
Development Economics Fall 2002
Answers to Problem Set on Voluntary Contributions and Incentives

[1] [A] Consider the maximization problem:

max
n∑

i=1

[u(ci) − v(ri)]

subject to
n∑

i=1

ci ≤ f(
n∑

i=1

ri).

Of course you can use Lagrangeans to do this, but a simpler way is to first note that all ci’s must
be the same. For if not, transfer some from a larger ci to a smaller cj : by the strict concavity of u
the maximand must go up. The argument that all the ri’s must be the same is just the same: again,
proceed by contradiction and transfer some from larger ri to smaller rj . By the strict concavity of
−v the maximand goes up. Note in both cases that the constraint is unaffected.

So we have the problem:

max u

(
f(nr)

n

)
− v(r)

which (for an interior solution) leads to the necessary and sufficient first-order condition

u′(c∗)f ′(nr∗) = v′(r∗).

[B] The (symmetric) equilibrium values ĉ and r̂ will satisfy the FOC

(1/n)u′(ĉ)f ′(nr̂) = v′(r̂),

[We showed in class that there are no asymmetric equilibria.] It is easy to see that this leads to
underproduction (and underconsumption) relative to the first best. For if (on the contrary) nr̂ ≥ nr∗,
then ĉ ≥ c∗ also. But then by the curvature of the relevant functions, both sets of FOCs cannot
simultaneously hold.

[C] First think it through intuitively. As n is reduced there should be a direct accounting effect: total
effort should come down simply because there are less people. But then there is the incentive effect:
each person puts in more effort because they will have to share the output with a smaller number of
people. Now let’s see this a bit more formally. Let R̂ denote total equilibrium effort, and rewrite the
FOC as

(1/n)u′(f(R̂)/n)f ′(R̂) − v′(R̂/n) = 0.

Now we take derivatives. For ease in writing, we will write u′, f ′′, etc., with the understanding that
all these are evaluated at the appropriate equilibrium values. Doing this, we have

− 1
n2 u′f ′ +

1
n

u′′f ′
[
− f

n2 +
f ′

n

dR̂

dn

]
+

1
n

u′f ′′ dR̂

dn
− v′′

[
1
n

dR̂

dn
− R̂

n2

]
= 0,

and rearranging,
dR̂

dn
=

1
n2 u′f ′ + 1

n3 u′′f ′f − 1
n2 v′′R̂

1
n2 u′′f ′2 + 1

nu′f ′′ − 1
nv′′ .



The denominator is unambiguously negative. The numerator is ambiguous for the reasons discusssed
informally above.

[D] Each person chooses r to maximize

u

([
β(1/n) + (1 − β)

r

r + R−

]
f(r + R−)

)
− v(r)

where R− denotes the sum of other efforts. Let (c, r) denote the best response. Write down the FOC
(which are necessary and sufficient for a best response — why?):

u′(c)
([

β(1/n) + (1 − β)
r

r + R−

]
f ′(r + R−) + f(r + R−)

(1 − β)R−

(r + R−)2

)
= v′(r)

Now impose the symmetric equilibrium condition that (c, r) = (c̃, tr) and R− = (n − 1)r̃. Using this
in the FOC above, we get

u′(c̃)
[

1
n

f ′(nr̃) +
(1 − β)(n − 1)f(nr̃)

n2r̃

]
= v′(r̃).

Examine this for different values of β. In particular, at β = 1 we get the old equilibrium which is
no surprise. The interesting case is when β is at zero (all output divided according to work points).
Then you should be able to check that

u′(c̃)f ′(nr̃) < v′(r̃)!

[Hint: To do this, use the strict concavity of f , in particular the inequality that f(x) > xf ′(x) for all
x > 0.]

But the above inequality means that you have overproduction relative to the first best. To prove
this, simply run the underproduction proof in reverse and use the same sort of logic.

You should also be able to calculate the β that gives you exactly the first best solution. Notice
that it depends only on the production function and not on the utility function.

[2] [A] Define a new function f by f(s) ≡ F (s, s) = sα. You can think of this as the “scale function”
embodied in the Leontief function. Each individual effectively “has full access” to this function by
his choice of effort, as long as his effort lies below that of the other agent.

