
Answers to Problem Set 2

[1] (a) Let δ(i) denote the discount factor of person i. Conditional on some trade occuring
today, i can deviate. If he does so, his return is

D +
δ(i)

1 − δ(i)
(1 − s)M,

because he is in the market from tomorrow on where the expected return at each date is just
(1 − s)M .

If he does not do so, the return is

T +
δ(i)

1 − δ(i)
sT,

where the first term is T and not sT because all this is conditional on a trade occuring today.
The second expression must weakly exceed the first for there not to be a deviation; i.e.,

δ(i)
1 − δ(i)

[sT − (1 − s)M ] ≥ D − T.

Now we show that if j < i, then the same inequality must hold as well. Two steps are
involved. One is to note that δ

1−δ goes up when δ goes up; the second is to note that
[sT − (1 − s)M ] is positive (otherwise the above inequality would not hold to start with).
Combining, we see that the left-hand side goes up when δ goes up.

(b) The important part of this question is that I wanted you to recognize that there must be
a flat part to the mapping before it starts to climb. In fact, if you did this carefully the next
question would have dropped out as a bonus.

Let s be the expected number of people in the T -sector. We want to construct the map
f(s) which describes the measure of people who credibly want to be in that sector. Notice
first that

f(s) = for all s such that sT ≤ (1 − s)M.

[This is the flat part.] for s beyond this threshold, f(s) is given by the condition that

δ(f(s))
1 − δ(f(s))

[sT − (1 − s)M ] = D − T.

It is easy to see that this uniquely determines f(s) for each s. To show that f is strictly
increasing in this range, raise s. Then [sT −(1−s)M ] must rise. To maintain equality above,

δ(f(s))
1−δ(f(s)) must fall. Because δ is decreasing in i, this means that f(s) must rise.

Verbally, the fact that s increases has two effects: it raises the expected value of trades
in the traditional sector and lowers it in the market sector. So now the traditional sector is
more attractive. This by itself is not sufficient, Now one has to argue that because of this
higher attraction, some slightly more impatient people can credibly stay in the traditional
sector.



(c) If the market shuts down entirely, then even the most impatient people are in the tradi-
tional sector. Notice that the no-deviation constraint now reduces to

δ

1 − δ
T ≥ D − T.

But now we have a contradiction, because for δ small enough this constraint cannotbe sat-
isfied. Therefore the market cannot shut down entirely. At the same time, the tradtional
sector can shut down entirely. For then the expected return to being in the traditional sector
is 0, while in the market it is M > 0. There is no paradox here because by assumption,
contract-breaking is not possible in the market. This is the asymmetry which allows for one
corner solution but not the other.

(d) For the traditional sector to be partially active we need the existence of some s > 0 such
that

δ(s)
1 − δ(s)

[sT − (1 − s)M ] = D − T.

Rearranging, this is equivalent to the condition that

δ(s) =
D − T

D − (1 − s)(T +M)
.

One way to guarantee this is to have the discount factor going down very slowly as i goes up,
with all the drop coming near the end. For then, while s is close to 1, the right-hand side is
certainly less than one. But we can keep the left-hand side above 1 by having δ hover near
one until the very end of the distribution. Verbally, this says that the condition for having a
partially active traditional sector is implied by having lots of patient people and only a small
fraction of impatient people.

[2] In both the games under consideration, let A stand for the generic strategy that involves
play of L or U , and B for the generic strategy that involves play of R or D. In both cases
note that playing B is likely to be “better” under low values of the signal, so that is how we
will orient the calculations.

Suppose, then, that we imagine that a player will play B if the signal is some value X
or less. Let us calculate the recursion value ψ(X) such that under this assumption, someone
will play B if his signal is ψ(X) or less.

These examples have the same general structure. Suppose that the signal space is located
on some interval [�, h]. For signals very close to � playing B is dominant. For signals very
close to h, playing A is dominant. So ψ(�) > � and ψ(h) < h. Finally, we will show that ψ
is nondecreasing but has a slope strictly less than one. This yields a unique intersection x∗

(which depends on the extent of the noise ε). By exactly the same arguments as in Morris-
Shin, there is a unique equilibrium of the imperfect observation game: play B iff the signal
falls short of x∗. Finally, we describe x∗ as ε → 0.

