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1. The Coase Theorem

The bargaining approach can be usefully applied to address some classical questions in co-
operative game theory. One of these concerns the formation of coalitions and the writing of
binding agreements among groups of players. Many years ago, Ronald Coase argued that
such negotiations would invariably end in an efficient outcome, and that bargaining power
— whatever that is — would be reflected in the allocation of the surplus from that efficient
outcome across the different players.

With transferable payoffs, in particular, the “Coase Theorem” would suggest that an “equi-
librium outcome” of the negotiation process must maximize aggregate surplus. If there is a
unique surplus-maximizing outcome, then this outcome must arise irrespective of the alloca-
tion of power across agents.

In these notes, I first do a little cooperative game theory. I then explain why traditional
concepts in game theory are inadequate to fully address the Coase Theorem. Then I apply
notions of perfect equilibrium and a natural variant of the bargaining model to go a little
further in examining the Coase Theorem.

2. Some Cooperative Game Theory

2.1. The Characteristic Function. Cooperative game theory starts with the characteristic
function, a description of the possibilities open to every possible coalition of players. Formally,
let N be a set of players. A coalition is any nonempty subset of N . Denote coalitions by S,
T , etc. A characteristic function assigns a set of payoff vectors V (S) to every coalition S.
These are payoff vectors that takes values in IRS .

An important special case is the transferable utility (TU) characteristic function, in which
for each coalition there is a just a number v(S), describing the overall worth of that coalition.
V (S) is then the set of all divisions of that worth among the players in S.

The characteristic function is fundamental to the traditional development of cooperative
game theory. Here are some examples:

1. Local Public Goods. Person i gets utility ui(c, g), where c is money and g is a local public
good. Then I can construct V (S) — or its Pareto frontier — by solving the following problem:
For any i and for arbitrary numbers yj , j ∈ S, j 6= i,

max ui(ci, g)

subject to g = g(T ) (production function), T =
∑

k∈S(wk − ck) (where wk is the money
endowment of player k), and the restriction that uj(cj , g) ≥ yj for all j 6= i. If ui(c, g) =
c + vi(g), we are in the quasi-linear case and this yields a TU characteristic function.
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2. Winning Coalitions. A special subgroup of coalitions can win an election, whereupon they
get one unit of surplus. So v(S) = 1 for every winning coalition, and v(S) = 0 otherwise.

3. Exchange Economies. Agent i has endowment ωi. A coalition S can arrange any allocation
a such that

∑
j aj ≤

∑
j ωj . This generates V (S).

4. Matching Models. Each agent has “ability” αi. When a group S of agents gets together,
they can produce an output = fs(αS) (where s is cardinality of S and fs is a family of
functions indexed by s).

In general, situations where there are no external effects across coalitions can be represented
as characteristic functions.

Various assumptions can be made on characteristic functions. One standard one is superad-
ditivity : if S and T are disjoint coalitions, with yS ∈ V (S) and yT ∈ V (T ), then there is
z ∈ V (S ∪ T ) such that z ≥ yS∪T . For TU games, this just states that

v(S ∪ T ) ≥ v(S) + v(T )

for all disjoint coalitions S and T .

Superadditivity is a good assumption in many cases. In others (like matching models) it may
not be.

2.2. The Core. A central equilibrium notion in cooperative game theory is that of the core.
Look at the grand coalition N . Say that an allocation y ∈ V (N) is blocked if there is a
coalition S and z ∈ V (S) such that z � yS .1

In the TU case, we simply say that y is blocked if there is a coalition S with v(S) >
∑

i∈S yi.

The core of a characteristic function is the set of all unblocked allocations.

Superadditivity isn’t good enough for a nonempty core:

Example. Let N = 123, v(i) = 0, v(ij) = a for all i and j, v(N) = b. Then if a > 0 and
b > a, the game is superadditive. On the other hand, suppose that the core is nonempty.
Let y be a core allocation. Then

yi + yj ≥ a

for all i and j. Adding this up over the three possible pairs, we see that

2(y1 + y2 + y3) ≥ 3a,

or b ≥ 3a/2. This is a stronger requirement.

A TU game is symmetric if the worth of each coalition is expressible as a function of the
number of players in that coalition. Thus, with some mminor abuse of notation, we may
write v(S) as v(s), where s is the cardinality of S. For symmetric TU games it is very easy
to follow the lines of the example above to find a necessary and sufficient condition for the
core to be nonempty.

