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Unlike the previous notes, the material here is perfectly standard and can be found in the
usual textbooks: see, e.g., Fudenberg-Tirole. For the examples in these notes (except for the
very last section), I draw heavily on Martin Osborne’s excellent recent text, An Introduction
to Game Theory, Oxford University Press.

Obviously, incomplete information games — in which one or more players are privy to infor-
mation that others don’t have — has enormous applicability:

credit markets / auctions / regulation of firms / insurance / bargaining /lemons / public
goods provision / signaling / . . . the list goes on and on.

1. A Definition

A Bayesian game consists of

1. A set of players N .

2. A set of states Ω, and a common prior µ on Ω.

3. For each player i a set of actions Ai and a set of signals or types Ti. (Can make actions
sets depend on type realizations.)

4. For each player i, a mapping τi : Ω 7→ Ti.

5. For each player i, a vN-M payoff function fi : A× Ω 7→ R, where A is the product of the
Ai’s.

Remarks

A. Typically, the mapping τi tells us player i’s type. The easiest case is just when Ω is the
product of the Ti’s and τi is just the appropriate projection mapping.

B. The prior on states need not be common, but one view is that there is no loss of generality
in assuming it (simply put all differences in the prior into differences in signals and redefine
the state space and si-mappings accordingly).

C. The prior and the (private) observation of one’s own type yields a conditional posterior
over the state space, given by

µi(A, ti) ≡
µ(A ∩ τ−1

i (ti))
µ(τ−1

i (ti))
,

where τ−1
i (ti) is interpreted in the usual way as the set of all ω ∈ Ω such that τi(ω) = ti.

A (pure) strategy for player i is a map si : Ti 7→ Ai. Define the induced mapping ŝj on Ω by

ŝj(ω) = sj(τj(ω)).
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Now we are in a position to define a type-dependent payoff function on the space of strategy
profiles:

Fi(ti, s) =
∫

Ω
fi(si(ti), ŝj(ω), ω)dµi(ω, ti).

A Bayesian Nash equilibrium is a strategy profile s∗ such that for every player i and every
type ti of that player,

Fi(ti, s∗) ≥ Fi(ti, ai, s∗−i)
for every action ai ∈ Ai.

2. Some Applications

2.1. Introductory Examples. Here are some examples. In all of them, you should take
care to go through the necessary formalities of the associated Bayesian game.

Example 1. An opponent of unknown strength. The row player’s type is known, but the
column player can be “strong” (with probability α) or “weak” (with probability 1 − α). If
he is strong, the situation is

F Y
F −1, 1 1, 0
Y 0, 1 0, 0

while if he is weak, the situation is

F Y
F 1,−1 1, 0
Y 0, 1 0, 0

Draw a tree to represent this game. Also, describe all the ingredients of the associated
Bayesian game.

It is easy enough to solve for the Bayesian Nash equilibrium of this game. First note that
if the opponent is strong, it is a dominant strategy for him to play F — fight. Now look at
Row. If Row fights, he gets 1 if the opponent is weak and — by the dominance argument
just made — he gets -1 if the opponent is strong. So his expected return from fighting is
−α + (1− α), while his expected return from playing Y — yielding — is 0.

It follows that if α > 1/2, Row will yield so that both types of Column fight. On the other
hand, if α < 1/2, Row will fight anyway so that the weak type of Column will not fight.

Example 2. (Classical) adverse selection. A firm A is taking over another firm B. The
true value of B is known to B but unknown to A; it is only known by A to be uniformly
distributed on [0, 1]. It is also known that B’s value will flourish under A’s ownership: it will
rise to λx, where x is the pre-takeover value and λ > 1. All of this description is, in addition,
common knowledge.

A strategy for A is a bid y. A strategy for B is a yes-no decision as a function of its value
x. So if the type (B, x) accepts, A gets λx− y, while (B, x) gets y. If (B, x) rejects, A gets
0 while (B, x) gets x.
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It follows, therefore, that (B, x) will accept if x < y, while she will reject of x > y. Therefore
the expected value of B — in A’s eyes — conditional on B accepting the offer, is y/2. It
follows that the overall expected payoff to A is

λ(y/2)− y = y

[
λ

2
− 1

]
.