(a) In the first example, suppose that your opponent plays B if his signal isX or less. Suppose
you see a signal x, and play B. if the true state is θ, the chance that your opponent plays B
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is just the chance that your opponent’s signal falls below the threshold X, given θ. This is
given by the expression

max{X − (θ − ε)
2ε

, 0},
and so your expected payoff (now taking expectations over θ conditional on your signal) is

1
2ε

∫ x+ε

x−ε
(b− θ) max{X − (θ − ε)

2ε
, 0}dθ. (1)

Likewise, if you play A, the chance that your opponent also plays A is

1 − max{X − (θ − ε)
2ε

, 0},

and so your expected payoff conditional on x is

1
2ε

∫ x+ε

x−ε
(a+ θ)

[
1 − max{X − (θ − ε)

2ε
, 0}

]
dθ. (2)

[Above, I am integrating from x− ε to x+ ε. I should be worrying about the lower and upper
bounds on θ if I am too close to one edge of the signal space. But we can ignore this, because
we know the behavior of Ψ at the edges of the signal space without having to write down the
exact expressions.]

The equality of expressions (1) and (2) give you the threshold x for which you are indif-
ferent between A and B, under the presumption that a signal below X results in a play of
B for your opponent. In other words, ψ(X) is the solution (in x) to the equation

1
2ε

∫ x+ε

x−ε
(b− θ) max{X − (θ − ε)

2ε
, 0}dθ =

1
2ε

∫ x+ε

x−ε
(a+ θ)

[
1 − max{X − (θ − ε)

2ε
, 0}

]
dθ. (3)

By inspecting (3) it should be obvious that Ψ(X) is nondecreasing in X. What is a little less
obvious is the assertion that for all X ′ > X,

ψ(X ′) − ψ(X) < X ′ −X. (4)

To prove (4), let X increase to X + ∆. We want to show that the required solution to (3) in
x increases by strictly less than ∆. Suppose this is false, then it must be that after raising
X to X + ∆, a rise from the previous solution x to x + ∆ still does not (weakly) bring the
LHS and RHS of (3) into new equality; i.e., we have

1
2ε

∫ x+∆+ε

x+∆−ε
(b−θ) max{X + ∆ − (θ − ε)

2ε
, 0}dθ ≥ 1

2ε

∫ x+∆+ε

x+∆−ε
(a+θ)

[
1 − max{X + ∆ − (θ − ε)

2ε
, 0}

]
dθ.

Now make the change of variables θ′ ≡ θ − ∆. Then, after all the substitutions, we may
conclude that

1
2ε

∫ x+ε

x−ε
(b−θ′−∆) max{X − (θ′ − ε)

2ε
, 0}dθ′ ≥ 1

2ε

∫ x+ε

x−ε
(a+θ′+∆)

[
1 − max{X − (θ′ − ε)

2ε
, 0}

]
dθ′,
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but this contradicts (3), the original relationship between X and x. So the claim in (4) is
established. Now we have a unique equilibrium using exactly the same arguments as Morris
and Shin.

Call this unique threshold x∗. Then, using this fixed point in (3) and noting that the
“maxes” in that equation may now be dropped (why?), we have

∫ x∗+ε

x∗−ε

(b− θ)[x∗ − (θ − ε)]
2ε

dθ =
∫ x∗+ε

x∗−ε
(a+ θ)

[
1 − x∗ − (θ − ε)

2ε

]
dθ.

Now pass to the limit as ε → 0 (use L’Hospital’s Rule). It is easy to see that at the limit,

x∗ = θ∗ =
b− a

2
.

[b] In the second example, make the same provisional assumption: your opponent plays B
if his signal is X or less. Suppose you see a signal x, and play B. if the true state is θ, the
chance that your opponent plays B is just the chance that your opponent’s signal falls below
the threshold X, given θ. This is given by the expression

max{X − (θ − ε)
2ε

, 0},

just as in (a), and so your expected payoff (conditional on your signal) is

1
2ε

∫ x+ε

x−ε
4 max{X − (θ − ε)

2ε
, 0}dθ.

[Again, I am integrating from x − ε to x + ε because we can neglect the edges of the state
space (see discussion in part (a) above).]

On the other hand, if you play A, you’re guaranteed θ (whatever it may turn out to be),
so your expected payoff is just x, of course.