1We can make this blocking notion weaker; in situations with some transferability it will not matter which
definition is used.
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Observation 1. The core of a symmetric TU game is nonempty if and only if

(1)
v(n)
n

≥ v(s)
s

for every coalition of size s.

Proof. To see that (1) is sufficient simply use equal division and show that it is a core
allocation. For the necessity of (1), use the obvious extension of the argument in the example
above. �

Of course, this elementary proposition can (and has) been further generalized. For TU games
there is the famous Bondareva-Shapley theorem, while for NTU games we have the weaker
but equally celebrated theorem of Scarf. Here is a brief discussion.

2.3. More On Core Existence. First, some definitions. For each i, denote by S(i) the
collection of all subcoalitions (i.e., excluding the grand coalition) that contain player i. Let
S be the collection of all subcoalitions.

A weighting scheme assigns to every conceivable subcoalition S a weight δ(S) between 0 and
1. A weighting scheme is balanced if it has the property that for every player i∑

S∈S(i)

δ(S) = 1.

A TU characteristic function is balanced if for every balanced weighting scheme δ,

(2) v(N) ≥
∑
S∈S

δ(s)v(S).

Let’s pause here to make sure we understand these definitions. Here are some examples of
balanced weighting schemes:

(a) Weight of 1 on all the singleton coalitions, 0 otherwise.

(b) Weight of 1 on all the coalitions in some given partition, 0 otherwise.

(c) Weight of 1/2 each on “connected coalitions” of the form { i, i+1 } (modulo n).

Notice that if a characteristic function is balanced the inequality (2) must hold for the
weighting system (b). This proves that balancedness implies superadditivity. To show that
the converse is false, take the three-person example above, look at the case in which b < 3a/2,
and apply balancedness for the weighting system (c).

The following classical theorem characterizes nonempty cores for TU characteristic functions.
[For NTU games, an appropriate extension of the balancedness concept is sufficient, but it
isn’t necessary. This is the theorem of Scarf, which we omit in these notes.]

Theorem 1. Bondareva (1962), Shapley (1967). A TU characteristic function has a non-
empty core if and only if it is balanced.

Here is an entertaining (to some, anyway!) proof of this theorem, which I include for com-
pleteness. Separating hyperplanes make an appearance again.
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Proof. Suppose that y belongs to the core. Let δ be some balanced weighting system. Because∑
i∈S yi ≥ v(S) for any coalition S, we know that

δ(S)
∑
i∈S

yi ≥ δ(S)v(S).

Adding up over all S,∑
S∈S

δ(S)v(S) ≤
∑
S

δ(S)
∑
i∈S

yi =
∑

i

{
∑
S3i

δ(S)}yi =
∑

i

yi ≤ v(N).

This proves the necessity of balancedness.

Sufficiency is a bit harder. To do this, we first think of a characteristic function as a vector in
a large-dimensional Euclidean space IRm, with as many dimensions m as there are coalitions.
Suppose, contrary to the assertion, that v is balanced but has an empty core. Pick ε > 0.
Construct two sets of characteristic functions (vectors in IRm)

A ≡ {v′ ∈ IRm|v′(S) = λv(S) for all S, v′(N) = λ[v(N) + ε], for some λ > 0},

and

B ≡ {v′ ∈ IRm|v′ has nonempty core}.

The first set contains all the scalings of our old characteristic function, slightly amended
to give the grand coalition a bit more than v(N) (by the amount ε). The second set is
self-explanatory.

Now, by our presumption that v has an empty core, the same must be true of the slightly
modified characteristic function when ε > 0 but small. For such ε, then, A and B are
nonempty and disjoint sets. It is trivial to see (just take convex combinations) that A and B
are also convex sets. So by the well-known separating hyperplane theorem, there are weights
β(S) for all S (including N), not all zero, and a scalar α such that

(3)
∑
S∈S

β(S)v′(S) + β(N)v′(N) ≥ α for all v′ ∈ A,

and

(4)
∑
S∈S

β(S)v′(S) + β(N)v′(N) ≤ α for all v′ ∈ B.

First, choosing v′ ≡ 0 in B (which has a nonempty core) and then by taking λ arbitrarily
small in A we easily see from (3) and (4) that α must be zero.