Therefore the acquirer cannot buy unless the takeover target more than doubles in value
after the takeover!

Example 3. Information. Sometimes more information can hurt both the informed and
uninformed parties. Here is an example. There are two states and two corresponding payoff
matrices, given as follows:

L M R
T 1, 2 1,0 1, 3
B 4, 4 0, 0 0, 5

ω1, prob. 1/2

L M R
T 1, 2 1, 3 1, 0
B 4, 4 0, 5 0, 0

ω2, prob. 1/2

Suppose, first, that both parties have the same 50-50 prior about the state. Then it is a
dominant strategy for player 2 to play L. And player 1 will consequently play B, so that
payoffs are (4, 4).

Now suppose that player 2 is informed (player 1 is uninformed, as before). Then player 2
will always play M or R depending on the realization of the state. Knowing this, player 1
will play T and payoffs are always (1, 3) regardless of state, a Pareto-deterioration.

Example 4. Infection. Consider the following two-player situation: Suppose that T1 = {a, b}

L R
U 2, 2 0,0
D 3, 0 1, 1

α, prob. 9/13

L R
U 2, 2 0,0
D 0, 0 1, 1

β, prob. 3/13

L R
U 2, 2 0,0
D 0, 0 1, 1

γ, prob. 1/13

and T2 = {a′, b′}. Suppose that the type maps are given by

τ1(α) = a, τ1(β) = τ1(γ) = b,

and
τ2(α) = τ2(β) = a′, τ2(γ) = b′.

Interpret this. Player 1 always knows the true game being played. (There is no difference
between the payoff matrices at states β and γ.) Player 2 sometimes knows it (when the state
is γ, that is).

So in state α, player 1 knows the game, player 2 does not know the game, and player 1 knows
this latter fact.

In state β, player 1 knows the game, player 2 does not know the game, but player 1 does not
know whether or not player 2 knows the game.
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In state γ, players 1 and 2 both know the game, 2 knows that 1 knows the game (2 must,
because 1 always knows), but 1 doesn’t know if 2 knows the game.

So this is a good example to illustrate how “higher-order ignorance” can affect equilibrium
in all states. Begin by studying player (1, a). He will play B as a dominant strategy.

Now consider player (2, a′). Her posterior on (α, β) is (3/4, 1/4). So if (2, a′) plays L, her
payoff is bounded above by

3
4
× 0 +

1
4
× 2 =

1
2
,

while if she plays R, her payoff is bounded below by
3
4
× 1 +

1
4
× 0 =

3
4
.

So (2, a′) will definitely play R.

Now look at player (1, b). He assigns a posterior of (3/4, 1/4) to (β, γ). In state β he
encounters (2, a′) who we know will play R. So by playing T , our player (1, b) gets at most

3
4
× 0 +

1
4
× 2 =

1
2
,

while if he plays B, her payoff is at least
3
4
× 1 +

1
4
× 0 =

3
4
.

So player (1, b) also plays B, just like his counterpart (1, a). Now the infection is complete,
and player (2, b′) must play R! The good outcome (T,L) is ruled out even at state γ, when
both players know the game.

2.2. Juries. n jury members must decide whether or not acquit or convict a defendant.
Everybody has the same payoff function, given as follows:

0 if you take the correct action (acquit when innocent, convict when guilty);

−z if you convict an innocent person;

−(1− z) if you acquit a guilty person.

The magnitude of z provides relative weightings on the jury’s tolerance for “type 1” or “type
2” errors in this case.

A nice thing about the payoff magnitude z is that it can be cleanly interpreted as a (psy-
chological) conviction threshold. If a juror feels that a person is guilty with probability r,
then expected payoff from conviction is −(1− r)z, while the expected payoff from acquittal
is −(1 − z)r, so that she will convict if r > z. Thus z can be interpreted as the threshold
probability of guilt above which the juror will vote for conviction.

Before a juror gets to vote, she receives a signal of guilt or innocence (this sums up the court
evidence and all deliberations). Suppose that the signal is either g or i and the true state is
G or I (for “guilty” or “innocent”). Assume the following signal structure:

Prob(g|G) = p > 1/2; Prob(i|I) = q > 1/2,
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where the signals are drawn in a (conditionally) independent way across jurors.

