. In the peak season the laborer gets only x∗ and
therefore has an incentive (potentially) to break the contract, getting w∗ on the spot market.
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By our assumptions, this breach will make him a spot laboreer ever thereafter. So his payoff
contingent on breach is precisely his lifetime utility evaluated from the start of a peak season,
so that the self-enforcement constraint simply boils down to

u(x∗)
1− δ2

+ δ
u(x∗)
1− δ2

≥ u(w∗)
1− δ2

+ δ
u(w∗)
1− δ2

. (28)

These are the two constraints that have to be met. [Actually, one implies the other —
see below.]

(iii) Using (27) and (28), we now show that a mutually profitable contract exists if and only
if

δ2u′(w∗) > u′(w∗). (29)

First, remove the (1− δ)2 terms in these constraints to obtain the inequalities

u(x∗) + δu(x∗) ≥ u(w∗) + δu(w∗) (30)

and
u(x∗) + δu(x∗) ≥ u(w∗) + δu(w∗) (31)

respectively. Next, notice that (31) automatically implies (30) (this is just another instance
of the enforcement constraint implying the participation constraint). This is because (31) is
just equivalent to

δ[u(x∗)− u(w∗)] ≥ u(w∗)− u(x∗),

which implies that
u(x∗)− u(w∗) ≥ δ[u(w∗)− u(x∗)],

which in turn is equivalent to (30). So all we have to look for are conditions such that (31)
alone is met for some w∗ ≤ x∗ ≤ x∗ ≤ w∗ and such that

x∗ + δx∗ > w∗ + δw∗,

which is the profitability condition for the employer.
Equivalently, construct the zero-profit locus x∗ = w∗ + δw∗ − δx∗ and plug this into (31)

to ask if there is some x∗ < w∗ such that

u(x∗) + δu (w∗ + δw∗ − δx∗) ≥ u(w∗) + δu(w∗).

Notice that the LHS of this inequality is strictly concave in x∗ and moreover at x∗ = w∗

the LHS precisely equals the RHS. So the necessary and sufficient condition for the above
inequality to hold at some x∗ distinct from w∗ is that the derivative of the LHS with respect
to x∗, evaluated at x∗ = w∗, be negative. Performing this calculation, we get the desired
answer.

Problem Set 5
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[1] [A] Consider the maximization problem:

max
n∑

i=1

[u(ci)− v(ri)]

subject to
n∑

i=1

ci ≤ f(
n∑

i=1

ri).

Of course you can use Lagrangeans to do this, but a simpler way is to first note that all ci’s
must be the same. For if not, transfer some from a larger ci to a smaller cj : by the strict
concavity of u the maximand must go up. The argument that all the ri’s must be the same is
just the same: again, proceed by contradiction and transfer some from larger ri to smaller rj .
By the strict concavity of −v the maximand goes up. Note in both cases that the constraint
is unaffected.

So we have the problem:

maxu
(
f(nr)
n

)
− v(r)

which (for an interior solution) leads to the necessary and sufficient first-order condition

u′(c∗)f ′(nr∗) = v′(r∗).

[B] The (symmetric) equilibrium values ĉ and r̂ will satisfy the FOC

(1/n)u′(ĉ)f ′(nr̂) = v′(r̂),

[We showed in class that there are no asymmetric equilibria.] It is easy to see that this
leads to underproduction (and underconsumption) relative to the first best. For if (on the
contrary) nr̂ ≥ nr∗, then ĉ ≥ c∗ also. But then by the curvature of the relevant functions,
both sets of FOCs cannot simultaneously hold.

[C] First think it through intuitively. As n is reduced there should be a direct accounting
effect: total effort should come down simply because there are less people. But then there
is the incentive effect: each person puts in more effort because they will have to share the
output with a smaller number of people. Now let’s see this a bit more formally. Let R̂ denote
total equilibrium effort, and rewrite the FOC as

(1/n)u′(f(R̂)/n)f ′(R̂)− v′(R̂/n) = 0.

Now we take derivatives. For ease in writing, we will write u′, f ′′, etc., with the understanding
that all these are evaluated at the appropriate equilibrium values. Doing this, we have

− 1
n2
u′f ′ +

1
n
u′′f ′

[
− f

n2
+
f ′

n

dR̂

dn

]
+

1
n
u′f ′′

dR̂

dn
− v′′

[
1
n

dR̂

dn
− R̂

n2

]
= 0,

and rearranging,
dR̂

dn
=

1
n2u

′f ′ + 1
n3u

′′f ′f − 1
n2 v

′′R̂
1
n2u′′f ′2 + 1

nu
′f ′′ − 1

nv
′′ .
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The denominator is unambiguously negative. The numerator is ambiguous for the reasons
discusssed informally above.

[D] Each person chooses r to maximize

u

([
β(1/n) + (1− β)

r

r +R−

]
f(r +R−)

)
− v(r)

where R− denotes the sum of other efforts. Let (c, r) denote the best response. Write down
the FOC (which are necessary and sufficient for a best response — why?):

u′(c)

([
β(1/n) + (1− β)

r

r +R−

]
f ′(r +R−) + f(r +R−)

(1− β)R−

(r +R−)2

)
= v′(r)

Now impose the symmetric equilibrium condition that (c, r) = (c̃, tr) and R− = (n − 1)r̃.
Using this in the FOC above, we get

u′(c̃)
[
1
n
f ′(nr̃) +

(1− β)(n− 1)f(nr̃)
n2r̃

]
= v′(r̃).