Next, notice that β(S) ≥ 0 for every S. For if not for some S, simply find some v′ ∈ B with
v′(S) < 0 and large, while all other v′(T ) = 0. This will contradict (4).

Third, note that β(N) < 0. For if not, there are two possibilities. If β(N) > 0. Then we
can violate (4) by choosing v′ ∈ B with v′(N) > 0 and large, while all other v′(S) = 0. The
other possibility is that β(N) = 0. In this case β(S) > 0 for some S (all the β’s cannot be
zero by the separation theorem). Then take v′ ∈ B with v′(S) = D > 0, v′(N) = 2D, while
all other v′(T ) = 0. For large D we contradict (4) again.
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So we can now divide through by −β(N) in (4) and transpose terms to get

(5) v′(N) ≥
∑
S∈S

δ(S)v′(S) for all v′ ∈ B,

where we’ve defined δ(s) ≡ −β(S)/β(N) for each S. We claim that δ is a balanced weighting
system; i.e., that ∑

S3i

δ(S) = 1 for every i.

For any player i and any number D, construct a game v′ such that v(S) = D for all S 3 i
and V (S) = 0 otherwise. Such a game must have a nonempty core: simply consider the
allocation yi = D and yj = 0 for j 6= i. So v′ ∈ B. But now notice that by taking D to ∞
or −∞ we can contradict (5), unless

∑
S3i δ(S) is precisely 1.

To complete the proof, apply all this to (3). We have

(6) v′(N) ≤
∑
S∈S

δ(S)v′(S) for all v′ ∈ A.

Take λ = 1 in A, then — recalling that ε > 0 — (6) reduces to

v(N) <
∑
S∈S

δ(S)v(S),

which contradicts the balancedness of v. �

2.4. So What For Agreements? The core is a useful solution concept that takes a first
step towards identifying outcomes that should or should not survive a process of negotiations.
But it has several shortcomings.

First, if the core is empty, something still has to happen, presumably. Perhaps a structure
of subcoalitions forms, or perhaps an allocation for the grand coalition still comes about, on
the grounds that blocking will be “further” blocked. Cooperative game theory does attempt
to travel along these lines by considering blocks that exhibit various levels of credibility.

However, once these routes open up, there is no guarantee that a core allocation will be
implemented even if the core is nonempty. The broader possibilities described in the previous
paragraph may still be pertinent even when the core is nonempty.

Put another way, the core is too black-boxed a concept. It makes no prediction when it is
empty, and when it is nonempty, it does not examine the blocking allocations very carefully.
Besides, focussing on the core as a definition of what’s implementable presumes that the
outcome of all negotiations should indeed be efficient.

Now, there are several ways to proceed. One might actually try to build a theory to deal
with these issues that proceed using the methodology of blocking. Or one might try a more
overtly noncooperative approach to the process of achieving cooperation. This is what we do
here.
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3. Coalitional Bargaining

3.1. A Particular Game. Take as given a TU characteristic function v. Note that the
standard bargaining setup is a special case, in which v(N) = 1 and v(S) = 0 for all other
coalitions. We are going to study a model in which everybody can make proposals, but an
agreement once implemented cannot be reversed. Loosely speaking, proposals will be made
to coalitions — possibly the grand coalition — and once a proposal is unanimously accepted
by the relevant coalition that coalition walks away from the game and enjoys the payoff from
the proposal. This process continues until a full coalition structure — possibly including
some standalone singletons — has formed, otherwise the process goes on forever.

I now describe proposals and responses. Suppose that some set of players has already exited
the game. To each “remaining” set of “active” players is assigned a uniform probability
distribution over initial proposers. Likewise, to each coalition of active agents to which a
proposal has been made, there is a given order of respondents (excluding the proposer of
course).

A chosen proposer makes a proposal (S,y), where S is a coalition to which he belongs — a
subset of the set of currently active players — and y is a division of the worth v(S) of S.

Once a proposal is made to a coalition, attention shifts to the respondents in that coalition. A
response is simply acceptance or rejection of the going proposal. If all respondents accept, the
newly-formed coalition exits, and the process shifts to the set of still-active players remaining
in the game.

The rejection of a proposal creates a bargaining friction, exactly as in the Rubinstein-St̊ahl
setup. Payoffs are delayed by the passage of some time, which is discounted by everybody
using a discount factor δ. We suppose that the first rejector of the proposal gets to be the
next proposer.

