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For the remaining lectures we return to extensive-form games, but this time we focus on
imperfect information, reputation, and signalling games. Our first task is to formulate an
appropriate refinement of subgame perfection which will be central to all that follows. We
shall develop the notion of a sequential equilibrium, due to David Kreps and Robert Wilson.

1. Some Examples

Example 1. Consider the following extensive game:
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Notice that this game has no subgames. The information set where 2 moves might look like
a subgame, but if you go back to the definition you will see that it isn’t. A subgame starts
at a singleton information set (and there are other restrictions as well).

Consider the following strategy profile, in which 1 plays a, and 2 plays L. This is a Nash
equilibrium. Because there are no subgames, this is also a subgame-perfect Nash equilibrium.
But it is a silly equilibrium, because if 2 ever found herself in a situation where she has to
move, she would want to play R no matter what her beliefs regarding where she is “inside”
that information set. [There are lots of other equilibria that make sense. in all of them 2
plays R and 1 plays either b or c or mixes between the two.]

In this example life was simple because we did not even have to figure out what 2’s beliefs
needed to be. So why can’t we simply extend subgame perfection to include this sort of
case, and be done with it? We could, except that in some situations there could be plausible
restrictions on beliefs, and such beliefs could be useful in determining the course of play.

Example 2. Consider the following sequential game in which Nature moves first, then 1, then
(possibly) 2. Nature’s move chooses one of two types of states with 50-50 probability. Notice
that neither 1 nor 2 knows the true state when they play.
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In this game observe that if 2 were to have to move she would not have an unambiguously
“correct” course of action: it would all depend on her beliefs. Now consider the strategy
profile in which 1 plays Out, and 2 plays R (if she finds herself having to move). This is
Nash, it is subgame perfect. It also satisfies the criterion in Example 1: there is some belief
for 2 which justifies her action.

But 2 cannot hold any arbitrary belief. If the structure of the game is common knowledge
(as it assuredly is by assumption), then 2 knows that 1 does not know the true state. Con-
sequently, if 1 plays In instead of Out, then this play cannot be predicated on the state
(unless 1 gets some secret vibe about the state which affects his action without him knowing
about it, which is possible but ruled out). Consequently, 2 must believe that it is equally
likely that she is at one node or the other in her information set. But then she prefers to
play L. Consequently, this strategy profile does not constitute a “credible” equilibrium. [An
equilibrium that is reasonable is one in which 1 plays In and 2 plays L.]

Well then, why don’t we simply extend subgame perfection to these information sets and
ask beliefs there to be consistent with whatever it is that Nature is doing (as in Example 2),
and otherwise allow for arbitrary beliefs (as in Example 1)? We could, of course, but other
concerns remain.

Example 3. In the following sequential game, a player replaces Nature:
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Consider the strategy profile in which 3 plays b, 1 plays Out, and 2 plays R (if she finds herself
having to move). As before, this is Nash and subgame perfect, and satisfies both the criteria
at the end of the last example. But what if this strategy profile is commonly believed by all:
in that case 2, must form a theory about how she came to move. Clearly, 1 did not play Out,
so one theory is just that 1 deviated. There are other theories as well: such as 1 deviated
and 3 also deviated. But these alternatives are not “minimal” explanations of how 2 came
to be in the position that she is in now (of having to move). Indeed, the only minimalist
theory that she can have is that only 1 deviated, so that she must then believe that she is at
the right node. In that case, however, she will want to play L, and the proposed equilibrium
is destroyed.

If you didn’t find this very convincing, look at it another way. What must it take for the
above strategy profile to go through? 1 must really fear that if he deviates, 2 will then layer
on all sorts of extra explanations, justifying a move of R for her. [After all, she must believe
that she is at the left node with at least probability 2/3, even when she is initially believing
that 3 is playing b, according to the proposed equilibrium.] We rule out equilibria that need
to be “supported” in this convoluted way.