Define s∗ by
1
2
αs∗α−1 = c′(s∗) = 1.

We claim that any symmetric (r, r) ≤ (s∗, s∗) is a Nash equilibrium of the game. For if one person
chooses r ≤ s∗, the other person — by the very construction of s∗ — has an incentive to keep
contributing all the way up to r, and no more.

[B] Obviously, the Nash equilibrium that is best for the agents, is given by (s∗, s∗). In fact, we’ll show
something stronger: that it creates a higher sum of payoffs than any other Nash equilibrium from
any other division of access shares. To prove this, first note that every Nash equilibrium (no matter
what the shares are) must have equal provision of effort (r, r) (the higher effort guy would simply
be wasting effort, a contradiction). Moreover, because social surplus is just f(s) − s which is strictly
concave, (s∗, s∗) beats any (r, r) as long as s∗ > r. So all we have to do is show that in any other
Nash equilibrium, s∗ > r.

This is easy. In any equilibrium, both FOC must satisfy:

λif
′(r) ≥ 1.
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If r > s∗, then we must conclude — remembering that one of the λi’s is less than 1/2 — that

1
2
f ′(s∗) > 1,

which is a contradiction.

[3] and [4] discussed in class. You should be able to work out the example with log utility on your
own.

[5] Total payoff is given by
kai − c(ri),

where
∑

i ai = f(R) and R =
∑

i ri.
Consider an ex post situation in which (r1, . . . , rn) are given. Let us maximize welfare∑

i

w (kai − c(ri))

by choice of the allocation (a1, . . . , an). If vi denotes the payoff to agent i, then we get

w′(vi)k = w′(vj)k

for every i and j. This proves that ex-post utilities are equalized. Now the rest of the proof follows
as in class.

[5] Suppose that the individual utility function in the Ray-Ueda model is given by

u(ai) − c(ri) = ln ai − ri ≡ vi,

and the social welfare function is given by

W = − 1
α

∑
i

{e−αvi − 1}.

[A] Standard; omitted.

[B] Now we work out the ex-post consumption allocations as a function of (r1, . . . , rn). That is, we
maximize

− 1
α

∑
i

{e−α[ln ai−ri] − 1}

which is the same as minimizing ∑
i

a−α
i eαri .

From the FOC, we see that the solution involves

ai/aj =
eαri/(α+1)

eαrj/(α+1)

for all i and j, from which it is trivial to conclude that

ai = F (r)
eαri/(α+1)∑
j eαrj/(α+1) .
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for all i.

[C] Now consider a symmetric Nash equilibrium of the effort game. Player i maximizes

ln

(
F (r)

eαri/(α+1)∑
j eαrj/(α+1)

)
− ri

or equivalently

ln (F (r)) + ln

(
eαri/(α+1)∑
j eαrj/(α+1)

)
− ri

by choosing ri. Writing down the FOC, we have

∂ lnF (r)
∂ri

+
α

α + 1
−
∑

j eαrj/(α+1)

eαri/(α+1)

eαri/(α+1)(∑
j eαrj/(α+1)

)2
α

α + 1
eαri/(α+1) = 1,

and imposing symmetry, we may conclude that

∂ lnF (r)
∂ri

+
α

α + 1

(
1 − 1

n

)
= 1.

Rearranging, we obtain the required result:

∂ lnF

∂ri
=

1 + α/n

1 + α
(1)

for all i. Now, the FOC for the first-best is just the familiar condition

u′(c∗)Fi(r∗) = v′(r∗),

which reduces in this special case to
1
a∗ Fi(r∗) = 1.

Using the fact that a∗ is nothing but F (r∗)/n, we see that

Fi(r∗)
F (r∗)

=
1
n

. (2)

Compare (1) and (2), noting that Fi(r∗)
F (r∗) is nothing but ∂ ln F (r∗)

∂ri
. You will see that as α increases,

the partial derivatives of F with respect to each input decrease to the first best level. It is a simple
matter to conclude that output increases to the first-best level as α goes to infinity.

[D] Just computation, but do it just to make sure you are on top of the material.
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