If and when all agreements are concluded, a coalition structure forms. Each coalition in
this structure is now required to allocate its worth among its members as dictated by the
proposals to which they were signatories. If bargaining continues forever, it is assumed that
all forever-active players receive a payoff of zero, and that already-formed coalitions received
their agreed-upon allocation, discounted by the date at which they mannage to agree.

We will assume that each coalition does strictly better by forming than by not forming at
all; i.e., v(S) > 0 for all S.

This completes the description of the basic model.

3.2. Strategies and Equilibrium. A strategy for a player requires her to make a proposal
whenever it is her turn to do so, where the choice of proposal could depend on events that
have already unfolded. It also requires her to accept or reject proposals at every stage in
which she is required to respond. A perfect equilibrium is a profile of strategies such that
there is no history at which a player benefits from a deviation from her prescribed strategy.

We already know that when n ≥ 3, there is a plethora of perfect equilibria. This can be
dealt with in more than one way. For the pruposes of these notes, we restrict ourselves to
the use of stationary, Markovian strategies. These depend on a small set of payoff-relevant
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state variables. The current proposal or response is allowed to depend on the current set of
active players and — in the case of a response — on the going proposal.

A stationary (perfect) equilibrium is then a collection of stationary strategies which forms a
perfect equilibrium.

3.3. Equilibrium Response Vectors. let xi(S, δ) be the equilibrium payoff to player i
when i is the proposer and S is the set of active players. For each i, define

yi(S, δ) = δxi(S, δ).

Then, if j were to receive a proposal (T, z) at player set S such that zk ≥ yk(S, δ) for all
k ∈ T yet to respond, including j, then j should accept. On the other hand, if this inequality
held for all such k except for j, then j should reject.2

We therefore use the terminology equilibrium response vector to describe the vector m(S, δ).
The following lemma is basic:

Lemma 1. For every (S, δ) and each i ∈ S,

(7) yi(S, δ) ≥ δ max
T :i∈T⊆S

v(T )−
∑

j∈T−i

yj(S, δ)

 .

Proof. By making an offer z to any coalition T (with i ∈ T ) such that zj > yj(S, δ) for every
j ∈ T , j 6= i, i can guarantee acceptance of the proposal. It follows that

xi(S, δ) ≥ max
T :i∈T⊆S

v(T )−
∑

j∈T−i

yj(S, δ)

 ,

and using yi(S, δ) = δxi(S, δ), we are done. �

Notice that if (7) indeed holds with strict inequality for some i, then i must be making an
equilibrium proposal (T, z0 such that zj < yj(S, δ) for some j ∈ T . Look at the last player
in T ’s response order for which this inequality holds. That player must reject — assuming
the proposal makes it that far — so the proposal cannot be acceptable.

Can this sort of “delay” happen in equilibrium? It can. Consider this example:

Delay Example. N = {1, 2, 3, 4}, v(1, j) = 50 for j = 2, 3, 4, v(ij) = 100 for i, j = 2, 3, 4, and
v(S) = 0 for all other S.

We will provide a formal argument later but for now, note that if player 1 is called upon to
propose he will always make an unacceptable offer

The intuition is simply this: player 1 is a “weak partner” and therefore his proposals will be
turned down by the other players unless he makes one of them an offer equal to his outside

2The other possibilities have unclear implications at this stage. For instance, if zj < yj(S, δ) but it is also
the case that zk < yk(S, δ) for a later respondent k, should j reject? Unclear. Indeed, it is unclear what j
should do even if zj > yj(S, δ) in this case.
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option in dealing with one of the other players. It may be better for player 1 to simply let
one of these other partnerships form and then proceed to deal with the remaining player on
more equal terms.

The point of this exercise is not that you should be taking the delay seriously. The delay
is in part an artifact from the assumption that player 1 must make a proposal and is not
allowed to simply pass the initiative to another player, or to make a proposal for some other
coalition. In both these cases the “delay” will go away. But the point is that an inequality
like (7) will still hold with strict inequality in such a case.

Say that an equilibrium is no delay if after every history, every proposer makes an acceptable
proposal. Then, of course, (7) holds with equality for such equilibria. Let m(S, δ) be the
solution to the equality version of (7).

Theorem 2. For every (S, δ), m(S, δ) exists and is unique.

Proof. Existence is just an application of Brouwer’s fixed point theorem; standard. [But
don’t neglect it, make sure you can do it.]