Finally, suppose that there is a prior probability of guilt (again common to all jurors); call
it π.

Define a state by the element ω = (x; t1, t2, . . . , tn), where x is either G or B and tk is either
g or i for every k. Juror k simply gets the projection tk. He can then form posteriors on the
state space in the usual way.

Begin the analysis with just one juror. Conditional on receiving the signal g, her posterior
probability of guilt is

pπ

pπ + (1− π)(1− q)
,

while conditional on receiving the signal i, her posterior probability of guilt is

(1− p)π
(1− p)π + (1− π)q

.

If the juror’s conviction threshold z exceeds both these numbers, she will acquit anyway, and
if it is lower than both these numbers, she will convict anyway, so the interesting case, of
course, is one in which she “acts according to her signal”:

pπ

pπ + (1− π)(1− q)
> z >

(1− p)π
(1− p)π + (1− π)q

.

What if there are n jurors, and conviction requires unanimity?

The key to thinking about this case is a concept called pivotality. A single juror’s vote —
convict or acquit — has to be placed in the context of what the other jurors are saying.
By the unanimity rule, her vote has no effect if at least one other juror is voting to acquit,
so the only case in which our juror is “pivotal” is one in which every other juror is voting
to convict. By the linearity of expected utility, her optimal action in the pivotal case must
coincide with her overall optimal action. This pivotality logic has bizarre consequences in a
world of incomplete information.

Suppose that everybody continues to act according to their signal. Suppose our juror gets an
innocent signal i. In the pivotal case, every other juror is voting guilty, so by our assumption
they have all received signal g. Therefore in the pivotal case, our juror’s posterior on guilt
must be given by

Prob (G|i; g, . . . , g) =
Prob (i; g, . . . , g|G)π

Prob (i; g, . . . , g|G)π + (1− π)Prob (i; g, . . . , g|I)

=
pn−1(1− p)π

pn−1(1− p)π + q(1− a)n−1(1− π)

=
1

1 + q
1−p

(
1−q

p

)n−1
1−π

π

which is very, very close to 1 for reasonable values of jury sizes. For instance, if n = 12,
π = 0.5, and p = q = 0.8, this fraction is 0.999999046!
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Indeed, one can show that no matter what the parameters, voting according to signal cannot
be an equilibrium as n becomes very large.

How, then, do we characterize equilibrium? There is always an equilibrium in which everyone
votes for acquittal, though this is weakly dominated. But the interesting equilibrium is the
symmetric mixed strategy equilibrium in which jurors convict for sure if they get a g signal
and with some probability β if they get an i signal. Now this dilutes the strength of guilt in
the pivotal case; indeed, we have to dilute it just enough so that Prob (G|i; g, . . . , g) equals

Prob (i|G)Prob (vote C|G)n−1π

Prob (i|G)Prob (vote C|G)n−1π + Prob (i|I)Prob (vote C|G)n−1(1− π)

=
(1− p)[p + (1− p)β]n−1π

(1− p)[p + (1− p)β]n−1π + q[(1− q) + qβ]n−1(1− π)
= z!

We may rewrite this as the condition
1

1 + q
1−p

1−π
π Y

= z,

where

Y ≡
[
(1− q) + qβ

p + (1− p)β

]n−1

.

Rearranging this equation, we see that

Y =
(1− z)(1− p)π

(1− π)qz
≡ X,

so that — recalling the definition of Y —
(1− q) + qβ

p + (1− p)β
= X1/(n−1),

or

β =
pX1/(n−1) − (1− q)
q − (1− p)X1/(n−1)

,

which is easily seen to converge to 1 as n becomes large. For instance, if n = 12, π = 0.5,
p = q = 0.8 and z = 0.7, β ' 0.6: each juror votes to convict with probability 0.6 when they
get an innocent signal !

There are several reasons why this model should not be taken very seriously as a model
of juries, but the pivotality argument is provocative and powerful and should be looked at
carefully.