Examine this for different values of β. In particular, at β = 1 we get the old equilibrium
which is no surprise. The interesting case is when β is at zero (all output divided according
to work points). Then you should be able to check that

u′(c̃)f ′(nr̃) < v′(r̃)!

[Hint: To do this, use the strict concavity of f , in particular the inequality that f(x) > xf ′(x)
for all x > 0.]

But the above inequality means that you have overproduction relative to the first best. To
prove this, simply run the underproduction proof in reverse and use the same sort of logic.

You should also be able to calculate the β that gives you exactly the first best solution.
Notice that it depends only on the production function and not on the utility function.

[2] [A] Define a new function f by f(s) ≡ F (s, s) = sα. You can think of this as the “scale
function” embodied in the Leontief function. Each individual effectively “has full access” to
this function by his choice of effort, as long as his effort lies below that of the other agent.

Define s∗ by
1
2
αs∗α−1 = c′(s∗) = 1.

We claim that any symmetric (r, r) ≤ (s∗, s∗) is a Nash equilibrium of the game. For if one
person chooses r ≤ s∗, the other person — by the very construction of s∗ — has an incentive
to keep contributing all the way up to r, and no more.

[B] Obviously, the Nash equilibrium that is best for the agents, is given by (s∗, s∗). In fact,
we’ll show something stronger: that it creates a higher sum of payoffs than any other Nash
equilibrium from any other division of access shares. To prove this, first note that every
Nash equilibrium (no matter what the shares are) must have equal provision of effort (r, r)
(the higher effort guy would simply be wasting effort, a contradiction). Moreover, because
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social surplus is just f(s) − s which is strictly concave, (s∗, s∗) beats any (r, r) as long as
s∗ > r. So all we have to do is show that in any other Nash equilibrium, s∗ > r.

This is easy. In any equilibrium, both FOC must satisfy:

λif
′(r) ≥ 1.

If r > s∗, then we must conclude — remembering that one of the λi’s is less than 1/2 — that

1
2
f ′(s∗) > 1,

which is a contradiction.

[3] and [4] discussed in class. You should be able to work out the example with log utility on
your own.

[5] Total payoff is given by
kai − c(ri),

where
∑

i ai = f(R) and R =
∑

i ri.
Consider an ex post situation in which (r1, . . . , rn) are given. Let us maximize welfare∑

i

w (kai − c(ri))

by choice of the allocation (a1, . . . , an). If vi denotes the payoff to agent i, then we get

w′(vi)k = w′(vj)k

for every i and j. This proves that ex-post utilities are equalized. Now the rest of the proof
follows as in class.

[5] Suppose that the individual utility function in the Ray-Ueda model is given by

u(ai)− c(ri) = ln ai − ri ≡ vi,

and the social welfare function is given by

W = − 1
α

∑
i

{e−αvi − 1}.

[A] Standard; omitted.

[B] Now we work out the ex-post consumption allocations as a function of (r1, . . . , rn). That
is, we maximize

− 1
α

∑
i

{e−α[ln ai−ri] − 1}

which is the same as minimizing ∑
i

a−α
i eαri .
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From the FOC, we see that the solution involves

ai/aj =
eαri/(α+1)

eαrj/(α+1)

for all i and j, from which it is trivial to conclude that

ai = F (r)
eαri/(α+1)∑
j e

αrj/(α+1)
.

for all i.

[C] Now consider a symmetric Nash equilibrium of the effort game. Player i maximizes

ln

(
F (r)

eαri/(α+1)∑
j e

αrj/(α+1)

)
− ri

or equivalently

ln (F (r)) + ln

(
eαri/(α+1)∑
j e

αrj/(α+1)

)
− ri

by choosing ri. Writing down the FOC, we have

∂ lnF (r)
∂ri

+
α

α+ 1
−
∑

j e
αrj/(α+1)

eαri/(α+1)

eαri/(α+1)(∑
j e

αrj/(α+1)
)2

α

α+ 1
eαri/(α+1) = 1,

and imposing symmetry, we may conclude that

∂ lnF (r)
∂ri

+
α

α+ 1

(
1− 1

n

)
= 1.

Rearranging, we obtain the required result:

∂ lnF
∂ri

=
1 + α/n

1 + α
(32)

for all i. Now, the FOC for the first-best is just the familiar condition

u′(c∗)Fi(r∗) = v′(r∗),

which reduces in this special case to
1
a∗
Fi(r∗) = 1.

Using the fact that a∗ is nothing but F (r∗)/n, we see that

Fi(r∗)
F (r∗)

=
1
n
. (33)

Compare (32) and (33), noting that Fi(r
∗)

F (r∗) is nothing but ∂ ln F (r∗)
∂ri

. You will see that as α
increases, the partial derivatives of F with respect to each input decrease to the first best
level. It is a simple matter to conclude that output increases to the first-best level as α goes
to infinity.

[D] Just computation, but do it just to make sure you are on top of the material.
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