Uniqueness crucially depends on the following lemma. Roughly speaking, it states that if
player i is making an acceptable proposal in equilibrium, then anyone he includes in his best
acceptable offer must enjoy a higher equilibrium response payoff.

Lemma 2. Let y(S, δ) be any equilibrium response vector, and suppose that (7) holds with
equality for some i ∈ S. Then for any T that attains the maximum in (7) and for all j ∈ T ,
yj(S, δ) ≥ yi(S, δ).

Proof. For i and T as described in the statement of the lemma, we have that

(8) yi(S, δ) = δ

[
v(T )−

∑
k∈T−i

yk(S, δ)

]
.

while for j ∈ T − i,

(9) yj(S, δ) ≥ δ

v(T )−
∑

k∈T−j

yk(S, δ)

 .

Adding −δyj(S, δ) to both sides of (9) and using (8), we see that

(1− δ)yj(S, δ) ≥ δ

v(T )−
∑

k∈T−j

yk(S, δ)

− δyj(S, δ) = (1− δ)yi(S, δ).

. �

Now return to the proof of the theorem. Suppose, on the contrary, that there are two solutions
m and m′ to the full equality version of (7). Define K to be the set of all indices in S in
which the two solutions differ; i.e., K ≡ {i ∈ S|mi 6= m′

i} and pick an index k such that one
of these m-values is maximal; wlog:

mk = max{z|z = mi or m′
i for i ∈ K}.
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By definition, mk > m′
k. Choose T ⊆ S such that

mk = δ

v(T )−
∑

j∈T−k

mj

 .

Of course,

m′
k ≥ δ

v(T )−
∑

j∈T−k

m′
j

 .

By Lemma 2, mj ≥ mk for all j ∈ T . By our choice of k ∈ K, it must be the case that
m′

j ≤ mj for all j ∈ T . But then m′
k ≥ mk, which is a contradiction. �

The characterization of no-delay equilibria can be applied immediately to deduce that there
must be delay in the “delay example” above. Simply calculate the m-vectors. For any
two-player set with worth x, it is easy to see that

mi(S, δ) =
δx

1 + δ
for i ∈ S,

while for the grand coalition N , it is easy to check that

m2(N, δ) = m3(N, δ) =
100δ

1 + δ

m1(N, δ) = δ

[
50− 100δ

1 + δ

]
.

[You can verify all this by simply checking that the equality version of (7) is satisfied; after
all, we already know that the solution is unique.]

Now m1(N, δ), while always positive, converges to 0 as δ → 1. So this cannot be the
equilibrium payoff for player 1. If he deviates by maling an unacceptable proposal, then
simply use the assumed continuation along the no-delay equilibrium to conclude that player
1 can get a payoff bounded away from 0 (as δ → 1).

4. Immediate Agreement

The delay example suggests that the following condition is sufficient for no-delay:

[M] If S ⊆ S′, then for all i ∈ S, mi(S, δ) ≤ mi(S′, δ).

I reiterate that it isn’t the “no-delay” that we are after, as the delay is of a trivial sort anyway,
but we want the ability to characterize equilibria using the m-vector. This condition does
the trick.

Theorem 3. Under [M], equilibria can be fully described. At any set of active players S a
proposer i chooses T to maximize

v(T )−
∑

j∈T−k

mj(S, δ)
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and delivers mj(S, δ) to each j ∈ T . Any responder j accepts if and only if yk ≥ mk(S, δ) for
k equal to j and all those after him.

Proof. First we show that the description in the theorem constitutes an equilibrium. Induc-
tively, assume that it is true for all active player sets of cardinality s − 1 or less (trivially
true when s = 1). Now pick a set S of cardinality s. Complete the verification, first for the
proposer, and then for the responder, using condition [M].3

To show that nothing else can be an equilibrium, proceed inductively once again. Say the
description is complete for all active player sets of cardinality s − 1 or less (trivially true
when s = 1). Now pick a set S of cardinality s. Study any equilibrium response vector y on
S. Let

K ≡ {i ∈ S|mi(S, δ) 6= yi}
and pick an index i such that either mi or yi is the biggest of the values featured in K. If
it is yi, note that yi > mi(S, δ) ≥ mi(S′, δ) for all S′ ⊆ S (by condition [M]), so using the
induction hypothesis, i must be making an acceptable offer. So pick T such that

(10) yi(S, δ) = δ

[
v(T )−

∑
k∈T−i

yk(S, δ)

]
,

and observe that

(11) mi(S, δ) ≥ δ

[
v(T )−

∑
k∈T−i

mk(S, δ)

]
.