2.3. Global Games. A lot of refinements in game theory use the idea of a perturbation:
small mistakes, payoff variations, and so on. The idea is to look at the limit of perturbed
equilibria as the perturbations go to zero: this yields a refinement. These perturbations are
usually taken to be independent, so that my beliefs regarding the other players’ strategies do
not depend on my particular perturbation.

A very interesting class of perturbations, pioneered by the paper of Carlsson and van Damme
(1993), considers a somewhat different scenario. Imagine that the game itself is subject to a
“public perturbation”: for instance, in Cournot oligopoly, some shock affects the aggregate
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demand curve (as opposed to, say, the individual cost functions, which could plausibly taken
to be independent). Then my (noisy) observation of the shock tells me something about
the shock and consequently something about what you must have observed, and so my
observations affect my beliefs about what you are going to do. But then — putting myself
mentally in your shoes — I must also think about your beliefs about me (and about others).
This creates a “belief drift” which can be controlled over some finite belief chain, but which
will generally drift over the entire range of perturbations as we go far enough out in the
belief chain. I am therefore forced to take account of the full, global possibilities in order to
formulate a rational belief about what you are going to do. Hence the term global game.

Notice that a global game is an excellent example of a game with incomplete information.
Our (correlated) observations form our types. The very fact that there is correlation, however,
leads us to consider long, drifting chains of types.

In this section I will draw on an application of this idea to financial crises by Morris and
Shin (1998). The application will be of interest in itself, but it will also illustrate the global
games technique.

Consider a country which has pegged its exchange rate at some value e. (Think of e as the
number of dollars required to buy one unit of the domestic currency.) We shall assume that
the exchange rate is overvalued, in the following sense: suppose that there is some random
variable θ (the state) on [0, 1] which determines the “true” exchange rate f(θ) were the
currency to be allowed to float at θ. Then e always exceeds f(θ) for all θ ∈ [0, 1].

But θ also influences the exchange rate: which is to say that f(θ) varies with θ. Arrange
so that f(θ) is strictly increasing in θ. So the idea is that θ is some “fundamental” which
influences the country’s capacity to export or import, or to attract investment; the higher
being θ, the more favorable the climate.

Now there is a bunch of speculators (of total measure 1), each of whom can sell one unit of
the local currency. If they do, they pay a transactions cost t. If the government holds the
peg, the exchange rate stays where it is, and the payoff to selling is −t. If the government
abandons the peg, then the speculators make a profit of e − f(θ), so their net payoff is
e− f(θ)− t.

What about the government’s decisions? It has only one decision to make: whether to
abandon or to retain the peg. We assume that it will abandon the peg if the measure
of speculators exceeds a(θ), where a is increasing in θ (that is, if the basic health of the
economy is better, the government is more reluctant to abandon1).

We will assume that there is some positive value of θ, call it θ, such that below θ the situation
is so bad that the government will abandon the peg anyway. In other words we are assuming
that a(θ) = 0 for θ ∈ [0, θ]. Then it rises but always stays less than one by assumption.

Consider, now, a second threshold for θ which we’ll call θ̄: this is the point above which no
one wants to sell the currency even though she feels that the government will abandon the

1See Morris and Shin (1998) for a very simple account of how to derive a(θ) from a somewhat more basic
starting point.
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peg for sure. In other words, θ̄ solves the equation

(1) e− f(θ̄)− t = 0.

We will assume that such a θ̄, strictly less than one, indeed exists. But we also suppose that
there is a gap between θ and θ̄: that θ < θ̄.

[If there were no such gap, there wouldn’t be a coordination problem to start with.]

Now we are ready to begin our discussion of this model. First assume that the realization of
θ is perfectly observed by all agents, and that this information is common knowledge. Then
there are obviously three cases to consider.

Case 1. θ ≤ θ. In this case, the government will abandon the peg for sure. The economy is
not viable, all speculators must sell, and a currency crisis occurs.

Case 2. θ ≥ θ̄. In this case no speculator will attack the currency, and the peg will hold for
sure.

Case 3. θ < θ < θ̄. Obviously this is the interesting case, in which multiple equilibria
obtain. There is an equilibrium in which no one attacks, and the government maintains the
peg. There is another equilibrium in which everyone attacks and the government abandons
the peg. This is a prototype of the so-called “second-generation” financial crises models, in
which expectations — over and above fundamentals — play an important role.