This example is a core example, because it tells us that at unreached information sets (ac-
cording to the proposed strategy) that are unexpectedly reached, the player there must have a
belief that is consistent not just with Nature (if Nature moves at all) but also with a minimal
theory of deviations from the proposed equilibrium. For those of you who are philosophers,
this is another instance of Occam’s Razor.

2. Sequential Equilibrium

The notion of a sequential equilibrium is meant to capture these ideas (and more). One way
to develop the idea is to think of an equilibrium as both a strategy profile and a belief system.
[Indeed, this is always true of Nash equilibria but the concept we now develop makes explicit
use of this double representation.] A strategy profile σ simply prescribes actions at every
information set, or probability distributions over actions. A belief system µ assigns beliefs
(or probability distributions) over nodes at every information set.
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Notice that we didn’t even bring in the question of who takes the action or who holds these
beliefs. The question of who takes the action at any information set is easy; it’s obviously
the person who is supposed to move at that information set. In contrast, there is much more
hidden in the notion of a belief system. Certainly beliefs at some information set are to be
interpreted as the beliefs of the person who is scheduled to move there but more than that,
the one belief system is commonly held by (and commonly known to) everybody. This is in
the spirit of Nash equilibrium, and as we shall see it will have more implications than those
captured in the examples so far.

Now we have to relate σ and µ to each other. There are two aspects to this:

First, strategy profile σ must be “rational” given beliefs µ; this is the idea of sequential
rationality. It simply states that at every information set, given the beliefs prescribed by µ,
no individual must want to deviate from the piece of the strategy assigned to her there.

Second, beliefs µ must be “rational” given strategy profile σ; this is the notion of consistency.
Consistency imposes two kinds of restrictions. One is for information sets that are “reached”
under the strategy profile: these are the information sets which will become active with
positive probability under σ. For these sets µ must be given by Bayes’ Rule, given σ. The
second is for information sets which are not reached at all; indeed, these sets were the focus
of all our examples. Bayes’ Rule cannot be applied to sets which are reached with probability
zero; yet, as we’ve seen from the examples above, we do need some specification. This is
where the full definition of consistency is needed:

Say that µ is consistent given σ if there exists a sequence (σm, µm) of strategy profiles and
beliefs such that (a) (σm, µm) → (σ, µ) as m → ∞; (b) σm is completely mixed for every m
in that it assigns strictly positive probability to every action at every information set; and
(c) for each m, µm is derived from σm by applying Bayes’ Rule to every information set.

Thus we require µ to be the “limit of a system of consistent beliefs” given a sequence of
completely mixed stratey profiles that converge to the strategy profile in question.

To complete the definition, say that (σ, µ) is a sequential equilibrium if σ is sequentially
rational given µ and µ is consistent given σ.

3. Discussion

Just sequential rationality and that part of the definition which insists that µ must comes
from Bayes’ rule for information sets that are reached with positive probability takes us
all the way to subgame perfection. This is because at unreached information sets that are
singletons there can be only one conceivable value for µ, Bayes’ Rule or no Bayes’ Rule! So
we are all the way up to subgame perfection. The remaining part of the definition dealing
with limits of beliefs handles other aspects of consistency, such as Examples 1–3 above and
additional situations besides.

Let’s take a quick look at the examples through the eyes of this definition. In Example 1, we
would intuitively like to impose on restrictions on beliefs: after all, if player 1 is supposed to
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play a it is hard to assign relative likelihoods to the two deviations b and c.1 And indeed,
consistency imposes no further restrictions. To see this, fix the strategy profile examined in
that example, any number α strictly between 0 and 1 and consider the completely mixed
strategy that assigns probability 1− ε to a, αε to b and (1− α)ε to c. Bayes’ Rule will give
us probabilities α and 1− α at the information set where 2 was supposed to move, and note
that α is arbitrary, so that any beliefs can be supported.

A little nore subtle are the “edge beliefs” α = 0 and α = 1; the former can be supported, for
instance, using the completely mixed sequence (1− ε, ε2, ε− ε2).