By (10) and Lemma 2, yj ≥ yi for all j ∈ T . So mj(S, δ) ≤ yj for all j ∈ T , j 6= i. But then
using (11), we see that mi(S, δ) ≥ yi, which is a contradiction.

Alternatively, if at the index i in the “maximal set” K we have mi(S, δ) > yi, then note that
there exists T such that (10) holds with equality with mi in place of yi, and then follow the
same argumemt as above with the roles of mi and yi interchanged. �

5. Are Equilibria Efficient?

Start with some intuition. Everyone is free to make or reject offers, so why should equilibria
be inefficient anyway? But there is an implicit externality here: when someone makes an
offer, he has to compensate the responders. Otherwise they can seize the initiative. This
means that “at the margin” when a proposer is choosing a coalition, part of the surplus from
that coalition has to be “given away”. This drives a wedge between the “private surplus”
and the “social surplus” and may cause an inefficient choice to be made.

To see this even more clearly, consider the dictator version of this game in which only one
player gets to make offers and everyone else can only say yes or no. In that case the outcome
is efficient in all equilibria because the entire social surplus is appropriated by the dictator

3There is a relatively unimportant technical matter here. When equality holds for the responder he should
be free to go either way, rather than accept as we assert he must. But it can be shown that “accept” is the
only decision that will work, otherwise the proposer’s best response is not well-defined.
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who therefore maximizes that surplus. The outcome may not be very welcome from an equity
point of view but that is another matter.

Let us begin the formal analysis with the strongest possible notion of efficiency: no matter
who begins the game, the outcome is efficient. We will call this notion strong efficiency.

Theorem 4. A coalitional bargaining game with a strictly superadditive characteristic func-
tion is strongly efficient for all discount factors close to 1 if and only if

(12)
v(N)
|N |

≥ v(S)
|S|

for all S.

Proof. Our proof will reply on the following lemma:

Lemma 3. Fix an equilibrium. For any (S, δ), suppose that (7) holds with strict inequality
for some i:

yi(S, δ) > δ max
T :i∈T⊆S

v(T )−
∑

j∈T−i

yj(S, δ)

 .

Then there exists a strict subset S′ of S such that yi(S′, δ) ≥ yi(S, δ).

Proof. Let S∗ be some minimal subset of S (which could be S itself) such that y∗i (S, δ) ≥
yi(S, δ). Then I claim that

yi(S∗, δ) = δ max
T :i∈T⊆S∗

v(T )−
∑

j∈T−i

yj(S∗, δ)

 .

For if not, then i must make an unacceptable proposal at S∗. But after that he can get
at most yi(S′, δ) for some S′ ⊂ S∗. But by construction, yi(S′, δ) < yi(S∗, δ), which is a
contradiction. So equality does hold, which means from our premise that S∗ must be a strict
subset of S. �

Now return to the main proof. First we show that (12) implies strong efficiency. Pick any
person i and look at yi(N, δ). Then, using Lemma 3, there exists S (could be N itself) and
T ⊆ S with i ∈ T such that

(13) yi(N, δ) ≤ yi(S, δ) = δ

v(T )−
∑

j∈T−i

yj(S, δ)

 .

We know from Lemma 2 that yj(S, δ) ≥ yi(S, δ) for all j ∈ T , so using (12),

(14) yi(S, δ) ≤ δv(T )
1 + δ(t− 1)

≤ δv(N)
1 + δ(n− 1)

where t and n are the cardinalities of T and N respectively.

Note that strict inequality must hold in the second inequality of (14) whenever T 6= N
(why?).
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So, combining (13) and (14), we have shown that

(15) yi(N, δ) ≤ δv(N)
1 + δ(n− 1)

for all i, with strict inequality whenever i does not propose acceptably to the grand coalition.

At the same time, we know that

yi(N, δ) ≥ δ

v(N)−
∑

j∈N−i

yj(N, δ)

(16)

≥ δ

[
v(N)− δv(N)(n− 1)

1 + δ(n− 1)

]
(17)

=
δv(N)

1 + δ(n− 1)
,(18)

where the second line uses (15). Together, (15) and (18) prove that i must make an acceptable
offer to the grand coalition, which proves efficiency.