So much for this standard model. Now we drop the assumption of common knowledge
of realizations (but of course we maintain the assumption of common knowledge of the
information structure that I am going to write down).

Suppose that θ is distributed uniformly on [0, 1]: its value will be known perfectly at the time
the government decides whether or not to hold the peg or to abandon it. Initially, however,
the realization of θ is noisy in the following sense: each individuals sees a signal x which is
distributed uniformly on [θ − ε, θ + ε], for some tiny ε > 0 (where θ is the true realization).
Conditional on the realization of θ, this additional noise is iid across agents.

Proposition 1. There is a unique value of the signal x such that an agent attacks the
currency if x < x∗ and does not attack if x > x∗.

This is an extraordinary result in the sense that a tiny amount of noise refines the equilibrium
map considerably. Notice that as ε → 0, we are practically at the common knowledge limit
(or are we? the question of what sort of convergence is taking place is delicate and important
here), yet there is no “zone” of multiple equilibria! The equilibrium is unique.

What is central to the argument is the “infection” created by the lack of common knowledge
(of realizations). To see this, we work through a proof of Proposition 1, with some informal
discussion.

Start by looking at the point θ− ε. Suppose that someone receives a signal x of this value or
less. What is she to conclude? She doesn’t know what everyone else has seen, but she does
know that the signal is distributed around the truth with support of size 2ε. This means
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that the true realization cannot exceed θ, so that the government will abandon the peg for
sure. So she will sell. That is, we’ve shown that for all

x ≤ x0 ≡ θ − ε,

it is dominant to sell.

Now pick someone who has a signal just bigger than x0. What does he conclude? Suppose,
for now, he makes the assumption that only those with signals less than x0 are selling; no one
else is. Now what is the chance — given his own signal x — that someone else has received
a signal not exceeding x0? To see this, first note that the true θ must lie in [x− ε, x+ ε]. For
each such θ the chances that the signal for someone else is below x0 is (1/2ε)[x0 − (θ − ε)],
so the overall chances are just these probabilities integrated over all conceivable values of θ,
which yields (1/2ε)[x0− (x− ε)]. So the “infection” spreads: if x is close to x0, these chances
are close to 1/2. In this region, moreover, it is well known that the government’s threshold is
very low: close to zero sellers (and certainly well less than half the population) will cause an
abandonment of the peg. Knowing this, such an x must sell. Knowing that all with signals
less than x0 must sell, we have deduced something stronger: that some signals above x0 must
also generate an attack.

So let us proceed recursively: Suppose we have satisfied ourselves that for some index n,
everyone sells if the signal is no bigger than xn (we already know this for x0). We define
xn+1 as the largest value of the signal for which people will want to sell, knowing that all
below xn are selling.

This is a simple matter to work out. First, fix any value of θ. Then everybody with a signal
between θ− ε and xn (such an interval may be empty, of course) will attack, by the recursive
assumption. Because these are the only attackers (also by the recursive assumption), the
government will yield iff

1
2ε

[xn − (θ − ε)] ≥ a(θ),

or

θ + 2εa(θ) ≤ xn + ε

So we can define an implicit function h(x, ε) such that the above inequality translates into

θ ≤ h(xn, ε).

Put another way, the implicit function h(x, ε) solves the equation

(2) h(x, ε) + 2εa(h(x, ε)) = x + ε

Now consider a person with signal x. If she were to attack, her expected payoff would be
given by

(3)
1
2ε

∫ h(xn,ε)

x−ε
[e− f(θ)]dθ − t.

The idea is to find the (obviously unique) value of x such that the expression in (3) just
equals 0; call this xn+1.
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Trace this recursion starting all the way from n = 0: we have x0 = θ−ε. Then (remembering
that a(θ) = 0 for all θ ≤ θ) it is easy to see that (3) reduces to

1
2ε

∫ θ

x−ε
[e− f(θ)]dθ − t.

For x ' x0, this is just
1
2ε

∫ θ

θ−2ε
[e− f(θ)]dθ − t,

which is certainly strictly positive. So x1 is well-defined, and x1 > x0.