The equality of these two expressions give you the indifference threshold x. That is, ψ(X)
solves the equation (in x):

1
2ε

∫ x+ε

x−ε
4 max{X − (θ − ε)

2ε
, 0}dθ = x. (5)

Again, you can show that Ψ(X) is nondecreasing in X and has slope less than one; i.e., that
(4) holds for the ψ-function here as well. [Use the same sort of argument we did above; things
here are even simpler.]

Call this unique threshold x∗. Then, using this fixed point in (5) and once again noting
that the “maxes” may be dropped (why?), we have

1
ε

∫ x∗+ε

x∗−ε

x∗ − θ + ε

ε
dθ = x∗.

Now pass to the limit as ε → 0. It is easy to see that

x∗ = θ∗ = 2.
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Observe the contrast between parts (a) and (b). In (a), equilibrium selection generally tracks
the Pareto-dominant equilibrium. When a = b, the switch point is 0 (how could it be anything
else, by symmetry and uniqueness?), and now if a and b depart from each other, the switch
point moves in the “correct” direction. For example, when, if b > a, B will be played more
often, because the switch point is now positive.

In part (b), the switch point is θ = 2 (which is about its midpoint value, given the
support of θ). At this point, (4, 4) is still much better than (θ, θ) = (2, 2). Why does (4, 4)
have so little attractive power? It is because the play of A has “insurance” properties: if your
oppoent does not play A, you still get something (in this example, you get full insurance in
fact). But you get no insurance if you play B and your opponent does not. Thus the selection
device not only looks at payoffs “at the equilibrium”, it looks at payoffs “off the equilibrium”
as well to make the selection.

[3] Obvious, if you have read my notes.

[4] (a) If s > 1, then being in sector B guarantees you a payoff of at least

αs+ (1 − α)s = s > 1,

which is strictly higher than being in Sector A. So being in B is dominant. Similar trivial
argument applies for the case in which s < −1.

(b) Suppose that an individual today believes that tomorrow , people will go to Sector B as
long as s > S, where S is some threshold. Then today, an individual will choose sector B as
long as

αs+ (1 − α)[E(s′|s) + 2P (s′ > S|s)] > 1.

To understand this, first note that we are only writing down a sufficient condition (not a
necessary one). This is why I am pessimistic in the current period and assume that no one
else is going to B. This explains the αs for the first period. In the second period, I certainly
get the conditional expectation of s′ given s, plus if the state exceeds S tomorrow, I will have
a population of measure 2 coming in.

Now noting that E(s′|s) = s (there is no drift), we may rewrite the above as

s+ 2(1 − α)P (s′ > S|s) > 1.

This defines a mapping g(S) from tomorrow’s anticipated threshold to a threshold today,
given by

g(S) + 2(1 − α)P (s′ > S|g(S)) = 1.

The only consistent expectation is one which replicates itself: that is, g(S) = S. Calling this
s∗, we see that

s∗ + 2(1 − α)
1
2

= 1,

or that s∗ = α. The other case is proved similarly.

[5] This is one of those “exploratory” questions in which I would like to see you construct a
model to the best of your ability. But the basic idea is very simple. Suppose that you are
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thinking about supporting the potential equilibrium in which everybody is in sector A to
start with, but everybody moves to sector B when they have the chance to do so, and stay
there. This is an equilibrium which breaks free of history. Adserà-Ray provce that if there
are lags in the return adjustment in sector B, no such equilibrium can come about provided
that individuals can move whenever they like.

The idea is that people will postpone their movement as long as Sector B is not currently
profitable. However, if individuals on average do not have that many chances to move, then
they might move now in the fear that they will not get another chance to reap the benefits
until far into the future. This suggests that the above equilibrium can be sustained if people
have fewer chances to move.

However, here is an intriguing counterargument. If people have few chances to move, the
rate of return in Sector B is going to climb very slowly anyway (because of the slowness of
aggregate movement out of Sector A). So there are two forces at work: at the individual level,
I may want to move because my next shot at moving is far away (in expected value), but
at the same the aggregate slowness of movement means that Sector B’s returns are climbing
very slowly. The latter means I might as well wait. Is it possible to construct an example in
which the second effect dominates the first.

Anybody interested in taking this further, see me. But remember you will have to study
the relevant literature first, which includes Frankel-Pauzner.
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