Conversely, suppose that we have strong efficiency for all discount factors close to 1. Then
each starting proposer makes a proposal to the grand coalition, so that yi(N, δ) is some
constant y for all i, and

yi(N, δ) = δ

v(N)−
∑

j∈N−i

yj(N, δ)

 ,

so that

(19) y =
δv(N)

1 + δ(n− 1)
.

Moreover,

yi(N, δ) ≥ δ

v(S)−
∑

j∈S−i

yj(N, δ)


for all S, so that

(20) y ≥ δv(S)
1 + δ(s− 1)

.

Combine (19) and (20), and send δ to 1. �

Notice that the condition above is closely related to the condition for a nonempty core in
symmetric games. It’s still sufficient, but not necessary, in general games. In any case, we see
that we are getting a theory that tends to generate inefficiency for empty cores but still gives
us a prediction using the m-vector. Indeed, as we shall see, it might even give inefficiency
when the core is nonempty. Let us go on.

What if, instead of insisting on strong efficiency, we simply ask for efficiency for some initial
proposer? Call this weak efficiency.
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Theorem 5. Suppose that (N, v) is a strictly superadditive characteristic function and sup-
pose that we have weak efficiency for some sequence of discount factors converging to one.
Let z(δ) be the corresponding sequence of efficient equilibrium payoff vectors. Then any limit
point of z(δ) lies in the core of (N, v).

Proof. Suppose without loss of generality that player 1 is the “efficient proposer” along the
sequence.4 By strict superadditivity, he must be making a proposal to the grand coalition.
Then, if y(N, δ) is the equilibrium response vector, we have

(21) z1(δ) =
y1(N, δ)

δ
,

while

(22) zj(δ) = yj(N, δ)

for all other j. Now pick any coalition S and any i ∈ S. By (7),

yi(N, δ) ≥ δ

v(S)−
∑

j∈S−i

yj(N, δ)

 ,

or
yi(N, δ)

δ
+

∑
j∈S−i

yj(N, δ) ≥ v(S).

Pick a subsequence such that z(δ) converges, say to z∗. Send δ to 1 along this subsequence
and note that both yi(N, δ) and yi(N, δ)/δ converge to the z∗i . Therefore∑

i∈S

z∗i ≥ v(S).

Because S was arbitrarily chosen, we are done. �

So now the connection with the core starts to become even clearer. For discount factors close
to 1, games with empty cores will never have efficient stationary equilibria no matter who
proposes first.

What about the converse? If equilibria are inefficient, must the core be empty? Consider the
following example:

Employer-Employee Game. N = {1, 2, 3}, v(i) ' 0 for all i, v(23) ' 0, v(12) = v(13) = 1,
v(N) = 1 + µ for some µ > 0. The interpretation is that player 1 is an employer who can
produce an output of 1 with any one of the two employees 2 and 3. He can also hire both
employees in which case output is higher. No other combination can produce anything.

Exercise. Show that if µ ∈ (0, 0.5), then the equilibrium always involves the coalition {12} or
{13}, with the remaining player left “unemployed”. Yet observe that the core of this game
is empty as long as µ > 0.

4Of course the efficient proposer may change along the sequence, but then simply take an appropriate
subsequence.
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So an empty core will generate inefficiency for sure, but a nonempty core won’t guarantee
efficiency! Recall the intuition at the start of this section to understand why. Player 1 would
love to include both players 2 and 3 and pocket the resulting surplus, but the very act of
including both players gives them bargaining power (they can reject) and so both players
will have to be compensated, at rates that do not justify the gain of the extra µ. [The rates
will be justified if µ > 0.5.]

To try and characterize inefficiency, or at least to find a weaker sufficient condition for it, we
have to dig deeper. One approach is to try and characterize the limit of the m-vectors as δ
goes to 1. Ideally, we would like to do so in a way that only depends on the parameters of
the model, and so that we can algorithmically calculate it. The following observation takes
the first step.

Theorem 6. There exists a unique vector m∗ with the property that for each i,

(23) m∗
i = max

i∈S⊆N

v(S)−
∑

j∈S−i

m∗
j

 ,

and the property that m∗
j ≥ m∗

i for all j ∈ S, for some S that attains the maximum above.