Now put x1 in place of x0, and repeat the process. Notice that h is increasing in x, so if we
replace x0 by x1 in (3), then, evaluated at x = x1, the payoff must turn strictly positive.2

So the new x2, which is the maximal signal for which people will sell under the belief that
everyone less than x1 sells, will be still higher than x1. And so on: the recursion creates a
strictly increasing sequence {xn}, which converges from below to x∗, where x∗ solves

(4)
1
2ε

∫ h(x∗,ε)

x∗−ε
[e− f(θ)]dθ − t = 0.

It is very easy to see that there is a unique solution to x∗ defined in this way. In fact,
something stronger can be established:

Claim. If x∗ is some solution to (4), and x′ > x∗, then

(5)
1
2ε

∫ h(x′,ε)

x′−ε
[e− f(θ)]dθ − t < 0.

To prove this, consider any x′ > x∗. Then two things happen: first, it is easy to see that

h(x′, ε)− x′ < h(x∗, ε)− x∗,

so that the support over which integration takes place in (4) is narrowed. Moreover, the stuff
inside the integral is also smaller when we move from x∗ to x′, because f(θ) is increasing.
So the LHS of (4) unambiguously falls when we move from x∗ to x′, and we are done with
the Claim.

To learn a bit more about x∗, use (2) to see that h(x, ε)− x + ε = 2ε[1− a(h(x, ε))], so that

0 =
1
2ε

∫ h(x∗,ε)

x∗−ε
[e− f(θ)]dθ − t = [1− a(h(x∗, ε))]e− 1

2ε

∫ h(x∗,ε)

x∗−ε
f(θ)dθ − t,

or

e− 1
2ε

∫ h(x∗,ε)

x∗−ε
f(θ)dθ − t = a(h(x∗, ε))e

A comparison of this equation with (1) categorically shows that x∗ is bounded below θ̄ for
small ε.

2This is on the assumption that the sequence {xn} stays bounded below θ̄. This will certainly be the case,
see below, so it’s not really an assumption at all.
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So there is a unique solution to x∗ and it is below θ̄, which justifies the previous recur-
sive analysis (see in particular, footnote 2). Notice also that our analysis shows that every
equilibrium must involve attack for signals less than x∗.

To complete the proof, we must show that no signal above x∗ can ever attack. Suppose,
on the contrary, that in some equilibrium some signal above x∗ finds it profitable to attack.
Take the supremum of all signals under which it is weakly profitable to attack: call this x′.
Then at x′ it is weakly profitable to attack. Suppose we now entertain a change in belief
by supposing that everybody below x′ attacks for sure; then this cannot change the weak
profitability of attack at x′. But the profit is

1
2ε

∫ h(x′,ε)

x′−ε
[e− f(θ)]dθ − t,

which is nonnegative as we’ve just argued. But this contradicts the Claim.

So we have proved that there is a unique equilibrium to the “perturbed” game, in which a
speculative attack is carried out by an individual if and only if x ≤ x∗. As ε → 0, this has
an effect of refining the equilibrium correspondence dramatically. To describe this, calculate
the threshold x∗ as ε → 0. The easiest way to do this is the “sandwich” inequality:

[e− f(h(x∗, ε))][1− a(h(x∗, ε))] ≤ 1
2ε

∫ h(x∗,ε)

x∗−ε
[e− f(θ)]dθ ≤ [e− f(x∗ − ε)][1− a(x∗ − ε)],

which is obtained by noting that f(x∗ − ε) ≤ f(θ) ≤ f(h(x∗, ε)) for all θ ∈ [x∗ − ε, h(x∗, ε)].
Both sides of the sandwich go to the same limit, because x∗ and h(x∗, ε) — as well as the
realization of the state — all go to a common limit, call it θ∗. This limit solves the condition

(6) [e− f(θ∗)][1− a(θ∗)] = t.

It is obvious that there is a unique solution to (6).

Note: At this point be careful when reading Morris-Shin. There is an error in Theorem 2.
See Heinemann (AER 2000) for a correction of this error which agrees with the calculations
provided here.