In Example 2, notice that the limit of any completely mixed consistent sequence (relative
to the strategy profile under consideration) must assign probabilities 50-50 to the two nodes
at 2’s unreached information set. Similarly, in Example 3, any totally mixed sequence must
generate the consistent belief (0, 1) for the strategy profile under consideration (do this for-
mally).

There are other restrictions imposed by the notion of sequential equilibrium.

Example 4. Consider this game tree (the payoffs are not needed):
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Consider the strategy profile in which player 1 chooses Out and player 2 chooses Sideways. It
is fine to have the beliefs (1, 0) at the first unreached information set and it is also fine to have
the beliefs (0, 1) at the second unreached information set, but sequential equilibrium will not
allow both these beliefs to be part of one consistent belief system. Indeed, any consistent
belief system will require the same probabilities on the left and right nodes at each of the
two information sets. If the player at the two sets is the same one this makes a lot of sense.
If the players are different (as in the diagram), however, then a real restriction has been
imposed: that the two players must have beliefs which are not just individually consistent
but consistent with each other.

1Or is it? This takes us all the way to the philosophy of what trembles really mean: are they completely
random mistakes or (partly or fully controlled) “errors”. If the former, we can stick to the interpretation in
the text. If the latter, we might say that more dangerous trembles are less likely than less dangerous trembles
(for the player concerned). This leads us into refinements of sequential equilibrium, such as the notion of
proper equilibrium, due to Roger Myerson. But this discussion takes us out of the scope of the lectures.
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Example 5. We have already alluded to the “minimalism” of sequential equilibrium in its
construction of theories about deviation. Here is another instance of this minimalism, related
to the discussion we had before:
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R2 R2

Consider the strategy profile in which player 1 plays R1 for sure and player 2 plays R2 for
sure (what you see is only part of the game and I don’t need to specify the rest of the profile).
The question is: if player 3 finds herself having to move at the lowest information set in the
diagram, what beliefs can she have over the three nodes x, y and z? It is easy to see that
sequential equilibrium demands that node x must be given probability zero! Node x can be
reached, but by two trembles. In contrast, nodes y and z are reachable with a single tremble.
The completely mixed strategy profiles that converge to the profile under consideration must
therefore have the weight on x going to zero “extra-fast” relative to the weights on the nodes
x and y (try this out formally; good practice).

4. Application: The Spence Signaling Model

Or: a model of education in which you don’t really learn anything . . . [But that’s not why
this model is famous. It’s because this is one of the first signaling models, and indeed, it is
one of the models that motivated the definition of sequential equilibrium.]

An employer faces a worker of unknown ability θ. The ability of the worker is known to the
worker though, and is either θ = H or θ = L, where H > L > 0. Interpret these numbers as
the money value of what the worker would produce working in the firm. The worker would
like to transmit the knowledge of her ability to the firm; the problem is how to do so in a
credible way. Think of education as just such a device.

4.1. The Game. Specifically, suppose that a worker can choose to acquire e units of edu-
cation, where e is any nonnegative number. Of course, the worker will have to study hard
to obtain her education, and this creates disutility (studying for exams, doing homework,
etc.). Assume that a worker of true ability θ expends e/θ in disutility. The point is, then,
that H-types can acquire education easier than L-types (there is a bit more going on in the
particular specification that I’ve adopted that I will clarify presently).

The game proceeds as follows:

1. Nature moves and chooses a worker type, H or L. The type is revealed to the worker but
not to the employer.
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2. The worker then chooses e units of education. This is perfectly observed by the employer.

3. The employer observes e and forms an estimate of θ. He then pays the worker a salary
equal to this estimate, which is just the conditional expectation of θ given e, written E(θ/e).

4. The H-worker’s payoff is E(θ/e) − (e/H), and the L-worker’s payoff is E(θ/e) − (e/L).
The game is set up so simply that the employer’s expected payoff is zero. Essentially, we
assume that the worker’s choice of education is visible to the world at large so that perfect
competition must push her wage to E(θ/e), the conditional expectation of θ given e. [If you
want to drop this assumption, you can do so costlessly by assuming that the worker gets paid
some fraction of the expected θ; nothing of substance will change.]

4.2. Single Crossing. Suppose that a worker of type θ uses a probability distribution µθ

over different education levels. First observe that if e is a possible choice of the high worker
and e′ a possible choice of the low worker, then it must be that e ≥ e′. This follows from the
following important single-crossing argument:

The H-type could have chosen e′ instead of e, so

(1) E(θ/e)− e

H
≥ E(θ/e′)− e′

H
,

while the L-type could have chosen e instead of e′, so

(2) E(θ/e′)− e′

L
≥ E(θ/e)− e

L
.

Adding both sides in (1) and (2), we see that

(e− e′)
(

1
L
− 1

H

)
≥ 0.

Because (1/L) > (1/H), it follows that e ≥ e′. Essentially, if the low type weakly prefers a
higher education to a lower one, the high type would strictly prefer it. So a high type can
never take strictly less education than a low type in equilibrium.

This sort of result typically follows from the assumption that being a high type reduces not
just the total cost from taking an action but also the marginal cost of that action; in this
case, of acquiring one more unit of education. As long as this feature is present, we could
replace the cost function e/θ by any cost function and the same analysis goes through.

4.3. Equilibrium. Now that we know that the high type will not invest any less than the
low type, we are ready to describe the equilibria of this model. There are three kinds of
equilibria here; the concepts are general and apply in many other situations.

1. Separating Equilibrium. Each type takes a different action, and so the equilibrium action
reveals the type perfectly. It is obvious that in this case, L must choose e = 0, for there is
nothing to be gained in making a positive effort choice.

What about H? Note: she cannot play a mixed strategy because each of her actions fully
reveals her type, so she might as well choose the least costly of those actions. So she chooses
a single action: call it e∗, and obtains a wage equal to H. Now these are the crucial incentive
constraints; we must have
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(3) H − e∗

L
≤ L,

otherwise the low person will try to imitate the high type, and

(4) H − e∗

H
≥ L,

otherwise the high person will try to imitate the low type.

Look at the smallest value of e∗ that just about satisfies (3); call it e1. And look at the
largest value of e∗ that just about satisfies (4); call it e2. It is very easy to see that e1 is
smaller than e2, so the two restrictions above are not inconsistent with each other.

Now it is easy to see that any outcome in which the low type chooses 0 and the high type
chooses some e∗ ∈ [e1, e2] is supportable as a separating equilibrium. To show this we must
also specify the beliefs of the employer. There is a lot of leeway in doing this. Here is one set
of beliefs that works: the employer believes that any e < e∗ (if observed) comes from the low
type, while any e > e∗ (if observed) comes from the high type. These beliefs are consistent
because sequential equilibrium in this model imposes no restrictions on off-the-equilibrium
beliefs.

Given these beliefs and equations (3) and (4), it is very easy to see that no type will want to
deviate. We are done.

2. Pooling Equilibrium. There is also a family of pooling equilibria in which only one signal
is received in equilibrium. It is sent by both types, so the employer learns nothing new about
the types. So if it sees that signal — call it e∗ — it simply pays out the expected value
calculated using the prior beliefs: pH + (1− p)L.

Of course, for this to be an equilibrium two conditions are needed. First, we need to specify
employer beliefs off the equilibrium path. Again, a wide variety of such beliefs are compatible;
here is one: the employer believes that any action e 6= e∗ is taken by the low type. [It does
not have to be this drastic.2] Given these beliefs, the employer will “reward” any signal not
equal to e∗ with a payment of L. So — and this is the second condition — for the types not
to deviate, it must be that

pH + (1− p)L− e∗

θ
≥ L,

but the binding constraint is clearly for θ = L, so rewrite as

pH + (1− p)L− e∗

L
≥ L.

This places an upper bound on how big e∗ can be in any pooling equilibrium. Any e∗ between
0 and this bound will do.

3. Hybrid Equilibria. There is also a class of “hybrid equilibria” in which one or both types
randomize. For instance, here is one in which the low type chooses 0 while the high type
randomizes between 0 (with probability q) and some e with probability 1−q. If the employer

2For instance, the employer might believe that any action e < e∗ is taken by the low type, while any action
e > e∗ is taken by types in proportion to their likelihood: p : 1− p.
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sees e he knows the type is high. If he sees 0 the posterior probability of the high type there
is — by Bayes’ Rule — equal to

qp

qp + (1− p)
,

and so the employer must pay out a wage of precisely

qp

qp + (1− p)
H +

1− p

qp + (1− p)
L.

But the high type must be indifferent between the announcement of 0 and that of e, because
he willingly randomizes. It follows that

qp

qp + (1− p)
H +

1− p

qp + (1− p)
L = H − e

H
.

To complete the argument we need to specify beliefs everywhere else. This is easy as we’ve
seen more than once (just believe that all other e-choices come from low types). We therefore
have a hybrid equilibrium that is “semi-separating”. In the Spence model all three types of
equilibria coexist. Part of the reason for this is that beliefs can be so freely assigned off the
equilibrium path, thereby turning lots of outcomes into equilibria. What we turn to next is
a way of narrowing down these beliefs. To be sure, to get there we have to go further than
just sequential equilibrium. More on this later.

5. Application: Cheap Talk

The Spence model is an example of costly signaling. Now we do an example where all
signaling is free: cheap talk, based on the classic by Crawford and Sobel (1983).

There are two agents, a sender (S) and a receiver (R), and a state of the world θ distributed
on [0, 1]. The sender knows the state, so θ may be identified with her type. The receiver only
kows that θ is distributed on [0, 1] according to some cdf G.

The receiver’s job will be to take some action; call it y. If he knew what the state was,
he would try to maximize a vNM utility function uR(y, θ) by choice of y. The sender, too,
has preferences over y given θ though she cannot directly control y. Her preferences are
summarized by a continuous function uS(y, θ). Assume that

[A.1] Both uS and uR are continuous in both arguments and smooth, bounded, never flat
and single-peaked in y for each θ.

[A.2] y and θ are complements in each utility function: for every y > y′ and θ > θ′,

u(y, θ)− u(y′, θ) > u(y, θ′)− u(y′, θ′),

where u stands for both uR and uS .

Assumption [A.1] guarantees that uR and uS generate unique maxima yR(θ) and yS(θ) re-
spectively for every θ. [A.2] guarantees that each of these functions is increasing in θ. [A.1]
also assures us that the functions are continuous (by the maximum theorem).
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[A.3] The sender wants a higher action than the receiver for every state. That is, for each θ,
yS(θ) > yR(θ).

The game is very simple. The sender announces the state (or perhaps a distortion of it), and
the receiver takes an action after listening to the announcement. More formally, a strategy
for the sender is an announcement m of the state as a function of her type θ, so it is a
function m(θ). A strategy for the receiver is likewise a mapping from announcements into
actions. Then payoffs are received.

It is obvious that if the receiver believes the sender, the sender wishes to exaggerate the state.
Therefore the receiver has no reason to take the sender’s statement at face value.

A nice example that fixes these ideas is the quadratic case:

uS(y, θ) = −(y − [b + θ])2, uR(y, θ) = −(y − θ)2

for some b > 0. In this case it is obvious that yS(θ) = θ + b, while yR(θ) = θ.

As in the Spence model, a sequential equilibrium places no restrictions on the receiver’s
beliefs at off-equilibrium announcements: at values of m which are never announced under
the strategy m(θ). Therefore the flat functions m(θ) = m̄ for some fixed announcement m̄,
and the choice of y(m) = ȳ for some ȳ that maximizes∫

uR(y, θ)dG(θ)

is always an equilibrium. This is often called the babbling equilibrium, because the sender
conveys nothing.

But there are other sequential equilibria. To describe them, the following result is central:

Proposition 1. There exists ε > 0 (uniform across all equilibria) such that if y and y′ are
two distinct actions taken in equilibrium, then |y − y′| > ε.

Proof. Let y and y′ be two equilibrium actions. Suppose that type θ induces (via her an-
nouncement) the action y and type θ′ the action y′. Then, because each type could have
made the other type’s announcements, it must be that

uS(θ, y) ≥ uS(θ, y′),

while
uS(θ′, y) ≤ uS(θ′, y′).

By our assumptions on uS , it is very easy to see that there exists θ̂ ∈ [θ, θ′] such that if
θ < θ̂, then type θ prefers y to y′ while if t > θ̂′ then type θ′ prefers y′ to y. Therefore
when R chooses y, he is convinced that the true state is below θ̂, while if he chooses y′, he is
convinced that the true state is above θ̂. It follows from assumption [A.2] that

y ≤ yR(θ̂) ≤ y′,

but it is also true, given θ̂ ∈ [θ, θ′] and [A.2], that

y ≤ yS(θ̂) ≤ y′.



11

Apply [A.1] and [A.3] and use continuity of the y’s and compactness of the θ’s to conclude
that yR and yS are separated by at least ε regardless of state. this completes the proof. �

In the quadratic example, yS(θ) − yR(θ) = b for all θ. Therefore any two actions must be
separated by at least b. An equilibrium can at best involve a finite number of choices even
though there is a continuum of types. This finiteness is a general result because even though
the space of actions is in principle unbounded, every equilibrium action must be bounded
above by yR(1).

We combine Proposition 1 with the following observation:

Proposition 2. The set of values of θ that induces a particular equilibrium action must
form an interval.

Proof. Suppose that there is some action y and three ordered values of θ — call them θ1,
θ2 and θ3 — such that θ1 and θ3 induce the action y while θ2 does not. Suppose that θ2

induces y′; then θ2 weakly prefers y′ to y. If y′ > y, then [A.2] tells us that θ3 must strictly
prefer y′ to y, while if If y′ < y, then θ1 must strictly prefer y′ to y. Either way we have a
contradiction. �

Now we can construct a typical equilibrium. Start by picking the lowest equilibrium action
y1. Then there exists a unique θ1 such that the receiver picks y1 as an optimal response
to a message under the conjecture that the set of types in [0, θ1] and no other type emits
that message. But this uniquely pins down what y2 must be (if there is a second equilibrium
action). It must be chosen so that the threshold type θ1 is indifferent between y1 and y2. Now
keep proceeding recursively. There is an end-point condition to be met though. For some n
along this recursion, θn must exactly coincide with 1. Any recursion that accomplishes this
finds an equilibrium. Indeed, by the two propositions above, this (successful) recursion is a
complete characterization of sequential equilibrium in the cheap talk model.

Let us illustrate the result in the quadratic example with uniform prior on θ in [0, 1]. Fix
some y1 ≥ 0, and define θ0 = 0. Then at any stage i ≥ 0 in which we are given θi and yi+1,
we can define θi+1 by

(5) yi+1 =
θi + θi+1

2
(this captures the fact that yi+1 must be a best response for the receiver given his beliefs).
Similarly, we can define yi+2 by the condition

(6) θi+1 + b =
yi+1 + yi+2

2
(this makes θi+1 exactly indifferent — as she must be — between inducing yi+1 and yi+2).

Combining (5) and (6), we see that

θi+1 + b =
θi + 2θi+1 + θi+2

4
,

or equivalently,

(7) (θi+2 − θi+1)− (θi+1 − θi) = 4b,
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which shows that the lengths of successive intervals climb by 4b at every step!

This proves right away that if b ≥ 1/4, the only equilibrium involves babbling. Let us
continue to see what we get when b < 1/4.

Recall the end-point condition that θn must equal 1 for some n. Using (7), an equivalent
way of writing this is that

nθ1 + 4b[1 + 2 + · · ·+ (n− 1)] = 1,

or
nθ1 + 2b(n− 1)n = 1

for some θ1 ∈ (0, 1). So if b is small enough so that

2b(n− 1)n < 1,

then there is a positive value of θ1 that solves the required equation, and can accommodate
n intervals.