Proof. To establish existence, recall that m∗(N, δ) is well-defined for every δ, by Theorem 2.
Pass to any limit point as δ goes to 1; call it m∗. Lemma 2 and a trivial continuity argument
assures us that m∗ has both the properties claimed in the statement of the theorem.

The uniqueness of m∗ is obtained by following exactly the proof of Theorem 2 (without any
need to invoke Lemma 2).

Suppose, on the contrary, that there are two solutions m and m′ meeting the conditions of
the theorem. Define K to be the set of all indices in N in which the two solutions differ; i.e.,
K ≡ {i ∈ N |mi 6= m′

i} and pick an index k such that one of these m-values is maximal; wlog:

mk = max{z|z = mi or m′
i for i ∈ K}.

By definition, mk > m′
k. Choose S such that

mk = δ

v(S)−
∑

j∈S−k

mj

 .

and with mj ≥ mk for all j ∈ S. We know that

m′
k ≥ δ

v(S)−
∑

j∈S−k

m′
j

 .

Because mj ≥ mk for all j ∈ S, it follows from our choice of k that m′
j ≤ mj for all j ∈ S.

But then m′
k ≥ mk, which is a contradiction. �

The following result is an immediate corollary:

Theorem 7. If
∑n

i=1 m∗
i > v(N), then no sequence of equilibria can be weakly efficient for

all discount factors approaching 1.
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We end, then, by describing an algorithmic way to calculate m∗. The idea is simply to exhibit
a vector that satisfies all the conditions of Theorem 6. The uniqueness result there assures
us that we then have the correct vector.

Algorithm.

Step 1. Begin by maximizing v(C)/|C|. Let C1 be the union of all maximizers of this
expression, and let a1 be the maximum value attained. Define m∗

i ≡ a1 for every i ∈ C1.

Step 2. Recursively, suppose that we have defined sets {C1, . . . , CK} for some index K ≥ 1,
corresponding values {a1, . . . , aK}, and have defined m∗

i = ak whenever i ∈ Ck. Now define
W to be the union of all the Ck’s, and consider the problem of choosing sets C ⊂ N −W
and T ⊆ W to maximize

v(C ∪ T )−
∑

i∈T m∗
i

|C|
.

Define CK+1 to be the union of all sets C such that (C, T ) maximizes this expression for some
T ⊆ W , and let aK be the maximum value attained. Define m∗

i ≡ aK+1 for every i ∈ CK+1.

Continue in this way until m∗ is fully defined on the set N of all players.

Theorem 8. The vector m∗ as constructed in the algorithm satisfies all the conditions of
Theorem 6.

Proof. Fix m∗ as given by the algorithm. Consider any player i, and the problem of choosing
S — with i ∈ S — to maximize

v(S)−
∑

j∈S−i

m∗
j .

Suppose that i ∈ Ck, given by the algorithm. Then the following is true:

Claim. If S ⊂ C1 ∪ · · · ∪ Ck, then

(24) m∗
i ≥ v(S)−

∑
j∈S−i

m∗
j ,

with equality holding when S = C ∪ T , where (C, T ) is an algorithmic maximizer in Step 2
(at stage k).

To prove the claim, note that if S is of the form C∪T , where C ⊆ Ck and T ⊆ C1∪· · ·∪Ck−1,5

then by Step 2 of the algorithm,

m∗
i ≥

v(S)−
∑

i∈T m∗
i

|C|
= v(S)−

∑
j∈S−i

m∗
j .

Moreover, equality must hold when (C, T ) is an algorithmic maximizer in Step 2 (at stage
k). Thus proves the Claim.

5If k = 1, then treat C1 ∪ · · · ∪ Ck−1 as the empty set.
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We actually want to show that (24) holds for every set S, not just S of the form described
in the Claim. Suppose this is false. Then there is S such that i ∈ S and

(25) v(S)−
∑

j∈S−i

m∗
j > m∗

i .

Pick j ∈ S such that j belongs to the “highest” set index in the algorithm, say C`. Then,
using (25) and the Claim, it must be that ` > k. Rearranging terms in (25), we see that

m∗
j < v(S)−

∑
k∈S−j

m∗
k,

but this violates the Claim for individual j!

To finish off the proof, for each i (say in Ck) pick S = C ∪T , where (C, T ) is the algorithmic
maximizer in Step 2 (at stage k). Then (24) holds with equality (by the Claim), and m∗

j ≥ m∗
i

for every j ∈ S. �


